51
|
Bok E, Leem E, Lee BR, Lee JM, Yoo CJ, Lee EM, Kim J. Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Front Cell Dev Biol 2021; 9:653815. [PMID: 33996814 PMCID: PMC8119898 DOI: 10.3389/fcell.2021.653815] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of misfolded tau aggregates is a pathological hallmark of various tauopathies including Alzheimer’s disease (AD). Although tau is a cytosolic microtubule-associated protein enriched in neurons, it is also found in extracellular milieu, such as interstitial fluid, cerebrospinal fluid, and blood. Accumulating evidence showed that pathological tau spreads along anatomically connected areas in the brain through intercellular transmission and templated misfolding, thereby inducing neurodegeneration and cognitive dysfunction. In line with this, the spatiotemporal spreading of tau pathology is closely correlated with cognitive decline in AD patients. Although the secretion and uptake of tau involve multiple different pathways depending on tau species and cell types, a growing body of evidence suggested that tau is largely secreted in a vesicle-free forms. In this regard, the interaction of vesicle-free tau with membrane is gaining growing attention due to its importance for both of tau secretion and uptake as well as aggregation. Here, we review the recent literature on the mechanisms of the tau-membrane interaction and highlights the roles of lipids and proteins at the membrane in the tau-membrane interaction as well as tau aggregation.
Collapse
Affiliation(s)
- Eugene Bok
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Eunju Leem
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Bo-Ram Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Ji Min Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Eun Mi Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
52
|
Continuous Monitoring of Tau-Induced Neurotoxicity in Patient-Derived iPSC-Neurons. J Neurosci 2021; 41:4335-4348. [PMID: 33893219 PMCID: PMC8143197 DOI: 10.1523/jneurosci.2590-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
Tau aggregation within neurons is a critical feature of Alzheimer's disease (AD) and related tauopathies. It is believed that soluble pathologic tau species seed the formation of tau aggregates in a prion-like manner and propagate through connected neurons during the progression of disease. Both soluble and aggregated forms of tau are thought to have neurotoxic properties. In addition, different strains of misfolded tau may cause differential neurotoxicity. In this work, we present an accelerated human neuronal model of tau-induced neurotoxicity that incorporates both soluble tau species and tau aggregation. Using patient-derived induced pluripotent stem cell (iPSC) neurons expressing a tau aggregation biosensor, we develop a cell culture system that allows continuous assessment of both induced tau aggregation and neuronal viability at single-cell resolution for periods of >1 week. We show that exogenous tau “seed” uptake, as measured by tau repeat domain (TauRD) reporter aggregation, increases the risk for subsequent neuronal death in vitro. These results are the first to directly visualize neuronal TauRD aggregation and subsequent cell death in single human iPSC neurons. Specific morphologic strains or patterns of TauRD aggregation are then identified and associated with differing neurotoxicity. Furthermore, we demonstrate that familial AD iPSC neurons expressing the PSEN1 L435F mutation exhibit accelerated TauRD aggregation kinetics and a tau strain propagation bias when compared with control iPSC neurons. SIGNIFICANCE STATEMENT Neuronal intracellular aggregation of the microtubule binding protein tau occurs in Alzheimer's disease and related neurodegenerative tauopathies. Tau aggregates are believed to spread from neuron to neuron via prion-like misfolded tau seeds. Our work develops a human neuronal live-imaging system to visualize seeded tau aggregation and tau-induced neurotoxicity within single neurons. Using an aggregation-sensing tau reporter, we find that neuronal uptake and propagation of tau seeds reduces subsequent survival. In addition, human induced pluripotent stem cell (iPSC) neurons carrying an Alzheimer's disease-causing mutation in presenilin-1 undergo tau seeding more rapidly than control iPSC neurons. However, they do not show subsequent differences in neuronal survival. Finally, specific morphologies of tau aggregates are associated with increased neurotoxicity.
Collapse
|
53
|
Shin MK, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, Barker S, Miller E, Franke K, Noterman MF, Seth D, Allen RS, Motz CT, Rao SR, Skelton LA, Pardue MT, Fliesler SJ, Wang C, Tracy TE, Gan L, Liebl DJ, Savarraj JPJ, Torres GL, Ahnstedt H, McCullough LD, Kitagawa RS, Choi HA, Zhang P, Hou Y, Chiang CW, Li L, Ortiz F, Kilgore JA, Williams NS, Whitehair VC, Gefen T, Flanagan ME, Stamler JS, Jain MK, Kraus A, Cheng F, Reynolds JD, Pieper AA. Reducing acetylated tau is neuroprotective in brain injury. Cell 2021; 184:2715-2732.e23. [PMID: 33852912 PMCID: PMC8491234 DOI: 10.1016/j.cell.2021.03.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.
