51
|
Parekh PK, McClung CA. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity. Front Psychiatry 2016; 6:187. [PMID: 26793129 PMCID: PMC4709415 DOI: 10.3389/fpsyt.2015.00187] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward-related behavior.
Collapse
Affiliation(s)
- Puja K. Parekh
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A. McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
52
|
Matzeu A, Weiss F, Martin-Fardon R. Transient inactivation of the posterior paraventricular nucleus of the thalamus blocks cocaine-seeking behavior. Neurosci Lett 2015; 608:34-9. [PMID: 26455867 PMCID: PMC4639449 DOI: 10.1016/j.neulet.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Originally studied for its role in energy homeostasis, the paraventricular nucleus of the thalamus (PVT) has recently gained attention because of its involvement in the modulation of drug-directed behavior. The posterior part of the PVT (pPVT) is connected with brain structures that modulate motivated behavior, and we tested whether the pPVT plays a pivotal role in cocaine seeking. The aim of the present study was to investigate whether transient inactivation of the pPVT prevents cue-induced reinstatement of cocaine seeking but not natural reward seeking. Male Wistar rats were trained to associate a discriminative stimulus (S(+)) with the availability of cocaine or a highly palatable conventional reinforcer, sweetened condensed milk (SCM). Following extinction, the cocaine S(+) and SCM S(+) elicited comparable levels of reinstatement. Intra-pPVT administration of the γ-aminobutyric acid-A (GABAA) and GABAB receptor agonists muscimol and baclofen (0.06 and 0.6mM, respectively) prior to the presentation of the cocaine or SCM S(+) completely prevented the reinstatement of cocaine seeking, with no statistically significant effects on SCM seeking. These data show that the pPVT plays an important role in neuronal mechanisms that drive cocaine-seeking behavior.
Collapse
Affiliation(s)
- A Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - F Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - R Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
53
|
Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev 2015; 56:315-29. [DOI: 10.1016/j.neubiorev.2015.08.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
54
|
Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 2015; 54:89-107. [PMID: 25616182 PMCID: PMC4976455 DOI: 10.1016/j.neubiorev.2015.01.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Walter B Hoover
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, United States
| |
Collapse
|
55
|
Kash TL, Pleil KE, Marcinkiewcz CA, Lowery-Gionta EG, Crowley N, Mazzone C, Sugam J, Hardaway JA, McElligott ZA. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells 2015; 38:1-13. [PMID: 25475545 PMCID: PMC4314126 DOI: 10.14348/molcells.2015.2261] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022] Open
Abstract
Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
Collapse
Affiliation(s)
- Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Nicole Crowley
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Christopher Mazzone
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| |
Collapse
|
56
|
Sakamoto K, Okahashi T, Matsumura S, Okafuji Y, Adachi SI, Tsuzuki S, Inoue K, Fushiki T. The opioid system majorly contributes to preference for fat emulsions but not sucrose solutions in mice. Biosci Biotechnol Biochem 2014; 79:658-63. [PMID: 25516200 DOI: 10.1080/09168451.2014.991688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Rodents show a stronger preference for fat than sucrose, even if their diet is isocaloric. This implies that the preference mechanisms for fat and sucrose differ. To compare the contribution of the opioid system to the preference of fat and sucrose, we examined the effects of mu-, delta-, kappa-, and non-selective opioid receptor antagonists on the preference of sucrose and fat, assessed by a two-bottle choice test and a licking test, in mice naïve to sucrose and fat ingestion. Administration of non-selective and mu-selective opioid receptor antagonists more strongly inhibited the preference of fat than sucrose. While the preference of fat was reduced to the same level as water by the antagonist administration that of sucrose was still greater than water. Our results suggest that the preference of fat relies strongly on the opioid system, while that of sucrose is regulated by other mechanisms in addition to the opioid system.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Li S, Shi Y, Kirouac GJ. The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat. Front Neuroanat 2014; 8:136. [PMID: 25477789 PMCID: PMC4238322 DOI: 10.3389/fnana.2014.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the nucleus accumbens. This area of the striatum plays a key role in motivation and recent experimental evidence indicates that the PVT may have a similar function. It is well known that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) fibers have also been localized in the PVT but the source of these fibers in the rat has not been unequivocally identified. The present study was done to re-examine this question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the periaqueductal gray). In contrast, double-labeled neurons were absent in the retrorubral field (A8), substantia nigra (A9) and VTA (A10) of the midbrain. We conclude that DA fibers in the PVT do not originate from VTA but from a heterogeneous population of DA neurons located in the hypothalamus and periaqueductal gray.
Collapse
Affiliation(s)
- Sa Li
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China ; Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada ; Department of Psychiatry, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
58
|
Abstract
Substance use disorders (SUD) are common and individuals who suffer from them are prone to relapse. One of the most common consequences of the use of and withdrawal from substances of abuse is sleep disturbance. Substances of abuse affect sleep physiology, including the neurotransmitter systems that regulate the sleep-wake system. Emerging research now highlights an interactive effect between sleep disorders and substance use. New findings in alcohol and sleep research have utilized sophisticated research designs and expanded the scope of EEG and circadian rhythm analyses. Research on marijuana and sleep has progressed with findings on the effects of marijuana withdrawal on objective and subjective measures of sleep. Treatment studies have focused primarily on sleep in alcohol use disorders. Therapies for insomnia in cannabis disorders are needed. Future research is poised to further address mechanisms of sleep disturbance in alcoholics and the effect of medical marijuana on sleep and daytime functioning.
Collapse
|