51
|
Braggin JE, Bucks SA, Course MM, Smith CL, Sopher B, Osnis L, Shuey KD, Domoto‐Reilly K, Caso C, Kinoshita C, Scherpelz KP, Cross C, Grabowski T, Nik SHM, Newman M, Garden GA, Leverenz JB, Tsuang D, Latimer C, Gonzalez‐Cuyar LF, Keene CD, Morrison RS, Rhoads K, Wijsman EM, Dorschner MO, Lardelli M, Young JE, Valdmanis PN, Bird TD, Jayadev S. Alternative splicing in a presenilin 2 variant associated with Alzheimer disease. Ann Clin Transl Neurol 2019; 6:762-777. [PMID: 31020001 PMCID: PMC6469258 DOI: 10.1002/acn3.755] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Autosomal-dominant familial Alzheimer disease (AD) is caused by by variants in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP). Previously, we reported a rare PSEN2 frameshift variant in an early-onset AD case (PSEN2 p.K115Efs*11). In this study, we characterize a second family with the same variant and analyze cellular transcripts from both patient fibroblasts and brain lysates. METHODS We combined genomic, neuropathological, clinical, and molecular techniques to characterize the PSEN2 K115Efs*11 variant in two families. RESULTS Neuropathological and clinical evaluation confirmed the AD diagnosis in two individuals carrying the PSEN2 K115Efs*11 variant. A truncated transcript from the variant allele is detectable in patient fibroblasts while levels of wild-type PSEN2 transcript and protein are reduced compared to controls. Functional studies to assess biological consequences of the variant demonstrated that PSEN2 K115Efs*11 fibroblasts secrete less Aβ 1-40 compared to controls, indicating abnormal γ-secretase activity. Analysis of PSEN2 transcript levels in brain tissue revealed alternatively spliced PSEN2 products in patient brain as well as in sporadic AD and age-matched control brain. INTERPRETATION These data suggest that PSEN2 K115Efs*11 is a likely pathogenic variant associated with AD. We uncovered novel PSEN2 alternative transcripts in addition to previously reported PSEN2 splice isoforms associated with sporadic AD. In the context of a frameshift, these alternative transcripts return to the canonical reading frame with potential to generate deleterious protein products. Our findings suggest novel potential mechanisms by which PSEN variants may influence AD pathogenesis, highlighting the complexity underlying genetic contribution to disease risk.
Collapse
Affiliation(s)
| | | | - Meredith M. Course
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashington
| | - Carole L. Smith
- Department of NeurologyUniversity of WashingtonSeattleWashington
| | - Bryce Sopher
- Department of NeurologyUniversity of WashingtonSeattleWashington
| | - Leah Osnis
- Department of NeurologyUniversity of WashingtonSeattleWashington
| | - Kiel D. Shuey
- Department of NeurologyUniversity of WashingtonSeattleWashington
| | | | - Christina Caso
- Department of NeurologyUniversity of WashingtonSeattleWashington
| | - Chizuru Kinoshita
- Department of Neurological SurgeryUniversity of WashingtonSeattleWashington
| | | | - Chloe Cross
- School of MedicineUniversity of UtahSalt Lake CityUtah
| | - Thomas Grabowski
- Department of NeurologyUniversity of WashingtonSeattleWashington
- Department of RadiologyUniversity of WashingtonSeattleWashington
| | - Seyyed H. M. Nik
- Genetics and EvolutionUniversity of AdelaideAdelaideSouth Australia
| | - Morgan Newman
- Genetics and EvolutionUniversity of AdelaideAdelaideSouth Australia
| | - Gwenn A. Garden
- Department of NeurologyUniversity of WashingtonSeattleWashington
- Department of PathologyUniversity of WashingtonSeattleWashington
| | | | - Debby Tsuang
- Department of NeurologyUniversity of WashingtonSeattleWashington
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashington
- Department of Psychiatry & Behavioral SciencesUniversity of WashingtonSeattleWashington
- Geriatric Research, Education, and Clinical CenterVA Puget Sound Health Care SystemSeattleWashington
| | - Caitlin Latimer
- Department of PathologyUniversity of WashingtonSeattleWashington
| | | | | | | | | | - Ellen M. Wijsman
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashington
- Univeristy of Washington Department of BiostatisticsSeattleWashington
| | - Michael O. Dorschner
- Department of PathologyUniversity of WashingtonSeattleWashington
- Department of Psychiatry & Behavioral SciencesUniversity of WashingtonSeattleWashington
- UW Medicine Center for Precision DiagnosticsUniversity of WashingtonSeattleWashington
| | - Michael Lardelli
- Genetics and EvolutionUniversity of AdelaideAdelaideSouth Australia
| | - Jessica E. Young
- Department of PathologyUniversity of WashingtonSeattleWashington
| | - Paul N. Valdmanis
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashington
| | - Thomas D. Bird
- Department of NeurologyUniversity of WashingtonSeattleWashington
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashington
- Geriatric Research, Education, and Clinical CenterVA Puget Sound Health Care SystemSeattleWashington
| | - Suman Jayadev
- Department of NeurologyUniversity of WashingtonSeattleWashington
- Division of Medical GeneticsDepartment of MedicineUniversity of WashingtonSeattleWashington
| |
Collapse
|
52
|
Mahmoudi E, Cairns MJ. Circular RNAs are temporospatially regulated throughout development and ageing in the rat. Sci Rep 2019; 9:2564. [PMID: 30796328 PMCID: PMC6385508 DOI: 10.1038/s41598-019-38860-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/10/2019] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed structural isoforms of linear mRNA which have been observed across a broad range of species and tissues. Here, we provide a comprehensive circRNAs expression catalogue for the rat including 8 organs of both sexes during 4 developmental stages using a public RNAseq dataset. These analyses revealed thousands of circular RNA species, many expressed in an organ-specific manner along with their host genes which were enriched with tissue-specific biological functions. A large number of circRNAs also displayed a developmental-dependent expression pattern and are accumulated during ageing. CircRNAs also displayed some sexually dimorphic expression, with gender associated differences observed in various tissues and developmental stages. These observations suggest that circRNAs are dynamically expressed in a spatial-, temporal- and gender-specific manner in mammals, and may have important biological function in differentiation, development and aging.