Collapse
Affiliation(s)
- Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yeojung Koh
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Matasha Dhar
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Barker
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kathryn Franke
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Maria F Noterman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Divya Seth
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Lara A Skelton
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jude P J Savarraj
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Glenda L Torres
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pengyue Zhang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Kilgore
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victoria C Whitehair
- MetroHealth Rehabilitation Institute, The MetroHealth System, Cleveland, OH; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, School of Medicine, Cleveland, OH USA
| | - Tamar Gefen
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Jonathan S Stamler
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mukesh K Jain
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James D Reynolds
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Departments of Anesthesiology & Perioperative Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
54
|
Maté de Gérando A, d'Orange M, Augustin E, Joséphine C, Aurégan G, Gaudin-Guérif M, Guillermier M, Hérard AS, Stimmer L, Petit F, Gipchtein P, Jan C, Escartin C, Selingue E, Carvalho K, Blum D, Brouillet E, Hantraye P, Gaillard MC, Bonvento G, Bemelmans AP, Cambon K. Neuronal tau species transfer to astrocytes and induce their loss according to tau aggregation state. Brain 2021; 144:1167-1182. [PMID: 33842937 DOI: 10.1093/brain/awab011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/24/2020] [Accepted: 11/01/2020] [Indexed: 11/12/2022] Open
Abstract
Deposits of different abnormal forms of tau in neurons and astrocytes represent key anatomo-pathological features of tauopathies. Although tau protein is highly enriched in neurons and poorly expressed by astrocytes, the origin of astrocytic tau is still elusive. Here, we used innovative gene transfer tools to model tauopathies in adult mouse brains and to investigate the origin of astrocytic tau. We showed in our adeno-associated virus (AAV)-based models and in Thy-Tau22 transgenic mice that astrocytic tau pathology can emerge secondarily to neuronal pathology. By designing an in vivo reporter system, we further demonstrated bidirectional exchanges of tau species between neurons and astrocytes. We then determined the consequences of tau accumulation in astrocytes on their survival in models displaying various status of tau aggregation. Using stereological counting of astrocytes, we report that, as for neurons, soluble tau species are highly toxic to some subpopulations of astrocytes in the hippocampus, whereas the accumulation of tau aggregates does not affect their survival. Thus, astrocytes are not mere bystanders of neuronal pathology. Our results strongly suggest that tau pathology in astrocytes may significantly contribute to clinical symptoms.
Collapse
Affiliation(s)
- Anastasie Maté de Gérando
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Marie d'Orange
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Emma Augustin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Charlène Joséphine
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Gwénaelle Aurégan
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Mylène Gaudin-Guérif
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Lev Stimmer
- MIRCen, INSERM-CEA, Platform for experimental pathology, U1169 and US27, F-92265 Fontenay-aux-Roses, France
| | - Fanny Petit
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Gipchtein
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Caroline Jan
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Kévin Carvalho
- Université Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Université Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Karine Cambon
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
55
|
Ungerleider K, Beck J, Lissa D, Turnquist C, Horikawa I, Harris BT, Harris CC. Astrocyte senescence and SASP in neurodegeneration: tau joins the loop. Cell Cycle 2021; 20:752-764. [PMID: 33818291 DOI: 10.1080/15384101.2021.1909260] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tau accumulation is a core component of Alzheimer's disease and other neurodegenerative tauopathies. While tau's impact on neurons is a major area of research, the effect of extracellular tau on astrocytes is largely unknown. This article summarizes our recent studies showing that astrocyte senescence plays a critical role in neurodegenerative diseases and integrates extracellular tau into the regulatory loop of senescent astrocyte-mediated neurotoxicity. Human astrocytes in vitro undergoing senescence were shown to acquire the inflammatory senescence-associated secretory phenotype (SASP) and toxicity to neurons, which may recapitulate aging- and disease-associated neurodegeneration. Here, we show that human astrocytes exposed to extracellular tau in vitro also undergo cellular senescence and acquire a neurotoxic SASP (e.g. IL-6 secretion), with oxidative stress response (indicated by upregulated NRF2 target genes) and a possible activation of inflammasome (indicated by upregulated ASC and IL-1β). These findings suggest that senescent astrocytes induced by various conditions and insults, including tau exposure, may represent a therapeutic target to inhibit or delay the progression of neurodegenerative diseases. We also discuss the pathological activity of extracellular tau in microglia and astrocytes, the disease relevance and diversity of tau forms, therapeutics targeting senescence in neurodegeneration, and the roles of p53 and its isoforms in astrocyte-mediated neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Kyra Ungerleider
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Comparative Pathobiology, Purdue University, West Layfette, Indiana, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Casmir Turnquist
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brent T Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
56
|
Fleeman RM, Proctor EA. Astrocytic Propagation of Tau in the Context of Alzheimer's Disease. Front Cell Neurosci 2021; 15:645233. [PMID: 33815065 PMCID: PMC8010320 DOI: 10.3389/fncel.2021.645233] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
More than 6 million Americans are currently living with Alzheimer's disease (AD), and the incidence is growing rapidly with our aging population. Numerous therapeutics have failed to make it to the clinic, potentially due to a focus on presumptive pathogenic proteins instead of cell-type-specific signaling mechanisms. The tau propagation hypothesis that inter-neuronal tau transfer drives AD pathology has recently garnered attention, as accumulation of pathological tau in the brain has high clinical significance in correlating with progression of cognitive AD symptoms. However, studies on tau pathology in AD are classically neuron-centric and have greatly overlooked cell-type specific effects of tau internalization, degradation, and propagation. While the contribution of microglia to tau processing and propagation is beginning to be recognized and understood, astrocytes, glial cells in the brain important for maintaining neuronal metabolic, synaptic, trophic, and immune function which can produce, internalize, degrade, and propagate tau are understudied in their ability to affect AD progression through tau pathology. Here, we showcase evidence for whether tau uptake by astrocytes may be beneficial or detrimental to neuronal health and how astrocytes and their immunometabolic functions may be key targets for future successful AD therapies.
