51
|
Wang K, Xia X, Sun L, Wang H, Li Q, Yang Z, Ren J. Microbial Diversity and Correlation between Breast Milk and the Infant Gut. Foods 2023; 12:foods12091740. [PMID: 37174279 PMCID: PMC10178105 DOI: 10.3390/foods12091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The gut microbiota is significant for infants to grow and develop in the early stages of life. The breast milk microbiota directly or indirectly influences colonizing and the development of early infant intestinal microbiota. Therefore, we wanted to study the microbial diversity and correlation between breast milk and the infant gut. By sequencing the 16S rRNA V3-V4 regions of microbiome in infant feces 1, 14, 20, 30, and 90 days after delivery as well as those in breast milk using Illumina NovaSeq, we studied the component of microbiome in both human milk and infant stools, analyzed the diversity of microbiota, and explored the relationship between them. We found that the richest bacteria in breast milk were Acinetobacter, Stenotrophomonas, Sphingopyxis, Pseudomonas, and Streptococcus, with a small amount of Lactobacillus, Bifidobacterium, and Klebsiella. The infant feces were abundant in Bifidobacterium, Escherichia-Shigella, Klebsiella, Streptococcus, Serratia, Bacteroides, and Lactobacillus, with a small number of Acinetobacter and Pseudomonas. Acinetobacter, Bifidobacterium, Klebsiella, and Lactobacillus appeared in the breast milk and infant feces, suggesting that they were transferred from the breast milk to the infant's gut.
Collapse
Affiliation(s)
- Kaili Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qiu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhuo Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
52
|
Neville MC, Demerath EW, Hahn-Holbrook J, Hovey RC, Martin-Carli J, McGuire MA, Newton ER, Rasmussen KM, Rudolph MC, Raiten DJ. Parental factors that impact the ecology of human mammary development, milk secretion, and milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 1. Am J Clin Nutr 2023; 117 Suppl 1:S11-S27. [PMID: 37173058 PMCID: PMC10232333 DOI: 10.1016/j.ajcnut.2022.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/15/2023] Open
Abstract
The goal of Working Group 1 in the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to outline factors influencing biological processes governing human milk secretion and to evaluate our current knowledge of these processes. Many factors regulate mammary gland development in utero, during puberty, in pregnancy, through secretory activation, and at weaning. These factors include breast anatomy, breast vasculature, diet, and the lactating parent's hormonal milieu including estrogen, progesterone, placental lactogen, cortisol, prolactin, and growth hormone. We examine the effects of time of day and postpartum interval on milk secretion, along with the role and mechanisms of lactating parent-infant interactions on milk secretion and bonding, with particular attention to the actions of oxytocin on the mammary gland and the pleasure systems in the brain. We then consider the potential effects of clinical conditions including infection, pre-eclampsia, preterm birth, cardiovascular health, inflammatory states, mastitis, and particularly, gestational diabetes and obesity. Although we know a great deal about the transporter systems by which zinc and calcium pass from the blood stream into milk, the interactions and cellular localization of transporters that carry substrates such as glucose, amino acids, copper, and the many other trace metals present in human milk across plasma and intracellular membranes require more research. We pose the question of how cultured mammary alveolar cells and animal models can help answer lingering questions about the mechanisms and regulation of human milk secretion. We raise questions about the role of the lactating parent and the infant microbiome and the immune system during breast development, secretion of immune molecules into milk, and protection of the breast from pathogens. Finally, we consider the effect of medications, recreational and illicit drugs, pesticides, and endocrine-disrupting chemicals on milk secretion and composition, emphasizing that this area needs much more research attention.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO, USA.