Collapse
Affiliation(s)
- E Mahmoudi
- School of Biomedical Sciences and Pharmacy, the University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, Newcastle, Australia
| | - M J Cairns
- School of Biomedical Sciences and Pharmacy, the University of Newcastle, Callaghan, NSW, 2308, Australia. .,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Hunter Medical Research Institute, Newcastle, Australia.
| |
Collapse
|
53
|
Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A Microglial Signature Directing Human Aging and Neurodegeneration-Related Gene Networks. Front Neurosci 2019; 13:2. [PMID: 30733664 PMCID: PMC6353788 DOI: 10.3389/fnins.2019.00002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023] Open
Abstract
Aging is regarded as a major risk factor for neurodegenerative diseases. Thus, a better understanding of the similarities between the aging process and neurodegenerative diseases at the cellular and molecular level may reveal better understanding of this detrimental relationship. In the present study, we mined publicly available gene expression datasets from healthy individuals and patients affected by neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease) across a broad age spectrum and compared those with mouse aging and mouse cell-type specific gene expression profiles. We performed weighted gene co-expression network analysis (WGCNA) and found a gene network strongly related with both aging and neurodegenerative diseases. This network was significantly enriched with a microglial signature as imputed from cell type-specific sequencing data. Since mouse models are extensively used for the study of human diseases, we further compared these human gene regulatory networks with age-specific mouse brain transcriptomes. We discovered significantly preserved networks with both human aging and human disease and identified 17 shared genes in the top-ranked immune/microglia module, among which we found five human hub genes TYROBP, FCER1G, ITGB2, MYO1F, PTPRC, and two mouse hub genes Trem2 and C1qa. Taken together, these results support the hypothesis that microglia are key players involved in human aging and neurodegenerative diseases, and suggest that mouse models should be appropriate for studying these microglial changes in human.
Collapse
Affiliation(s)
- Shradha Mukherjee
- Health Informatics Advanced Science Masters Program, Arizona State University, Tempe, AZ, United States
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christine Klaus
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Mihaela Pricop-Jeckstadt
- Institute for Medical Informatics and Biometry, Faculty of Medicine “Carl Gustav Carus”, TU Dresden, Dresden, Germany
| | | | - Felix L. Struebing
- Department of Translational Brain Research, German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
54
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019; 52:86-108. [PMID: 30526773 PMCID: PMC6386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 07/15/2024] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].
Collapse
Affiliation(s)
| | | | - Prakroothi S. Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089,
USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089,
USA
- USC Stem Cell Initiative, Los Angeles, CA 90089,
USA
| |
Collapse
|
55
|
Cáceres A, González JR. When pitch adds to volume: coregulation of transcript diversity predicts gene function. BMC Genomics 2018; 19:926. [PMID: 30545302 PMCID: PMC6293560 DOI: 10.1186/s12864-018-5263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Background Genes corregulate their overall transcript volumes to perform their physiological functions. However, it is unknown if they additionally coregulate their transcript diversities. We studied the reliability, consistency and functional associations of co-splicing correlations of genes of interest, across two independent studies, multiple tissues and two statistical methods. We thoroughly investigated the reproducibility of co-splicing correlations of APP, the candidate gene of Azheimer’s disease (AD). We then studied how co-splicing correlations in different tissues contributed to predict functional interactions of three other genes and finally computed co-splicing frequency for 17 thousand genes across 52 human tissues. Results We replicated co-splicing correlations between APP and 5 AD-related genes and reproduced expected enrichment of APP co-splicing in synaptic vesicle cycle and proteosome pathways. We observed novel associations for tissue vulnerability to disease with enrichment in APP co-splicing, co-expression and epistasis in AD. APP co-splicing was the strongest predictor and replicated between studies. We confirmed known gene interactions of PRPF8 and GRIA1 in testis and brain cortex, and observed a novel interaction of FGFR2, in breast and prostate, modulated by cancer risk-variants. We produced a co-splicing map across 52 human tissues to help predict the function of over 17 thousand genes. Conclusions We show that coregulation of transcript diversities provides novel biological insights in gene physiology and helps to interpret GWAS results. Co-splicing correlations are reliable and frequent and should be further pursued to help predict gene function. Our results additionally support current AD interventions aiming at the ubiquitin proteosome pathway but unveil the need to consider transcript diversity in addition to volume to assess treatment response and susceptibility to the disease. Electronic supplementary material The online version of this article (10.1186/s12864-018-5263-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Cáceres
- ISGlobal, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Juan R González
- ISGlobal, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Department of Mathematics, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain.
| |
Collapse
|
56
|
Paiva I, Jain G, Lázaro DF, Jerčić KG, Hentrich T, Kerimoglu C, Pinho R, Szegő ÈM, Burkhardt S, Capece V, Halder R, Islam R, Xylaki M, Caldi Gomes LA, Roser AE, Lingor P, Schulze-Hentrich JM, Borovečki F, Fischer A, Outeiro TF. Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiol Dis 2018; 119:121-135. [PMID: 30092270 DOI: 10.1016/j.nbd.2018.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Alpha-synuclein (aSyn) is the major protein component of Lewy bodies and Lewy neurites, the typical pathological hallmarks in Parkinson's disease (PD) and Dementia with Lewy bodies. aSyn is capable of inducing transcriptional deregulation, but the precise effect of specific aSyn mutants associated with familial forms of PD, remains unclear. Here, we used transgenic mice overexpressing human wild-type (WT) or A30P aSyn to compare the transcriptional profiles of the two animal models. We found that A30P aSyn promotes strong transcriptional deregulation and increases DNA binding. Interestingly, COL4A2, a major component of basement membranes, was found to be upregulated in both A30P aSyn transgenic mice and in dopaminergic neurons expressing A30P aSyn, suggesting a crucial role for collagen related genes in aSyn-induced toxicity. Finally, we observed that A30P aSyn alters Golgi morphology and increases the susceptibility to endoplasmic reticulum (ER) stress in dopaminergic cells. In total, our findings provide novel insight into the putative role of aSyn on transcription and on the molecular mechanisms involved, thereby opening novel avenues for future therapeutic interventions in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Kristina Gotovac Jerčić
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, Faculty of Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Cemil Kerimoglu
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Raquel Pinho
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Èva M Szegő
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Vincenzo Capece
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Rashi Halder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Lucas A Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, Faculty of Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany; CEDOC - Chronic Diseases Research Center, Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisboa, Portugal; Max Planck Institute for Experimental Medicine, Göttingen 37075, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK.
| |
Collapse
|
57
|
Lee Y, Han S, Kim D, Kim D, Horgousluoglu E, Risacher SL, Saykin AJ, Nho K. Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer's disease. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2018; 2017:124-131. [PMID: 29888056 PMCID: PMC5961815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer's disease (AD) and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-f deposition (PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. SRE may hold potential as novel therapeutic targets for AD.
