51
|
Magaña JC, Deus CM, Baldellou L, Avellanet M, Gea-Rodríguez E, Enriquez-Calzada S, Laguna A, Martínez-Vicente M, Hernández-Vara J, Giné-Garriga M, Pereira SP, Montane J. Investigating the impact of physical activity on mitochondrial function in Parkinson's disease (PARKEX): Study protocol for A randomized controlled clinical trial. PLoS One 2023; 18:e0293774. [PMID: 37992028 PMCID: PMC10664890 DOI: 10.1371/journal.pone.0293774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive dopaminergic neuron degeneration, resulting in striatal dopamine deficiency. Mitochondrial dysfunction and oxidative stress are associated with PD pathogenesis. Physical activity (PA) has been shown to ameliorate neurological impairments and to impede age-related neuronal loss. In addition, skin fibroblasts have been identified as surrogate indicators of pathogenic processes correlating with clinical measures. The PARKEX study aims to compare the effects of two different PA programs, analyzing the impact on mitochondrial function in patients' skin fibroblasts as biomarkers for disease status and metabolic improvement. Early-stage PD patients (n = 24, H&Y stage I to III) will be randomized into three age- and sex-matched groups. Group 1 (n = 8) will undergo basic physical training (BPT) emphasizing strength and resistance. Group 2 (n = 8) will undergo BPT combined with functional exercises (BPTFE), targeting the sensorimotor pathways that are most affected in PD (proprioception-balance-coordination) together with cognitive and motor training (Dual task training). Group 3 (n = 8) will serve as control (sedentary group; Sed). Participants will perform three sessions per week for 12 weeks. Assessment of motor function, quality of life, sleep quality, cognitive aspects and humor will be conducted pre- and post-intervention. Patient skin fibroblasts will be collected before and after the intervention and characterized in terms of metabolic remodeling and mitochondrial bioenergetics. Ethical approval has been given to commence this study. This trial is registered at clinicaltrials.gov (NCT05963425). Trial registration. https://classic.clinicaltrials.gov/ct2/history/NCT05963425.
Collapse
Affiliation(s)
- Juan Carlos Magaña
- Facultat de Psicologia, Ciències de l'Educació i de l'Esport Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Cláudia Maria Deus
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Laura Baldellou
- Facultat de Ciències de la Salut, Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Merce Avellanet
- Hospital Nostra Senyora de Meritxell, Escaldes-Engordany, Andorra
- Universitat d'Andorra, Sant Julià de Lòria, Andorra
| | - Elvira Gea-Rodríguez
- Hospital Nostra Senyora de Meritxell, Escaldes-Engordany, Andorra
- Universitat d'Andorra, Sant Julià de Lòria, Andorra
| | - Silvia Enriquez-Calzada
- Grup de Malalties Neurodegeneratives de la Vall d'Hebron. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Ariadna Laguna
- Grup de Malalties Neurodegeneratives de la Vall d'Hebron. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States of America
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), Cerdanyola del Vallès, Spain
| | - Marta Martínez-Vicente
- Grup de Malalties Neurodegeneratives de la Vall d'Hebron. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Jorge Hernández-Vara
- Grup de Malalties Neurodegeneratives de la Vall d'Hebron. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Maria Giné-Garriga
- Facultat de Psicologia, Ciències de l'Educació i de l'Esport Blanquerna, Ramon Llull University, Barcelona, Spain
- Facultat de Ciències de la Salut, Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Susana Patricia Pereira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Sports, Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Joel Montane
- Facultat de Psicologia, Ciències de l'Educació i de l'Esport Blanquerna, Ramon Llull University, Barcelona, Spain
- Facultat de Ciències de la Salut, Blanquerna, Ramon Llull University, Barcelona, Spain
| |
Collapse
|
52
|
Kumar J, Delgado SA, Sarma H, Narayan M. Caffeic acid recarbonization: A green chemistry, sustainable carbon nano material platform to intervene in neurodegeneration induced by emerging contaminants. ENVIRONMENTAL RESEARCH 2023; 237:116932. [PMID: 37598847 PMCID: PMC11285802 DOI: 10.1016/j.envres.2023.116932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Environmental agents such as pesticides, weedicides and herbicides (collectively referred to as pesticides) are associated with the onset and pathogenesis of neurodegenerative disorders such as Parkinson's (PD) and Alzheimer's (AD) diseases. The development of blood-brain barrier (BBB)-penetrating therapeutic candidates to both prevent and treat the aforementioned xenotoxicant-induced neurodegenerative disorders remains an unmet need. Here, we examine whether caffeic-acid based Carbon Quantum Dots (CACQDs) can intervene in pesticide-associated onset and progress of the PD phenotype. Pulse-chase fluorescence analyses revealed that CACQDs intervene in the soluble-to-toxic transformation of the amyloid-forming protein model Hen Egg White Lysozyme (HEWL). The sp2-rich CACQDs also scavenged free radicals, a milestone along the PD trajectory. In-vitro, CACQDs introduced into a human neuroblastoma-derived cell line (SH-SY5Y) demonstrated negligible cytotoxicity up to 5 mg/mL and protected the cell line against oxidative stress-induced neuronal injury induced by the pesticide and potent neurotoxin, paraquat. Our findings suggest that the potentially BBB-penetrating CACQDs derived from caffeic acid hold promise for mitigating neurodegenerative disorders associated with environmental pesticides and xenobiotic neurotoxicants. Importantly, CACQDs sourced from coffee, coupled with their facile synthesis, represent a sustainable, green chemistry platform for generating interventional candidates in neurodegeneration.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, TX, 79968, United States
| | - Sofia A Delgado
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, TX, 79968, United States
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, TX, 79968, United States.
| |
Collapse
|
53
|
Nápoles-Medina AY, Aguilar-Uscanga BR, Solís-Pacheco JR, Tejeda-Martínez AR, Ramírez-Jirano LJ, Urmeneta-Ortiz MF, Chaparro-Huerta V, Flores-Soto ME. Oral Administration of Lactobacillus Inhibits the Permeability of Blood-Brain and Gut Barriers in a Parkinsonism Model. Behav Neurol 2023; 2023:6686037. [PMID: 38025189 PMCID: PMC10653970 DOI: 10.1155/2023/6686037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
It has recently been shown that the administration of probiotics can modulate the microbiota-gut-brain axis and may have favorable effects in models of Parkinson's disease. In this study, we used a hemiparkinsonism model induced by the neurotoxin 6-OHDA to evaluate the efficacy of the administration of a four-week administration of a mixture containing the microorganisms Lactobacillus fermentum LH01, Lactobacillus reuteri LH03, and Lactobacillus plantarum LH05. The hemiparkinsonism model induced an increase in rotations in the apomorphine test, along with a decrease in the latency time to fall in the rotarod test on days 14 and 21 after surgery, respectively. The administration of probiotics was sufficient to improve this condition. The model also showed a decrease in tyrosine hydroxylase immunoreactivity in the striatum and the number of labeled cells in the substantia nigra, both of which were counteracted by the administration of probiotics. The permeability of the blood-brain barrier was increased in the model, but this effect was reversed by the probiotics for both brain regions. The gut barrier was permeated with the model, and this effect was reversed and dropped to lower levels than the control group after the administration of probiotics. Finally, lipid peroxidation showed a pattern of differences similar to that of permeabilities. The inhibition of the permeability of the blood-brain and gut barriers mediated by the administration of probiotics will likely provide protection by downregulating oxidative stress, thus affecting the rotarod test performance.
Collapse
Affiliation(s)
- Angélica Y. Nápoles-Medina
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Blanca R. Aguilar-Uscanga
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Josué R. Solís-Pacheco
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Aldo R. Tejeda-Martínez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Luis J. Ramírez-Jirano
- División de Neurociencias, Centro de Investigación Biomédica Occidente (IMSS), Guadalajara, Mexico
| | - María F. Urmeneta-Ortiz
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Veronica Chaparro-Huerta
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Mario E. Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| |
Collapse
|
54
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Res Rev 2023; 91:102075. [PMID: 37714384 DOI: 10.1016/j.arr.2023.102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease (NDD) of the brain. It has been reported that prolactin (PRL) hormone plays a differential effect in PD, may be increasing, reduced or unaffected. PRL level is dysregulated in different neurodegenerative disorders including PD. Preclinical and clinical studies pointed out that PRL may has a neuroprotective against PD neuropathology . Though, the mechanistic role of PRL in PD is not fully elucidated. Therefore, the objective of the present review was to clarify the potential role and mechanistic pathway of PRL in PD neuropathology. The present review highlighted that PRL appears to have a neuroprotective effect against PD neuropathology by inhibiting the expression of pro-inflammatory signaling pathways, antioxidant effects and by inhibiting neuroinflammation. Thus, preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
55
|
Alrouji M, Al-Kuraishy HM, Al-Mahammadawy AKAA, Al-Gareeb AI, Saad HM, Batiha GES. The potential role of cholesterol in Parkinson's disease neuropathology: perpetrator or victim. Neurol Sci 2023; 44:3781-3794. [PMID: 37428278 DOI: 10.1007/s10072-023-06926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by deposition of α-synuclein and aggregation of Lewy bodies. Cholesterol is involved with PD neuropathology in bidirectional ways that could be protective or harmful. Thus, the objective of the present review was to verify the potential role of cholesterol in PD neuropathology. Deregulation of ion channels and receptors induced by cholesterol alteration suggests a possible mechanism for the neuroprotective effects of cholesterol against PD development. However, high serum cholesterol level increases PD risk indirectly by 27-hydroxycholesterol which induces oxidative stress, inflammation, and apoptosis. Besides, hypercholesterolemia triggers the accumulation of cholesterol in macrophages and immune cells leading to the release of pro-inflammatory cytokines with progression of neuroinflammation subsequently. Additionally, cholesterol increases aggregation of α-synuclein and induces degeneration of dopaminergic neurons (DN) in the substantia nigra (SN). Hypercholesterolemia may lead to cellular Ca2+ overload causing synaptic and the development of neurodegeneration. In conclusion, cholesterol has bidirectional effects on PD neuropathology and might be protective or harmful.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | | | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al Beheira, 22511, Egypt.
