51
|
Chen Y, Wu M. Exploration of molecular mechanism underlying protective effect of astragaloside IV against radiation-induced lung injury by suppressing ferroptosis. Arch Biochem Biophys 2023; 745:109717. [PMID: 37573925 DOI: 10.1016/j.abb.2023.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
In this study, we aimed to investigate the pharmacological effects and underlying mechanisms of astragaloside IV (AS IV) against radiation-induced lung injury. We established experimental models of radiation-induced lung injury and observed the effect of AS IV on cell viability, cell death, inflammatory responses and ferroptosis. Accordingly, we found that AS IV restored the suppressed cell viability and promoted cell death induced by X-ray irradiation. Moreover, radiation-induced up-regulation of lactate dehydrogenase (LDH) release, ferroptosis, reactive oxygen species (ROS) and inflammatory responses were also restored by AS IV in a dose-dependent manner. Besides, in radiation-induced lung injury C57BL/6 mice, AS IV evidently alleviated lung injury and promoted the survival rate of lung-injured mice. And the ferroptosis level in mice lung tissues were also alleviated by the administration of AS IV in a dose-dependent manner. As a conclusion, by comparing the changes of ferroptosis, ROS and inflammatory responses in the experimental models, we validated that AS IV could inhibit inflammatory responses and cell injury in the treatment of radiation-induced lung injury by suppressing ferroptosis. This finding not only find potentially effective treatments to mitigate radiation-induced lung injury, but also provides supporting evidence for clinical application of AS IV to improve the management of radiation-treated patients and minimize the associated lung complications or other adverse effects. Moreover, as inflammation and ROS are key contributors to tissue damage in various diseases, our study suggested the potential application of AS IV in the treatments for other diseases.
Collapse
Affiliation(s)
- Yunlong Chen
- Department of Oncology, Rudong County Hospital of Traditional Chinese Medicine, Rudong, Jiangsu, 226400, China
| | - Mianhua Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
52
|
Zhao J, Ma C, Gan G, Xu X, Zhou J. Analysis of clinical and physical dosimetric factors that determine the outcome of severe acute radiation pneumonitis in lung cancer patients. Radiat Oncol 2023; 18:143. [PMID: 37644602 PMCID: PMC10463737 DOI: 10.1186/s13014-023-02304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE We conducted a retrospective statistical analysis of clinical and physical dosimetric factors of lung cancer patients who had previously undergone lung and/or mediastinal radiotherapy and died of or survived severe acute radiation pneumonitis (SARP). Our study was the first to reveal the heterogeneity in clinical factors, physical dosimetric factors, and SARP onset time that determined the clinical outcomes of lung cancer patients who developed SARP. MATERIALS AND METHODS The clinical characteristics, physical dosimetry factors, and SARP onset time of deceased and surviving patients were retrospectively analyzed. SPSS 20.0 was used for data analysis. Student's t-test was used for intergroup comparison, and a Mann-Whitney U test was used for data with skewed distribution. Qualitative data were represented using frequencies (%), and Fisher's exact test or χ2 test was used for intergroup comparison of nonparametric data. Binary logistic analysis was used for univariate and multivariate analyses. Differences with a P < 0.05 were considered statistically significant. RESULTS Univariate analysis revealed that the potential predictors of SARP death were as follows: ipsilateral lung V5 and V30, contralateral lung V5, V10, and V30, total lung V5, V10, and V30, mean lung dose, mean heart dose, and maximum spinal cord dose. Multivariate analysis showed that ipsilateral lung V5 and total lung V5 were predictors that determined the final outcome of SARP patients. In addition, we analyzed the time from the completion of radiotherapy to SARP onset, and found significant difference between the two groups. CONCLUSIONS There was no decisive correlation between clinical characteristics and SARP outcome (i.e., death or survival) in lung radiotherapy patients. Ipsilateral lung V5 and total lung V5 were independent predictors of death in SARP patients.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chenying Ma
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guanghui Gan
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaoting Xu
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Juying Zhou
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
53
|
McNamara ME, Loyfer N, Kiliti AJ, Schmidt MO, Shabi-Porat S, Jain SS, Martinez Roth S, McDeed AP, Shahrour N, Ballew E, Lin YT, Li HH, Deslattes Mays A, Rudra S, Riegel AT, Unger K, Kaplan T, Wellstein A. Circulating cell-free methylated DNA reveals tissue-specific, cellular damage from radiation treatment. JCI Insight 2023; 8:e156529. [PMID: 37318863 PMCID: PMC10443812 DOI: 10.1172/jci.insight.156529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Radiation therapy is an effective cancer treatment, although damage to healthy tissues is common. Here we analyzed cell-free, methylated DNA released from dying cells into the circulation to evaluate radiation-induced cellular damage in different tissues. To map the circulating DNA fragments to human and mouse tissues, we established sequencing-based, cell-type-specific reference DNA methylation atlases. We found that cell-type-specific DNA blocks were mostly hypomethylated and located within signature genes of cellular identity. Cell-free DNA fragments were captured from serum samples by hybridization to CpG-rich DNA panels and mapped to the DNA methylation atlases. In a mouse model, thoracic radiation-induced tissue damage was reflected by dose-dependent increases in lung endothelial and cardiomyocyte methylated DNA in serum. The analysis of serum samples from patients with breast cancer undergoing radiation treatment revealed distinct dose-dependent and tissue-specific epithelial and endothelial responses to radiation across multiple organs. Strikingly, patients treated for right-sided breast cancers also showed increased hepatocyte and liver endothelial DNA in the circulation, indicating the impact on liver tissues. Thus, changes in cell-free methylated DNA can uncover cell-type-specific effects of radiation and provide a readout of the biologically effective radiation dose received by healthy tissues.
Collapse
Affiliation(s)
- Megan E. McNamara
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amber J. Kiliti
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Sapir Shabi-Porat
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sidharth S. Jain
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Sarah Martinez Roth
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - A. Patrick McDeed
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Nesreen Shahrour
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Yun-Tien Lin
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Heng-Hong Li
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Sonali Rudra
- Medstar Georgetown University Hospital, Washington DC, USA
| | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Keith Unger
- Medstar Georgetown University Hospital, Washington DC, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
54
|
Heidarian M, Jensen IJ, Kannan SK, Pewe LL, Hassert M, Park S, Xue HH, Harty JT, Badovinac VP. Sublethal whole-body irradiation induces permanent loss and dysfunction in pathogen-specific circulating memory CD8 T cell populations. Proc Natl Acad Sci U S A 2023; 120:e2302785120. [PMID: 37364124 PMCID: PMC10318958 DOI: 10.1073/pnas.2302785120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The increasing use of nuclear energy sources inevitably raises the risk of accidental or deliberate radiation exposure and associated immune dysfunction. However, the extent to which radiation exposure impacts memory CD8 T cells, potent mediators of immunity to recurring intracellular infections and malignancies, remains understudied. Using P14 CD8 T cell chimeric mice (P14 chimeras) with an lymphocytic choriomeningitis virus (LCMV) infection model, we observed that sublethal (5Gy) whole-body irradiation (WBI) induced a rapid decline in the number of naive (TN) and P14 circulating memory CD8 T cells (TCIRCM), with the former being more susceptible to radiation-induced numeric loss. While TN cell numbers rapidly recovered, as previously described, the number of P14 TCIRCM cells remained low at least 9 mo after radiation exposure. Additionally, the remaining P14 TCIRCM in irradiated hosts exhibited an inefficient transition to a central memory (CD62L+) phenotype compared to nonirradiated P14 chimeras. WBI also resulted in long-lasting T cell intrinsic deficits in memory CD8 T cells, including diminished cytokine and chemokine production along with impaired secondary expansion upon cognate Ag reencounter. Irradiated P14 chimeras displayed significantly higher bacterial burden after challenge with Listeria monocytogenes expressing the LCMV GP33-41 epitope relative to nonirradiated controls, likely due to radiation-induced numerical and functional impairments. Taken together, our findings suggest that sublethal radiation exposure caused a long-term numerical, impaired differentiation, and functional dysregulation in preexisting TCIRCM, rendering previously protected hosts susceptible to reinfection.