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer Hahn-Holbrook
- Department of Psychological Sciences, University of California Merced, Merced, CA, United States
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Jayne Martin-Carli
- Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Mark A McGuire
- Idaho Agricultural Experiment Station, University of Idaho, Moscow, ID, United States
| | - Edward R Newton
- Department of Obstetrics and Gynecology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kathleen M Rasmussen
- Nancy Schlegel Meinig Professor of Maternal and Child Nutrition, Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Michael C Rudolph
- The University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
53
|
Lopez AA, de la Barca AMC. Can methyl donors in breastmilk prevent rapid growth in breastfed infants? Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
54
|
Singh DK, Miller CM, Orgel KA, Dave M, Mackay S, Good M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr 2023; 10:1107404. [PMID: 36714655 PMCID: PMC9874231 DOI: 10.3389/fped.2022.1107404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly affecting the intestine of premature infants. Recent discoveries have significantly enhanced our understanding of risk factors, as well as, cellular and genetic mechanisms of this complex disease. Despite these advancements, no essential, single risk factor, nor the mechanism by which each risk factor affects NEC has been elucidated. Nonetheless, recent research indicates that maternal factors, antibiotic exposure, feeding, hypoxia, and altered gut microbiota pose a threat to the underdeveloped immunity of preterm infants. Here we review predisposing factors, status of unwarranted immune responses, and microbial pathogenesis in NEC based on currently available scientific evidence. We additionally discuss novel techniques and models used to study NEC and how this research translates from the bench to the bedside into potential treatment strategies.
Collapse
Affiliation(s)
- Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mili Dave
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
55
|
Ajeeb TT, Gonzalez E, Solomons NW, Koski KG. Human milk microbial species are associated with infant head-circumference during early and late lactation in Guatemalan mother-infant dyads. Front Microbiol 2022; 13:908845. [PMID: 36466698 PMCID: PMC9709448 DOI: 10.3389/fmicb.2022.908845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Human milk contains abundant commensal bacteria that colonize and establish the infant's gut microbiome but the association between the milk microbiome and head circumference during infancy has not been explored. For this cross-sectional study, head-circumference-for-age-z-scores (HCAZ) of vaginally delivered breastfed infants were collected from 62 unrelated Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala during two stages of lactation, 'early' (6-46 days postpartum, n = 29) or 'late' (109-184 days postpartum, n = 33). At each stage of lactation, infants were divided into HCAZ ≥ -1 SD (early: n = 18; late: n = 14) and HCAZ < -1 SD (early: n = 11; late: n = 19). Milk microbiome communities were assessed using 16S ribosomal RNA gene sequencing and DESeq2 was used to compare the differential abundance (DA) of human milk microbiota with infant HCAZ subgroups at both stages of lactations. A total of 503 ESVs annotated 256 putative species across the 64 human milk samples. Alpha-diversity using Chao index uncovered a difference in microbial community richness between HCAZ ≥ -1 SD and HCAZ < -1 SD groups at late lactation (p = 0.045) but not at early lactation. In contrast, Canonical Analysis of Principal Coordinates identified significant differences between HCAZ ≥ -1 SD and HCAZ < -1 SD at both stages of lactation (p = 0.003); moreover, 26 milk microbial taxa differed in relative abundance (FDR < 0.05) between HCAZ ≥ -1 SD and HCAZ < -1 SD, with 13 differentially abundant at each lactation stage. Most species in the HCAZ ≥ -1 SD group were Streptococcus species from the Firmicutes phylum which are considered human colonizers associated with human milk whereas the HCAZ < -1 SD group at late lactation had more differentially abundant taxa associated with environmentally and 'potentially opportunistic' species belonging to the Actinobacteria genus. These findings suggest possible associations between brain growth of breastfed infants and the milk microbiome during lactation. Importantly, these data provide the first evidence of cross talk between the human milk microbiome and the infant brain that requires further investigation.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montréal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
56
|
Manoppo JIC, Nurkolis F, Gunawan WB, Limen GA, Rompies R, Heroanto JP, Natanael H, Phan S, Tanjaya K. Functional sterol improves breast milk quality by modulating the gut microbiota: A proposed opinion for breastfeeding mothers. Front Nutr 2022; 9:1018153. [PMID: 36424924 PMCID: PMC9678907 DOI: 10.3389/fnut.2022.1018153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 09/30/2023] Open
Affiliation(s)
- Jeanette Irene Christiene Manoppo
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, Indonesia
| | - William Ben Gunawan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Gilbert Ansell Limen
- Medical Programme, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Ronald Rompies
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Joko Purnomo Heroanto
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Hans Natanael
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Sardito Phan
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Krisanto Tanjaya
- Medical Programme, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
57
|
Probiotic Use in Preterm Neonates: A Review and Bibliometric Analysis. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Background: Necrotizing enterocolitis (NEC) is a major health burden in peterm neonates with mortality rates between 21% and 50%. Prophylaxis is of primary importance as early diagnosis is hindered by the lack of specific signs and laboratory markers. Although probiotics have been routinely used for NEC prophylaxis in neonatal intensive care units around the world, clinical trials provide contradictory data, which fuels an ongoing debate about their efficacy and safety.