| |
Collapse
|
56
|
Abdel-Salam OME, Mózsik G. Capsaicin, The Vanilloid Receptor TRPV1 Agonist in Neuroprotection: Mechanisms Involved and Significance. Neurochem Res 2023; 48:3296-3315. [PMID: 37493882 PMCID: PMC10514110 DOI: 10.1007/s11064-023-03983-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Hot peppers, also called chilli, chilli pepper, or paprika of the plant genus Capsicum (family Solanaceae), are one of the most used vegetables and spices worldwide. Capsaicin (8-methyl N-vanillyl-6-noneamide) is the main pungent principle of hot green and red peppers. By acting on the capsaicin receptor or transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1), capsaicin selectively stimulates and in high doses defunctionalizes capsaicin-sensitive chemonociceptors with C and Aδ afferent fibers. This channel, which is involved in a wide range of neuronal processes, is expressed in peripheral and central branches of capsaicin-sensitive nociceptive neurons, sensory ganglia, the spinal cord, and different brain regions in neuronal cell bodies, dendrites, astrocytes, and pericytes. Several experimental and clinical studies provided evidence that capsaicin protected against ischaemic or excitotoxic cerebral neuronal injury and may lower the risk of cerebral stroke. By preventing neuronal death, memory impairment and inhibiting the amyloidogenic process, capsaicin may also be beneficial in neurodegenerative disorders such as Parkinson's or Alzheimer's diseases. Capsaicin given in systemic inflammation/sepsis exerted beneficial antioxidant and anti-inflammatory effects while defunctionalization of capsaicin-sensitive vagal afferents has been demonstrated to increase brain oxidative stress. Capsaicin may act in the periphery via the vagal sensory fibers expressing TRPV1 receptors to reduce immune oxidative and inflammatory signalling to the brain. Capsaicin given in small doses has also been reported to inhibit the experimentally-induced epileptic seizures. The aim of this review is to provide a concise account on the most recent findings related to this topic. We attempted to delineate such mechanisms by which capsaicin exerts its neuronal protective effects. We also aimed to provide the reader with the current knowledge on the mechanism of action of capsaicin on sensory receptors.
Collapse
Affiliation(s)
- Omar M E Abdel-Salam
- Department of Toxicology and Narcotics, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt.
| | - Gyula Mózsik
- First Department of Medicine, Medical and Health Centre, University of Pécs, H-9724, Pecs, Hungary
| |
Collapse
|
57
|
Hack W, Gladen-Kolarsky N, Chatterjee S, Liang Q, Maitra U, Ciesla L, Gray NE. Gardenin A improves cognitive and motor function in A53T-α-syn mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564401. [PMID: 37961574 PMCID: PMC10634905 DOI: 10.1101/2023.10.27.564401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oxidative stress and neuroinflammation are widespread in the Parkinson's disease (PD) brain and contribute to the synaptic degradation and dopaminergic cell loss that result in cognitive impairment and motor dysfunction. The polymethoxyflavone Gardenin A (GA) has been shown to activate the NRF2-regulated antioxidant pathway and inhibit the NFkB-dependent pro-inflammatory pathway in a Drosophila model of PD. Here, we evaluate the effects of GA on A53T alpha-synuclein overexpressing (A53TSyn) mice. A53TSyn mice were treated orally for 4 weeks with 0, 25, or 100 mg/kg GA. In the fourth week, mice underwent behavioral testing and tissue was harvested for immunohistochemical analysis of tyrosine hydroxylase (TH) and phosphorylated alpha synuclein (pSyn) expression, and quantification of synaptic, antioxidant and inflammatory gene expression. Results were compared to vehicle-treated C57BL6 mice. Treatment with 100 mg/kg GA improved associative memory and decreased abnormalities in mobility and gait in A53TSyn mice. GA treatment also reduced cortical and hippocampal levels of pSyn and attenuated the reduction in TH expression in the striatum. Additionally, GA increased cortical expression of NRF2-regulated antioxidant genes and decreased expression of NFkB-dependent pro-inflammatory genes. GA was readily detectable in the brains of treated mice and modulated the lipid profile in the deep gray brain tissue of those animals. While the beneficial effects of GA on cognitive deficits, motor dysfunction and PD pathology are promising, future studies are needed to further fully elucidate the mechanism of action of GA, optimizing dosing and confirm these effects in other PD models. Significance Statement The polymethoxyflavone Gardenin A can improve cognitive and motor function and attenuate both increases in phosphorylated alpha synuclein and reductions in tyrosine hydroxylase expression in A53T alpha synuclein overexpressing mice. These effects may be related to activation of the NRF2-regulated antioxidant response and downregulation of NFkB-dependent inflammatory response by Gardenin A in treated animals. The study also showed excellent brain bioavailability of Gardenin A and modifications of the lipid profile, possibly through interactions between Gardenin A with the lipid bilayer, following oral administration. The study confirms neuroprotective activity of Gardenin A previously reported in toxin induced Drosophila model of Parkinson's disease.
Collapse
|
58
|
Li LY, Liu SF, Zhuang JL, Li MM, Huang ZP, Chen YH, Chen XR, Chen CN, Lin S, Ye LC. Recent research progress on metabolic syndrome and risk of Parkinson's disease. Rev Neurosci 2023; 34:719-735. [PMID: 36450297 DOI: 10.1515/revneuro-2022-0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/06/2022] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. PD is associated with progressive loss of substantia nigra dopaminergic neurons, including various motor symptoms (e.g., bradykinesia, rigidity, and resting tremor), as well as non-motor symptoms (e.g., cognitive impairment, constipation, fatigue, sleep disturbance, and depression). PD involves multiple biological processes, including mitochondrial or lysosomal dysfunction, oxidative stress, insulin resistance, and neuroinflammation. Metabolic syndrome (MetS), a collection of numerous connected cerebral cardiovascular conditions, is a common and growing public health problem associated with many chronic diseases worldwide. MetS components include central/abdominal obesity, systemic hypertension, diabetes, and atherogenic dyslipidemia. MetS and PD share multiple pathophysiological processes, including insulin resistance, oxidative stress, and chronic inflammation. In recent years, MetS has been linked to an increased risk of PD, according to studies; however, the specific mechanism remains unclear. Researchers also found that some related metabolic therapies are potential therapeutic strategies to prevent and improve PD. This article reviews the epidemiological relationship between components of MetS and the risk of PD and discusses the potentially relevant mechanisms and recent progress of MetS as a risk factor for PD. Furthermore, we conclude that MetS-related therapies are beneficial for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou 362000, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW, Australia
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
59
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
60
|
Sastre D, Zafar F, Torres CAM, Piper D, Kirik D, Sanders LH, Qi LS, Schüle B. Inactive S. aureus Cas9 downregulates alpha-synuclein and reduces mtDNA damage and oxidative stress levels in human stem cell model of Parkinson's disease. Sci Rep 2023; 13:17796. [PMID: 37853101 PMCID: PMC10584834 DOI: 10.1038/s41598-023-45078-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, but no disease modifying therapies have been successful in clinical translation presenting a major unmet medical need. A promising target is alpha-synuclein or its aggregated form, which accumulates in the brain of PD patients as Lewy bodies. While it is not entirely clear which alpha-synuclein protein species is disease relevant, mere overexpression of alpha-synuclein in hereditary forms leads to neurodegeneration. To specifically address gene regulation of alpha-synuclein, we developed a CRISPR interference (CRISPRi) system based on the nuclease dead S. aureus Cas9 (SadCas9) fused with the transcriptional repressor domain Krueppel-associated box to controllably repress alpha-synuclein expression at the transcriptional level. We screened single guide (sg)RNAs across the SNCA promoter and identified several sgRNAs that mediate downregulation of alpha-synuclein at varying levels. CRISPRi downregulation of alpha-synuclein in iPSC-derived neuronal cultures from a patient with an SNCA genomic triplication showed functional recovery by reduction of oxidative stress and mitochondrial DNA damage. Our results are proof-of-concept in vitro for precision medicine by targeting the SNCA gene promoter. The SNCA CRISPRi approach presents a new model to understand safe levels of alpha-synuclein downregulation and a novel therapeutic strategy for PD and related alpha-synucleinopathies.