Collapse
Affiliation(s)
| | - Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY10032
| | - Shravan Kumar Kannan
- Department of Pathology, University of Iowa, Iowa City, IA52246
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
| | - Lecia L. Pewe
- Department of Pathology, University of Iowa, Iowa City, IA52246
| | - Mariah Hassert
- Department of Pathology, University of Iowa, Iowa City, IA52246
| | - SungRye Park
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ07110
| | - John T. Harty
- Department of Pathology, University of Iowa, Iowa City, IA52246
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA52246
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA52246
| |
Collapse
|
55
|
Chen F, Niu J, Wang M, Zhu H, Guo Z. Re-evaluating the risk factors for radiation pneumonitis in the era of immunotherapy. J Transl Med 2023; 21:368. [PMID: 37287014 DOI: 10.1186/s12967-023-04212-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
As one of the common complications of radiotherapy, radiation pneumonia (RP) limits the prognosis of patients. Therefore, better identifying the high-risk factors that lead to RP is essential to effectively prevent its occurrence. However, as lung cancer treatment modalities are being replaced and the era of immunotherapy has arrived, literature that reviews the parameters and mode of radiotherapy, chemotherapy drugs, targeted drugs and current hot immune checkpoint inhibitors related to RP is lacking. This paper summarizes the risk factors for radiation pneumonia by retrieving and analysing previously published literature and the results of large clinical trials. The literature primarily included retrospective analyses, including clinical trials in different periods and a part of the literature review. A systematic literature search of Embase, PubMed, Web of Science, and Clinicaltrials.gov was performed for relevant publications up to 6 Dec. 2022. Search keywords include, but are not limited to, "radiation pneumonia", "pneumonia", "risk factors", "immunotherapy", etc. The factors related to RP in this paper include physical parameters of radiotherapy, including V5, V20, and MLD; chemoradiotherapy mode and chemotherapy drugs, including paclitaxel and gemcitabine; EGFR-TKI; ALK inhibitors; antiangiogenic drugs; immune drugs and the underlying disease of the patient. We also introduce the possible mechanism of RP. In the future, we hope that this article not only sounds the alarm for clinicians but also helps to identify a method that can effectively intervene and reduce the occurrence of RP, significantly improve the quality of life and prognosis of patients, and more effectively improve the therapeutic effect of radiation therapy.
Collapse
Affiliation(s)
- Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| | - Zhijun Guo
- Department of Intensive Care Unit, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
56
|
Pierre-Louis Odoom J, Freeberg MAT, Camus SV, Toft R, Szomju BB, Sanchez Rosado RM, Jackson PD, Allegood JC, Silvey S, Liu J, Cowart LA, Weiss E, Thatcher TH, Sime PJ. Exhaled breath condensate identifies metabolic dysregulation in patients with radiation-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L863-L869. [PMID: 37039378 PMCID: PMC10243533 DOI: 10.1152/ajplung.00439.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/12/2023] Open
Abstract
Radiation-induced lung injury (RILI) is a consequence of therapeutic thoracic irradiation (TR) for many cancers, and there are no FDA-approved curative strategies. Studies report that 80% of patients who undergo TR will have CT-detectable interstitial lung abnormalities, and strategies to limit the risk of RILI may make radiotherapy less effective at treating cancer. Our lab and others have reported that lung tissue from patients with idiopathic pulmonary fibrosis (IPF) exhibits metabolic defects including increased glycolysis and lactate production. In this pilot study, we hypothesized that patients with radiation-induced lung damage will exhibit distinct changes in lung metabolism that may be associated with the incidence of fibrosis. Using liquid chromatography/tandem mass spectrometry to identify metabolic compounds, we analyzed exhaled breath condensate (EBC) in subjects with CT-confirmed lung lesions after TR for lung cancer, compared with healthy subjects, smokers, and cancer patients who had not yet received TR. The lung metabolomic profile of the irradiated group was significantly different from the three nonirradiated control groups, highlighted by increased levels of lactate. Pathway enrichment analysis revealed that EBC from the case patients exhibited concurrent alterations in lipid, amino acid, and carbohydrate energy metabolism associated with the energy-producing tricarboxylic acid (TCA) cycle. Radiation-induced glycolysis and diversion of lactate to the extracellular space suggests that pyruvate, a precursor metabolite, converts to lactate rather than acetyl-CoA, which contributes to the TCA cycle. This TCA cycle deficiency may be compensated by these alternate energy sources to meet the metabolic demands of chronic wound repair. Using an "omics" approach to probe lung disease in a noninvasive manner could inform future mechanistic investigations and the development of novel therapeutic targets.NEW & NOTEWORTHY We report that exhaled breath condensate (EBC) identifies cellular metabolic dysregulation in patients with radiation-induced lung injury. In this pilot study, untargeted metabolomics revealed a striking metabolic signature in EBC from patients with radiation-induced lung fibrosis compared to patients with lung cancer, at-risk smokers, and healthy volunteers. Patients with radiation-induced fibrosis exhibit specific changes in tricarboxylic acid (TCA) cycle energy metabolism that may be required to support the increased energy demands of fibroproliferation.
Collapse
Affiliation(s)
- Josly Pierre-Louis Odoom
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Margaret A T Freeberg
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Sarah V Camus
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Robin Toft
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Barbara B Szomju
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Rose Marie Sanchez Rosado
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Peter D Jackson
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Scott Silvey
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Thomas H Thatcher
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Patricia J Sime
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
57
|
Aryankalayil MJ, Bylicky MA, Martello S, Chopra S, Sproull M, May JM, Shankardass A, MacMillan L, Vanpouille-Box C, Eke I, Scott KMK, Dalo J, Coleman CN. Microarray analysis of hub genes, non-coding RNAs and pathways in lung after whole body irradiation in a mouse model. Int J Radiat Biol 2023; 99:1702-1715. [PMID: 37212632 PMCID: PMC10615684 DOI: 10.1080/09553002.2023.2214205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life. MATERIALS AND METHODS Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation. Animals were euthanized 48 h post exposure and lungs removed, snap frozen and underwent RNA isolation. Microarray analysis was performed to determine dysregulation of messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) after radiation injury. RESULTS We observed sustained dysregulation of specific RNA markers including: mRNAs, lncRNAs, and miRNAs across all doses. We also identified significantly upregulated genes that can indicate high dose exposure, including Cpt1c, Pdk4, Gdf15, and Eda2r, which are markers of senescence and fibrosis. Only three miRNAs were significantly dysregulated across all radiation doses: miRNA-142-3p and miRNA-142-5p were downregulated and miRNA-34a-5p was upregulated. IPA analysis predicted inhibition of several molecular pathways with increasing doses of radiation, including: T cell development, Quantity of leukocytes, Quantity of lymphocytes, and Cell viability. CONCLUSIONS These RNA biomarkers might be highly relevant in the development of treatments and in predicting normal tissue injury in patients undergoing radiation treatment. We are conducting further experiments in our laboratory, which includes a human lung-on-a-chip model, to develop a decision tree model using RNA biomarkers.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aman Shankardass
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin M K Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
58
|
Feng Y, Yuan P, Guo H, Gu L, Yang Z, Wang J, Zhu W, Zhang Q, Cao J, Wang L, Jiao Y. METTL3 Mediates Epithelial-Mesenchymal Transition by Modulating FOXO1 mRNA N 6 -Methyladenosine-Dependent YTHDF2 Binding: A Novel Mechanism of Radiation-Induced Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204784. [PMID: 37072646 PMCID: PMC10265050 DOI: 10.1002/advs.202204784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The biological roles of epithelial-mesenchymal transition (EMT) in the pathogenesis of radiation-induced lung injury (RILI) have been widely demonstrated, but the mechanisms involved have been incompletely elucidated. N6 -methyladenosine (m6 A) modification, the most abundant reversible methylation modification in eukaryotic mRNAs, plays vital roles in multiple biological processes. Whether and how m6 A modification participates in ionizing radiation (IR)-induced EMT and RILI remain unclear. Here, significantly increased m6 A levels upon IR-induced EMT are detected both in vivo and in vitro. Furthermore, upregulated methyltransferase-like 3 (METTL3) expression and downregulated α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5) expression are detected. In addition, blocking METTL3-mediated m6 A modification suppresses IR-induced EMT both in vivo and in vitro. Mechanistically, forkhead box O1 (FOXO1) is identified as a key target of METTL3 by a methylated RNA immunoprecipitation (MeRIP) assay. FOXO1 expression is downregulated by METTL3-mediated mRNA m6 A modification in a YTH-domain family 2 (YTHDF2)-dependent manner, which subsequently activates the AKT and ERK signaling pathways. Overall, the present study shows that IR-responsive METTL3 is involved in IR-induced EMT, probably by activating the AKT and ERK signaling pathways via YTHDF2-dependent FOXO1 m6 A modification, which may be a novel mechanism involved in the occurrence and development of RILI.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhou215123China
| | - Ping Yuan
- Department of Cardio‐Pulmonary CirculationShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200030China
| | - Hongjuan Guo
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhou215123China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhou215123China