Aims: To perform a review and bibliometric analysis on available clinical trials and case reports data on the safety and efficacy of probiotics in preterm neonates and identify relevant publication trends and patterns.
Methods: A bibliometric search for publications on the topic was performed in the Web of Science Core Collection database and the resulting records analyzed in bibliometrix package in R.
Results: Trends in publication activity, historical direct citation network relationships and keyword co-ocurrences were discussed in the context of the most recent therapeutic recommendations.
Conclusion: We took a round view of the potential drawbacks to probiotic use in preterm infants and their possible solutions.
Collapse
|
58
|
Charton E, Bourgeois A, Bellanger A, Le-Gouar Y, Dahirel P, Romé V, Randuineau G, Cahu A, Moughan PJ, Montoya CA, Blat S, Dupont D, Deglaire A, Le Huërou-Luron I. Infant nutrition affects the microbiota-gut-brain axis: Comparison of human milk vs. infant formula feeding in the piglet model. Front Nutr 2022; 9:976042. [PMID: 36211510 PMCID: PMC9532976 DOI: 10.3389/fnut.2022.976042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow’s milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Elise Charton
- STLO, INRAE, Institut Agro, Rennes, France
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | | | - Patrice Dahirel
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Véronique Romé
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | - Armelle Cahu
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Smart Foods and Bioproducts Innovation Centre of Excellence, AgResearch Limited, Palmerston North, New Zealand
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Isabelle Le Huërou-Luron
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- *Correspondence: Isabelle Le Huërou-Luron,
| |
Collapse
|
59
|
Selma-Royo M, Calvo-Lerma J, Bäuerl C, Esteban-Torres M, Cabrera-Rubio R, Collado MC. Human milk microbiota: what did we learn in the last 20 years? MICROBIOME RESEARCH REPORTS 2022; 1:19. [PMID: 38046359 PMCID: PMC10688795 DOI: 10.20517/mrr.2022.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
Human milk (HM) is the gold standard for infant nutrition during the first months of life. Beyond its nutritional components, its complex bioactive composition includes microorganisms, their metabolites, and oligosaccharides, which also contribute to gut colonization and immune system maturation. There is growing evidence of the beneficial effects of bacteria present in HM. However, current research presents limited data on the presence and functions of other organisms. The potential biological impacts on maternal and infant health outcomes, the factors contributing to milk microbes' variations, and the potential functions in the infant's gut remain unclear. This review provides a global overview of milk microbiota, what the actual knowledge is, and what the gaps and challenges are for the next years.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| |
Collapse
|
60
|
Engevik MA, Stripe LK, Baatz JE, Wagner CL, Chetta KE. Identifying single-strain growth patterns of human gut microbes in response to preterm human milk and formula. Food Funct 2022; 13:5571-5589. [PMID: 35481924 DOI: 10.1039/d2fo00447j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intestinal microbiota of the preterm neonate has become a major research focus, with evidence emerging that the microbiota influences both short and long-term health outcomes, in the neonatal intensive care unit and beyond. Similar to the term microbiome, the preterm gut microbiome is highly influenced by diet, specifically formula and human milk use. This study aims to analyze next-generation products including preterm formula, human milk-oligosaccharide term formula, and preterm breastmilk. We used a culture-based model to differentially compare the growth patterns of individual bacterial strains found in the human intestine. This model probed 24 strains of commensal bacteria and 8 pathobiont species which have previously been found to cause sepsis in preterm neonates. Remarkable differences between strain growth and culture pH were noted after comparing models of formulas and between human milk and formula. Both formula and human milk supported the growth of commensal bacteria; however, the formula products, but not human milk, supported the growth of several specific pathogenic strains. Computational analysis revealed potential connections between long-chain fatty acid and iron uptake from formula in pathobiont organisms. These findings indicate that there is a unique profile of growth in response to human milk and formula and shed light into how the infant gut microbiota could be influenced.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, USA.,Department of Microbiology & Immunology, Medical University of South Carolina, USA