Collapse
Affiliation(s)
- Rebecca M Fleeman
- Department of Neurosurgery, Department of Pharmacology, College of Medicine, Pennsylvania State University (PSU), Hershey, PA, United States.,Center for Neural Engineering, Pennsylvania State University (PSU), University Park, PA, United States
| | - Elizabeth A Proctor
- Department of Neurosurgery, Department of Pharmacology, College of Medicine, Pennsylvania State University (PSU), Hershey, PA, United States.,Department of Biomedical Engineering, Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University (PSU), University Park, PA, United States
| |
Collapse
|
57
|
Lysosomal Functions in Glia Associated with Neurodegeneration. Biomolecules 2021; 11:biom11030400. [PMID: 33803137 PMCID: PMC7999372 DOI: 10.3390/biom11030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that contain various acidic digestive enzymes. Despite their small size, they have multiple functions. Lysosomes remove or recycle unnecessary cell parts. They repair damaged cellular membranes by exocytosis. Lysosomes also sense cellular energy status and transmit signals to the nucleus. Glial cells are non-neuronal cells in the nervous system and have an active role in homeostatic support for neurons. In response to dynamic cues, glia use lysosomal pathways for the secretion and uptake of regulatory molecules, which affect the physiology of neighboring neurons. Therefore, functional aberration of glial lysosomes can trigger neuronal degeneration. Here, we review lysosomal functions in oligodendrocytes, astrocytes, and microglia, with emphasis on neurodegeneration.
Collapse
|
58
|
Song L, Wells EA, Robinson AS. Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines 2021; 9:190. [PMID: 33672982 PMCID: PMC7918468 DOI: 10.3390/biomedicines9020190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies represent a group of neurodegenerative diseases including Alzheimer's disease (AD) that are characterized by the deposition of filamentous tau aggregates in the brain. The pathogenesis of tauopathies starts from the formation of toxic 'tau seeds' from hyperphosphorylated tau monomers. The presence of specific phosphorylation sites and heat shock protein 90 facilitates soluble tau protein aggregation. Transcellular propagation of pathogenic tau into synaptically connected neuronal cells or adjacent glial cells via receptor-mediated endocytosis facilitate disease spread through the brain. While neuroprotective effects of glial cells-including phagocytotic microglial and astroglial phenotypes-have been observed at the early stage of neurodegeneration, dysfunctional neuronal-glial cellular communication results in a series of further pathological consequences as the disease progresses, including abnormal axonal transport, synaptic degeneration, and neuronal loss, accompanied by a pro-inflammatory microenvironment. Additionally, the discovery of microtubule-associated protein tau (MAPT) gene mutations and the strongest genetic risk factor of tauopathies-an increase in the presence of the ε2 allele of apolipoprotein E (ApoE)-provide important clues to understanding tau pathology progression. In this review, we describe the crucial signaling pathways and diverse cellular contributors to the progression of tauopathies. A systematic understanding of disease pathogenesis provides novel insights into therapeutic targets within altered signaling pathways and is of great significance for discovering effective treatments for tauopathies.
Collapse
Affiliation(s)
| | | | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (L.S.); (E.A.W.)
| |
Collapse
|
59
|
Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 2021; 1758:147291. [PMID: 33516810 DOI: 10.1016/j.brainres.2021.147291] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
60
|
Wang P, Ye Y. Filamentous recombinant human Tau activates primary astrocytes via an integrin receptor complex. Nat Commun 2021; 12:95. [PMID: 33398028 PMCID: PMC7782792 DOI: 10.1038/s41467-020-20322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Microtubule-associated protein Tau can form protein aggregates transmissible within the brain, correlating with the progression of tauopathies in humans. The transmission of aggregates requires neuron-released Tau to interact with surface receptors on target cells. However, the underlying molecular mechanisms in astrocytes and downstream effects are unclear. Here, using a spatially resolved proteomic mapping strategy, we show that integrin αV/β1 receptor binds recombinant human Tau, mediating the entry of Tau fibrils in astrocytes. The binding of distinct Tau species to the astrocytic αV/β1 receptor differentially activate integrin signaling. Furthermore, Tau-mediated activation of integrin signaling results in NFκB activation, causing upregulation of pro-inflammatory cytokines and chemokines, induction of a sub-group of neurotoxic astrocytic markers, and release of neurotoxic factors. Our findings suggest that filamentous recombinant human Tau-mediated activation of integrin signaling induces astrocyte conversion towards a neurotoxic state, providing a mechanistic insight into tauopathies.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
61
|