Collapse
Affiliation(s)
- Danuta Sastre
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., R271/217, Stanford, CA, 94305, USA
| | - Faria Zafar
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., R271/217, Stanford, CA, 94305, USA
| | - C Alejandra Morato Torres
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., R271/217, Stanford, CA, 94305, USA
| | - Desiree Piper
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95192, USA
| | - Deniz Kirik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University Medical Center, Durham, NC, 27710, USA
| | - L Stanley Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., R271/217, Stanford, CA, 94305, USA.
- Biosciences Division, SRI International, Menlo Park, CA, 94025, USA.
| |
Collapse
|
61
|
Sadžak A, Eraković M, Šegota S. Kinetics of Flavonoid Degradation and Controlled Release from Functionalized Magnetic Nanoparticles. Mol Pharm 2023; 20:5148-5159. [PMID: 37651612 DOI: 10.1021/acs.molpharmaceut.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are naturally occurring antioxidants that have been shown to protect cell membranes from oxidative stress and have a potential use in photodynamic cancer treatment. However, they degrade at physiological pH values, which is often neglected in drug release studies. Kinetic study of flavonoid oxidation can help to understand the mechanism of degradation and to correctly analyze flavonoid release data. Additionally, the incorporation of flavonoids into magnetic nanocarriers can be utilized to mitigate degradation and overcome their low solubility, while the release can be controlled using magnetic fields (MFs). An approach that combines alternating least squares (ALS) and multilinear regression to consider flavonoid autoxidation in release studies is presented. This approach can be used in general cases to account for the degradation of unstable drugs released from nanoparticles. The oxidation of quercetin, myricetin (MCE), and myricitrin (MCI) was studied in PBS buffer (pH = 7.4) using UV-vis spectrophotometry. ALS was used to determine the kinetic profiles and characteristic spectra, which were used to analyze UV-vis data of release from functionalized magnetic nanoparticles (MNPs). MNPs were selected for their unique magnetic properties, which can be exploited for both targeted drug delivery and control over the drug release. MNPs were prepared and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, superconducting quantum interference device magnetometer, and electrophoretic mobility measurements. Autoxidation of all three flavonoids follows a two-step first-order kinetic model. MCE showed the fastest degradation, while the oxidation of MCI was the slowest. The flavonoids were successfully loaded into the prepared MNPs, and the drug release was described by the first-order and Korsmeyer-Peppas models. External MFs were utilized to control the release mechanism and the cumulative mass of the flavonoids released.
Collapse
Affiliation(s)
- Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Mihael Eraković
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| |
Collapse
|
62
|
Sadžak A, Brkljača Z, Eraković M, Kriechbaum M, Maltar-Strmečki N, Přibyl J, Šegota S. Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids. J Lipid Res 2023; 64:100430. [PMID: 37611869 PMCID: PMC10518586 DOI: 10.1016/j.jlr.2023.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Products of lipid peroxidation induce detrimental structural changes in cell membranes, such as the formation of water pores, which occur in the presence of lipids with partially oxidized chains. However, the influence of another class of products, dicarboxylic acids, is still unclear. These products have greater mobility in the lipid bilayer, which enables their aggregation and the formation of favorable sites for the appearance of pores. Therefore, dodecanedioic acid (DDA) was selected as a model product. Additionally, the influence of several structurally different flavonoids on DDA aggregation via formation of hydrogen bonds with carboxyl groups was investigated. The molecular dynamics of DDA in DOPC lipid bilayer revealed the formation of aggregates extending over the hydrophobic region of the bilayer and increasing its polarity. Consequently, water penetration and the appearance of water wires was observed, representing a new step in the mechanism of pore formation. Furthermore, DDA molecules were found to interact with lipid polar groups, causing them to be buried in the bilayer. The addition of flavonoids to the system disrupted aggregate formation, resulting in the displacement of DDA molecules from the center of the bilayer. The placement of DDA and flavonoids in the lipid bilayer was confirmed by small-angle X-ray scattering. Atomic force microscopy and electron paramagnetic resonance were used to characterize the structural properties. The presence of DDA increased bilayer roughness and decreased the ordering of lipid chains, confirming its detrimental effects on the membrane surface, while flavonoids were found to reduce or reverse these changes.
Collapse
Affiliation(s)
- Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mihael Eraković
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | | | - Jan Přibyl
- CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
63
|
Kaplan Algin A, Tomruk C, Gözde Aslan Ç, Şaban Akkurt S, Mehtap Çinar G, Ulukaya S, Uyanikgil Y, Akçay Y. Effects of ozone treatment to the levels of neurodegeneration biomarkers after rotenone induced rat model of Parkinson's disease. Neurosci Lett 2023; 814:137448. [PMID: 37597740 DOI: 10.1016/j.neulet.2023.137448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The study investigated the effects of ozone treatment on the neurodegeneration of stereotaxic rotenone-induced parkinson's disease (PD) model. The model was confirmed using the apomorphine rotation test. α-synuclein, amyloid-β, Tau, phosphorylated Tau, as well as tyrosine hydroxylase(+), nNOS(+), and glial cell counts were used to evaluate neurodegeneration in the substantia nigra pars compacta and ventral tegmental area. The experiment involved 48 Sprague-Dawley rats divided into four groups: dimethyl sulfoxide (DMSO), DMSO with ozone (O), DMSO/rotenone (R), and D/R/O. Ozone treatment significantly improved tissue α-synuclein level and TH+, nNOS+, and glial cell counts compared to the rotenone-only group. The study suggests that ozone treatment may have beneficial effects on PD biomarkers in the rotenone model. Further studies on ozone dosage, duration, and administration methods in humans could provide more evidence for its potential use in Parkinson's disease treatment.
Collapse
Affiliation(s)
- Asuman Kaplan Algin
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, İzmir, Turkey; Integrative and Complementary Medical Clinic Muratpaşa, Antalya, Turkey
| | - Canberk Tomruk
- Ege University, Faculty of Medicine, Department of Histology and Embryology, Bornova, İzmir, Turkey
| | - Çiğdem Gözde Aslan
- Biruni University, Faculty of Medicine, Department of Medical Biochemistry, İstanbul, Turkey.
| | - Sinan Şaban Akkurt
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, İzmir, Turkey; Clinic of Dr. Sinan Akkurt, Bornova, İzmir, Turkey
| | - Gülcihan Mehtap Çinar
- Ege University, Faculty of Medicine, Department of Pharmacology, Bornova, İzmir, Turkey
| | - Sezgin Ulukaya
- Ege University, Faculty of Medicine, Department of Anesthesia and Reanimation, Bornova, İzmir, Turkey
| | - Yiğit Uyanikgil
- Ege University, Faculty of Medicine, Department of Histology and Embryology, Bornova, İzmir, Turkey
| | - Yasemin Akçay
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, İzmir, Turkey
| |
Collapse
|
64
|
Kola A, Vigni G, Baratto MC, Valensin D. A Combined NMR and UV-Vis Approach to Evaluate Radical Scavenging Activity of Rosmarinic Acid and Other Polyphenols. Molecules 2023; 28:6629. [PMID: 37764405 PMCID: PMC10536562 DOI: 10.3390/molecules28186629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and the body's ability to neutralize them. ROS are reactive molecules generated during cellular metabolism and play a crucial role in normal physiological processes. However, excessive ROS production can lead to oxidative damage, contributing to various diseases and aging. This study is focused on rosmarinic acid (RA), a hydroxycinnamic acid (HCA) derivative well known for its antioxidant activity. In addition, RA has also demonstrated prooxidant behavior under specific conditions involving high concentrations of transition metal ions such as iron and copper, high pH, and the presence of oxygen. In this study, we aim to clarify the underlying mechanisms and factors governing the antioxidant and prooxidant activities of RA, and to compare them with other HCA derivatives. UV-Vis, NMR, and EPR techniques were used to explore copper(II)'s binding ability of RA, caffeic acid, and p-coumaric acid. At the same time, UV-Vis and NMR methods were exploited to evaluate the polyphenols' free radical scavenging abilities towards ROS generated by the ascorbic acid-copper(II) system. All the data indicate that RA is the most effective polyphenol both in copper binding abilities and ROS protection.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (M.C.B.)
| |
Collapse
|
65
|
Jin S, Zhang L, Wang L. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine. Biomed Pharmacother 2023; 165:115215. [PMID: 37494786 DOI: 10.1016/j.biopha.2023.115215] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Neurodegenerative diseases (NDDs) encompass a range of conditions that involve progressive deterioration and dysfunction of the nervous system. Some of the common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Although significant progress has been made in understanding the pathological mechanisms of NDDs in recent years, the development of targeted and effective drugs for their treatment remains challenging. Kaempferol is a flavonoid whose derivatives include kaempferol-O-rhamnoside, 3-O-β-rutinoside/6-hydroxykaempferol 3,6-di-O-β-d-glucoside, and kaempferide. Emerging studies have suggested that kaempferol and its derivatives possess neuroprotective properties and may have potential therapeutic benefits in NDDs. Here, we aimed to provide a theoretical basis for the use of kaempferol and its derivatives in the clinical treatment of NDDs. We systematically reviewed the literature in the PubMed, Web of Science, and Science Direct databases until June 2022 using the search terms "kaempferol," "kaempferol derivatives," "NDDs," "pharmacokinetics," and "biosynthesis" according to the reporting items for systematic review (PRISMA) standard. Based on combined results of in vivo and in vitro studies, we summarize the basic mechanisms and targets of kaempferol and its derivatives in the management of AD, PD, HD, and ALS. Kaempferol and its derivatives exert a neuroprotective role mainly by preventing the deposition of amyloid fibrils (such as Aβ, tau, and α-synuclein), inhibiting microglia activation, reducing the release of inflammatory factors, restoring the mitochondrial membrane to prevent oxidative stress, protecting the blood-brain barrier, and inhibiting specific enzyme activities (such as cholinesterase). Kaempferol and its derivatives are promising natural neuroprotective agents. By determining their pharmacological mechanism, kaempferol and its derivatives may be new candidate drugs for the treatment of NDDs.