| | - Zhao Yang
- Department of Respiratory MedicineSuzhou Science & Technology Town HospitalSuzhou215153China
| | - Jian Wang
- Department of Radiotherapythe Affiliated Jiangyin People's Hospital of Nantong UniversityJiangyin214400China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhou215123China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhou215123China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhou215123China
| | - Lili Wang
- Department of Radiotherapythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhou215123China
| |
Collapse
|
59
|
Groves AM, Misra R, Clair G, Hernady E, Olson H, Orton D, Finkelstein J, Marples B, Johnston CJ. Influence of the irradiated pulmonary microenvironment on macrophage and T cell dynamics. Radiother Oncol 2023; 183:109543. [PMID: 36813173 PMCID: PMC10238652 DOI: 10.1016/j.radonc.2023.109543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/29/2022] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The lung is sensitive to radiation, increasing normal tissue toxicity risks following radiation therapy. Adverse outcomes include pneumonitis and pulmonary fibrosis, which result from dysregulated intercellular communication within the pulmonary microenvironment. Although macrophages are implicated in these pathogenic outcomes, the impact of their microenvironment is not well understood. MATERIALS AND METHODS C57BL/6J mice received 6Gyx5 irradiation to the right lung. Macrophage and T cell dynamics were investigated in ipsilateral right lungs, contralateral left lungs and non-irradiated control lungs 4-26wk post exposure. Lungs were evaluated by flow cytometry, histology and proteomics. RESULTS Following uni-lung irradiation, focal regions of macrophage accumulation were noted in both lungs by 8wk, however by 26wk fibrotic lesions were observed only in ipsilateral lungs. Infiltrating and alveolar macrophages populations expanded in both lungs, however transitional CD11b + alveolar macrophages persisted only in ipsilateral lungs and expressed lower CD206. Concurrently, arginase-1 + macrophages accumulated in ipsilateral but not contralateral lungs at 8 and 26wk post exposure, while CD206 + macrophages were absent from these accumulations. While radiation expanded CD8 + T cells in both lungs, T regulatory cells only increased in ipsilateral lungs. Unbiased proteomics analysis of immune cells revealed a substantial number of differentially expressed proteins in ipsilateral lungs when compared to contralateral lungs and both differed from non-irradiated controls. CONCLUSIONS Pulmonary macrophage and T cell dynamics are impacted by the microenvironmental conditions that develop following radiation exposure, both locally and systemically. While macrophages and T cells infiltrate and expand in both lungs, they diverge phenotypically depending on their environment.
Collapse
Affiliation(s)
- Angela M Groves
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Ravi Misra
- Department of Pediatrics, Division of Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Heather Olson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Danny Orton
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jacob Finkelstein
- Department of Pediatrics, Division of Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Carl J Johnston
- Department of Pediatrics, Division of Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
60
|
Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother 2023; 162:114606. [PMID: 36989716 DOI: 10.1016/j.biopha.2023.114606] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.
Collapse
Affiliation(s)
- Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
61
|
Conroy LR, Clarke HA, Allison DB, Valenca SS, Sun Q, Hawkinson TR, Young LEA, Ferreira JE, Hammonds AV, Dunne JB, McDonald RJ, Absher KJ, Dong BE, Bruntz RC, Markussen KH, Juras JA, Alilain WJ, Liu J, Gentry MS, Angel PM, Waters CM, Sun RC. Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis. Nat Commun 2023; 14:2759. [PMID: 37179348 PMCID: PMC10182559 DOI: 10.1038/s41467-023-38437-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotation of matrix assisted laser desorption/ionization imaging datasets to assess tissue metabolic heterogeneity in human lung diseases. Using metabolic features identified from this pipeline, we hypothesize that metabolic channeling between glycogen and N-linked glycans is a critical metabolic process favoring pulmonary fibrosis progression. To test our hypothesis, we induced pulmonary fibrosis in two different mouse models with lysosomal glycogen utilization deficiency. Both mouse models displayed blunted N-linked glycan levels and nearly 90% reduction in endpoint fibrosis when compared to WT animals. Collectively, we provide conclusive evidence that lysosomal utilization of glycogen is required for pulmonary fibrosis progression. In summary, our study provides a roadmap to leverage spatial metabolomics to understand foundational biology in pulmonary diseases.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Derek B Allison
- Markey Cancer Center, Lexington, KY, 40536, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Samuel Santos Valenca
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Qi Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Juanita E Ferreira
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Autumn V Hammonds
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jaclyn B Dunne
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics at the Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robert J McDonald
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kimberly J Absher
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Brittany E Dong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Ronald C Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kia H Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jelena A Juras
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Warren J Alilain
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, Lexington, KY, 40536, USA
| | - Jinze Liu
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Matthew S Gentry
- Markey Cancer Center, Lexington, KY, 40536, USA
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA
| | - Peggi M Angel
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics at the Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christopher M Waters
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Markey Cancer Center, Lexington, KY, 40536, USA.
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
62
|
Niu L, Chu X, Yang X, Zhao H, Chen L, Deng F, Liang Z, Jing D, Zhou R. A multiomics approach-based prediction of radiation pneumonia in lung cancer patients: impact on survival outcome. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04827-7. [PMID: 37154927 DOI: 10.1007/s00432-023-04827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To predict the risk of radiation pneumonitis (RP), a multiomics model was built to stratify lung cancer patients. Our study also investigated the impact of RP on survival. METHODS This study retrospectively collected 100 RP and 99 matched non-RP lung cancer patients treated with radiotherapy from two independent centres. They were divided into training (n = 175) and validation cohorts (n = 24). The radiomics, dosiomics and clinical features were extracted from planning CT and electronic medical records and were analysed by LASSO Cox regression. A multiomics prediction model was developed by the optimal algorithm. Overall survival (OS) between the RP, non-RP, mild RP, and severe RP groups was analysed by the Kaplan‒Meier method. RESULTS Sixteen radiomics features, two dosiomics features, and one clinical feature were selected to build the best multiomics model. The optimal performance for predicting RP was the area under the receiver operating characteristic curve (AUC) of the testing set (0.94) and validation set (0.92). The RP patients were divided into mild (≤ 2 grade) and severe (> 2 grade) RP groups. The median OS was 31 months for the non-RP group compared with 49 months for the RP group (HR = 0.53, p = 0.0022). Among the RP subgroup, the median OS was 57 months for the mild RP group and 25 months for the severe RP group (HR = 3.72, p < 0.0001). CONCLUSIONS The multiomics model contributed to improving the accuracy of RP prediction. Compared with the non-RP patients, the RP patients displayed longer OS, especially the mild RP patients.
Collapse
Affiliation(s)
- Lishui Niu
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Xianghui Yang
- Department of Oncology, The Affiliated Changsha Central Hospital, Henyang Medical School, University of South China, Changsha, 410004, China
| | - Hongxiang Zhao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100000, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Fuxing Deng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Zhan Liang
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
63
|
Luo H, Liu X, Liu H, Wang Y, Xu K, Li J, Liu M, Guo J, Qin X. ACT001 Ameliorates ionizing radiation-induced lung injury by inhibiting NLRP3 inflammasome pathway. Biomed Pharmacother 2023; 163:114808. [PMID: 37146417 DOI: 10.1016/j.biopha.2023.114808] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Radiotherapy is a prevalent treatment modality for thoracic tumors; however, it can lead to radiation-induced lung injury (RILI), which currently lacks effective interventions. ACT001, a prodrug of micheliolide, has demonstrated promising clinical application potential, yet its impact on RILI requires further validation. This study aims to investigate the radioprotective effects of ACT001 on RILI and elucidate its underlying mechanism. Sprague-Dawley rats were utilized to induce RILI following 20 Gy X-ray chest irradiation, and lung tissue inflammation and fibrosis were assessed using hematoxylin and eosin (H&E) and Masson staining. Lung injury, inflammation, and oxidative stress markers were evaluated employing commercial kits. Pyroptosis-related differentially expressed genes (DEGs) were analyzed using a microarray dataset from the Gene Expression Omnibus (GEO) database, and their functions and hub genes were identified through protein-protein interaction networks. Pyroptosis-related genes were detected via RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. The results demonstrated that ACT001 ameliorated RILI, diminished pro-inflammatory cytokine release and fibrosis, and mitigated the activation of the NLRP3 inflammasome while inhibiting pyroptosis in lung tissue. In conclusion, our study reveals that ACT001 can suppress NLRP3 inflammasome-mediated pyroptosis and improve RILI, suggesting its potential as a novel protective agent for RILI.