| | - Leah K Stripe
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, USA
| | - John E Baatz
- Department of Pediatrics, C.P. Darby Children's Research Institute, Medical University of South Carolina, USA. .,Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Carol L Wagner
- Department of Pediatrics, C.P. Darby Children's Research Institute, Medical University of South Carolina, USA. .,Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Katherine E Chetta
- Department of Pediatrics, C.P. Darby Children's Research Institute, Medical University of South Carolina, USA. .,Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| |
Collapse
|
61
|
Intestinal ‘Infant-Type’ Bifidobacteria Mediate Immune System Development in the First 1000 Days of Life. Nutrients 2022; 14:nu14071498. [PMID: 35406110 PMCID: PMC9002861 DOI: 10.3390/nu14071498] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 01/05/2023] Open
Abstract
Immune system maturation begins early in life, but few studies have examined how early-life gut microbiota colonization educates the neonatal immune system. Bifidobacteria predominate in the intestines of breastfed infants and metabolize human milk oligosaccharides. This glycolytic activity alters the intestinal microenvironment and consequently stimulates immune system maturation at the neonatal stage. However, few studies have provided mechanistic insights into the contribution of ‘infant-type’ Bifidobacterium species, especially via metabolites such as short-chain fatty acids. In this review, we highlight the first 1000 days of life, which provide a window of opportunity for infant-type bifidobacteria to educate the neonatal immune system. Furthermore, we discuss the instrumental role of infant-type bifidobacteria in the education of the neonatal immune system by inducing immune tolerance and suppressing intestinal inflammation, and the potential underlying mechanism of this immune effect in the first 1000 days of life. We also summarize recent research that suggests the administration of infant-type bifidobacteria helps to modify the intestinal microecology and prevent the progress of immune-mediated disorders.
Collapse
|
62
|
Jovandaric MZ, Milenkovic SJ, Babovic IR, Babic S, Dotlic J. The Effect of Glucose Metabolism and Breastfeeding on the Intestinal Microbiota of Newborns of Women with Gestational Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:413. [PMID: 35334589 PMCID: PMC8955385 DOI: 10.3390/medicina58030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy complication in which women without previously diagnosed diabetes develop chronic hyperglycemia during gestation. The diet and lifestyle of the mother during pregnancy as well as lactation have long-term effects on the child's health and development. Detection of early risk markers of adult-age chronic diseases that begin during prenatal life and the application of complex nutritional interventions at the right time may reduce the risk of these diseases. Newborns adapt to the ectopic environment by developing intestinal immune homeostasis. Adequate initial colonization of bacteria is necessary for sufficient development of intestinal immunity. The environmental determinant of adequate colonization is breast milk. Although a developing newborn is capable of producing an immune response, the effector immune component requires bacterial stimulation. Breast milk stimulates the proliferation of a well-balanced and diverse microbiota, which initially influences the switch from an intrauterine TH2 predominant to a TH1/TH2 balanced response and the activation of T-regulatory cells by breast milk-stimulated specific organisms (Bifidobacteria, Lactobacillus, and Bacteroides). Breastfeeding in newborns of mothers with diabetes mellitus regulates the adequate immune response of the newborn and prevents diseases of the neonatal and postnatal period.