Collapse
Affiliation(s)
- Younghee Lee
- Departments of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Seonggyun Han
- Departments of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Dongwook Kim
- Departments of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Dokyoon Kim
- Biomedical and Translational Informatics Institute, Geisinger Health System, Danville, PA USA
| | - Emrin Horgousluoglu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA,Corresponding Author
| |
Collapse
|
58
|
Knupp D, Miura P. CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev 2018; 173:71-79. [PMID: 29753875 DOI: 10.1016/j.mad.2018.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a newly appreciated class of RNAs found across phyla that are generated most commonly from back-splicing of protein-coding exons. Recent profiling of circRNAs genome-wide has shown that hundreds of circRNAs dramatically increase in expression during aging in the brains of multiple organisms. No other class of transcripts has been found to show such a strong correlation with aging as circRNAs-could they be playing a role in the aging process? Here, we discuss the different methods used to profile circRNAs and discuss current limitations of these approaches. We argue that age-related increases in global circRNA levels likely result from their high stability. The functions of circRNAs are only beginning to emerge, and it is an open question whether circRNA accumulation impacts the aging brain. We discuss experimental approaches that could illuminate whether age-accumulation of circRNAs are detrimental or protective to the aging brain.
Collapse
Affiliation(s)
- David Knupp
- Department of Biology, University of Nevada, Reno, Nevada 89557, United States
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Nevada 89557, United States.
| |
Collapse
|
59
|
Long Non-Coding RNAs in Neuronal Aging. Noncoding RNA 2018; 4:ncrna4020012. [PMID: 29670042 PMCID: PMC6027360 DOI: 10.3390/ncrna4020012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
The expansion of long non-coding RNAs (lncRNAs) in organismal genomes has been associated with the emergence of sophisticated regulatory networks that may have contributed to more complex neuronal processes, such as higher-order cognition. In line with the important roles of lncRNAs in the normal functioning of the human brain, dysregulation of lncRNA expression has been implicated in aging and age-related neurodegenerative disorders. In this paper, we discuss the function and expression of known neuronal-associated lncRNAs, their impact on epigenetic changes, the contribution of transposable elements to lncRNA expression, and the implication of lncRNAs in maintaining the 3D nuclear architecture in neurons. Moreover, we discuss how the complex molecular processes that are orchestrated by lncRNAs in the aged brain may contribute to neuronal pathogenesis by promoting protein aggregation and neurodegeneration. Finally, this review explores the possibility that age-related disturbances of lncRNA expression change the genomic and epigenetic regulatory landscape of neurons, which may affect neuronal processes such as neurogenesis and synaptic plasticity.
Collapse
|
60
|
Hadad N, Unnikrishnan A, Jackson JA, Masser DR, Otalora L, Stanford DR, Richardson A, Freeman WM. Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. Neurobiol Aging 2018; 67:53-66. [PMID: 29631215 DOI: 10.1016/j.neurobiolaging.2018.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Brain aging is marked by cognitive decline and susceptibility to neurodegeneration. Calorie restriction (CR) increases neurogenesis, improves memory function, and protects from age-associated neurological disorders. Epigenetic mechanisms, including DNA methylation, are vital to normal central nervous system cellular and memory functions and are dysregulated with aging. The beneficial effects of CR have been proposed to work through epigenetic processes, but this is largely unexplored. We therefore tested whether life long CR prevents age-related hippocampal DNA methylation changes. Hippocampal DNA from young (3 months) and old (24 months) male mice fed ad libitum and 24-month-old mice fed a 40% calorie-restricted diet from 3 months of age were examined by genome-wide bisulfite sequencing to measure methylation with base specificity. Over 27 million CG and CH (non-CG) sites were examined. Of the ∼40,000 differentially methylated CG and ∼80,000 CH sites with aging, >1/3 were prevented by CR and were found across genomic regulatory regions and gene pathways. CR also caused alterations to CG and CH methylation at sites not differentially methylated with aging, and these CR-specific changes demonstrated a different pattern of regulatory element and gene pathway enrichment than those affected by aging. CR-specific DNA methyltransferase 1 and Tet methylcytosine dioxygenase 3 promoter hypermethylation corresponded to reduced gene expression. These findings demonstrate that CR attenuates age-related CG and CH hippocampal methylation changes, in combination with CR-specific methylation that may also contribute to the neuroprotective effects of CR. The prevention of age-related methylation alterations is also consistent with the prolongevity effects of CR working through an epigenetic mechanism.
Collapse
Affiliation(s)
- Niran Hadad
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan A Jackson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dustin R Masser
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
61
|
Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Res Rev 2018; 42:86-99. [PMID: 29339150 DOI: 10.1016/j.arr.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Abstract
The rapid developments in science have led to an increase in human life expectancy and thus, ageing and age-related disorders/diseases have become one of the greatest concerns in the 21st century. Cognitive abilities tend to decline as we get older. This age-related cognitive decline is mainly attributed to aberrant changes in synaptic plasticity and neuronal connections. Recent studies show that alterations in Ca2+ homeostasis underlie the increased vulnerability of neurons to age-related processes like cognitive decline and synaptic dysfunctions. Dysregulation of Ca2+ can lead to dramatic changes in neuronal functions. We discuss in this review, the recent advances on the potential role of dysregulated Ca2+ homeostasis through altered function of L-type voltage gated Ca2+ channels (LTCC) in ageing, with an emphasis on cognitive decline. This review therefore focuses on age-related changes mainly in the hippocampus, and with mention of other brain areas, that are important for learning and memory. This review also highlights age-related memory deficits via synaptic alterations and neuroinflammation. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate age-related disorders like cognitive decline.