Collapse
Affiliation(s)
- Hao Luo
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Xiaoming Liu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Huan Liu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Yong Wang
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China; School of Forensics, Shanxi Medical University, Taiyuan, China
| | - Kai Xu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Jianhua Li
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Mengya Liu
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China
| | - Jianshuang Guo
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
| | - Xiujun Qin
- Shanxi Provincial Key Laboratory of Drug Toxicology and Radiation Damage Drugs, Department of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan, China.
| |
Collapse
|
64
|
Prades-Sagarra È, Yaromina A, Dubois LJ. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers (Basel) 2023; 15:cancers15092412. [PMID: 37173877 PMCID: PMC10177176 DOI: 10.3390/cancers15092412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Radiotherapy is one of the standard treatment approaches used against thoracic cancers, occasionally combined with chemotherapy, immunotherapy and molecular targeted therapy. However, these cancers are often not highly sensitive to standard of care treatments, making the use of high dose radiotherapy necessary, which is linked with high rates of radiation-induced adverse effects in healthy tissues of the thorax. These tissues remain therefore dose-limiting factors in radiation oncology despite recent technological advances in treatment planning and delivery of irradiation. Polyphenols are metabolites found in plants that have been suggested to improve the therapeutic window by sensitizing the tumor to radiotherapy, while simultaneously protecting normal cells from therapy-induced damage by preventing DNA damage, as well as having anti-oxidant, anti-inflammatory or immunomodulatory properties. This review focuses on the radioprotective effect of polyphenols and the molecular mechanisms underlying these effects in the normal tissue, especially in the lung, heart and esophagus.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
65
|
Klett KC, Martin-Villa BC, Villarreal VS, Melemenidis S, Viswanathan V, Manjappa R, Ashraf MR, Soto L, Lau B, Dutt S, Rankin EB, Loo BW, Heilshorn SC. Human enteroids as a tool to study conventional and ultra-high dose rate radiation. Integr Biol (Camb) 2023; 15:zyad013. [PMID: 37874173 PMCID: PMC10594601 DOI: 10.1093/intbio/zyad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Radiation therapy, one of the most effective therapies to treat cancer, is highly toxic to healthy tissue. The delivery of radiation at ultra-high dose rates, FLASH radiation therapy (FLASH), has been shown to maintain therapeutic anti-tumor efficacy while sparing normal tissues compared to conventional dose rate irradiation (CONV). Though promising, these studies have been limited mainly to murine models. Here, we leveraged enteroids, three-dimensional cell clusters that mimic the intestine, to study human-specific tissue response to radiation. We observed enteroids have a greater colony growth potential following FLASH compared with CONV. In addition, the enteroids that reformed following FLASH more frequently exhibited proper intestinal polarity. While we did not observe differences in enteroid damage across groups, we did see distinct transcriptomic changes. Specifically, the FLASH enteroids upregulated the expression of genes associated with the WNT-family, cell-cell adhesion, and hypoxia response. These studies validate human enteroids as a model to investigate FLASH and provide further evidence supporting clinical study of this therapy. Insight Box Promising work has been done to demonstrate the potential of ultra-high dose rate radiation (FLASH) to ablate cancerous tissue, while preserving healthy tissue. While encouraging, these findings have been primarily observed using pre-clinical murine and traditional two-dimensional cell culture. This study validates the use of human enteroids as a tool to investigate human-specific tissue response to FLASH. Specifically, the work described demonstrates the ability of enteroids to recapitulate previous in vivo findings, while also providing a lens through which to probe cellular and molecular-level responses to FLASH. The human enteroids described herein offer a powerful model that can be used to probe the underlying mechanisms of FLASH in future studies.
Collapse
Affiliation(s)
- Katarina C Klett
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Victoria S Villarreal
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
66
|
Dai Y, Liang R, Wang J, Zhang J, Wu D, Zhao R, Liu Z, Chen F. Fractionated FLASH radiation in xenografted lung tumors induced FLASH effect at a split dose of 2 Gy. Int J Radiat Biol 2023; 99:1542-1549. [PMID: 36952604 DOI: 10.1080/09553002.2023.2194403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE To explore the minimum split dose of FLASH radiotherapy (FLASH). MATERIAL AND METHODS Lungs of nude mice were used to verify the capacity of normal tissue sparing of FLASH, while tumor-bearing nude mice were used to evaluate the curative power. Xenografted tumor models were established in Balb/c-nu mice using A549 cells at a concentration of 5 × 10 6 / 100 μ L . With the same total dose (20 Gy), the dose rate of FLASH was 200 Gy/s when conventional radiotherapy(CONV) was 0.033 Gy/s. Two schemes of FLASH irradiations were applied: single pulse (FLASH1) and ten pulses (FLASH10). Then, according to the different tissue types and irradiation schemes, mice were divided into eight groups: Control-T, CONV-T, FLASH1-T, FLASH10-T (T for tumor) and Control-L, CONV-L, FLASH1-L, FLASH10-L (L for lung). Evaluation of FLASH effect was based on the changes in tumor volume and pathological analysis of tumor and lung tissues before and after irradiation. RESULTS Compared to control group, the mean volume of tumors in nude mice increased slowly or decreased after irradiation with both FLASH and CONV (Control-T: 233.6± 55.19 mm3, CONV-T: 146.1± 50.62 mm3, FLASH1-T: 148± 18.83 mm3, FLASH10-T: 119.1± 50.62 mm3, p ≤ . 05) . Tumor cells of irradiated groups had similar degrees of dissolution damage and inflammation, while the acute radiation pneumonia induced by FLASH was less severe. The pulmonary pathology of FLASH1-L and FLASH10-L were similar, and only a few neutrophils were observed. In addition to inflammatory cells, slight thickening of alveolar septum and obvious interstitial hemorrhage were also observed in the CONV-L group. CONCLUSION The FLASH effect was successfully reproduced in both single and fractionated irradiation, with 2 Gy being the minimum split dose to achieve the FLASH effect in existing experiments. It is suggested that the transient oxygen depletion might not be the only mechanism behind the FLASH effect.
Collapse
Affiliation(s)
- Yuling Dai
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Runcheng Liang
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Jianxin Wang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Jing Zhang
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Ri Zhao
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Zhaoxing Liu
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Faguo Chen
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| |
Collapse
|
67
|
Katano A, Minamitani M, Nozawa Y, Yamashita H, Nakagawa K. Intractable Pleural Effusion After Stereotactic Ablative Radiotherapy for Early-Stage Lung Cancer. Cureus 2023; 15:e36925. [PMID: 37128529 PMCID: PMC10148733 DOI: 10.7759/cureus.36925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is an effective and attractive treatment option for patients who are poor surgical candidates. This case report describes a rare but serious complication of intractable pleural effusion after SABR for early-stage lung cancer. The patient was an 89-year-old woman with a medical history of early-stage breast cancer who was treated with partial resection and postoperative radiotherapy of 50 gray (Gy) in 25 fractions. SABR using 55 Gy in four fractions was conducted for lung lesions. The patient developed a pleural effusion that was refractory to conservative management and required multiple interventions, including repeated thoracentesis. This case report emphasizes the importance of monitoring and managing pleural effusion in patients with lung cancer receiving radiotherapy.