Collapse
Affiliation(s)
- Miljana Z. Jovandaric
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Svetlana J. Milenkovic
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana R. Babovic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Babic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
| | - Jelena Dotlic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
63
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
64
|
The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10111845. [PMID: 34829716 PMCID: PMC8614795 DOI: 10.3390/antiox10111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over the past two decades. This perspective fosters program development of the next steps that are necessary to obtain confirmation through clinical trials on the magnitude of the effects of kefir in large samples.
Collapse
|
65
|
Conta G, Del Chierico F, Reddel S, Marini F, Sciubba F, Capuani G, Tomassini A, Di Cocco ME, Laforgia N, Baldassarre ME, Putignani L, Miccheli A. Longitudinal Multi-Omics Study of a Mother-Infant Dyad from Breastfeeding to Weaning: An Individualized Approach to Understand the Interactions Among Diet, Fecal Metabolome and Microbiota Composition. Front Mol Biosci 2021; 8:688440. [PMID: 34671642 PMCID: PMC8520934 DOI: 10.3389/fmolb.2021.688440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
The development of the human gut microbiota is characterized by a dynamic sequence of events from birth to adulthood, which make the gut microbiota unique for everyone. Its composition and metabolism may play a critical role in the intestinal homeostasis and health. We propose a study on a single mother-infant dyad to follow the dynamics of an infant fecal microbiota and metabolome changes in relation to breast milk composition during the lactation period and evaluate the changes induced by introduction of complementary food during the weaning period. Nuclear Magnetic Resonance (NMR)-based metabolomics was performed on breast milk and, together with 16S RNA targeted-metagenomics analysis, also on infant stool samples of a mother-infant dyad collected over a period running from the exclusive breastfeeding diet to weaning. Breast milk samples and neonatal stool samples were collected from the 4th to the 10th month of life. Both specimens were collected from day 103 to day 175, while from day 219-268 only stool samples were examined. An exploratory and a predictive analysis were carried out by means of Common component and specific weight analysis and multi-block partial least squares discriminant analysis, respectively. Stools collected during breastfeeding and during a mixed fruit/breastfeeding diet were characterized by high levels of fucosyl-oligosaccharides and glycolysis intermediates, including succinate and formate. The transition to a semi-solid food diet was characterized by several changes in fecal parameters: increase in short-chain fatty acids (SCFAs) levels, including acetate, propionate and butyrate, dissapearance of HMOs and the shift in the community composition, mainly occurring within the Firmicutes phylum. The variations in the fecal metabolome reflected the infant's diet transition, while the composition of the microbiota followed a more complex and still unstable behavior.
Collapse
Affiliation(s)
- Giorgia Conta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Giorgio Capuani
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | | | | | - Nicola Laforgia
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy.,Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
66
|
Abstract
An evidence map is visualized as a starting point for deliberations by trans-disciplinary stakeholders, including microbiologists with interests in the evidence and its influence on health and safety. Available evidence for microbial benefits and risks of the breastmilk ecosystem was structured as an evidence map using established risk analysis methodology. The evidence map based on the published literature and reports included the evidence basis, pro- and contra-arguments with supporting and attenuating evidence, supplemental studies on mechanisms, overall conclusions, and remaining uncertainties. The evidence basis for raw breastmilk included one benefit–risk assessment, systematic review, and systematic review/meta-analysis, and two cohort studies. The evidence basis for benefits was clear, convincing, and conclusive, with supplemental studies on plausible mechanisms attributable to biologically active raw breastmilk. Limited evidence was available to assess microbial risks associated with raw breastmilk and pasteurized donor milk. The evidence map provides transparent communication of the ‘state-of-the-science’ and uncertainties for microbial benefits and risks associated with the breastmilk microbiota to assist in deeper deliberations of the evidence with decision makers and stakeholders. The long-term aims of the evidence map are to foster deliberation, motivate additional research and analysis, and inform future evidence-based policies about pasteurizing donor breastmilk.