Sidoryk-Wegrzynowicz M, Strużyńska L. Dysfunctional glia: contributors to neurodegenerative disorders. Neural Regen Res 2021; 16:218-222. [PMID: 32859767 PMCID: PMC7896233 DOI: 10.4103/1673-5374.290877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Astrocytes are integral components of the central nervous system, where they are involved in numerous functions critical for neuronal development and functioning, including maintenance of blood-brain barrier, formation of synapses, supporting neurons with nutrients and trophic factors, and protecting them from injury. These roles are markedly affected in the course of chronic neurodegenerative disorders, often before the onset of the disease. In this review, we summarize the recent findings supporting the hypothesis that astrocytes play a fundamental role in the processes contributing to neurodegeneration. We focus on α-synucleinopathies and tauopathies as the most common neurodegenerative diseases. The mechanisms implicated in the development and progression of these disorders appear not to be exclusively neuronal, but are often related to the astrocytic-neuronal integrity and the response of astrocytes to the altered microglial function. A profound understanding of the multifaceted functions of astrocytes and identification of their communication pathways with neurons and microglia in health and in the disease is of critical significance for the development of novel mechanism-based therapies against neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Sidoryk-Wegrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
62
|
Briel N, Pratsch K, Roeber S, Arzberger T, Herms J. Contribution of the astrocytic tau pathology to synapse loss in progressive supranuclear palsy and corticobasal degeneration. Brain Pathol 2020; 31:e12914. [PMID: 33089580 PMCID: PMC8412068 DOI: 10.1111/bpa.12914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Primary 4‐repeat tauopathies with frontotemporal lobar degeneration (FTLD) like Progressive Supranuclear Palsy (PSP) or Corticobasal Degeneration (CBD) show diverse cellular pathology in various brain regions. Besides shared characteristics of neuronal and oligodendroglial cytoplasmic inclusions of accumulated hyperphosphorylated tau protein (pTau), astrocytes in PSP and CBD contain pathognomonic pTau aggregates — hence, lending the designation tufted astrocytes (TA) or astrocytic plaques (AP), respectively. pTau toxicity is most commonly assigned to neurons, whereas the implications of astrocytic pTau for maintaining neurotransmission within the tripartite synapse of human brains is not well understood. We performed immunofluorescent synapse labeling and automated puncta quantification in the medial frontal gyrus (MFG) and striatal regions from PSP and CBD postmortem samples to capture morphometric synaptic alterations. This approach indicated general synaptic losses of both, excitatory and inhibitory bipartite synapses in the frontal cortex of PSP cases, whereas in CBD lower synapse densities were only related to astrocytic plaques. In contrast to tufted astrocytes in PSP, affected astrocytes in CBD could not preserve synaptic integrity within their spatial domains, when compared to non‐affected internal astrocytes or astrocytes in healthy controls. These findings suggest a pTau pathology‐associated role of astrocytes in maintaining connections within neuronal circuits, considered as the microscopic substrate of cognitive dysfunction in CBD. By contrasting astrocytic‐synaptic associations in both diseases, we hereby highlight astrocytic pTau as an important subject of prospective research and as a potential cellular target for therapeutic approaches in the primary tauopathies PSP and CBD.
Collapse
Affiliation(s)
- Nils Briel
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Munich Medical Research School, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Katrin Pratsch
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
63
|
Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey M, Caillierez R, Q Do K, Halliez S, Bezzi P, Buée L, Leuba G, Colin M, Toni N, Déglon N. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nat Neurosci 2020; 23:1567-1579. [PMID: 33169029 DOI: 10.1038/s41593-020-00728-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function.
Collapse
Affiliation(s)
- Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland. .,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland. .,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Pascal Steullet
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Pachoud
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Enea Parietti
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathischan Maheswaran
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Catherine Pythoud
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Maria Rey
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Geneviève Leuba
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Morvane Colin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Nicolas Toni
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
64
|
Spanos F, Liddelow SA. An Overview of Astrocyte Responses in Genetically Induced Alzheimer's Disease Mouse Models. Cells 2020; 9:E2415. [PMID: 33158189 PMCID: PMC7694249 DOI: 10.3390/cells9112415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Despite many years of intense research, there is currently still no effective treatment. Multiple cell types contribute to disease pathogenesis, with an increasing body of data pointing to the active participation of astrocytes. Astrocytes play a pivotal role in the physiology and metabolic functions of neurons and other cells in the central nervous system. Because of their interactions with other cell types, astrocyte functions must be understood in their biologic context, thus many studies have used mouse models, of which there are over 190 available for AD research. However, none appear able to fully recapitulate the many functional changes in astrocytes reported in human AD brains. Our review summarizes the observations of astrocyte biology noted in mouse models of familial and sporadic AD. The limitations of AD mouse models will be discussed and current attempts to overcome these disadvantages will be described. With increasing understanding of the non-neuronal contributions to disease, the development of new methods and models will provide further insights and address important questions regarding the roles of astrocytes and other non-neuronal cells in AD pathophysiology. The next decade will prove to be full of exciting opportunities to address this devastating disease.