Collapse
|
68
|
Huang JW, Lin YH, Chang GC, Chen JJW. A novel tool to evaluate and quantify radiation pneumonitis: A retrospective analysis of correlation of dosimetric parameters with volume of pneumonia patch. Front Oncol 2023; 13:1130406. [PMID: 36994217 PMCID: PMC10040686 DOI: 10.3389/fonc.2023.1130406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn lung cancer, radiation-induced lung injury (RILI) or radiation pneumonitis (RP) are major concerns after radiotherapy. We investigated the correlation between volumes of RP lesions and their RP grades after radiotherapy.Methods and materialsWe retrospectively collected data from patients with non-small lung cancer that received curative doses to the thorax without undergoing chest radiotherapy before this treatment course. The post-treatment computed tomography (CT) image was used to register to the planning CT to evaluate the correlation between dosimetric parameters and volume of pneumonia patch by using deformable image registration.ResultsFrom January 1, 2019, to December 30, 2020, 71 patients with non-small cell lung cancer with 169 sets of CT images met our criteria for evaluation. In all patient groups, we found the RPv max and RP grade max to be significant (p<0.001). Some parameters that were related to the dose-volume histogram (DVH) and RP were lung Vx (x=1-66 Gy, percentage of lung volume received ≥x Gy), and mean lung dose. Comparing these parameters of the DVH with RP grade max showed that the mean lung dose and lung V1–V31 were significantly correlated. The cut-off point for the occurrence of symptoms in all patient groups, the RPv max value, was 4.79%, while the area under the curve was 0.779. In the groups with grades 1 and 2 RP, the dose curve of 26 Gy covered ≥80% of RP lesions in >80% of patients. Patients who had radiotherapy in combination with chemotherapy had significantly shorter locoregional progression-free survival (p=0.049) than patients who received radiation therapy in combination with target therapy. Patients with RPv max >4.79% demonstrated better OS (p=0.082).ConclusionThe percentage of RP lesion volume to total lung volume is a good indicator for quantifying RP. RP lesions can be projected onto the original radiation therapy plan using coverage of the 26 Gy isodose line to determine whether the lesion is RILI.
Collapse
Affiliation(s)
- Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Hui Lin
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Gee-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- *Correspondence: Gee-Chen Chang, ; Jeremy J. W. Chen,
| | - Jeremy J. W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Gee-Chen Chang, ; Jeremy J. W. Chen,
| |
Collapse
|
69
|
Zhang Z, Wang Z, Yan M, Yu J, Dekker A, Zhao L, Wee L. Radiomics and Dosiomics Signature From Whole Lung Predicts Radiation Pneumonitis: A Model Development Study With Prospective External Validation and Decision-curve Analysis. Int J Radiat Oncol Biol Phys 2023; 115:746-758. [PMID: 36031028 DOI: 10.1016/j.ijrobp.2022.08.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation pneumonitis (RP) is one of the common side effects of radiation therapy in the thoracic region. Radiomics and dosiomics quantify information implicit within medical images and radiation therapy dose distributions. In this study we demonstrate the prognostic potential of radiomics, dosiomics, and clinical features for RP prediction. METHODS AND MATERIALS Radiomics, dosiomics, dose-volume histogram (DVH) metrics, and clinical parameters were obtained on 314 retrospectively collected and 35 prospectively enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk score (R score) and dosiomics risk score (D score), as well as a DVH-score, were calculated based on logistic regression after feature selection. Six models were built using different combinations of R score, D score, DVH score, and clinical parameters to evaluate their added prognostic power. Overoptimism was evaluated by bootstrap resampling from the training set, and the prospectively collected cohort was used as the external test set. Model calibration and decision-curve characteristics of the best-performing models were evaluated. For ease of further evaluation, nomograms were constructed for selected models. RESULTS A model built by integrating all of the R score, D score, and clinical parameters had the best discriminative ability with areas under the curve of 0.793 (95% confidence interval [CI], 0.735-0.851), 0.774 (95% CI, 0.762-0.786), and 0.855 (95% CI, 0.719-0.990) in the training, bootstrapping, and external test sets, respectively. The calibration curve image showed good agreement between the predicted and actual values, with a slope of 1.21 and intercept of -0.04. The decision curve image showed a positive net benefit for the final model based on the nomogram. CONCLUSIONS Radiomic and dosiomic features have the potential to assist with the prediction of RP, and the combination of radiomics, dosiomics, and clinical parameters led to the best prognostic model in the present study.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Zhixiang Wang
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Meng Yan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Andre Dekker
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Leonard Wee
- Department of Radiation Oncology, MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
70
|
Shi LL, Yang JH, Yao HF. Multiple regression analysis of risk factors related to radiation pneumonitis. World J Clin Cases 2023; 11:1040-1048. [PMID: 36874419 PMCID: PMC9979302 DOI: 10.12998/wjcc.v11.i5.1040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Radiation pneumonitis (RP) is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis, and negatively affects patients’ quality of life.
AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.
METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital (Huzhou, Zhejiang Province, China) from January 2018 to February 2021, and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not. Among them, 93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group. General characteristics, and radiation and imaging examination data of the two groups were collected and compared. Due to the statistical significance observed, multiple regression analysis was performed on age, tumor type, chemotherapy history, forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), carbon monoxide diffusion volume (DLCO), FEV1/FVC ratio, planned target area (PTV), mean lung dose (MLD), total number of radiation fields, percentage of lung tissue in total lung volume (vdose), probability of normal tissue complications (NTCP), and other factors.
RESULTS The proportions of patients aged ≥ 60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group (P < 0.05); FEV1, DLCO, and FEV1/FVC ratio in the study group were lower than those in the control group (P < 0.05), while PTV, MLD, total field number, vdose, and NTCP were higher than in the control group (P < 0.05). Logistic regression analysis showed that age, lung cancer diagnosis, chemotherapy history, FEV1, FEV1/FVC ratio, PTV, MLD, total number of radiation fields, vdose, and NTCP were risk factors for radiation pneumonitis.
CONCLUSION We have identified patient age, type of lung cancer, history of chemotherapy, lung function, and radiotherapy parameters as risk factors for radiation pneumonitis. Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis.
Collapse
Affiliation(s)
- Ling-Ling Shi
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Jiang-Hua Yang
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Hong-Fa Yao
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
71
|
Grassi F, Granata V, Fusco R, De Muzio F, Cutolo C, Gabelloni M, Borgheresi A, Danti G, Picone C, Giovagnoni A, Miele V, Gandolfo N, Barile A, Nardone V, Grassi R. Radiation Recall Pneumonitis: The Open Challenge in Differential Diagnosis of Pneumonia Induced by Oncological Treatments. J Clin Med 2023; 12:jcm12041442. [PMID: 36835977 PMCID: PMC9964719 DOI: 10.3390/jcm12041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The treatment of primary and secondary lung neoplasms now sees the fundamental role of radiotherapy, associated with surgery and systemic therapies. The improvement in survival outcomes has also increased attention to the quality of life, treatment compliance and the management of side effects. The role of imaging is not only limited to recognizing the efficacy of treatment but also to identifying, as soon as possible, the uncommon effects, especially when more treatments, such as chemotherapy, immunotherapy and radiotherapy, are associated. Radiation recall pneumonitis is an uncommon treatment complication that should be correctly characterized, and it is essential to recognize the mechanisms of radiation recall pneumonitis pathogenesis and diagnostic features in order to promptly identify them and adopt the best therapeutic strategy, with the shortest possible withdrawal of the current oncological drug. In this setting, artificial intelligence could have a critical role, although a larger patient data set is required.