Collapse
|
67
|
Ley D, Beghin L, Morcel J, Flamein F, Garabedian C, Accart B, Drumez E, Labreuche J, Gottrand F, Hermann E. Impact of early life nutrition on gut health in children: a prospective clinical study. BMJ Open 2021; 11:e050432. [PMID: 34489289 PMCID: PMC8422494 DOI: 10.1136/bmjopen-2021-050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/03/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The first 1000 days of life could contribute to individual susceptibility to the later development of chronic non-communicable diseases. Nutrition in early life appears to be an important determinant factor for a sustainable child's health. In this study, we propose to investigate the impact of exclusive breast feeding on gut health in children. METHODS AND ANALYSIS A prospective cohort of newborns (n=350) will be recruited at birth and followed up to 4 years of age. The main objective is to evaluate the link between exclusive breast feeding for at least 3 months and the gut health of the child at 4 years. The primary endpoint of assessment of gut health will be based on the non-invasive measurement of faecal secretory IgA (sIgA) as a sensitive biomarker of the intestinal ecosystem. The presence of gastrointestinal disorders will be defined according to the clinical criteria of Rome IV. Information on parent's nutritional habits and life style, breastfeeding duration and child's complementary feeding will be collected along the follow-up. Cord blood cells and plasma at birth will be purified for further analysis. The meconium and stools collected at birth, 6 months, 2 years and 4 years of age will allow sIgA analysis. ETHICS AND DISSEMINATION This clinical study has obtained the approval from the national ethical committee. We plan to publish the results of the study in peer-review journals and by means of national and international conference. TRIAL REGISTRATION NUMBER NCT04195425.
Collapse
Affiliation(s)
- Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Laurent Beghin
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Jules Morcel
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Florence Flamein
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Charles Garabedian
- Univ. Lille, CHU Lille, Department of Obstetrics & Gynecology, F-59000 Lille, France
- Univ. Lille, CHU Lille, ULR 2694-METRICS: évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France
| | | | - Elodie Drumez
- Univ. Lille, CHU Lille, ULR 2694-METRICS: évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France
- CHU Lille, Department of Biostatistics, F-59000 Lille, France
| | - Julien Labreuche
- Univ. Lille, CHU Lille, ULR 2694-METRICS: évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France
- CHU Lille, Department of Biostatistics, F-59000 Lille, France
| | - Frederic Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Emmanuel Hermann
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
68
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|
69
|
Influence of 2'-Fucosyllactose on the Microbiota Composition and Metabolic Activity of Fecal Cultures from Breastfed and Formula-Fed Infants at Two Months of Age. Microorganisms 2021; 9:microorganisms9071478. [PMID: 34361914 PMCID: PMC8304384 DOI: 10.3390/microorganisms9071478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/22/2023] Open
Abstract
Although breast milk is considered the gold standard of nutrition for infant feeding, some circumstances may make breastfeeding difficult. Several commercial milk preparations include synthetic human milk oligosaccharides (HMOs) in their composition. However, the effect of HMOs on the establishment of the intestinal microbiota remains incompletely understood. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed, exclusively) in the presence of 2′fucosyllactose (2′FL), one of the most abundant HMOs in human milk. Microbiota composition was analyzed by 16S rRNA gene sequencing at baseline and at 24 h of incubation. The 2′FL consumption, gas accumulation, and levels of different metabolites were determined by chromatography. Microbiota profiles at baseline were clearly influenced by the mode of feeding and by the intrinsic ability of microbiotas to degrade 2′FL. The 2′FL degradation rate clustered fecal cultures into slow and fast degraders, regardless of feeding type, this being a determinant factor influencing the evolution of the microbiota during incubation, although the low number of donors precludes drawing sound conclusions. More studies are needed to decipher the extent to which the early intervention with HMOs could influence the microbiota as a function of its ability to utilize 2′FL.