Collapse
Affiliation(s)
- Fokion Spanos
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA;
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
65
|
Jiang S, Bhaskar K. Degradation and Transmission of Tau by Autophagic-Endolysosomal Networks and Potential Therapeutic Targets for Tauopathy. Front Mol Neurosci 2020; 13:586731. [PMID: 33177989 PMCID: PMC7596180 DOI: 10.3389/fnmol.2020.586731] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 01/21/2023] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer’s disease (AD), Frontotemporal Dementia (FTD), Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration (CBD), and many others where microtubule-associated protein tau (MAPT or tau) is hyperphosphorylated and aggregated to form insoluble paired helical filaments (PHFs) and ultimately neurofibrillary tangles (NFTs). Autophagic-endolysosomal networks (AELN) play important roles in tau clearance. Excessive soluble neurotoxic forms of tau and tau hyperphosphorylated at specific sites are cleared through the ubiquitin-proteasome system (UPS), Chaperon-mediated Autophagy (CMA), and endosomal microautophagy (e-MI). On the other hand, intra-neuronal insoluble tau aggregates are often degraded within lysosomes by macroautophagy. AELN defects have been observed in AD, FTD, CBD, and PSP, and lysosomal dysfunction was shown to promote the cleavage and neurotoxicity of tau. Moreover, several AD risk genes (e.g., PICALM, GRN, and BIN1) have been associated with dysregulation of AELN in the late-onset sporadic AD. Conversely, tau dissociation from microtubules interferes with retrograde transport of autophagosomes to lysosomes, and that tau fragments can also lead to lysosomal dysfunction. Recent studies suggest that tau is not merely an intra-neuronal protein, but it can be released to brain parenchyma via extracellular vesicles, like exosomes and ectosomes, and thus spread between neurons. Extracellular tau can also be taken up by microglial cells and astrocytes, either being degraded through AELN or propagated via exosomes. This article reviews the complex roles of AELN in the degradation and transmission of tau, potential diagnostic/therapeutic targets and strategies based on AELN-mediated tau clearance and propagation, and the current state of drug development targeting AELN and tau against tauopathies.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, The University of New Mexico, Albuquerque, NM, United States
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
66
|
Perea JR, Bolós M, Avila J. Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules 2020; 10:biom10101439. [PMID: 33066368 PMCID: PMC7602223 DOI: 10.3390/biom10101439] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia are the cells that comprise the innate immune system in the brain. First described more than a century ago, these cells were initially assigned a secondary role in the central nervous system (CNS) with respect to the protagonists, neurons. However, the latest advances have revealed the complexity and importance of microglia in neurodegenerative conditions such as Alzheimer’s disease (AD), the most common form of dementia associated with aging. This pathology is characterized by the accumulation of amyloid-β peptide (Aβ), which forms senile plaques in the neocortex, as well as by the aggregation of hyperphosphorylated tau protein, a process that leads to the development of neurofibrillary tangles (NFTs). Over the past few years, efforts have been focused on studying the interaction between Aβ and microglia, together with the ability of the latter to decrease the levels of this peptide. Given that most clinical trials following this strategy have failed, current endeavors focus on deciphering the molecular mechanisms that trigger the tau-induced inflammatory response of microglia. In this review, we summarize the most recent studies on the physiological and pathological functions of tau protein and microglia. In addition, we analyze the impact of microglial AD-risk genes (APOE, TREM2, and CD33) in tau pathology, and we discuss the role of extracellular soluble tau in neuroinflammation.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
| | - Jesús Avila
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
- Correspondence: ; Tel.:+34-196-4564
| |
Collapse
|
67
|
Reid MJ, Beltran-Lobo P, Johnson L, Perez-Nievas BG, Noble W. Astrocytes in Tauopathies. Front Neurol 2020; 11:572850. [PMID: 33071951 PMCID: PMC7542303 DOI: 10.3389/fneur.2020.572850] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the progressive accumulation across the brain of hyperphosphorylated aggregates of the microtubule-associated protein tau that vary in isoform composition, structural conformation and localization. Tau aggregates are most commonly deposited within neurons but can show differential association with astrocytes, depending on the disease. Astrocytes, the most abundant neural cells in the brain, play a major role in synapse and neuronal function, and are a key component of the glymphatic system and blood brain barrier. However, their contribution to tauopathy progression is not fully understood. Here we present a brief overview of the association of tau with astrocytes in tauopathies. We discuss findings that support a role for astrocytes in the uptake and spread of pathological tau, and we describe how alterations to astrocyte phenotype in tauopathies may cause functional alterations that impedes their ability to support neurons and/or cause neurotoxicity. The research reviewed here further highlights the importance of considering non-neuronal cells in neurodegeneration and suggests that astrocyte-directed targets that may have utility for therapeutic intervention in tauopathies.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Louisa Johnson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
68
|
Merezhko M, Uronen RL, Huttunen HJ. The Cell Biology of Tau Secretion. Front Mol Neurosci 2020; 13:569818. [PMID: 33071756 PMCID: PMC7539664 DOI: 10.3389/fnmol.2020.569818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The progressive accumulation and spread of misfolded tau protein in the nervous system is the hallmark of tauopathies, progressive neurodegenerative diseases with only symptomatic treatments available. A growing body of evidence suggests that spreading of tau pathology can occur via cell-to-cell transfer involving secretion and internalization of pathological forms of tau protein followed by templated misfolding of normal tau in recipient cells. Several studies have addressed the cell biological mechanisms of tau secretion. It now appears that instead of a single mechanism, cells can secrete tau via three coexisting pathways: (1) translocation through the plasma membrane; (2) membranous organelles-based secretion; and (3) ectosomal shedding. The relative importance of these pathways in the secretion of normal and pathological tau is still elusive, though. Moreover, glial cells contribute to tau propagation, and the involvement of different cell types, as well as different secretion pathways, complicates the understanding of prion-like propagation of tauopathy. One of the important regulators of tau secretion in neuronal activity, but its mechanistic connection to tau secretion remains unclear and may involve all three secretion pathways of tau. This review article summarizes recent advancements in the field of tau secretion with an emphasis on cell biological aspects of the secretion process and discusses the role of neuronal activity and glial cells in the spread of pathological forms of tau.