Collapse
Affiliation(s)
- Francesca Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
- Correspondence:
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80015 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Carmine Picone
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Valerio Nardone
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80127 Naples, Italy
| |
Collapse
|
72
|
Drishya S, Dhanisha SS, Raghukumar P, Guruvayoorappan C. Amomum subulatum mitigates experimental thoracic radiation-induced lung injury by regulating antioxidant status and inflammatory responses. Food Funct 2023; 14:1545-1559. [PMID: 36655677 DOI: 10.1039/d2fo03208b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radiation-induced lung injury (RILI) is one of the most prominent complications of thoracic radiotherapy for which effective therapy is still lacking. This study investigates the nutraceutical potential of the culinary spice Amomum subulatum in mitigating thoracic radiation-induced pneumonitis (RP) and pulmonary fibrosis (PF). Mouse models of RP and PF were established by whole thorax irradiation at a dose of 25 gray. C57BL/6 mice were administered with 250 mg per kg body weight of methanolic extract of A. subulatum dry fruits (MEAS) for four consecutive weeks and observed for changes in lung tissue antioxidant activities, oxidative stress parameters, and expression of antioxidant, inflammation, and fibrosis-related genes by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR analysis, and histology analysis. MEAS administration reduced radiation-induced oxidative stress by enhancing the expression of Nrf2 and its target genes. Irradiation increased gene expression of inflammatory mediators and lung histology further confirmed the characteristics of RP, which were reduced by MEAS treatment. Immunohistochemistry analysis revealed the potential of MEAS in reducing the radiation-induced elevation of cyclooxygenase 2 expression in the lungs. The late sequel of RILI was manifested as PF, characterized by the elevated expression of pro-fibrotic genes and increased collagen content. However, MEAS administration markedly reduced radiation-induced fibrotic changes in the lungs. These effects might be attributed to the synergistic effect of bioactive polyphenols in MEAS with antioxidant, anti-inflammatory, and anti-fibrotic efficacies. Taken together, this study demonstrates the potential of MEAS in mitigating RILI, suggesting the possible nutraceutical application of A. subulatum against radiation toxicities.
Collapse
Affiliation(s)
- Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011 (Research Centre, University of Kerala), Kerala, India.
| | - Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011 (Research Centre, University of Kerala), Kerala, India.
| | - Paramu Raghukumar
- Division of Radiation Physics, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011 (Research Centre, University of Kerala), Kerala, India.
| |
Collapse
|
73
|
Chen P, Liu H, Xin H, Cheng B, Sun C, Liu Y, Liu T, Wen Z, Cheng Y. Inhibiting the Cytosolic Phospholipase A2-Arachidonic Acid Pathway With Arachidonyl Trifluoromethyl Ketone Attenuates Radiation-Induced Lung Fibrosis. Int J Radiat Oncol Biol Phys 2023; 115:476-489. [PMID: 35450754 DOI: 10.1016/j.ijrobp.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Radiation-induced lung fibrosis (RILF) is a serious late complication of thoracic radiation therapy. Inflammation is crucial in fibroblast activation and RILF, and arachidonic acid (AA) is an important inflammatory mediator released by cytosolic phospholipase A2 (cPLA2) and reduced by arachidonyl trifluoromethyl ketone (ATK)-targeting of cPLA2. Here, we aimed to investigate the roles of the cPLA2/AA pathway in RILF and assess the potential of targeting cPLA2 to prevent RILF. METHODS AND MATERIALS A computed tomography scan was used to obtain the mean lung density, and hematoxylin-eosin, Masson's trichrome, and Sirius Red staining were used to assess the histopathologic conditions in mouse models. AA levels in mouse serum and cell supernatants were tested by enzyme-linked immunosorbent assay. Fibroblast phenotype alterations were examined by a Cell Counting Kit-8, manual cell counting, and a Transwell system. The protein levels were evaluated via Western blotting, immunofluorescence, and immunohistochemistry. RESULTS AA protected fibroblasts against radiation-induced growth inhibition and promoted fibroblast activation, which was characterized by enhanced α-smooth muscle actin expression and migration capacity. Radiation could activate fibroblasts by upregulating cPLA2 expression and AA production, which could be reversed by ATK. Moreover, inhibiting cPLA2 with ATK significantly attenuated collagen deposition and radiation-induced pulmonary fibrosis in mouse models. We further identified extracellular-signal regulated protein kinase (ERK) as the downstream target of the radiation-AA regulatory axis. Radiation-induced AA increased phosphorylated-ERK levels, promoting cyclinD1, cyclin-dependent kinase 6, and α-smooth muscle actin expression and contributing to fibroblast activation. Inhibiting P-ERK impaired radiation- and AA-induced fibroblast activation. The related molecular mechanisms were verified using specimens from animal models. CONCLUSIONS Our findings uncover the role of the cPLA2/AA-ERK regulatory axis in response to radiation in pulmonary fibroblast activation and recognize cPLA2 as the key regulatory molecule during RILF for the first time. Targeting cPLA2 may be a promising protective strategy against RILF.
Collapse
Affiliation(s)
- Pengxiang Chen
- Department of Radiation Oncology; Laboratory of Basic Medical Sciences
| | - Hui Liu
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | | | - Bo Cheng
- Shandong Cancer Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Changhua Sun
- Shandong Institute for Food and Drug Control, Jinan, People's Republic of China
| | | | | | | | | |
Collapse
|
74
|
Aguado-Barrera ME, Sosa-Fajardo P, Gómez-Caamaño A, Taboada-Valladares B, Couñago F, López-Guerra JL, Vega A. Radiogenomics in lung cancer: Where are we? Lung Cancer 2023; 176:56-74. [PMID: 36621035 DOI: 10.1016/j.lungcan.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Miguel E Aguado-Barrera
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain
| | - Paloma Sosa-Fajardo
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Antonio Gómez-Caamaño
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Begoña Taboada-Valladares
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, C. del Maestro Ángel Llorca 8, 28003, Madrid, Spain
| | - José Luis López-Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), C. Antonio Maura Montaner s/n, 41013, Seville, Spain
| | - Ana Vega
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
75
|
Kim KH, Pyo H, Lee H, Oh D, Noh JM, Ahn YC, Kim CG, Yoon HI, Lee J, Park S, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ku BM, Shin EC, Ahn MJ. Association of T Cell Senescence with Radiation Pneumonitis in Patients with Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:464-475. [PMID: 35896144 DOI: 10.1016/j.ijrobp.2022.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Associations between immunosenescence and radiation pneumonitis (RP) are largely unknown. We aimed to identify a peripheral blood T cell senescence biomarker to predict RP in patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Patients with locally advanced NSCLC who received definitive concurrent chemoradiotherapy (dCRT) were prospectively registered (cohort 1, n=23; cohort 2, n=31). Peripheral blood was collected at baseline, during dCRT, and at 1 month post-dCRT. Patients were dichotomized to grade ≥2 (G2+) RP and grade 0-1 (G0-1) RP. Flow cytometry was performed to assess phenotypes and functional properties of T cell subsets. RP incidence was estimated via competing risk analysis. RESULTS Five and six patients exhibited G2+ RP following dCRT in cohorts 1 and 2, respectively. Patients with G2+ RP exhibited a more aged T cell pool and higher frequencies of senescent CD57+CD28-CD8+ T cells than patients with G0-1 RP at baseline, during dCRT, and at 1 month post-dCRT. These senescent cells exhibited increased granzyme B, IFN-γ, and TNF-α production. Higher baseline frequency of CD57+CD28-CD8+ T cells was an independent predictor of G2+ RP (hazard ratio, 8.42; 95% confidence interval, 2.58-27.45; P<0.001). Recursive partitioning analysis revealed three distinct risk groups stratified by baseline CD57+CD28-CD8+ T cell frequency and lung V20 Gy, with 1-year cumulative G2+ RP incidences of 50.0%, 16.7%, and 0% for high-, intermediate-, and low-risk groups, respectively (P=0.002). CONCLUSIONS Higher baseline frequencies of CD57+CD28-CD8+ T cells correlated with increased G2+ RP risks. Our results suggest the need for further investigation of the role of T cell senescence on radiation-induced organ damage.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
76
|
Identification of S100A9 as a Potential Inflammation-Related Biomarker for Radiation-Induced Lung Injury. J Clin Med 2023; 12:jcm12030733. [PMID: 36769382 PMCID: PMC9917937 DOI: 10.3390/jcm12030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Radiation-induced lung injury (RILI), a potentially fatal and dose-limiting complication of radiotherapy for thoracic tumors, is divided into early reversible pneumonitis and irreversible advanced-stage fibrosis. Early detection and intervention contribute to improving clinical outcomes of patients. However, there is still a lack of reliable biomarkers for early prediction and clinical diagnosis of RILI. Given the central role of inflammation in the initiation and progression of RILI, we explored specific inflammation-related biomarkers during the development of RILI in this study. Two expression profiles from the Gene Expression Omnibus (GEO) database were downloaded, in which 75 differentially expressed genes (DEGs) were screened out. Combining Gene Oncology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network analysis, we identified four inflammation-related hub genes in the progression of RILI-MMP9, IL-1β, CCR1 and S100A9. The expression levels of the hub genes were verified in RILI mouse models, with S100A9 showing the highest level of overexpression. The level of S100A9 in bronchoalveolar lavage fluid (BALF) and the expression of S100A9 in lung tissues were positively correlated with the degree of inflammation in RILI. The results above indicate that S100A9 is a potential biomarker for the early prediction and diagnosis of the development of RILI.