Collapse
|
62
|
Kim CK, Torcaso A, Asimes A, Chung WCJ, Pak TR. Structural and functional characteristics of oestrogen receptor β splice variants: Implications for the ageing brain. J Neuroendocrinol 2018; 30:10.1111/jne.12488. [PMID: 28514502 PMCID: PMC5693782 DOI: 10.1111/jne.12488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/07/2017] [Accepted: 05/13/2017] [Indexed: 01/21/2023]
Abstract
Oestrogen receptor (ER)β is a multifunctional nuclear receptor that mediates the actions of oestrogenic compounds. Despite its well defined role in mediating the actions of oestrogens, a substantial body of evidence demonstrates that ERβ has a broad range of physiological functions independent of those normally attributed to oestrogen signalling. These functions can partly be achieved by the activity of several alternatively spliced isoforms that have been identified for ERβ. This short review describes structural differences between the ERβ splice variants that are known to be translated into proteins. Moreover, we discuss how these alternative structures contribute to functional differences in the context of both healthy and pathological conditions. Our review also describes the principal factors that regulate alternative RNA splicing. The alternatively spliced isoforms of ERβ are differentially expressed according to brain region, age and hormonal milieu, emphasising the likelihood that there are precise cell-specific mechanisms regulating ERβ alternative splicing. However, despite these correlative data, the molecular factors regulating alternative ERβ splicing in the brain remain unknown. We also review the basic mechanisms that regulate alternative RNA splicing and use that framework to make logical predictions about ERβ alternative splicing in the brain.
Collapse
Affiliation(s)
- C K Kim
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - A Torcaso
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - A Asimes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - W C J Chung
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - T R Pak
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
63
|
Unnikrishnan A, Hadad N, Masser DR, Jackson J, Freeman WM, Richardson A. Revisiting the genomic hypomethylation hypothesis of aging. Ann N Y Acad Sci 2018; 1418:69-79. [PMID: 29363785 DOI: 10.1111/nyas.13533] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
Abstract
The genomic hypomethylation hypothesis of aging proposes that an overall decrease in global DNA methylation occurs with age, and it has been argued that the decrease in global DNA methylation could be an important factor in aging, resulting in the relaxation of gene expression regulation and abnormal gene expression. Since it was initially observed that DNA methylation decreased with age in 1974, 16 articles have been published describing the effect of age on global DNA methylation in various tissues from rodents and humans. We critically reviewed the publications on the effect of age on DNA methylation and the expression of the enzymes involved in DNA methylation to evaluate the validity of the hypomethylation hypothesis of aging. On the basis of the current scientific literature, we conclude that a decrease in the global methylation of the genome occurs in most if not all tissues/cells as an animal ages. However, age-related changes in DNA methylation in specific regions or at specific sites in the genome occur even though the global DNA methylation does not change.
Collapse
Affiliation(s)
- Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dustin R Masser
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan Jackson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Oklahoma City VA Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
64
|
Wang J, Li Q, Kong Y, Zhou F, Li J, Li W, Wang K, Wu T, Guan Y, Xie J, Wen T. Biosystems Study of the Molecular Networks Underlying Hippocampal Aging Progression and Anti-aging Treatment in Mice. Front Aging Neurosci 2018; 9:393. [PMID: 29311893 PMCID: PMC5735351 DOI: 10.3389/fnagi.2017.00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Aging progression is a process that an individual encounters as they become older, and usually results from a series of normal physiological changes over time. The hippocampus, which contributes to the loss of spatial and episodic memory and learning in older people, is closely related to the detrimental effects of aging at the morphological and molecular levels. However, age-related genetic changes in hippocampal molecular mechanisms are not yet well-established. To provide additional insight into the aging process, differentially-expressed genes of 3- versus 24- and 29-month old mice were re-analyzed. The results revealed that a large number of immune and inflammatory response-related genes were up-regulated in the aged hippocampus, and membrane receptor-associated genes were down-regulated. The down-regulation of transmembrane receptors may indicate the weaker perception of environmental exposure in older people, since many transmembrane proteins participate in signal transduction. In addition, molecular interaction analysis of the up-regulated immune genes indicated that the hub gene, Ywhae, may play essential roles in immune and inflammatory responses during aging progression, as well as during hippocampal development. Our biological experiments confirmed the conserved roles of Ywhae and its partners between human and mouse. Furthermore, comparison of microarray data between advanced-age mice treated with human umbilical cord blood plasma protein and the phosphate-buffered saline control showed that the genes that contribute to the revitalization of advanced-age mice are different from the genes induced by aging. These results implied that the revitalization of advanced-age mice is not a simple reverse process of normal aging progression. Our data assigned novel roles of genes during aging progression and provided further theoretic evidence for future studies exploring the underlying mechanisms of aging and anti-aging-related disease therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyan Kong
- Position Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kai Wang
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Wu
- Shanghai Stem Cell Group, Shanghai, China
| | - Yihui Guan
- Position Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
65
|
Abstract
The molecular process of RNA editing allows changes in RNA transcripts that increase genomic diversity. These highly conserved RNA editing events are catalyzed by a group of enzymes known as adenosine deaminases acting on double-stranded RNA (ADARs). ADARs are necessary for normal development, they bind to over thousands of genes, impact millions of editing sites, and target critical components of the central nervous system (CNS) such as glutamate receptors, serotonin receptors, and potassium channels. Dysfunctional ADARs are known to cause alterations in CNS protein products and therefore play a role in chronic or acute neurodegenerative and psychiatric diseases as well as CNS cancer. Here, we review how RNA editing deficiency impacts CNS function and summarize its role during disease pathogenesis.