Collapse
Affiliation(s)
- Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
69
|
De La-Rocque S, Moretto E, Butnaru I, Schiavo G. Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. J Neurochem 2020; 156:563-588. [PMID: 32770783 PMCID: PMC8432157 DOI: 10.1111/jnc.15144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Since aggregates of the microtubule‐binding protein tau were found to be the main component of neurofibrillary tangles more than 30 years ago, their contribution to neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well established. Recent work shows that both tau load and its distribution in the brain of AD patients correlate with cognitive decline more closely compared to amyloid plaque deposition. In addition, the amyloid cascade hypothesis has been recently challenged because of disappointing results of clinical trials designed to treat AD by reducing beta‐amyloid levels, thus fuelling a renewed interest in tau. There is now robust evidence to indicate that tau pathology can spread within the central nervous system via a prion‐like mechanism following a stereotypical pattern, which can be explained by the trans‐synaptic inter‐neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which are partially dependent on its conformation and aggregation status. Here, we review the emerging mechanisms proposed for the uptake of extracellular tau in neurons and the requirements for the propagation of its pathological conformers, addressing how they gain access to physiological tau monomers in the cytosol. Furthermore, we highlight some of the key mechanistic gaps of the field, which urgently need to be addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Samantha De La-Rocque
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edoardo Moretto
- UK Dementia Research Institute, University College London, London, UK
| | - Ioana Butnaru
- UK Dementia Research Institute, University College London, London, UK
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
70
|
d'Errico P, Meyer-Luehmann M. Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer's Disease. Front Aging Neurosci 2020; 12:265. [PMID: 33061903 PMCID: PMC7481386 DOI: 10.3389/fnagi.2020.00265] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is pathologically defined by extracellular accumulation of amyloid-β (Aβ) peptides generated by the cleavage of amyloid precursor protein (APP), strings of hyperphosphorylated Tau proteins accumulating inside neurons known as neurofibrillary tangles (NFTs) and neuronal loss. The association between the two hallmarks and cognitive decline has been known since the beginning of the 20th century when the first description of the disease was carried out by Alois Alzheimer. Today, more than 40 million people worldwide are affected by AD that represents the most common cause of dementia and there is still no effective treatment available to cure the disease. In general, the aggregation of Aβ is considered an essential trigger in AD pathogenesis that gives rise to NFTs, neuronal dysfunction and dementia. During the process leading to AD, tau and Aβ first misfold and form aggregates in one brain region, from where they spread to interconnected areas of the brain thereby inducing its gradual morphological and functional deterioration. In this mini-review article, we present an overview of the current literature on the spreading mechanisms of Aβ and tau pathology in AD since a more profound understanding is necessary to design therapeutic approaches aimed at preventing or halting disease progression.
Collapse
Affiliation(s)
- Paolo d'Errico
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
71
|
Koller EJ, Chakrabarty P. Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Front Mol Neurosci 2020; 13:151. [PMID: 32973446 PMCID: PMC7472665 DOI: 10.3389/fnmol.2020.00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023] Open
Abstract
The inability of individual neurons to compensate for aging-related damage leads to a gradual loss of functional plasticity in the brain accompanied by progressive impairment in learning and memory. Whereas this loss in neuroplasticity is gradual during normal aging, in neurodegenerative diseases such as Alzheimer’s disease (AD), this loss is accelerated dramatically, leading to the incapacitation of patients within a decade of onset of cognitive symptoms. The mechanisms that underlie this accelerated loss of neuroplasticity in AD are still not completely understood. While the progressively increasing proteinopathy burden, such as amyloid β (Aβ) plaques and tau tangles, definitely contribute directly to a neuron’s functional demise, the role of non-neuronal cells in controlling neuroplasticity is slowly being recognized as another major factor. These non-neuronal cells include astrocytes, microglia, and oligodendrocytes, which through regulating brain homeostasis, structural stability, and trophic support, play a key role in maintaining normal functioning and resilience of the neuronal network. It is believed that chronic signaling from these cells affects the homeostatic network of neuronal and non-neuronal cells to an extent to destabilize this harmonious milieu in neurodegenerative diseases like AD. Here, we will examine the experimental evidence regarding the direct and indirect pathways through which astrocytes and microglia can alter brain plasticity in AD, specifically as they relate to the development and progression of tauopathy. In this review article, we describe the concepts of neuroplasticity and glial plasticity in healthy aging, delineate possible mechanisms underlying tau-induced plasticity dysfunction, and discuss current clinical trials as well as future disease-modifying approaches.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