Collapse
|
77
|
Yan Y, Wu L, Li X, Zhao L, Xu Y. Immunomodulatory role of azithromycin: Potential applications to radiation-induced lung injury. Front Oncol 2023; 13:966060. [PMID: 36969016 PMCID: PMC10030824 DOI: 10.3389/fonc.2023.966060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Radiation-induced lung injury (RILI) including radiation-induced pneumonitis and radiation-induced pulmonary fibrosis is a side effect of radiotherapy for thoracic tumors. Azithromycin is a macrolide with immunomodulatory properties and anti-inflammatory effects. The immunopathology of RILI that results from irradiation is robust pro-inflammatory responses with high levels of chemokine and cytokine expression. In some patients, pulmonary interstitial fibrosis results usually due to an overactive immune response. Growing clinical studies recently proposed that the anti-inflammatory and immunomodulatory effects of azithromycin may benefit patients with acute lung injury. It has been shown potential benefits for patients with RILI in preclinical studies. Azithromycin has a variety of immunomodulatory effect to improve the process of disease, including inhibition of pro-inflammatory cytokines production participating in the regulatory function of macrophages, changes in autophagy, and inhibition of neutrophil influx. We review the published evidence of mechanisms of azithromycin, and focus on the potential effect of azithromycin on the immune response to RILI.
Collapse
Affiliation(s)
- Yujie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| |
Collapse
|
78
|
Rao X, Zhou D, Deng H, Chen Y, Wang J, Zhou X, Jie X, Xu Y, Wu Z, Wang G, Dong X, Zhang S, Meng R, Wu C, Xing S, Fan K, Wu G, Zhou R. Activation of NLRP3 inflammasome in lung epithelial cells triggers radiation-induced lung injury. Respir Res 2023; 24:25. [PMID: 36694200 PMCID: PMC9872296 DOI: 10.1186/s12931-023-02331-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is the most common and serious complication of chest radiotherapy. However, reported radioprotective agents usually lead to radiation resistance in tumor cells. The key to solving this problem is to distinguish between the response of tumor cells and normal lung epithelial cells to radiation damage. METHODS RNA-Seq was used to recognize potential target of alleviating the progression of RILI as well as inhibiting tumor growth. The activation of NLRP3 inflammasome in lung epithelial cells was screened by qRT-PCR, western blotting, immunofluorescence, and ELISA. An in vivo model of RILI and in vitro conditioned culture model were constructed to evaluate the effect of NLRP3/interleukin-1β on fibroblasts activation. ROS, ATP, and (NADP)+/NADP(H) level in lung epithelial cells was detected to explore the mechanism of NLRP3 inflammasome activation. The lung macrophages of the mice were deleted to evaluate the role of lung epithelial cells in RILI. Moreover, primary cells were extracted to validate the results obtained from cell lines. RESULTS NLRP3 activation in epithelial cells after radiation depends on glycolysis-related reactive oxygen species accumulation. DPYSL4 is activated and acts as a negative regulator of this process. The NLRP3 inflammasome triggers interleukin-1β secretion, which directly affects fibroblast activation, proliferation, and migration, eventually leading to lung fibrosis. CONCLUSIONS Our study suggests that NLRP3 inflammasome activation in lung epithelial cells is essential for radiation-induced lung injury. These data strongly indicate that targeting NLRP3 may be effective in reducing radiation-induced lung injury in clinical settings.
Collapse
Affiliation(s)
- Xinrui Rao
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dong Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huilin Deng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yunshang Chen
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jian Wang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaoshu Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaohua Jie
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yingzhuo Xu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zilong Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Geng Wang
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaorong Dong
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Sheng Zhang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Meng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Chuangyan Wu
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shijie Xing
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Fan
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Gang Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
79
|
Predictors of high-grade radiation pneumonitis following radiochemotherapy for locally advanced non-small cell lung cancer: analysis of clinical, radiographic and radiotherapy-related factors. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
Purpose:
In this study, the relation between radiation pneumonitis (RP) and a wide spectrum of clinical, radiographic and treatment-related factors was investigated. As scoring of low-grade RP can be subjective, RP grade ≥3 (RP ≥ G3) was chosen as a more objective and clinically significant endpoint for this study.
Methods and Materials:
105 consecutive patients with locally advanced non-small cell lung cancer underwent conventionally fractionated radio-(chemo-)therapy to a median dose of 64 Gy. A retrospective analysis of 25 clinical (gender, race, pulmonary function, diabetes, statin use, smoking history), radiographic (emphysema, interstitial lung disease) and radiotherapy dose- and technique-related factors was performed to identify predictors of RP ≥ G3. Following testing of all variables for statistical association with RP using univariate analysis (UVA), a forward selection algorithm was implemented for building a multivariate predictive model (MVA) with limited sample size.
Results:
Median follow-up of surviving patients was 33 months (9–132 months). RP ≥ G3 was diagnosed in 10/105 (9·5%) patients. Median survival was 28·5 months. On UVA, predictors for RP ≥ G3 were diabetes, lower lobe location, planning target volume, volumetric modulated arc therapy (VMAT), lung V5 Gy (%), lung Vspared5 Gy (mL), lung V20 Gy (%) and heart V5 Gy (% and mL). On MVA, VMAT was the only significant predictor for RP ≥ G3 (p = 0·042). Lung V5 Gy and lung V20 Gy were borderline significant for RP ≥ G3. Patients with RP ≥ 3 had a median survival of 10 months compared to 29·5 months with RP < G3 (p = 0·02).
Conclusions:
In this study, VMAT was the only factor that was significantly correlated with RP ≥ G3. Avoiding RP ≥ G3 is important as a toxicity per se and as a risk factor for poor survival. To reduce RP, caution needs to be taken to reduce low-dose lung volumes in addition to other well-established dose constraints.
Collapse
|
80
|
Mukai-Sasaki Y, Liao Z, Yang D, Inoue T. Modulators of radiation-induced cardiopulmonary toxicities for non-small cell lung cancer: Integrated cytokines, single nucleotide variants, and HBP systems imaging. Front Oncol 2022; 12:984364. [PMID: 36591530 PMCID: PMC9797663 DOI: 10.3389/fonc.2022.984364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation therapy (RT)-induced cardiopulmonary toxicities remain dose-limiting toxicities for patients receiving radiation dosages to the thorax, especially for lung cancer. Means of monitoring and predicting for those receiving RT or concurrent chemoradiation therapy before treatment begins in individual patients could benefit early intervention to prevent or minimize RT-induced side effects. Another aspect of an individual's susceptibility to the adverse effects of thoracic irradiation is the immune system as reflected by phenotypic factors (patterns of cytokine expressions), genotypic factors (single nucleotide variants SNVs; formerly single nucleotide polymorphisms [SNPs]), and aspects of quantitative cellular imaging. Levels of transcription, production, and functional activity of cytokines are often influenced by SNVs that affect coding regions in the promoter or regulatory regions of cytokine genes. SNVs can also lead to changes in the expression of the inflammatory cytokines, interferons, interleukins (IL-6, IL-17) and tumor necrosis factors (TNF-α) at the protein level. RT-induced cardiopulmonary toxicities could be quantified by the uptake of 18F-fluorodeoxyglucose (FDG), however, FDG is a sensitive but not specific biomarker in differential diagnosis between inflammation/infection and tumor recurrence. FDG is suitable for initial diagnosis of predisposed tissue injuries in non-small cell lung cancer (NSCLC). 99mTc-ethylenedicysteine-glucosamine (99mTc-EC-G) was able to measure tumor DNA proliferation and myocardial ischemia via hexosamine biosynthetic pathways (HBP). Thus, 99mTc-EC-G could be an alternative to FDG in the assessment of RT doses and select patients in HBP-directed targets for optimal outcomes. This article reviewed correlative analyses of pro-inflammatory cytokines, genotype SNVs, and cellular imaging to improve the diagnosis, prognosis, monitoring, and prediction of RT-induced cardiopulmonary toxicities in NSCLC.
