51
|
The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish. BMC Evol Biol 2018; 18:89. [PMID: 29909776 PMCID: PMC6004695 DOI: 10.1186/s12862-018-1199-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). Result Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing. Conclusion Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time. Electronic supplementary material The online version of this article (10.1186/s12862-018-1199-9) contains supplementary material, which is available to authorized users.
Collapse
|
52
|
Lochman I, Švachová V, Mílková Pavlíková K, Medřická H, Novák V, Trilecová L, Pavliska L, Procházka V. Serum Cytokine and Growth Factor Levels in Children with Autism Spectrum Disorder. Med Sci Monit 2018; 24:2639-2646. [PMID: 29705814 PMCID: PMC5946742 DOI: 10.12659/msm.906817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The immune system may have a role in the pathogenesis of autism spectrum disorder (ASD), including typical and atypical autism. The aim of this study was to determine whether a cytokine and growth factor panel could be identified for the diagnosis and prognosis in children with ASD, including typical and atypical autism. MATERIAL AND METHODS This study included 26 children with ASD (typical or atypical) and 11 of their siblings who did not have ASD. A panel of ten serum cytokines and growth factors were investigated using addressable laser bead assay (ALBIA) and enzyme-linked immunosorbent assay (ELISA) kits. Results were correlated with scores using the Childhood Autism Rating Scale (CARS) and Autism Diagnostic Observation Schedule (ADOS) for the children with ASD and compared with the findings from their siblings without ASD. RESULTS There were no statistically significant differences in serum cytokine and growth factor levels between children with ASD and their siblings. The scores using CARS and ADOS were significantly greater in children with typical autism compared with children with atypical autism as part of the ASD spectrum. Serum levels of cytokines and growth factors showed a positive correlation with CARS and ADOS scores but differed between children with typical and atypical autism and their siblings. CONCLUSIONS The findings of this study showed that serum measurement of appropriately selected panels of cytokines and growth factors might have a role in the diagnosis of ASD.
Collapse
Affiliation(s)
- Ivo Lochman
- Department of Immunology and Serology, The SPADIA LAB Laboratory Plc., Ostrava, Czech Republic
| | - Veronika Švachová
- Department of Immunology and Serology, The SPADIA LAB Laboratory Plc., Ostrava, Czech Republic
| | | | - Hana Medřická
- Department of Paediatric Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Vilém Novák
- Department of Paediatric Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Lenka Trilecová
- Department of Immunology and Serology, The SPADIA LAB Laboratory Plc., Ostrava, Czech Republic
| | - Lubomír Pavliska
- Department of the Deputy Director for Science and Research, University Hospital Ostrava, Ostrava, Czech Republic
| | - Václav Procházka
- Department of the Deputy Director for Science and Research, University Hospital Ostrava, Ostrava, Czech Republic
| |
Collapse
|
53
|
Bryzgalov LO, Korbolina EE, Brusentsov II, Leberfarb EY, Bondar NP, Merkulova TI. Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder, bipolar affective disorder and schizophrenia. BMC Neurosci 2018; 19:22. [PMID: 29745862 PMCID: PMC5998904 DOI: 10.1186/s12868-018-0414-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A challenge of understanding the mechanisms underlying cognition including neurodevelopmental and neuropsychiatric disorders is mainly given by the potential severity of cognitive disorders for the quality of life and their prevalence. However, the field has been focused predominantly on protein coding variation until recently. Given the importance of tightly controlled gene expression for normal brain function, the goal of the study was to assess the functional variation including non-coding variation in human genome that is likely to play an important role in cognitive functions. To this end, we organized and utilized available genome-wide datasets from genomic, transcriptomic and association studies into a comprehensive data corpus. We focused on genomic regions that are enriched in regulatory activity-overlapping transcriptional factor binding regions and repurpose our data collection especially for identification of the regulatory SNPs (rSNPs) that showed associations both with allele-specific binding and allele-specific expression. We matched these rSNPs to the nearby and distant targeted genes and then selected the variants that could implicate the etiology of cognitive disorders according to Genome-Wide Association Studies (GWAS). Next, we use DeSeq 2.0 package to test the differences in the expression of the certain targeted genes between the controls and the patients that were diagnosed bipolar affective disorder and schizophrenia. Finally, we assess the potential biological role for identified drivers of cognition using DAVID and GeneMANIA. RESULTS As a result, we selected fourteen regulatory SNPs locating within the loci, implicated from GWAS for cognitive disorders with six of the variants unreported previously. Grouping of the targeted genes according to biological functions revealed the involvement of processes such as 'posttranscriptional regulation of gene expression', 'neuron differentiation', 'neuron projection development', 'regulation of cell cycle process' and 'protein catabolic processes'. We identified four rSNP-targeted genes that showed differential expression between patient and control groups depending on brain region: NRAS-in schizophrenia cohort, CDC25B, DDX21 and NUCKS1-in bipolar disorder cohort. CONCLUSIONS Overall, our findings are likely to provide the keys for unraveling the mechanisms that underlie cognitive functions including major depressive disorder, bipolar disorder and schizophrenia etiopathogenesis.