Collapse
Affiliation(s)
- Ileana Lorenzini
- Barrow Neurological Institute, Department of Neurobiology, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Stephen Moore
- Barrow Neurological Institute, Department of Neurobiology, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA
| | - Rita Sattler
- Department of Neurobiology and Neurology, Dignityhealth St. Joseph's Hospital, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
66
|
Yanai S, Ito H, Endo S. Long-term cilostazol administration prevents age-related decline of hippocampus-dependent memory in mice. Neuropharmacology 2017; 129:57-68. [PMID: 29122629 DOI: 10.1016/j.neuropharm.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes that hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and/or 3', 5'-cyclic guanosine monophosphate (cGMP). The regulation of intracellular signaling pathways mediated by cyclic nucleotides is imperative to synaptic plasticity and memory in animals. Because PDEs play an important role in this regulation, PDE inhibitors are considered as candidate compounds for treating cognitive and memory disorders. In the present study, we tested whether cilostazol, a selective PDE3 inhibitor, prevents the cognitive deterioration that occurs during the course of normal aging in mice. Ten months of cilostazol administration (1.5%) in 13-month-old mice improved spatial memory when tested at 23 months of age. First, it prevented the decline in the ability of these aged mice to recognize a change in an object's location in the object recognition task. Second, spatial memory of these cilostazol-treated aged mice in the Morris water maze was comparable to that of untreated middle-aged mice (13 months old). Cilostazol administration had no effect on the emotional states and physical ability of aged mice. Thus, long-term cilostazol administration prevented hippocampus-dependent memory decline in aged mice, allowing them to achieve a level of cognitive performance similar to middle-aged mice and without negative behavioral side effects. Considering its well-established safety in other medical contexts, cilostazol may be a potential therapeutic candidate drug for staving off cognitive decline in the aging human population.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
67
|
Agís-Balboa RC, Pinheiro PS, Rebola N, Kerimoglu C, Benito E, Gertig M, Bahari-Javan S, Jain G, Burkhardt S, Delalle I, Jatzko A, Dettenhofer M, Zunszain PA, Schmitt A, Falkai P, Pape JC, Binder EB, Mulle C, Fischer A, Sananbenesi F. Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia. EMBO J 2017; 36:2815-2828. [PMID: 28768717 PMCID: PMC5623844 DOI: 10.15252/embj.201796821] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.
Collapse
Affiliation(s)
- Roberto Carlos Agís-Balboa
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Paulo S Pinheiro
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nelson Rebola
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Cemil Kerimoglu
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Benito
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Michael Gertig
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Sanaz Bahari-Javan
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alexander Jatzko
- Department of Psychosomatics, Westpfalzklinikum-Kaiserslautern, Teaching Hospital, University of Mainz, Mainz, Germany
| | - Markus Dettenhofer
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Patricia A Zunszain
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Julius C Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Research Group for Genome Dynamics in Brain Diseases, Göttingen, Germany
| |
Collapse
|
68
|
Deschênes M, Chabot B. The emerging role of alternative splicing in senescence and aging. Aging Cell 2017; 16:918-933. [PMID: 28703423 PMCID: PMC5595669 DOI: 10.1111/acel.12646] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious DiseasesFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecJ1E 4K8Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious DiseasesFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecJ1E 4K8Canada
| |
Collapse
|
69
|
García-Pupo L, Sánchez JR, Ratman D, Pérez-Novo C, Declerck K, De Bosscher K, Markakis MN, Beemster G, Zaldo A, Nuñez Figueredo Y, Delgado-Hernández R, Vanden Berghe W. Semi-synthetic sapogenin exerts neuroprotective effects by skewing the brain ischemia reperfusion transcriptome towards inflammatory resolution. Brain Behav Immun 2017; 64:103-115. [PMID: 28390980 DOI: 10.1016/j.bbi.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022] Open
Abstract
Stroke represents one of the first causes of mortality and morbidity worldwide. We evaluated the therapeutic potential of a novel semi-synthetic spirosteroid sapogenin derivative "S15" in a transient middle cerebral artery occlusion (tMCAO) focal ischemia model in rat. S15-treated rats had significantly reduced infarct volumes and improved neurological functions at 24h post-reperfusion, compared with ischemia. Corresponding gene expression changes in brain were characterized by mRNA sequencing and qPCR approaches. Next, we applied geneset, pathway and transcription factor motif enrichment analysis to identify relevant signaling networks responsible for neuronal damage upon ischemia-reperfusion or neuroprotection upon pretreatment with S15. As expected, ischemia-reperfusion brain damage strongly modulates transcriptional programs associated with immune responses, increased differentiation of immune cells as well as reduced (cat)ion transport and synaptic activity. Interestingly, S15-dependent neuroprotection regulates inflammation-associated genes involved in phagosome specific resolution of tissue damage, chemotaxis and anti-inflammatory alternative activation of microglia. Altogether our transcriptome wide RNA sequencing and integrated pathway analysis provides new clues in the neuroprotective properties of a novel spirosteroid S15 or neuronal damage in rat brains subjected to ischemia, which opens new perspectives for successful treatment of stroke.
Collapse
Affiliation(s)
- Laura García-Pupo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Jeney Ramírez Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Claudina Pérez-Novo
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ken Declerck
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Marios Nektarios Markakis
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171 G.U.613, 2020 Antwerp, Belgium
| | - Gerrit Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171 G.U.613, 2020 Antwerp, Belgium
| | - Armando Zaldo
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de la Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado, Plaza de la Revolución, CP 10400 La Habana, Cuba.
| | - Yanier Nuñez Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - René Delgado-Hernández
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Wim Vanden Berghe
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
70
|
Gano A, Doremus-Fitzwater TL, Deak T. A cross-sectional comparison of ethanol-related cytokine expression in the hippocampus of young and aged Fischer 344 rats. Neurobiol Aging 2017; 54:40-53. [PMID: 28319836 PMCID: PMC5401774 DOI: 10.1016/j.neurobiolaging.2017.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/02/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
Our work in Sprague Dawley rats has shown rapid alterations in neuroimmune gene expression (RANGE) in the hippocampus and paraventricular nucleus of the hypothalamus (PVN). These manifest as increased interleukin (IL)-6 and IκBα, and suppressed IL-1β and tumor necrosis factor alpha during acute ethanol intoxication. The present studies tested these effects across the lifespan (young adulthood at 2-3 months; senescence at 18 and 24 months), as well as across strain (Fischer 344) and sex. The hippocampus revealed age-dependent shifts in cytokine expression (IL-6, IL-1β, and monocyte chemoattractant protein 1), but no changes were observed in the PVN at baseline or following ethanol. RANGE in adults was similar across sex and comparable with effects seen in Sprague Dawley rats. Plasma corticosterone levels increased with age, whereas the blood ethanol concentrations and loss of righting reflex were similar in all groups older than 2 months. These findings indicate that the RANGE effect is largely conserved across strain and is durable across age, even in the face of a shifting neuroimmune profile that emerges during immunosenescence.