Collapse
|
70
|
Abstract
Intestinal microbiota interacts with other systems, especially the immune system, which is responsible for protecting the body by recognizing “stranger” (pathogen associated molecular patterns-PAMPs) and “danger” (damage-associated molecular patterns-DAMPs) molecular motifs. In this manner, it plays an important role in the pathogenesis of various diseases and health. Despite the use of probiotics that modulate the intestinal microbiota in providing health benefits and in the treatment of diseases, there are some possible concerns about the possibility of developing adverse effects, especially in people with suppressed immune systems. Since probiotics provide health benefits with bioactive compounds, studies are carried out on the use of products containing non-living probiotic microorganisms (paraprobiotics) and/or their metabolites (postbiotics) instead of probiotic products. It is even reported that these microbial compounds have more immunomodulatory activities than living microorganisms via some possible mechanism and eliminates some disadvantages of probiotics. Considering the increasing use of functional foods in health and disease, further studies are needed with respect to the benefits and advantages of parabiotic and/or postbiotic use in the food and pharmaceutical industry as well as immune system modulation. Although probiotics have been extensive studied for a long time, it seems that postbiotics are promising tools for future research and applications according to the recent literature. This review aimed to evaluate the interaction of probiotics and postbiotics with the immune systems and also their advantages and disadvantages in the area of food-pharmaceutical industry and immune system modulation.
Collapse
|
71
|
Buffet-Bataillon S, Bellanger A, Boudry G, Gangneux JP, Yverneau M, Beuchée A, Blat S, Le Huërou-Luron I. New Insights Into Microbiota Modulation-Based Nutritional Interventions for Neurodevelopmental Outcomes in Preterm Infants. Front Microbiol 2021; 12:676622. [PMID: 34177860 PMCID: PMC8232935 DOI: 10.3389/fmicb.2021.676622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota and the central nervous system have parallel developmental windows during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in preterm infants predisposes the neonate to adverse neurological outcomes later in life. Understanding the link between gut microbiota colonization and brain development to tailor therapies aimed at optimizing initial colonization and microbiota development are promising strategies to warrant adequate brain development and enhance neurological outcomes in preterm infants. Breast-feeding has been associated with both adequate cognitive development and healthy microbiota in preterms. Infant formula are industrially produced substitutes for infant nutrition that do not completely recapitulate breast-feeding benefices and could be largely improved by the understanding of the role of breast milk components upon gut microbiota. In this review, we will first discuss the nutritional and bioactive component information on breast milk composition and its contribution to the assembly of the neonatal gut microbiota in preterms. We will then discuss the emerging pathways connecting the gut microbiota and brain development. Finally, we will discuss the promising microbiota modulation-based nutritional interventions (including probiotic and prebiotic supplementation of infant formula and maternal nutrition) for improving neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | - Amandine Bellanger
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Pediatrics-Neonatology, CHU Rennes, Rennes, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Alain Beuchée
- Department of Pediatrics-Neonatology, Univ Rennes, CHU Rennes, LTSI-UMR 1099, Rennes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | |
Collapse
|
72
|
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients 2021; 13:nu13061779. [PMID: 34071061 PMCID: PMC8224552 DOI: 10.3390/nu13061779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The human milk (HM) microbiota is a significant source of microbes that colonize the infant gut early in life. The aim of this study was to compare transient and mature HM virome compositions, and also possible changes related to the mode of delivery, gestational age, and weight for gestational age. Overall, in the 81 samples analyzed in this study, reads matching bacteriophages accounted for 79.5% (mainly Podoviridae, Myoviridae, and Siphoviridae) of the reads, far more abundant than those classified as eukaryotic viruses (20.5%, mainly Herpesviridae). In the whole study group of transient human milk, the most