Collapse
Affiliation(s)
- Shuai Jin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
66
|
Tahavvori A, Gargari MK, Yazdani Y, Mamalo AS, Beilankouhi EAV, Valilo M. Involvement of antioxidant enzymes in Parkinson's disease. Pathol Res Pract 2023; 249:154757. [PMID: 37598566 DOI: 10.1016/j.prp.2023.154757] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Similar to many other diseases, the etiology of Parkinson's disease (PD) is multifactorial and includes both genetic and environmental factors. Exposure to pesticides and the production of reactive oxygen species (ROS) in the body, mainly in electron transporter complexes 1 and 2 in the inner mitochondrial membrane, are two primary environmental risk factors for this disease. Increased accumulation of ROS and oxidative stress (OS) trigger a series of reactions that can lead to the aggregation of misfolded proteins, DNA damage, autophagy, and apoptosis, which may adversely affect cell function. These processes cause diseases such as coronary artery disease (CAD), Alzheimer's disease (AD), and PD. As indicated in previous studies, ROS is considered a critical regulator in the progression of PD. The human body contains several antioxidant molecules, such as vitamin A, vitamin C, bilirubin, and uric acid, as well as antioxidant enzymes including paraoxonase (PON), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Therefore, based on the canonical function of the antioxidant enzymes in PD, In the present review, we attempted to examine the function of antioxidant enzymes in PD.
Collapse
Affiliation(s)
- Amir Tahavvori
- M, D, Internal Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Kohandel Gargari
- Imamreza Hospital, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimani Mamalo
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Urmia University of Medical Sciences Faculty of Medicine, Urmia, Iran.
| |
Collapse
|
67
|
Silva J, Alves C, Soledade F, Martins A, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson's Disease? Mar Drugs 2023; 21:451. [PMID: 37623732 PMCID: PMC10455662 DOI: 10.3390/md21080451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| | - Francisca Soledade
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
68
|
Al-kuraishy HM, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GES. New insights on the potential effect of vinpocetine in Parkinson's disease: one of the neglected warden and baffling topics. Metab Brain Dis 2023; 38:1831-1840. [PMID: 37335452 PMCID: PMC10348926 DOI: 10.1007/s11011-023-01254-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Vinpocetine (VPN) is an ethyl apovincaminate that has anti-inflammatory and antioxidant effects by inhibiting the expression of nuclear factor kappa B (NF-κB) and phosphodiesterase enzyme 1 (PDE-1). VPN is used in the management of stroke, dementia, and other neurodegenerative brain diseases. VPN may be effective in treating Parkinson's disease (PD). Therefore, this review aimed to clarify the mechanistic role of VPN in the management of PD. VPN has protective and restorative effects against neuronal injury by reducing neuroinflammation, and improvement of synaptic plasticity and cerebral blood flow. VPN protects dopaminergic neurons by reducing oxidative stress, lipid peroxidation, glutamate neurotoxicity, and regulation of Ca+ 2 overloads. VPN can alleviate PD neuropathology through its anti-inflammatory, antioxidant, antiapoptotic and neurogenic effects. VPN through inhibition of PDE1 improves cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP) signaling in the dopaminergic neurons of the substantia nigra (SN). VPN improves PD neuropathology through PDE1 inhibition with a subsequent increase of the cAMP/cGMP signaling pathway. Therefore, increasing cAMP leads to antioxidant effects, while augmentation of cGMP by VPN leads to anti-inflammatory effects which reduced neurotoxicity and development of motor severity in PD. In conclusion, this review indicated that VPN could be effective in the management of PD.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al- Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, Germany
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, 51744 Marsa Matruh, Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
69
|
da Cunha Germano BC, de Morais LCC, Idalina Neta F, Fernandes ACL, Pinheiro FI, do Rego ACM, Araújo Filho I, de Azevedo EP, de Paiva Cavalcanti JRL, Guzen FP, Cobucci RN. Vitamin E and Its Molecular Effects in Experimental Models of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11191. [PMID: 37446369 DOI: 10.3390/ijms241311191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
With the advancement of in vivo studies and clinical trials, the pathogenesis of neurodegenerative diseases has been better understood. However, gaps still need to be better elucidated, which justifies the publication of reviews that explore the mechanisms related to the development of these diseases. Studies show that vitamin E supplementation can protect neurons from the damage caused by oxidative stress, with a positive impact on the prevention and progression of neurodegenerative diseases. Thus, this review aims to summarize the scientific evidence of the effects of vitamin E supplementation on neuroprotection and on neurodegeneration markers in experimental models. A search for studies published between 2000 and 2023 was carried out in the PubMed, Web of Science, Virtual Health Library (BVS), and Embase databases, in which the effects of vitamin E in experimental models of neurodegeneration were investigated. A total of 5669 potentially eligible studies were identified. After excluding the duplicates, 5373 remained, of which 5253 were excluded after checking the titles, 90 articles after reading the abstracts, and 11 after fully reviewing the manuscripts, leaving 19 publications to be included in this review. Experiments with in vivo models of neurodegenerative diseases demonstrated that vitamin E supplementation significantly improved memory, cognition, learning, motor function, and brain markers associated with neuroregeneration and neuroprotection. Vitamin E supplementation reduced beta-amyloid (Aβ) deposition and toxicity in experimental models of Alzheimer's disease. In addition, it decreased tau-protein hyperphosphorylation and increased superoxide dismutase and brain-derived neurotrophic factor (BDNF) levels in rodents, which seems to indicate the potential use of vitamin E in preventing and delaying the progress of degenerative lesions in the central nervous system.
Collapse
Affiliation(s)
- Bianca Caroline da Cunha Germano
- Postgraduate Program in Science Applied to Women's Health, Federal University of Rio Grande do Norte (UFRN), Natal 59072-970, Brazil
| | - Lara Cristina Carlos de Morais
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Francisca Idalina Neta
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Amélia Carolina Lopes Fernandes
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Francisco Irochima Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | | | - Irami Araújo Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Eduardo Pereira de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - José Rodolfo Lopes de Paiva Cavalcanti
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Fausto Pierdona Guzen
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Ricardo Ney Cobucci
- Postgraduate Program in Science Applied to Women's Health, Federal University of Rio Grande do Norte (UFRN), Natal 59072-970, Brazil
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| |
Collapse
|
70
|
Insights on the molecular mechanism of neuroprotection exerted by edible bird’s nest and its bioactive constituents. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
71
|
Perez-Abshana LP, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Rotenone Blocks the Glucocerebrosidase Enzyme and Induces the Accumulation of Lysosomes and Autophagolysosomes Independently of LRRK2 Kinase in HEK-293 Cells. Int J Mol Sci 2023; 24:10589. [PMID: 37445771 DOI: 10.3390/ijms241310589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129 (p-Ser129α-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further, the etiopathogenesis of the disorder is still unresolved. However, the neurotoxin rotenone (ROT) has been implicated in PD. Therefore, it has been widely used to understand the molecular mechanism of neuronal cell death. In the present investigation, we show that ROT induces two convergent pathways in HEK-293 cells. First, ROT generates H2O2, which, in turn, either oxidizes the stress sensor protein DJ-Cys106-SH into DJ-1Cys106SO3 or induces the phosphorylation of the protein LRRK2 kinase at residue Ser395 (p-Ser395 LRRK2). Once active, the kinase phosphorylates α-Syn (at Ser129), induces the loss of mitochondrial membrane potential (ΔΨm), and triggers the production of cleaved caspase 3 (CC3), resulting in signs of apoptotic cell death. ROT also reduces glucocerebrosidase (GCase) activity concomitant with the accumulation of lysosomes and autophagolysosomes reflected by the increase in LC3-II (microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate II) markers in HEK-293 cells. Second, the exposure of HEK-293 LRRK2 knockout (KO) cells to ROT displays an almost-normal phenotype. Indeed, KO cells showed neither H2O2, DJ-1Cys106SO3, p-Ser395 LRRK2, p-Ser129α-Syn, nor CC3 but displayed high ΔΨm, reduced GCase activity, and the accumulation of lysosomes and autophagolysosomes. Similar observations are obtained when HEK-293 LRRK2 wild-type (WT) cells are exposed to the inhibitor GCase conduritol-β-epoxide (CBE). Taken together, these observations imply that the combined development of LRRK2 inhibitors and compounds for recovering GCase activity might be promising therapeutic agents for PD.