72
|
Wong CO. Endosomal-Lysosomal Processing of Neurodegeneration-Associated Proteins in Astrocytes. Int J Mol Sci 2020; 21:ijms21145149. [PMID: 32708198 PMCID: PMC7404029 DOI: 10.3390/ijms21145149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
Most common neurodegenerative diseases (NDs) are characterized by deposition of protein aggregates that are resulted from misfolding, dysregulated trafficking, and compromised proteolytic degradation. These proteins exert cellular toxicity to a broad range of brain cells and are found in both neurons and glia. Extracellular monomeric and oligomeric ND-associated proteins are taken up by astrocytes, the most abundant glial cell in the brain. Internalization, intracellular trafficking, processing, and disposal of these proteins are executed by the endosomal-lysosomal system of astrocytes. Endosomal-lysosomal organelles thus mediate the cellular impact and metabolic fate of these toxic protein species. Given the indispensable role of astrocytes in brain metabolic homeostasis, the endosomal-lysosomal processing of these proteins plays a fundamental role in altering the trajectory of neurodegeneration. This review aims at summarizing the mounting evidence that has established the essential role of astrocytic endosomal-lysosomal organelles in the processing of amyloid precursor proteins, Apolipoprotein E (ApoE), tau, alpha synuclein, and huntingtin, which are associated with NDs such as Alzheimer’s, Parkinson’s, and Huntington diseases.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
73
|
Astroglial contribution to tau-dependent neurodegeneration. Biochem J 2020; 476:3493-3504. [PMID: 31774919 DOI: 10.1042/bcj20190506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023]
Abstract
Astrocytes, by maintaining an optimal environment for neuronal function, play a critical role in proper function of mammalian nervous system. They regulate synaptic transmission and plasticity and protect neurons against toxic insults. Astrocytes and neurons interact actively via glutamine-glutamate cycle (GGC) that supports neuronal metabolic demands and neurotransmission. GGC deficiency may be involved in different diseases of the brain, where impaired astrocytic control of glutamate homeostasis contributes to neuronal dysfunction. This includes tau-dependent neurodegeneration, where astrocytes lose key molecules involved in regulation of glutamate/glutamine homeostasis, neuronal survival and synaptogenesis. Astrocytic dysfunction in tauopathy appears to precede neurodegeneration and overt tau neuropathology such as phosphorylation, aggregation and formation of neurofibrillary tangles. In this review, we summarize recent studies demonstrating that activation of astrocytes is strictly associated with neurodegenerative processes including those involved in tau related pathology. We propose that astrocytic dysfunction, by disrupting the proper neuron-glia signalling early in the disease, significantly contributes to tauopathy pathogenesis.
Collapse
|
74
|
Puangmalai N, Bhatt N, Montalbano M, Sengupta U, Gaikwad S, Ventura F, McAllen S, Ellsworth A, Garcia S, Kayed R. Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer's disease, progressive supranuclear palsy and dementia with Lewy bodies. Cell Death Dis 2020; 11:314. [PMID: 32366836 PMCID: PMC7198578 DOI: 10.1038/s41419-020-2503-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/26/2023]
Abstract
Tau aggregates propagate in brain cells and transmit to neighboring cells as well as anatomically connected brain regions by prion-like mechanisms. Soluble tau aggregates (tau oligomers) are the most toxic species that initiate neurodegeneration in tauopathies, such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). Exogenous tau aggregates have been shown to be internalized by brain cells; however, the precise cellular and molecular mechanisms that underlie the internalization of tau oligomers (TauO) remain elusive. Using brain-derived tau oligomers (BDTOs) from AD, PSP, and DLB patients, we investigated neuronal internalization mechanisms of BDTOs, including the heparan sulfate proteoglycan (HSPG)-mediated pathway, clathrin-mediated pathway, and caveolae-mediated pathway. Here, we demonstrated that the HSPG-mediated pathway regulates internalization of BDTOs from AD and DLB, while HSPG-mediated and other alternative pathways are involved in the internalization of PSP-derived tau oligomers. HSPG antagonism significantly reduced the internalization of TauO, prevented tau translocation to the endosomal-lysosomal system, and decreased levels of hyperphosphorylated tau in neurons, the well-known contributor for neurofibrillary tangles (NFT) accumulation, degeneration of neurons, and cognitive decline. Furthermore, siRNA-mediated silencing of heparan sulfate (HS)-synthesizing enzyme, exostosin-2, leads to decreased internalization of BDTOs, prevented tau-induced autophagy-lysosomal pathway impairment, and decreased hyperphosphorylated tau levels. Collectively, these findings suggest that HSPG-mediated endocytosis and exostsin-2 are involved in neuronal internalization of TauO and subsequent tau-dependent neuropathology in AD and DLB.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Frank Ventura
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
75
|
Brunello CA, Merezhko M, Uronen RL, Huttunen HJ. Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 2020; 77:1721-1744. [PMID: 31667556 PMCID: PMC7190606 DOI: 10.1007/s00018-019-03349-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.