Collapse
Affiliation(s)
- Anny Gano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
71
|
Min H, Kim J, Kim YJ, Yoon MS, Pratley RE, Lee YH. Measurement of altered APP isoform expression in adipose tissue of diet-induced obese mice by absolute quantitative real-time PCR. Anim Cells Syst (Seoul) 2017; 21:100-107. [PMID: 30460057 PMCID: PMC6138354 DOI: 10.1080/19768354.2017.1290679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/06/2022] Open
Abstract
Obesity is associated with increased risk of Alzheimer’s disease. Previous studies have demonstrated that amyloid-beta precursor protein (APP) is expressed in subcutaneous adipose tissue (SAT), upregulated with obesity, and correlates with insulin resistance and adipose tissue inflammation. APP is alternatively spliced into several isoforms, which may be indicative of the pathogenesis of APP-related diseases, but the accurate quantification has been difficult to standardize and reproduce. In light of this, we developed isoform-specific absolute cDNA standards for absolute quantitative real-time PCR (AQ-PCR), and measured transcript copy numbers for three major APP isoforms (APP770, APP751, and APP695), in SAT from C57BL/6 mice fed either a normal or high-fat diet. Expression of all three major APP isoforms was increased in diet-induced obese mice. Transcript copy numbers of APP770 and APP695 correlated with plasma insulin and CCL2 gene expression. The ratios of APP770 and APP751 to APP695 gradually decreased with aging, and correlated with plasma glucose levels. In addition, APP770 was significantly decreased in thiazolidinedione-treated mice. We describe quantification of APP isoform transcripts by AQ-PCR, which allows for direct comparison of gene copy number across isoforms, between experiments, and across studies conducted by independent research groups, which relative quantitative PCR does not allow. Our results suggest a possible role of differential expression of APP isoforms in the development of obesity-related insulin resistance and adipose tissue inflammation. In addition, it is important to determine if altered ratios of APP isoforms in SAT contribute to higher circulating Aβ peptides and increased risk of abnormalities in obesity.
Collapse
Affiliation(s)
- Hansol Min
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan, Korea
| | - Jinil Kim
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan, Korea
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, Gyeongsan, Korea
| | - Mi-Sook Yoon
- Division of Beauty Coordination, Keimyung College University, Daegu, Korea
| | - Richard E Pratley
- Florida Hospital Sanford/Burnham Translational Research Institute for Metabolism and Diabetes, Orlando, FL, USA
| | - Yong-Ho Lee
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan, Korea
| |
Collapse
|
72
|
Nuvolone M, Schmid N, Miele G, Sorce S, Moos R, Schori C, Beerli RR, Bauer M, Saudan P, Dietmeier K, Lachmann I, Linnebank M, Martin R, Kallweit U, Kana V, Rushing EJ, Budka H, Aguzzi A. Cystatin F is a biomarker of prion pathogenesis in mice. PLoS One 2017; 12:e0171923. [PMID: 28178353 PMCID: PMC5298286 DOI: 10.1371/journal.pone.0171923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/29/2017] [Indexed: 01/21/2023] Open
Abstract
Misfolding of the cellular prion protein (PrPC) into the scrapie prion protein (PrPSc) results in progressive, fatal, transmissible neurodegenerative conditions termed prion diseases. Experimental and epidemiological evidence point toward a protracted, clinically silent phase in prion diseases, yet there is no diagnostic test capable of identifying asymptomatic individuals incubating prions. In an effort to identify early biomarkers of prion diseases, we have compared global transcriptional profiles in brains from pre-symptomatic prion-infected mice and controls. We identified Cst7, which encodes cystatin F, as the most strongly upregulated transcript in this model. Early and robust upregulation of Cst7 mRNA levels and of its cognate protein was validated in additional mouse models of prion disease. Surprisingly, we found no significant increase in cystatin F levels in both cerebrospinal fluid or brain parenchyma of patients with Creutzfeldt-Jakob disease compared to Alzheimer’s disease or non-demented controls. Our results validate cystatin F as a useful biomarker of early pathogenesis in experimental models of prion disease, and point to unexpected species-specific differences in the transcriptional responses to prion infections.
Collapse
Affiliation(s)
- Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Nicolas Schmid
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Gino Miele
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Monika Bauer
- Cytos Biotechnology AG, Zurich-Schlieren, Switzerland
| | | | | | | | - Michael Linnebank
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Ulf Kallweit
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology; Bern University Hospital and University of Bern, Bern, Switzerland
| | - Veronika Kana
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Herbert Budka
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
73
|
PerSubs: A Graph-Based Algorithm for the Identification of Perturbed Subpathways Caused by Complex Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 988:215-224. [DOI: 10.1007/978-3-319-56246-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
74
|
Pulga A, Porte Y, Morel JL. Changes in C57BL6 Mouse Hippocampal Transcriptome Induced by Hypergravity Mimic Acute Corticosterone-Induced Stress. Front Mol Neurosci 2016; 9:153. [PMID: 28082866 PMCID: PMC5183579 DOI: 10.3389/fnmol.2016.00153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/06/2016] [Indexed: 02/05/2023] Open
Abstract
Centrifugation is a widely used procedure to study the impact of altered gravity on Earth, as observed during spaceflights, allowing us to understand how a long-term physical constraint can condition the mammalian physiology. It is known that mice, placed in classical cages and maintained during 21 days in a centrifuge at 3G gravity level, undergo physiological adaptations due to hypergravity, and/or stress. Indeed, an increase of corticosterone levels has been previously measured in the plasma of 3G-exposed mice. Corticosterone is known to modify neuronal activity during memory processes. Although learning and memory performances cannot be assessed during the centrifugation, literature largely described a large panel of proteins (channels, second messengers, transcription factors, structural proteins) which expressions are modified during memory processing. Thus, we used the Illumina technology to compare the whole hippocampal transcriptome of three groups of C57Bl6/J mice, in order to gain insights into the effects of hypergravity on cerebral functions. Namely, a group of 21 days 3G-centrifuged mice was compared to (1) a group subjected to an acute corticosterone injection, (2) a group receiving a transdermal chronic administration of corticosterone during 21 days, and (3) aged mice because aging could be characterized by a decrease of hippocampus functions and memory impairment. Our results suggest that hypergravity stress induced by corticosterone administration and aging modulate the expression of genes in the hippocampus. However, the modulations of the transcriptome observed in these conditions are not identical. Hypergravity affects per-se the hippocampus transcriptome and probably modifies its activity. Hypergravity induced changes in hippocampal transcriptome were more similar to acute injection than chronic diffusion of corticosterone or aging.