Collapse
Affiliation(s)
- Laura Patricia Perez-Abshana
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| |
Collapse
|
72
|
Uceda AB, Frau J, Vilanova B, Adrover M. Tyrosine Nitroxidation Does Not Affect the Ability of α-Synuclein to Bind Anionic Micelles, but It Diminishes Its Ability to Bind and Assemble Synaptic-like Vesicles. Antioxidants (Basel) 2023; 12:1310. [PMID: 37372040 DOI: 10.3390/antiox12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by dopaminergic neuron degeneration and the accumulation of neuronal inclusions known as Lewy bodies, which are formed by aggregated and post-translationally modified α-synuclein (αS). Oxidative modifications such as the formation of 3-nitrotyrosine (3-NT) or di-tyrosine are found in αS deposits, and they could be promoted by the oxidative stress typical of PD brains. Many studies have tried to elucidate the molecular mechanism correlating nitroxidation, αS aggregation, and PD. However, it is unclear how nitroxidation affects the physiological function of αS. To clarify this matter, we synthetized an αS with its Tyr residues replaced by 3-NT. Its study revealed that Tyr nitroxidation had no effect on either the affinity of αS towards anionic micelles nor the overall structure of the micelle-bound αS, which retained its α-helical folding. Nevertheless, we observed that nitroxidation of Y39 lengthened the disordered stretch bridging the two consecutive α-helices. Conversely, the affinity of αS towards synaptic-like vesicles diminished as a result of Tyr nitroxidation. Additionally, we also proved that nitroxidation precluded αS from performing its physiological function as a catalyst of the clustering and the fusion of synaptic vesicles. Our findings represent a step forward towards the completion of the puzzle that must explain the molecular mechanism behind the link between αS-nitroxidation and PD.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
73
|
Kulikova O, Troshev D, Berezhnoy D, Stvolinsky S, Timoshina Y, Abaimov D, Muzychuk O, Latanov A, Fedorova T. Neuroprotective Efficacy of a Nanomicellar Complex of Carnosine and Lipoic Acid in a Rat Model of Rotenone-Induced Parkinson's Disease. Antioxidants (Basel) 2023; 12:1215. [PMID: 37371945 DOI: 10.3390/antiox12061215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress, accompanied by mitochondrial dysfunction, is a key mechanism involved in the pathogenesis of Parkinson's disease (PD). Both carnosine and lipoic acid are potent antioxidants, the applicability of which in therapy is hindered by their limited bioavailability. This study aimed to evaluate the neuroprotective properties of a nanomicellar complex of carnosine and lipoic acid (CLA) in a rotenone-induced rat model of PD. Parkinsonism was induced via the administration of 2 mg/kg rotenone over the course of 18 days. Two doses of intraperitoneal CLA (25 mg/kg and 50 mg/kg) were administered alongside rotenone to assess its neuroprotective effect. At 25 mg/kg CLA decreased muscle rigidity and partially restored locomotor activity in animals that received rotenone. Furthermore, it caused an overall increase in brain tissue antioxidant activity, accompanied by a 19% increase in neuron density in the substantia nigra and increased dopamine levels in the striatum relative to animals that only received rotenone. Based on the acquired results, it may be concluded that CLA have neuroprotective properties and could potentially be beneficial in PD treatment when used in conjunction with the base therapy.
Collapse
Affiliation(s)
- Olga Kulikova
- Laboratory of Translational and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Dmitry Troshev
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Daniil Berezhnoy
- Laboratory of Translational and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Sergey Stvolinsky
- Laboratory of Translational and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Yulia Timoshina
- Laboratory of Translational and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
- Department of Neurobiology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis Abaimov
- Laboratory of Translational and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Olga Muzychuk
- Laboratory of Translational and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Alexander Latanov
- Department of Neurobiology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research Institute of Functional Brain Development and Peak Performance, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Tatiana Fedorova
- Laboratory of Translational and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| |
Collapse
|
74
|
Starr LA, McKay LE, Peter KN, Seyfarth LM, Berkowitz LA, Caldwell KA, Caldwell GA. Attenuation of Dopaminergic Neurodegeneration in a C. elegans Parkinson's Model through Regulation of Xanthine Dehydrogenase (XDH-1) Expression by the RNA Editase, ADR-2. J Dev Biol 2023; 11:jdb11020020. [PMID: 37218814 DOI: 10.3390/jdb11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Lindsey A Starr
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E McKay
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kylie N Peter
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lena M Seyfarth
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
75
|
Boyuklieva R, Hristozova A, Pilicheva B. Synthesis and Characterization of PCL-Idebenone Nanoparticles for Potential Nose-to-Brain Delivery. Biomedicines 2023; 11:biomedicines11051491. [PMID: 37239161 DOI: 10.3390/biomedicines11051491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The present work is focused on the preparation of an optimal model of poly-ε-caprolactone nanoparticles as potential carriers for nasal administration of idebenone. A solvent/evaporation technique was used for nanoparticle preparation. Poly-ε-caprolactone with different molecular weights (14,000 and 80,000 g/mol) was used. Polysorbate 20 and Poloxamer 407, alone and in combination, were used as emulsifiers at different concentrations to obtain a stable formulation. The nanoparticles were characterized using dynamic light scattering, SEM, TEM, and FTIR. The resulting structures were spherical in shape and their size distribution depended on the type of emulsifier. The average particle size ranged from 188 to 628 nm. The effect of molecular weight and type of emulsifier was established. Optimal models of appropriate size for nasal administration were selected for inclusion of idebenone. Three models of idebenone-loaded nanoparticles were developed and the effect of molecular weight on the encapsulation efficiency was investigated. Increased encapsulation efficiency was found when poly-ε-caprolactone with lower molecular weight was used. The molecular weight also affected the drug release from the nanostructures. Dissolution study data were fitted into various kinetic models and the Korsmeyer-Peppas model was found to be indicative of the release mechanism of idebenone.
Collapse
Affiliation(s)
- Radka Boyuklieva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Asya Hristozova
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Analytical Chemistry and Computational Chemistry, Faculty of Chemistry, University of Plovdiv "Paisii Hilendarski", 4000 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
76
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
77
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
78
|
Joshi N, Sarhadi TR, Raveendran A, Nagotu S. Sporadic SNCA mutations A18T and A29S exhibit variable effects on protein aggregation, cell viability and oxidative stress. Mol Biol Rep 2023:10.1007/s11033-023-08457-7. [PMID: 37155014 DOI: 10.1007/s11033-023-08457-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND α-synuclein aggregation is the hallmark feature of Parkinson's disease. Both familial and sporadic forms of the disease exhibit this feature. Several mutations have been identified in patients and are associated with the disease pathology. METHODS AND RESULTS We have used site-directed mutagenesis to generate α-synuclein mutant variants tagged with GFP. Fluorescence microscopy, flow cytometry, western blotting, cell viability and oxidative stress analysis were performed to investigate the effect of two less studied α-synuclein variants. In this study we characterized two less studied α-synuclein mutations, A18T and A29S, in the well-established yeast model. Our data shows variable expression, distribution and toxicity of the protein in the mutant variants A18T, A29S, A53T and WT. The cells expressing the double mutant variant A18T/A53T showed the most increase in the aggregation phenotype and also depicted reduced viability suggesting a more substantial effect of this variant. CONCLUSION The outcome of our study highlights the variable localization, aggregation phenotype and toxicity of the studied α-synuclein variants. This underscores the importance of in-depth analysis of every disease-associated mutation which may result in variable cellular phenotype.