Collapse
Affiliation(s)
- Cecilia A Brunello
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Riikka-Liisa Uronen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
76
|
Abstract
Astrocytes contribute to the pathogenesis of neurodegenerative proteinopathies as influencing neuronal degeneration or neuroprotection, and also act as potential mediators of the propagation or elimination of disease-associated proteins. Protein astrogliopathies can be observed in different forms of neurodegenerative conditions. Morphological characterization of astrogliopathy is used only for the classification of tauopathies. Currently, at least six types of astrocytic tau pathologies are distinguished. Astrocytic plaques (AP), tufted astrocytes (TAs), ramified astrocytes (RA), and globular astroglial inclusions are seen predominantly in primary tauopathies, while thorn-shaped astrocytes (TSA) and granular/fuzzy astrocytes (GFA) are evaluated in aging-related tau astrogliopathy (ARTAG). ARTAG can be seen in the white and gray matter and subpial, subependymal, and perivascular locations. Some of these overlap with the features of tau pathology seen in Chronic traumatic encephalopathy (CTE). Furthermore, gray matter ARTAG shares features with primary tauopathy-related astrocytic tau pathology. Sequential distribution patterns have been described for tau astrogliopathies. Importantly, astrocytic tau pathology in primary tauopathies can be observed in brain areas without neuronal tau deposition. The various morphologies of tau astrogliopathy might reflect a role in the propagation of pathological tau protein, an early response to a yet unidentified neurodegeneration-inducing event, or, particularly for ARTAG, a response to a repeated or prolonged pathogenic process such as blood-brain barrier dysfunction or local mechanical impact. The concept of tau astrogliopathies and ARTAG facilitated communication among research disciplines and triggered the investigation of the significance of astrocytic lesions in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
77
|
Hassan-Abdi R, Brenet A, Bennis M, Yanicostas C, Soussi-Yanicostas N. Neurons Expressing Pathological Tau Protein Trigger Dramatic Changes in Microglial Morphology and Dynamics. Front Neurosci 2019; 13:1199. [PMID: 31787873 PMCID: PMC6855094 DOI: 10.3389/fnins.2019.01199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023] Open
Abstract
Microglial cells, the resident macrophages of the brain, are important players in the pathological process of numerous neurodegenerative disorders, including tauopathies, a heterogeneous class of diseases characterized by intraneuronal Tau aggregates. However, microglia response in Tau pathologies remains poorly understood. Here, we exploit a genetic zebrafish model of tauopathy, combined with live microglia imaging, to investigate the behavior of microglia in vivo in the disease context. Results show that while microglia were almost immobile and displayed long and highly dynamic branches in a wild-type context, in presence of diseased neurons, cells became highly mobile and displayed morphological changes, with highly mobile cell bodies together with fewer and shorter processes. We also imaged, for the first time to our knowledge, the phagocytosis of apoptotic tauopathic neurons by microglia in vivo and observed that microglia engulfed about as twice materials as in controls. Finally, genetic ablation of microglia in zebrafish tauopathy model significantly increased Tau hyperphosphorylation, suggesting that microglia provide neuroprotection to diseased neurons. Our findings demonstrate for the first time the dynamics of microglia in contact with tauopathic neurons in vivo and open perspectives for the real-time study of microglia in many neuronal diseases.
Collapse
Affiliation(s)
- Rahma Hassan-Abdi
- INSERM, UMR1141, Hôpital Robert Debré, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alexandre Brenet
- INSERM, UMR1141, Hôpital Robert Debré, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Constantin Yanicostas
- INSERM, UMR1141, Hôpital Robert Debré, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadia Soussi-Yanicostas
- INSERM, UMR1141, Hôpital Robert Debré, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
78
|
Berrocal M, Caballero-Bermejo M, Gutierrez-Merino C, Mata AM. Methylene Blue Blocks and Reverses the Inhibitory Effect of Tau on PMCA Function. Int J Mol Sci 2019; 20:ijms20143521. [PMID: 31323781 PMCID: PMC6678728 DOI: 10.3390/ijms20143521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
Methylene blue (MB) is a synthetic phenothiazine dye that, in the last years, has generated much debate about whether it could be a useful therapeutic drug for tau-related pathologies, such as Alzheimer’s disease (AD). However, the molecular mechanism of action is far from clear. Recently we reported that MB activates the plasma membrane Ca2+-ATPase (PMCA) in membranes from human and pig tissues and from cells cultures, and that it could protect against inactivation of PMCA by amyloid β-peptide (Aβ). The purpose of the present study is to further examine whether the MB could also modulate the inhibitory effect of tau, another key molecular marker of AD, on PMCA activity. By using kinetic assays in membranes from several tissues and cell cultures, we found that this phenothiazine was able to block and even to completely reverse the inhibitory effect of tau on PMCA. The results of this work point out that MB could mediate the toxic effect of tau related to the deregulation of calcium homeostasis by blocking the impairment of PMCA activity by tau. We then could conclude that MB could interfere with the toxic effects of tau by restoring the function of PMCA pump as a fine tuner of calcium homeostasis.
Collapse
Affiliation(s)
- Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Montaña Caballero-Bermejo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|