Collapse
Affiliation(s)
- Leonid O. Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Elena E. Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| | - Ilja I. Brusentsov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Elena Y. Leberfarb
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Natalia P. Bondar
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| | - Tatiana I. Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| |
Collapse
|
54
|
Freitas BC, Mei A, Mendes APD, Beltrão-Braga PCB, Marchetto MC. Modeling Inflammation in Autism Spectrum Disorders Using Stem Cells. Front Pediatr 2018; 6:394. [PMID: 30619789 PMCID: PMC6299043 DOI: 10.3389/fped.2018.00394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Recent reports show an increase in the incidence of Autism Spectrum Disorders (ASD) to 1 in every 59 children up to 8 years old in 11 states in North America. Induced pluripotent stem cell (iPSC) technology offers a groundbreaking platform for the study of polygenic neurodevelopmental disorders in live cells. Robust inflammation states and immune system dysfunctions are associated with ASD and several cell types participate on triggering and sustaining these processes. In this review, we will examine the contribution of neuroinflammation to the development of autistic features and discuss potential therapeutic approaches. We will review the available tools, emphasizing stem cell modeling as a technology to investigate the various molecular pathways and different cell types involved in the process of neuroinflammation in ASD.
Collapse
Affiliation(s)
- Beatriz C Freitas
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Arianna Mei
- Laboratory of Genetics, The Salk Institute, La Jolla, CA, United States
| | | | - Patricia C B Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
55
|
Schieve LA, Tian LH, Drews-Botsch C, Windham GC, Newschaffer C, Daniels JL, Lee LC, Croen LA, Danielle Fallin M. Autism spectrum disorder and birth spacing: Findings from the study to explore early development (SEED). Autism Res 2018; 11:81-94. [PMID: 29164825 PMCID: PMC5773391 DOI: 10.1002/aur.1887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/08/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
Previous studies of autism spectrum disorder (ASD) and birth spacing had limitations; few examined phenotypic case subtypes or explored underlying mechanisms for associations and none assessed whether other (non-ASD) developmental disabilities (DDs) were associated with birth spacing. We assessed associations between inter-pregnancy interval (IPI) and both ASD and other DDs using data from the Study to Explore Early Development, a multi-site case-control study with rigorous case-finding and case-classification methods and detailed data collection on maternal reproductive history. Our sample included 356 ASD cases, 627 DD cases, and 524 population (POP) controls born in second or later births. ASD and DD cases were further sub-divided according to whether the child had intellectual disability (ID). ASD cases were also sub-divided by ASD symptom severity, and DD cases were subdivided by presence of some ASD symptoms (indicated on an autism screener). Odds ratios, adjusted for maternal-child sociodemographic factors, (aORs) and 95% confidence intervals were derived from logistic regression models. Among term births, ASD was associated with both IPI <18 months (aOR 1.5 [1.1-2.2]) and ≥60 months (1.5 [0.99-2.4]). Both short and long IPI associations were stronger among ASD cases with high severity scores (aORs 2.0 [1.3-3.3] and 1.8 [0.99-3.2], respectively). Associations were unchanged after adding several factors potentially related to the causal pathway to regression models. DD was not associated with either short or long IPI-overall, among term births, or in any subgroup examined. These findings extend those from previous studies and further inform recommendations on optimal pregnancy spacing. Autism Res 2018, 11: 81-94. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY We investigated whether the amount of time between pregnancies was associated autism spectrum disorder (ASD) or other developmental disabilities (DD) in children. ASD was increased in second and later-born children who were conceived less than 18 months or 60 or more months after the mother's previous birth. Other DDs were not associated with birth spacing.
Collapse
Affiliation(s)
- Laura A Schieve
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Lin H Tian
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Craig Newschaffer
- Dornsife School of Public Health, Drexel University, Philadelphia, PA
| | - Julie L Daniels
- Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC
| | - Li-Ching Lee
- Kaiser Permanente Division of Research, Oakland, CA
| | - Lisa A Croen
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - M Danielle Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
56
|
Casartelli L, Federici A, Biffi E, Molteni M, Ronconi L. Are We "Motorically" Wired to Others? High-Level Motor Computations and Their Role in Autism. Neuroscientist 2017; 24:568-581. [PMID: 29271293 DOI: 10.1177/1073858417750466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-level motor computations reflect abstract components far apart from the mere motor performance. Neural correlates of these computations have been explored both in nonhuman and human primates, supporting the idea that our brain recruits complex nodes for motor representations. Of note, these computations have exciting implications for social cognition, and they also entail important challenges in the context of autism. Here, we focus on these challenges benefiting from recent studies addressing motor interference, motor resonance, and high-level motor planning. In addition, we suggest new ideas about how one maps and shares the (motor) space with others. Taken together, these issues inspire intriguing and fascinating questions about the social tendency of our high-level motor computations, and this tendency may indicate that we are "motorically" wired to others. Thus, after furnishing preliminary insights on putative neural nodes involved in these computations, we focus on how the hypothesized social nature of high-level motor computations may be anomalous or limited in autism, and why this represents a critical challenge for the future.