Collapse
Affiliation(s)
- Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Tanveera Rounaque Sarhadi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Atchaya Raveendran
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
79
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
80
|
Rike WA, Stern S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087435. [PMID: 37108598 PMCID: PMC10138539 DOI: 10.3390/ijms24087435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Collapse
Affiliation(s)
- Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
81
|
Shahid Nadeem M, Khan JA, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sayyed N, Gupta G, Kazmi I. Protective Effect of Hirsutidin against Rotenone-Induced Parkinsonism via Inhibition of Caspase-3/Interleukins-6 and 1β. ACS OMEGA 2023; 8:13016-13025. [PMID: 37065035 PMCID: PMC10099452 DOI: 10.1021/acsomega.3c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
A participant of the chemical family recognized as anthocyanins, hirsutidin is an O-methylated anthocyanidin. It is a natural substance, i.e., existing in Catharanthus roseus (Madagascar periwinkle), the predominant component in petals, as well as callus cultures. The literature review indicated a lack of scientifically verified findings on hirsutidin's biological activities, particularly its anti-Parkinson's capabilities. Using the information from the previous section as a reference, a present study has been assessed to evaluate the anti-Parkinson properties of hirsutidin against rotenone-activated Parkinson's in experimental animals. For 28 days, rats received hirsutidin at a dose of 10 mg/kg and rotenone at a dose of 0.5 mg/kg s.c. to test the neuroprotective effects. The hirsutidin was given 1 h before the rotenone. Behavioral tests, including the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field analysis, were performed. The levels of neurotransmitters (5-HT, DOPAC, 5-HIAA, dopamine, and HVA), neuroinflammatory markers (TNF-α, IL-6, IL-1β, caspase-3), an endogenous antioxidant, nitrite content, and acetylcholine were measured in all the rats on the 29th day. Hirsutidin exhibited substantial behavioral improvement in the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field test. Furthermore, hirsutidin restored neuroinflammatory markers, cholinergic function, nitrite content, neurotransmitters, and endogenous antioxidant levels. According to the study, hirsutidin has anti-inflammatory and antioxidant characteristics. As a result, it implies that hirsutidin may have anti-Parkinsonian effects in rats.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School
of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Gaurav Gupta
- School
of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
82
|
Di Maio R, Keeney MT, Cechova V, Mortimer A, Sekandari A, Rowart P, Greenamyre JT, Freeman BA, Fazzari M. Neuroprotective actions of a fatty acid nitroalkene in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:55. [PMID: 37029127 PMCID: PMC10082007 DOI: 10.1038/s41531-023-00502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
To date there are no therapeutic strategies that limit the progression of Parkinson's disease (PD). The mechanisms underlying PD-related nigrostriatal neurodegeneration remain incompletely understood, with multiple factors modulating the course of PD pathogenesis. This includes Nrf2-dependent gene expression, oxidative stress, α-synuclein pathology, mitochondrial dysfunction, and neuroinflammation. In vitro and sub-acute in vivo rotenone rat models of PD were used to evaluate the neuroprotective potential of a clinically-safe, multi-target metabolic and inflammatory modulator, the electrophilic fatty acid nitroalkene 10-nitro-oleic acid (10-NO2-OA). In N27-A dopaminergic cells and in the substantia nigra pars compacta of rats, 10-NO2-OA activated Nrf2-regulated gene expression and inhibited NOX2 and LRRK2 hyperactivation, oxidative stress, microglial activation, α-synuclein modification, and downstream mitochondrial import impairment. These data reveal broad neuroprotective actions of 10-NO2-OA in a sub-acute model of PD and motivate more chronic studies in rodents and primates.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Amanda Mortimer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ahssan Sekandari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
83
|
Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol 2023; 60:1749-1765. [PMID: 36567361 DOI: 10.1007/s12035-022-03175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen's antioxidative and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory properties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain disorders, including Alzheimer's disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain injury, ischemic stroke, Parkinson's disease, and multiple sclerosis. This paper reviews the routes for hydrogen administration, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen's neuroprotection. Finally, we discuss hydrogen therapy's remaining issues and challenges in brain disorders. We conclude that understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administration is critical for future studies and applications.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Fanghui Li
- School of Sports Science, Nanjing Normal University, Nanjing, 210046, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
84
|
Khosravi F, Mirzaei S, Hojati V, Hashemi M, Entezari M. Co-Administration of Vitamins B12 and D During Pregnancy Have Strong Neuroprotective Effects in Parkinson Disease. Mol Neurobiol 2023; 60:1986-1996. [PMID: 36596968 DOI: 10.1007/s12035-022-03186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is a common disease whose pathophysiological mechanism is not well understood. Recent research studies have shown that PD patients have low serum levels of vitamins B12 and D. Therefore, in this study, the effects of supplementation with vitamins B12 and D on PD female mice as well as their fetuses were studied. After preparation of female mice and induction of Parkinson's by rotenone administration for 19 days, rotarod test was used to confirm PD induction. During this time, supplementations with vitamins B12 and D were performed. On day 19, after confirmation of PD induction, half of the mice were killed and the other half were allowed to mate with males. Viability was measured by the MTT method, and apoptosis and necrosis of cerebellar neurons were measured by flow cytometry. The RT-PCR technique was used to evaluate the relative expressions of the bax, bcl-2, miR-211, and circRNA 0,001,518 genes. Data analysis was performed by the GraphPad Prism V.8 software. Co-administration of vitamins B12 and D resulted in highest viability percentage and greatest reduction in apoptosis and necrosis of cerebellar neurons in the female mice as well as their fetuses compared to the PD females. A decrease in the relative expression of the bax and miR-211 genes and an increase in bcl-2 expression were observed in the cerebellar tissue of PD mice receiving both vitamins. Vitamins B12 and D have neuroprotective effects on PD conditions. Therefore, co-administration of these two vitamins is recommended in PD patients during pregnancy.
Collapse
Affiliation(s)
- Faramarz Khosravi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
85
|
Tokunbo OS, Arogundade TT, Abayomi TA, Lewu SF, Abayomi OA, Obembe OO, Bayo-Olugbami AA, Ilesanmi DO, Keji ST, Enaibe BU. African Walnut (Tetracarpidium conophorum) Extract upregulates Glococerebrosidase activity and circumvents Parkinsonian changes in the Hippocampus via theActivation of Heatshock Proteins. J Chem Neuroanat 2023; 130:102271. [PMID: 37019342 DOI: 10.1016/j.jchemneu.2023.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Neurodegenerative illnesses like Parkinson's and Alzheimer's are largely caused by the accumulation of aggregated proteins. Heat shock proteins (HSPs), which are molecular chaperons, have been linked with the modulation of β-glucocerebrosidase (GCase) function encoded by GBA1 and Synucleinopathies. Herein, the chaperonic properties of African walnut ethanolic extract (WNE) in manganese-induced Parkinsonian neuropathology in the hippocampus was examined. METHODOLOGY 48 adult male rats weighing 185g±10g were randomly assigned into 6 (A - F) groups (n=8) and treated orally as follows: A-PBS (1ml daily for 28 days), B-WNE (200mg/kg daily for 28 days), C- WNE (400mg/kg daily for 28 days), D-Mn (100mg/kg daily for 28 days), E-Mn plus WNE (100mg/kg Mn + 200mg/kg WNE daily concomitantly for 28 days), F-Mn plus WNE (100mg/kg Mn + 400mg/kg WNE daily concomitantly for 28 days). RESULTS Rats treated with WNE showed increased levels of HSP70 and HSP90 in comparison with the Mn-intoxicated group. GCase activity also increased significantly in animals treated with WNE. Our results further revealed the therapeutic tendencies of WNE against Mn toxicity by modulating oligomeric α-synuclein levels, redox activity, and glucose bioenergetics. Furthermore, immunohistochemical evaluation revealed reduced expression of neurofibrillary tangles, and reactive astrogliosis following WNE treatment. CONCLUSION The ethanolic extract of African Walnut induced the activation of HSPs and increased the expression of GBA1 gene in the hippocampus. Activated heat shock proteins suppressed neurodegenerative changes due to Manganese toxicity. WNE was also shown to modulate neuroinflammatory, bioenergetics and neural redox balance in Parkinson-like neuropathology. This study was limited to the use of crude walnut extract and the evaluation of non-motor cascades of Parkinson's disease.
Collapse
|
86
|
Gergin S, Kirazlı Ö, Boracı H, Yıldız SD, Yananlı HR, Şehirli ÜS. The effects of regular swimming exercise and melatonin on the neurons localized in the striatum of hemiparkinsonian rats. Anat Sci Int 2023; 98:204-219. [PMID: 36223003 DOI: 10.1007/s12565-022-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative movement disorder. We aimed to investigate the effects of regular swimming exercise and melatonin applied in the 6-Hydroxydopamine-induced Parkinson's disease rats by analysing dendritic spine of striatal neurons. Twenty-four male Wistar albino rats were used. 6-Hydroxydopamine unilaterally injected four (control, exercise, melatonin and exercise + melatonin) groups were included in the study. Tyrosine hydroxylase expression was detected by immunohistochemistry. Neurons and structures were identified from three-dimensional images by Neurolucida software. There was not any apparent difference for tyrosine hydroxylase positive neurons in the substantia nigra pars compacta and fibres in the striatum between the lesion sides of hemiparkinsonian groups. The treatment groups blocked the apomorphine-induced increase in rotations compared to the control group. In stepping test, the treatment groups prevented the loss of stepping in the contralateral side of hemiparkinsonian groups. The melatonin mostly had a positive effect on motor activity tests. In morphological analyses, the 6-Hydroxydopamine-induced lesion led to the reduction of the total dendritic length and number of branches. In the treatment groups, the reduction of the dendritic parameters was not observed. 6-Hydroxydopamine lesion led to a decrease in the total spine density, spine densities of thin and mushroom types. The exercise and melatonin treatments prevented the loss of spine density. The exercise treatment prevented the loss of spine density of mushroom type spines. The melatonin treatment blocked the loss of spine density of stubby type. In conclusion, these results provide evidence for effective additional protective therapeutic strategies for Parkinson's disease. In conclusion, results from the current study provide evidence for swimming exercise and melatonin as a promising candidate for effective additional protective strategies for PD.
Collapse
Affiliation(s)
- Sinem Gergin
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Özlem Kirazlı
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Hatice Boracı
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Sercan Doğukan Yıldız
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey.,Faculty of Dentistry, Department of Anatomy, Istanbul Kent University, Istanbul, Turkey
| | - Hasan Raci Yananlı
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | | |
Collapse
|
87
|
Zheng Y, Zhang J, Zhu X, Wei Y, Zhao W, Si S, Li Y. A Mitochondrial Perspective on Noncommunicable Diseases. Biomedicines 2023; 11:biomedicines11030647. [PMID: 36979626 PMCID: PMC10045938 DOI: 10.3390/biomedicines11030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria are the center of energy metabolism in eukaryotic cells and play a central role in the metabolism of living organisms. Mitochondrial diseases characterized by defects in oxidative phosphorylation are the most common congenital diseases. Meanwhile, mitochondrial dysfunction caused by secondary factors such as non-inherited genetic mutations can affect normal physiological functions of human cells, induce apoptosis, and lead to the development of various diseases. This paper reviewed several major factors and mechanisms that contribute to mitochondrial dysfunction and discussed the development of diseases closely related to mitochondrial dysfunction and drug treatment strategies discovered in recent years.