Collapse
Affiliation(s)
- Alice Pulga
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Yves Porte
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Jean-Luc Morel
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| |
Collapse
|
75
|
Abstract
Circular RNAs (circRNAs) are a newly appreciated class of RNAs expressed across diverse phyla. These enigmatic transcripts are most commonly generated by back-splicing events from exons of protein-coding genes. This results in highly stable RNAs due to the lack of free 5′ and 3′ ends. CircRNAs are enriched in neural tissues, suggesting that they might have neural functions. Here, we sought to determine whether circRNA accumulation occurs during aging in mice. Total RNA-seq profiling of young (1 month old) and aged (22 month old) cortex, hippocampus and heart samples was performed. This led to the confident detection of 6,791 distinct circRNAs across these samples, including 675 novel circRNAs. Analysis uncovered a strong bias for circRNA upregulation during aging in neural tissues. These age-accumulation trends were verified for individual circRNAs by RT-qPCR and Northern analysis. In contrast, comparison of aged versus young hearts failed to reveal a global trend for circRNA upregulation. Age-accumulation of circRNAs in brain tissues was found to be largely independent from linear RNA expression of host genes. These findings suggest that circRNAs might play biological roles relevant to the aging nervous system.
Collapse
|
76
|
Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci 2016; 158:121-9. [DOI: 10.1016/j.lfs.2016.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
|
77
|
Hadad N, Masser DR, Logan S, Wronowski B, Mangold CA, Clark N, Otalora L, Unnikrishnan A, Ford MM, Giles CB, Wren JD, Richardson A, Sonntag WE, Stanford DR, Freeman W. Absence of genomic hypomethylation or regulation of cytosine-modifying enzymes with aging in male and female mice. Epigenetics Chromatin 2016; 9:30. [PMID: 27413395 PMCID: PMC4942942 DOI: 10.1186/s13072-016-0080-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Background Changes to the epigenome with aging, and DNA modifications in particular, have been proposed as a central regulator of the aging process, a predictor of mortality, and a contributor to the pathogenesis of age-related diseases. In the central nervous system, control of learning and memory, neurogenesis, and plasticity require changes in cytosine methylation and hydroxymethylation. Although genome-wide decreases in methylation with aging are often reported as scientific dogma, primary research reports describe decreases, increases, or lack of change in methylation and hydroxymethylation and their principle regulators, DNA methyltransferases and ten-eleven translocation dioxygenases in the hippocampus. Furthermore, existing data are limited to only male animals. Results Through examination of the hippocampus in young, adult, and old male and female mice by antibody-based, pyrosequencing, and whole-genome oxidative bisulfite sequencing methods, we provide compelling evidence that contradicts the genomic hypomethylation theory of aging. We also demonstrate that expression of DNA methyltransferases and ten-eleven translocation dioxygenases is not differentially regulated with aging or between the sexes, including the proposed cognitive aging regulator DNMT3a2. Using oxidative bisulfite sequencing that discriminates methylation from hydroxymethylation and by cytosine (CG and non-CG) context, we observe sex differences in average CG methylation and hydroxymethylation of the X chromosome, and small age-related differences in hydroxymethylation of CG island shores and shelves, and methylation of promoter regions. Conclusion These findings clarify a long-standing misconception of the epigenomic response to aging and demonstrate the need for studies of base-specific methylation and hydroxymethylation with aging in both sexes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0080-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niran Hadad
- Oklahoma Center for Neuroscience, Oklahoma City, OK USA ; Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA
| | - Dustin R Masser
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Sreemathi Logan
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA
| | - Benjamin Wronowski
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Colleen A Mangold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA USA
| | - Nicholas Clark
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR USA
| | - Cory B Giles
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ; Oklahoma City VA Medical Center, Oklahoma City, OK USA ; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Willard Freeman
- Oklahoma Center for Neuroscience, Oklahoma City, OK USA ; Reynolds Oklahoma Center on Aging, SLY-BRC 1370, 975 NE 10th St, Oklahoma City, OK 73104 USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
78
|
Nuvolone M, Hermann M, Sorce S, Russo G, Tiberi C, Schwarz P, Minikel E, Sanoudou D, Pelczar P, Aguzzi A. Strictly co-isogenic C57BL/6J-Prnp-/- mice: A rigorous resource for prion science. J Exp Med 2016; 213:313-27. [PMID: 26926995 PMCID: PMC4813672 DOI: 10.1084/jem.20151610] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022] Open
Abstract
Although its involvement in prion replication and neurotoxicity during transmissible spongiform encephalopathies is undisputed, the physiological role of the cellular prion protein (PrP(C)) remains enigmatic. A plethora of functions have been ascribed to PrP(C) based on phenotypes of Prnp(-/-) mice. However, all currently available Prnp(-/-) lines were generated in embryonic stem cells from the 129 strain of the laboratory mouse and mostly crossed to non-129 strains. Therefore, Prnp-linked loci polymorphic between 129 and the backcrossing strain resulted in systematic genetic confounders and led to erroneous conclusions. We used TALEN-mediated genome editing in fertilized mouse oocytes to create the Zurich-3 (ZH3) Prnp-ablated allele on a pure C57BL/6J genetic background. Genomic, transcriptional, and phenotypic characterization of Prnp(ZH3/ZH3) mice failed to identify phenotypes previously described in non-co-isogenic Prnp(-/-) mice. However, aged Prnp(ZH3/ZH3) mice developed a chronic demyelinating peripheral neuropathy, confirming the crucial involvement of PrP(C) in peripheral myelin maintenance. This new line represents a rigorous genetic resource for studying the role of PrP(C) in physiology and disease.