Collapse
Affiliation(s)
- Luca Casartelli
- 1 Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Alessandra Federici
- 1 Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Emilia Biffi
- 2 Bioengeenering Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Massimo Molteni
- 1 Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Luca Ronconi
- 1 Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.,3 Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
| |
Collapse
|
57
|
Zhubi A, Chen Y, Guidotti A, Grayson DR. Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects. Int J Dev Neurosci 2017; 62:63-72. [PMID: 28229923 PMCID: PMC5575980 DOI: 10.1016/j.ijdevneu.2017.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/01/2023] Open
Abstract
Both Reelin (RELN) and glutamate decarboxylase 67 (GAD1) have been implicated in the pathophysiology of Autism Spectrum Disorders (ASD). We have previously shown that both mRNAs are reduced in the cerebella (CB) of ASD subjects through a mechanism that involves increases in the amounts of MECP2 binding to the corresponding promoters. In the current study, we examined the expression of RELN, GAD1, GAD2, and several other mRNAs implicated in this disorder in the frontal cortices (FC) of ASD and CON subjects. We also focused on the role that epigenetic processes play in the regulation of these genes in ASD brain. Our goal is to better understand the molecular basis for the down-regulation of genes expressed in GABAergic neurons in ASD brains. We measured mRNA levels corresponding to selected GABAergic genes using qRT-PCR in RNA isolated from both ASD and CON groups. We determined the extent of binding of MECP2 and DNMT1 repressor proteins by chromatin immunoprecipitation (ChIP) assays. The amount of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) present in the promoters of the target genes was quantified by methyl DNA immunoprecipitation (MeDIP) and hydroxyl MeDIP (hMeDIP). We detected significant reductions in the mRNAs associated with RELN and GAD1 and significant increases in mRNAs encoding the Ten-eleven Translocation (TET) enzymes 1, 2, and 3. We also detected increased MECP2 and DNMT1 binding to the corresponding promoter regions of GAD1, RELN, and GAD2. Interestingly, there were decreased amounts of 5mC at both promoters and little change in 5hmC content in these same DNA fragments. Our data demonstrate that RELN, GAD1, and several other genes selectively expressed in GABAergic neurons, are down-regulated in post-mortem ASD FC. In addition, we observed increased DNMT1 and MECP2 binding at the corresponding promoters of these genes. The finding of increased MECP2 binding to the RELN, GAD1 and GAD2 promoters, with reduced amounts of 5mC and unchanged amounts of 5hmC present in these regions, suggests the possibility that DNMT1 interacts with and alters MECP2 binding properties to selected promoters. Comparisons between data obtained from the FC with CB studies showed some common themes between brain regions which are discussed.
Collapse
Affiliation(s)
- Adrian Zhubi
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| | - Ying Chen
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| | - Alessandro Guidotti
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| | - Dennis R Grayson
- The Psychiatric Institute, Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, United States.
| |
Collapse
|
58
|
Davis JK, Broadie K. Multifarious Functions of the Fragile X Mental Retardation Protein. Trends Genet 2017; 33:703-714. [PMID: 28826631 PMCID: PMC5610095 DOI: 10.1016/j.tig.2017.07.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence.
Collapse
Affiliation(s)
- Jenna K Davis
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
59
|
Cirnigliaro M, Barbagallo C, Gulisano M, Domini CN, Barone R, Barbagallo D, Ragusa M, Di Pietro C, Rizzo R, Purrello M. Expression and Regulatory Network Analysis of miR-140-3p, a New Potential Serum Biomarker for Autism Spectrum Disorder. Front Mol Neurosci 2017; 10:250. [PMID: 28848387 PMCID: PMC5554380 DOI: 10.3389/fnmol.2017.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Given its prevalence and social impact, Autism Spectrum Disorder (ASD) is drawing much interest. Molecular basis of ASD is heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like TS (Tourette Syndrome), complicate ASD behavior-based diagnosis and make it vulnerable to bias. To further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, we used TaqMan Low Density Array technology to profile serum miRNAs from ASD, TS, and TS+ASD patients, and unaffected controls (NCs). Through validation assays in 30 ASD, 24 TS, and 25 TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs.: NC, TS, and TS+ASD (Tukey's test, p-values = 0.03, = 0.01, < 0.0001, respectively). ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale) scores are positively correlated (Spearman r = 0.33; Benjamini-Hochberg p = 0.008) and show a linear relationship (p = 0.002). Network functional analysis showed that nodes controlled by miR-140-3p, especially CD38 and NRIP1 which are its validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-3p can discriminate among: (1) ASD and NC (Area under the ROC curve, AUC: 0.70; sensitivity: 63.33%; specificity: 68%); (2) ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%); (3) ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%). Characterization of miR-140-3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a potential non-invasive biomarker for ASD, easy to test through liquid biopsy.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Mariangela Gulisano
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Carla N Domini
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Rita Barone
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy.,Associazione Oasi Maria SS. Onlus (IRCCS), Institute for Research on Mental Retardation and Brain AgingTroina, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Renata Rizzo
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| |
Collapse
|