Collapse
Affiliation(s)
- Yifan Zheng
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Zhang
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaohong Zhu
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanjuan Wei
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| | - Shuyi Si
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| | - Yan Li
- Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (W.Z.); (S.S.); (Y.L.)
| |
Collapse
|
88
|
ElGamal RZ, Tadros MG, Menze ET. Linagliptin counteracts rotenone's toxicity in non-diabetic rat model of Parkinson's disease: Insights into the neuroprotective roles of DJ-1, SIRT-1/Nrf-2 and implications of HIF1-α. Eur J Pharmacol 2023; 941:175498. [PMID: 36623635 DOI: 10.1016/j.ejphar.2023.175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
While all current therapies' main focus is enhancing dopaminergic effects and remission of symptoms, delaying Parkinson's disease (PD) progression remains a challenging mission. Linagliptin, a Dipeptidyl Peptidase-4 (DPP-4) Inhibitor, exhibited neuroprotection in various neurodegenerative diseases. This study aims to evaluate the neuroprotective effects of Linagliptin in a rotenone-induced rat model of PD and investigate the possible underlying mechanisms of Linagliptin's actions. The effects of two doses of Linagliptin (5 and 10 mg/kg) on spontaneous locomotion, catalepsy, coordination and balance, and histology were assessed. Then, after Linagliptin showed promising results, it was further tested for its potential anti-inflammatory, antiapoptotic effects, and different pathways for oxidative stress. Linagliptin prevented rotenone-induced motor deficits and histological damage. Besides, it significantly inhibited the rotenone-induced increase in pro-inflammatory cytokines: Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6) and decrease in caspase 3 levels. These effects were associated with induction in the levels of Protein deglycase also known as DJ-1, Hypoxia-inducible factor 1-alpha (HIF-1α), potentiation in the Sirtuin 1 (SIRT-1)/Nuclear factor erythroid-2-related factor 2 (Nrf-2)/Heme oxygenase-1 (HO-1) pathway, and an increase in the antioxidant activity of catalase which provided neuroprotection to the neurons from rotenone-induced PD. Collectively, these results suggest that Linagliptin might be a suitable candidate for the management of PD.
Collapse
Affiliation(s)
- Rania Z ElGamal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, 41636, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
89
|
Pandey AK, Buchholz CR, Nathan Kochen N, Pomerantz WCK, Braun AR, Sachs JN. pH Effects Can Dominate Chemical Shift Perturbations in 1H, 15N-HSQC NMR Spectroscopy for Studies of Small Molecule/α-Synuclein Interactions. ACS Chem Neurosci 2023; 14:800-808. [PMID: 36749138 DOI: 10.1021/acschemneuro.2c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1H,15N-Heteronuclear Single Quantum Coherence (HSQC) NMR is a powerful technique that has been employed to characterize small-molecule interactions with intrinsically disordered monomeric α-Synuclein (aSyn). We report how solution pH can impact the interpretation of aSyn HSQC NMR spectra and demonstrate that small-molecule formulations (e.g., complexation with acidic salts) can lower sample pH and confound interpretation of drug binding and concomitant protein structural changes. Through stringent pH control, we confirm that several previously identified compounds (EGCG, Baicalin, and Dopamine (DOPA)) as well as a series of potent small-molecule inhibitors of aSyn pathology (Demeclocycline, Ro90-7501, and (±)-Bay K 8644) are capable of direct target engagement of aSyn. Previously, DOPA-aSyn interactions have been shown to elicit a dramatic chemical shift perturbation (CSP) localized to aSyn's H50 at low DOPA concentrations then expanding to aSyn's acidic C-terminal residues at increasing DOPA levels. Interestingly, this CSP profile mirrors our pH titration, where a small reduction in pH affects H50 CSP, and large pH changes induce robust C-terminal CSP. In contrast, under tightly controlled pH 5.0, DOPA induces significant CSPs observed at both ionizable and nonionizable residues. These results suggest that previous interpretations of DOPA-aSyn interactions were conflated with pH-induced CSP, highlighting the need for stringent pH control to minimize potential false-positive interpretations of ligand interactions in HSQC NMR experiments. Furthermore, DOPA's preferential interaction with aSyn under acidic pH represents a novel understanding of DOPA-aSyn interactions that may provide insight into the potential gain of toxic function of aSyn misfolding in α-synucleinopathies.
Collapse
Affiliation(s)
- Anil K Pandey
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Noah Nathan Kochen
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Dept. of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony R Braun
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N Sachs
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
90
|
Alharthy KM, Althurwi HN, Albaqami FF, Altharawi A, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Barbigerone Potentially Alleviates Rotenone-Activated Parkinson's Disease in a Rodent Model by Reducing Oxidative Stress and Neuroinflammatory Cytokines. ACS OMEGA 2023; 8:4608-4615. [PMID: 36777578 PMCID: PMC9910078 DOI: 10.1021/acsomega.2c05837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common age-related and slowly progressive neurodegenerative disease that affects approximately 1% of the elderly population. In recent years, phytocomponents have aroused considerable interest in the research for PD treatment as they provide a plethora of active compounds including antioxidant and anti-inflammatory compounds. Herein, we aimed to investigate the anti-Parkinson's effect of barbigerone, a natural pyranoisoflavone possessing antioxidant activity in a rotenone-induced rat model of PD. METHODS To evaluate antioxidant activity, a 0.5 mg/kg dose of rotenone was injected subcutaneously into rats. Barbigerone (10 and 20 mg/kg) was administered to rats for 28 days 1 h prior to rotenone. All behavioral parameters were assessed before sacrificing the rats. On the 29th day, all of the rats were humanely killed and assessed for biochemical changes in antioxidant enzymes (superoxide dismutase, glutathione, malondialdehyde, and catalase), neurotransmitter levels (dopamine, 5-hydroxyindoleacetic acid, serotonin, dihydroxyphenylacetic acid, and homovanillic acid levels), and neuroinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α, nuclear factor kappa B, and IL-6]. RESULTS The data presented in this study has shown that barbigerone attenuated rotenone-induced motor deficits including the rotarod test, catalepsy, akinesia, and open-field test. Additionally, barbigerone has shown improvements in the biochemical and neuroinflammatory parameters in the rotenone-induced rat model of PD. CONCLUSION The results demonstrated that barbigerone exhibits antioxidant and anti-inflammatory actions via reducing oxidative stress and inflammatory cytokines. Altogether, these findings suggest that barbigerone could potentially be utilized as a therapeutic agent against PD.
Collapse
Affiliation(s)
- Khalid M. Alharthy
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
91
|
PPARs and Their Neuroprotective Effects in Parkinson's Disease: A Novel Therapeutic Approach in α-Synucleinopathy? Int J Mol Sci 2023; 24:ijms24043264. [PMID: 36834679 PMCID: PMC9963164 DOI: 10.3390/ijms24043264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.
Collapse
|
92
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
93
|
Bhaskaran S, Kumar G, Thadathil N, Piekarz KM, Mohammed S, Lopez SD, Qaisar R, Walton D, Brown JL, Murphy A, Smith N, Saunders D, Beckstead MJ, Plafker S, Lewis TL, Towner R, Deepa SS, Richardson A, Axtell RC, Van Remmen H. Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biol 2023; 59:102550. [PMID: 36470129 PMCID: PMC9720104 DOI: 10.1016/j.redox.2022.102550] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Gaurav Kumar
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA
| | - Nidheesh Thadathil
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA
| | - Katarzyna M Piekarz
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Sabira Mohammed
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rizwan Qaisar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Dorothy Walton
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Ashley Murphy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Scott Plafker
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Tommy L Lewis
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, OK, USA
| | - Sathyaseelan S Deepa
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Robert C Axtell
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, OK, USA.
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
94
|
Sastre D, Zafar F, Torres CAM, Piper D, Kirik D, Sanders LH, Qi S, Schüle B. Nuclease-dead S. aureus Cas9 downregulates alpha-synuclein and reduces mtDNA damage and oxidative stress levels in patient-derived stem cell model of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525105. [PMID: 36747875 PMCID: PMC9900844 DOI: 10.1101/2023.01.24.525105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, but no disease modifying therapies have been successful in clinical translation presenting a major unmet medical need. A promising target is alpha-synuclein or its aggregated form, which accumulates in the brain of PD patients as Lewy bodies. While it is not entirely clear which alpha-synuclein protein species is disease relevant, mere overexpression of alpha-synuclein in hereditary forms leads to neurodegeneration. To specifically address gene regulation of alpha-synuclein, we developed a CRISPR interference (CRISPRi) system based on the nuclease dead S. aureus Cas9 (SadCas9) fused with the transcriptional repressor domain Krueppel-associated box to controllably repress alpha-synuclein expression at the transcriptional level. We screened single guide (sg)RNAs across the SNCA promoter and identified several sgRNAs that mediate downregulation of alpha-synuclein at varying levels. CRISPRi downregulation of alpha-synuclein in iPSC-derived neuronal cultures from a patient with an SNCA genomic triplication showed functional recovery by reduction of oxidative stress and mitochondrial DNA damage. Our results are proof-of-concept in vitro for precision medicine by targeting the SNCA gene promoter. The SNCA CRISPRi approach presents a new model to understand safe levels of alpha-synuclein downregulation and a novel therapeutic strategy for PD and related alpha-synucleinopathies.