Collapse
Affiliation(s)
- Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Mario Hermann
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich (FGCZ), 8057 Zurich, Switzerland
| | - Cinzia Tiberi
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Eric Minikel
- Prion Alliance, Cambridge, MA 02139 Broad Institute, Cambridge, MA 02142 Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Attikon Hospital, Medical School, University of Athens, 115 27 Athens, Greece
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
79
|
Dieterich DC, Kreutz MR. Proteomics of the Synapse--A Quantitative Approach to Neuronal Plasticity. Mol Cell Proteomics 2016; 15:368-81. [PMID: 26307175 PMCID: PMC4739661 DOI: 10.1074/mcp.r115.051482] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.
Collapse
Affiliation(s)
- Daniela C Dieterich
- From the ‡Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Michael R Kreutz
- §RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; ¶Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
80
|
Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF. Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun 2015; 50:209-220. [PMID: 26184083 DOI: 10.1016/j.bbi.2015.07.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 12/14/2022] Open
Abstract
The mammalian amygdala is a key emotional brain region for eliciting social behaviour, critically involved in anxiety and fear-related behaviours, and hence a focus of research on neurodevelopmental and stress-related disorders such as autism and anxiety. Recently, increasing evidence implicates host-microbe interactions in the aetiology of these conditions. Germ-free (GF) mice, devoid of any microbiota throughout organismal maturation, are a well-established tool to study the effects of absence of the microbiota on host physiology. A growing body of independently replicated findings confirm that GF animals demonstrate altered anxiety-related behaviour and impaired social behaviour. However, the underlying mechanisms of this interaction and the nature of the pathways involved are only insufficiently understood. To further elucidate the molecular underpinnings of microbe-brain interaction, we therefore exploited unbiased genome-wide transcriptional profiling to determine gene expression in the amygdala of GF and GF mice that have been colonised after weaning. Using RNA-sequencing and a comprehensive downstream analysis pipeline we studied the amygdala transcriptome and found significant differences at the levels of differential gene expression, exon usage and RNA-editing. Most surprisingly, we noticed upregulation of several immediate early response genes such as Fos, Fosb, Egr2 or Nr4a1 in association with increased CREB signalling in GF mice. In addition, we found differential expression and recoding of several genes implicated in brain physiology processes such as neurotransmission, neuronal plasticity, metabolism and morphology. In conclusion, our data suggest altered baseline neuronal activity in the amygdala of germ-free animals, which is established during early life and may have implications for understanding development and treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Roman M Stilling
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Feargal J Ryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | - Alan E Hoban
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
81
|
Abstract
Neurodegenerative diseases have a variety of different genes contributing to their underlying pathology. Unfortunately, for many of these diseases it is not clear how changes in gene expression affect pathology. Transcriptome analysis of neurodegenerative diseases using ribonucleic acid sequencing (RNA Seq) and real time quantitative polymerase chain reaction (RT-qPCR) provides for a platform to allow investigators to determine the contribution of various genes to the disease phenotype. In Alzheimer's disease (AD) there are several candidate genes reported that may be associated with the underlying pathology and are, in addition, alternatively spliced. Thus, AD is an ideal disease to examine how alternative splicing may affect pathology. In this context, genes of particular interest to AD pathology include the amyloid precursor protein (APP), TAU, and apolipoprotein E (APOE). Here, we review the evidence of alternative splicing of these genes in normal and AD patients, and recent therapeutic approaches to control splicing.
Collapse
Affiliation(s)
- Julia E Love
- Department of Biological Sciences, Science Building, Boise State University, USA
| | - Eric J Hayden
- Department of Biological Sciences, Science Building, Boise State University, USA
| | - Troy T Rohn
- Department of Biological Sciences, Science Building, Boise State University, USA
| |
Collapse
|
82
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
83
|
Peixoto L, Risso D, Poplawski SG, Wimmer ME, Speed TP, Wood MA, Abel T. How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Res 2015. [PMID: 26202970 PMCID: PMC4652761 DOI: 10.1093/nar/gkv736] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sequencing of the full transcriptome (RNA-seq) has become the preferred choice for the measurement of genome-wide gene expression. Despite its widespread use, challenges remain in RNA-seq data analysis. One often-overlooked aspect is normalization. Despite the fact that a variety of factors or ‘batch effects’ can contribute unwanted variation to the data, commonly used RNA-seq normalization methods only correct for sequencing depth. The study of gene expression is particularly problematic when it is influenced simultaneously by a variety of biological factors in addition to the one of interest. Using examples from experimental neuroscience, we show that batch effects can dominate the signal of interest; and that the choice of normalization method affects the power and reproducibility of the results. While commonly used global normalization methods are not able to adequately normalize the data, more recently developed RNA-seq normalization can. We focus on one particular method, RUVSeq and show that it is able to increase power and biological insight of the results. Finally, we provide a tutorial outlining the implementation of RUVSeq normalization that is applicable to a broad range of studies as well as meta-analysis of publicly available data.
Collapse
Affiliation(s)
- Lucia Peixoto
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, Room 10-170, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-6168, USA
| | - Davide Risso
- Division of Biostatistics, School of Public Health, University of California, Berkeley, 344 Li Ka Shing Center, #3370, Berkeley, CA 94720-3370, USA
| | - Shane G Poplawski
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, Room 10-170, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-6168, USA
| | - Mathieu E Wimmer
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, Room 10-170, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-6168, USA
| | - Terence P Speed
- Department of Statistics, University of California, Berkeley, Department of Mathematics and Statistics, The University of Melbourne, Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Australia
| | - Marcelo A Wood
- University of California, Irvine, Department of Neurobiology and Behavior, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, Room 10-170, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-6168, USA
| |
Collapse
|
84
|
Iancu OD, Colville A, Oberbeck D, Darakjian P, McWeeney SK, Hitzemann R. Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations. Front Genet 2015; 6:174. [PMID: 26029240 PMCID: PMC4429622 DOI: 10.3389/fgene.2015.00174] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or cotranscriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Alexandre Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Denesa Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Shannon K McWeeney
- Division of Biostatistics, Public Health and Preventative Medicine, Oregon Health & Science University Portland, OR, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA ; Research Service, Veterans Affairs Medical Center Portland, OR, USA
| |
Collapse
|