abundant families were Podoviridae and Myoviridae. In mature human milk, Podoviridae decreased, and Siphoviridae became the most abundant family. Bacteriophages were predominant in transient HM samples (98.4% in the normal spontaneous vaginal delivery group, 92.1% in the premature group, 89.9% in the C-section group, and 68.3% in the large for gestational age group), except in the small for gestational age group (only ~45% bacteriophages in transient HM samples). Bacteriophages were also predominant in mature HM; however, they were lower in mature HM than in transient HM (71.7% in the normal spontaneous vaginal delivery group, 60.8% in the C-section group, 56% in the premature group, and 80.6% in the large for gestational age group). Bacteriophages still represented 45% of mature HM in the small for gestational age group. In the transient HM of the normal spontaneous vaginal delivery group, the most abundant family was Podoviridae; however, in mature HM, Podoviridae became less prominent than Siphoviridae. Myoviridae was predominant in both transient and mature HM in the premature group (all C-section), and Podoviridae was predominant in transient HM, while Siphoviridae and Herpesviridae were predominant in mature HM. In the small for gestational age group, the most abundant taxa in transient HM were the family Herpesviridae and a species of the genus Roseolovirus. Bacteriophages constituted the major component of the HM virome, and we showed changes regarding the lactation period, preterm birth, delivery mode, and birth weight. Early in life, the HM virome may influence the composition of an infant's gut microbiome, which could have short- and long-term health implications. Further longitudinal mother-newborn pair studies are required to understand the effects of these variations on the composition of the HM and the infant gut virome.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Sertac Arslanoglu
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Ozge Aydemir
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Sibel Sevuk Ozumut
- Division of Neonatology, Faculty of Medicine, Medeniyet University, Istanbul 34720, Turkey; (S.A.); (S.S.O.)
| | - Neslihan Tekin
- Division of Neonatology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (O.A.); (N.T.)
| | - Yvan Vandenplas
- Department of Pediatrics, KidZ Health Castle, UZ Brussel, Vrije Unversiteit Brussel, 1050 Brussels, Belgium;
| | - Andrés Moya
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.); (A.M.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC-UVEG), 46010 Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Correspondence: ; Tel.: +90-222-239-29-79 (ext. 2722)
| |
Collapse
|
73
|
Camacho-Morales A, Caba M, García-Juárez M, Caba-Flores MD, Viveros-Contreras R, Martínez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front Pediatr 2021; 9:744104. [PMID: 34746058 PMCID: PMC8567139 DOI: 10.3389/fped.2021.744104] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
The first 1,000 days in the life of a human being are a vulnerable stage where early stimuli may program adverse health outcomes in future life. Proper maternal nutrition before and during pregnancy modulates the development of the fetus, a physiological process known as fetal programming. Defective programming promotes non-communicable chronic diseases in the newborn which might be prevented by postnatal interventions such as breastfeeding. Breast milk provides distinct bioactive molecules that contribute to immune maturation, organ development, and healthy microbial gut colonization, and also secures a proper immunological response that protects against infection and inflammation in the newborn. The gut microbiome provides the most critical immune microbial stimulation in the newborn in early life, allowing a well-trained immune system and efficient metabolic settings in healthy subjects. Conversely, negative fetal programming by exposing mothers to diets rich in fat and sugar has profound effects on breast milk composition and alters the immune profiles in the newborn. At this new stage, newborns become vulnerable to immune compromise, favoring susceptibility to defective microbial gut colonization and immune response. This review will focus on the importance of breastfeeding and its immunological biocomponents that allow physiological immune programming in the newborn. We will highlight the importance of immunological settings by breastfeeding, allowing proper microbial gut colonization in the newborn as a window of opportunity to secure effective immunological response.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Martín García-Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | | |
Collapse
|