Collapse
Affiliation(s)
- Danuta Sastre
- Stanford University School of Medicine, Department of Pathology, Stanford, CA 94305, U.S.A
| | - Faria Zafar
- Stanford University School of Medicine, Department of Pathology, Stanford, CA 94305, U.S.A
| | | | - Desiree Piper
- San Jose State University, Department of Biological Sciences, San Jose, 95192 CA, U.S.A
| | - Deniz Kirik
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laurie H. Sanders
- Departments of Neurology and Pathology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University Medical Center, Durham, NC 27710, U.S.A
| | - Stanley Qi
- Stanford University, Department of Bioengineering, Stanford, CA 94305, U.S.A
| | - Birgitt Schüle
- Stanford University School of Medicine, Department of Pathology, Stanford, CA 94305, U.S.A
| |
Collapse
|
95
|
Trabjerg MS, Andersen DC, Huntjens P, Mørk K, Warming N, Kullab UB, Skjønnemand MLN, Oklinski MK, Oklinski KE, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ, Corthals A, Søndergaard MT, Kjeldal HB, Pedersen CFM, Nieland JDV. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:6. [PMID: 36681683 PMCID: PMC9867753 DOI: 10.1038/s41531-023-00450-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/01/2022] [Indexed: 01/22/2023] Open
Abstract
Glucose metabolism is dysregulated in Parkinson's disease (PD) causing a shift toward the metabolism of lipids. Carnitine palmitoyl-transferase 1A (CPT1A) regulates the key step in the metabolism of long-chain fatty acids. The aim of this study is to evaluate the effect of downregulating CPT1, either genetically with a Cpt1a P479L mutation or medicinally on PD using chronic rotenone mouse models using C57Bl/6J and Park2 knockout mice. We show that Cpt1a P479L mutant mice are resistant to rotenone-induced PD, and that inhibition of CPT1 is capable of restoring neurological function, normal glucose metabolism, and alleviate markers of PD in the midbrain. Furthermore, we show that downregulation of lipid metabolism via CPT1 alleviates pathological motor and non-motor behavior, oxidative stress, and disrupted glucose homeostasis in Park2 knockout mice. Finally, we confirm that rotenone induces gut dysbiosis in C57Bl/6J and, for the first time, in Park2 knockout mice. We show that this dysbiosis is alleviated by the downregulation of the lipid metabolism via CPT1.
Collapse
Affiliation(s)
- Michael Sloth Trabjerg
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis Christian Andersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Pam Huntjens
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kasper Mørk
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nikolaj Warming
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ulla Bismark Kullab
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marie-Louise Nibelius Skjønnemand
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michal Krystian Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kirsten Egelund Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Luise Bolther
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lona J. Kroese
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin E. J. Pritchard
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Angelique Corthals
- grid.258202.f0000 0004 1937 0116Department of Science, John Jay College of Criminal Justice, City University of New York, New York, NY 10019 USA
| | | | | | - Cecilie Fjord Morre Pedersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
96
|
Vitamin B12 Ameliorates the Pathological Phenotypes of Multiple Parkinson's Disease Models by Alleviating Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12010153. [PMID: 36671015 PMCID: PMC9854476 DOI: 10.3390/antiox12010153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. The etiology of PD has yet to be elucidated, and the disease remains incurable. Increasing evidence suggests that oxidative stress is the key causative factor of PD. Due to their capacity to alleviate oxidative stress, antioxidants hold great potential for the treatment of PD. Vitamins are essential organic substances for maintaining the life of organisms. Vitamin deficiency is implicated in the pathogenesis of various diseases, such as PD. In the present study, we investigated whether administration of vitamin B12 (VB12) could ameliorate PD phenotypes in vitro and in vivo. Our results showed that VB12 significantly reduced the generation of reactive oxygen species (ROS) in the rotenone-induced SH-SY5Y cellular PD model. In a Parkin gene knockout C. elegans PD model, VB12 mitigated motor dysfunction. Moreover, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD model, VB12 also displayed protective effects, including the rescue of mitochondrial function, dopaminergic neuron loss, and movement disorder. In summary, our results suggest that vitamin supplementation may be a novel method for the intervention of PD, which is safer and more feasible than chemical drug treatment.
Collapse
|
97
|
Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. Antioxidants (Basel) 2023; 12:antiox12010131. [PMID: 36670993 PMCID: PMC9854433 DOI: 10.3390/antiox12010131] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species (ROS) have been described to induce a broad range of redox-dependent signaling reactions in physiological conditions. Nevertheless, an excessive accumulation of ROS leads to oxidative stress, which was traditionally considered as detrimental for cells and organisms, due to the oxidative damage they cause to biomolecules. During ageing, elevated ROS levels result in the accumulation of damaged proteins, which may exhibit altered enzymatic function or physical properties (e.g., aggregation propensity). Emerging evidence also highlights the relationship between oxidative stress and age-related pathologies, such as protein misfolding-based neurodegenerative diseases (e.g., Parkinson's (PD), Alzheimer's (AD) and Huntington's (HD) diseases). In this review we aim to introduce the role of oxidative stress in physiology and pathology and then focus on the state-of-the-art techniques available to detect and quantify ROS and oxidized proteins in live cells and in vivo, providing a guide to those aiming to characterize the role of oxidative stress in ageing and neurodegenerative diseases. Lastly, we discuss recently published data on the role of oxidative stress in neurological disorders.
Collapse
|
98
|
Balzano T, Esteban-García N, Blesa J. Neuroinflammation, immune response and α-synuclein pathology: how animal models are helping us to connect dots. Expert Opin Drug Discov 2023; 18:13-23. [PMID: 36538833 DOI: 10.1080/17460441.2023.2160440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION A key pathological event occurring in Parkinson's disease (PD) is the transneuronal spreading of alpha-synuclein (α-syn). Other hallmarks of PD include neurodegeneration, glial activation, and immune cell infiltration in susceptible brain regions. Although preclinical models can mimic most of the key characteristics of PD, it is crucial to know the biological bases of individual differences between them when choosing one over another, to ensure proper interpretation of the results and to positively influence the outcome of the experiments. AREAS COVERED This review provides an overview of current preclinical models actively used to study the interplay between α-syn pathology, neuroinflammation and immune response in PD but also to explore new potential preclinical models or emerging therapeutic strategies intended to fulfill the unmet medical needs in this disease. Lastly, this review also considers the current state of the ongoing clinical trials of new drugs designed to target these processes and delay the initiation or progression of the disease. EXPERT OPINION Anti-inflammatory and immunomodulatory agents have been demonstrated to be very promising candidates for reducing disease progression; however, more efforts are needed to reduce the enormous gap between these and dopaminergic drugs, which have dominated the therapeutic market for the last sixty years.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain.,PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III; Madrid, Madrid, Spain
| |
Collapse
|
99
|
Puranik N, Yadav D, Song M. Insight into Early Diagnosis of Multiple Sclerosis by Targeting Prognostic Biomarkers. Curr Pharm Des 2023; 29:2534-2544. [PMID: 37921136 DOI: 10.2174/0113816128247471231018053737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
100
|
Javed H, Fizur NMM, Jha NK, Ashraf GM, Ojha S. Neuroprotective Potential and Underlying Pharmacological Mechanism of Carvacrol for Alzheimer's and Parkinson's Diseases. Curr Neuropharmacol 2023; 21:1421-1432. [PMID: 36567278 PMCID: PMC10324337 DOI: 10.2174/1570159x21666221223120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/27/2022] Open
Abstract
The phytochemicals have antioxidant properties to counter the deleterious effects of oxidative stress in the central nervous system and can be a promising drug candidate for neurodegenerative diseases. Among various phytochemicals, constituents of spice origin have recently received special attention for neurodegenerative diseases owing to their health benefits, therapeutic potential, edible nature, and dietary accessibility and availability. Carvacrol, a phenolic monoterpenoid, has garnered attention in treating and managing various human diseases. It possesses diverse pharmacological effects, including antioxidant, anti-inflammatory, antimicrobial and anticancer. Alzheimer's disease (AD) and Parkinson's disease (PD) are major public health concerns that place a significant financial burden on healthcare systems worldwide. The global burden of these diseases is expected to increase in the next few decades owing to increasing life expectancies. Currently, there is no cure for neurodegenerative diseases, such as AD and PD, and the available drugs only give symptomatic relief. For a long time, oxidative stress has been recognized as a primary contributor to neurodegeneration. Carvacrol enhances memory and cognition by modulating the effects of oxidative stress, inflammation, and Aβ25-35- induced neurotoxicity in AD. Moreover, it also reduces the production of reactive oxygen species and proinflammatory cytokine levels in PD, which further prevents the loss of dopaminergic neurons in the substantia nigra and improves motor functions. This review highlights carvacrol's potential antioxidant and anti-inflammatory properties in managing and treating AD and PD.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Nagoor Meeran Mohamed Fizur
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, UP, 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|