Collapse
Affiliation(s)
- Yuki Mukai-Sasaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan,*Correspondence: Yuki Mukai-Sasaki,
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
81
|
Guo X, Du L, Ma N, Zhang P, Wang Y, Han Y, Huang X, Zhang Q, Tan X, Lei X, Qu B. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J Transl Med 2022; 20:597. [DOI: 10.1186/s12967-022-03804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Radiation-induced lung injury (RILI) often occurs during clinical chest radiotherapy and acute irradiation from accidental nuclear leakage. This study explored the role of monophosphoryl lipid A (MPLA) in RILI.
Materials and Methods
The entire thoracic cavity of C57BL/6N mice was irradiated at 20 Gy with or without pre-intragastric administration of MPLA. HE staining, Masson trichrome staining, and TUNEL assay were used to assess lung tissue injury after treatment. The effect of irradiation on the proliferation of MLE-12 cells was analyzed using the Clonogenic assay. The effect of MPLA on the apoptosis of MLE-12 cells was analyzed using flow cytometry. Expression of γ-H2AX and epithelial-mesenchymal transition (EMT) markers in MLE-12 cells was detected by immunofluorescence and Western blot, respectively.
Results
MPLA attenuated early pneumonitis and late pulmonary fibrosis after thoracic irradiation and reversed radiation-induced EMT in C57 mice. MPLA further promoted proliferation and inhibited apoptosis of irradiated MLE-12 cells in vitro. Mechanistically, the radioprotective effect of MPLA was mediated by exosomes secreted by stimulated macrophages. Macrophage-derived exosomes modulated DNA damage in MLE-12 cells after irradiation. MPLA promoted the polarization of RAW 264.7 cells to the M1 phenotype. The exosomes secreted by M1 macrophages suppressed EMT in MLE-12 cells after irradiation.
Conclusion
MPLA is a novel treatment strategy for RILI. Exosomes derived from macrophages are key to the radioprotective role of MPLA in RILI.
Collapse
|
82
|
Hou G, Li J, Liu W, Wei J, Xin Y, Jiang X. Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol 2022; 10:1100305. [PMID: 36578783 PMCID: PMC9790971 DOI: 10.3389/fcell.2022.1100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is an effective treatment option for multiple thoracic malignant tumors, including lung cancers, thymic cancers, and tracheal cancers. Radiation-induced lung injury (RILI) is a serious complication of radiotherapy. Radiation causes damage to the pulmonary cells and tissues. Multiple factors contribute to the progression of Radiation-induced lung injury, including genetic alterations, oxidative stress, and inflammatory responses. Especially, radiation sources contribute to oxidative stress occurrence by direct excitation and ionization of water molecules, which leads to the decomposition of water molecules and the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS). Subsequently, reactive oxygen species and reactive nitrogen species overproduction can induce oxidative DNA damage. Immune cells and multiple signaling molecules play a major role in the entire process. Mesenchymal stem cells (MSCs) are pluripotent stem cells with multiple differentiation potentials, which are under investigation to treat radiation-induced lung injury. Mesenchymal stem cells can protect normal pulmonary cells from injury by targeting multiple signaling molecules to regulate immune cells and to control balance between antioxidants and prooxidants, thereby inhibiting inflammation and fibrosis. Genetically modified mesenchymal stem cells can improve the natural function of mesenchymal stem cells, including cellular survival, tissue regeneration, and homing. These reprogrammed mesenchymal stem cells can produce the desired products, including cytokines, receptors, and enzymes, which can contribute to further advances in the therapeutic application of mesenchymal stem cells. Here, we review the molecular mechanisms of radiation-induced lung injury and discuss the potential of Mesenchymal stem cells for the prevention and treatment of radiation-induced lung injury. Clarification of these key issues will make mesenchymal stem cells a more fantastic novel therapeutic strategy for radiation-induced lung injury in clinics, and the readers can have a comprehensive understanding in this fields.
Collapse
Affiliation(s)
- Guowen Hou
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
83
|
Xu C, Shang Z, Najafi M. Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms. Curr Drug Targets 2022; 23:1505-1525. [PMID: 36082868 DOI: 10.2174/1389450123666220907144131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.
Collapse
Affiliation(s)
- Chaofeng Xu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Zhongtu Shang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
84
|
Xu Y, Abdelghany L, Sekiya R, Zhai D, Jingu K, Li TS. Optimization on the dose and time of nicaraven administration for mitigating the side effects of radiotherapy in a preclinical tumor-bearing mouse model. Ther Adv Respir Dis 2022; 16:17534666221137277. [PMID: 36404753 PMCID: PMC9677297 DOI: 10.1177/17534666221137277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Radiation-induced lung injury (RILI) is one of the serious complications of radiotherapy. We have recently demonstrated that nicaraven can effectively mitigate RILI in healthy mice. Here, we further tried to optimize the dose and time of nicaraven administration for alleviating the side effects of radiotherapy in tumor-bearing mice. METHODS AND RESULTS A subcutaneous tumor model was established in the back of the chest in C57BL/6N mice by injecting Lewis lung cancer cells. Therapeutic thoracic irradiations were done, and placebo or different doses of nicaraven (20, 50, 100 mg/kg) were administrated intraperitoneally pre-irradiation (at almost 5-10 min before irradiation) or post-irradiation (within 5 min after irradiation). Mice that received radiotherapy and nicaraven were sacrificed on the 30th day, but control mice were sacrificed on the 15th day. Serum and lung tissues were collected for evaluation. Nicaraven significantly decreased the level of CCL8, but did not clearly change the levels of 8-OHdG, TGF-β, IL-1β, and IL-6 in serum. Besides these, nicaraven effectively decreased the levels of TGF-β, IL-1β, and SOD2 in the lungs, especially by post-irradiation administration with the dose of 20 mg/kg. Although there was no significant difference, the expression of SOD1, 53BP1, and caspase 3 was detected lower in the lungs of mice received nicaraven post-irradiation than that of pre-irradiation. CONCLUSION According to our data, the administration of nicaraven at a relatively low dose soon after radiotherapy will be recommended for attenuating the side effects of radiotherapy.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb
Disease Institute, Nagasaki University, Nagasaki, Japan,Department of Stem Cell Biology, Graduate
School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate
School of Medicine, Tohoku University, Sendai, Japan
| | | |
Collapse
|
85
|
Cogno N, Bauer R, Durante M. An Agent-Based Model of Radiation-Induced Lung Fibrosis. Int J Mol Sci 2022; 23:13920. [PMID: 36430398 PMCID: PMC9693125 DOI: 10.3390/ijms232213920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Early- and late-phase radiation-induced lung injuries, namely pneumonitis and lung fibrosis (RILF), severely constrain the maximum dose and irradiated volume in thoracic radiotherapy. As the most radiosensitive targets, epithelial cells respond to radiation either by undergoing apoptosis or switching to a senescent phenotype that triggers the immune system and damages surrounding healthy cells. Unresolved inflammation stimulates mesenchymal cells' proliferation and extracellular matrix (ECM) secretion, which irreversibly stiffens the alveolar walls and leads to respiratory failure. Although a thorough understanding is lacking, RILF and idiopathic pulmonary fibrosis share multiple pathways and would mutually benefit from further insights into disease progression. Furthermore, current normal tissue complication probability (NTCP) models rely on clinical experience to set tolerance doses for organs at risk and leave aside mechanistic interpretations of the undergoing processes. To these aims, we implemented a 3D agent-based model (ABM) of an alveolar duct that simulates cell dynamics and substance diffusion following radiation injury. Emphasis was placed on cell repopulation, senescent clearance, and intra/inter-alveolar bystander senescence while tracking ECM deposition. Our ABM successfully replicates early and late fibrotic response patterns reported in the literature along with the ECM sigmoidal dose-response curve. Moreover, surrogate measures of RILF severity via a custom indicator show qualitative agreement with published fibrosis indices. Finally, our ABM provides a fully mechanistic alveolar survival curve highlighting the need to include bystander damage in lung NTCP models.
Collapse
Affiliation(s)
- Nicolò Cogno
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
86
|
Zhou P, Wang R, Yu H, Liao Z, Zhang Y, Huang Z, Zhang S. 4DCT ventilation function image-based functional lung protection for esophageal cancer radiotherapy. Strahlenther Onkol 2022; 199:445-455. [PMID: 36331584 DOI: 10.1007/s00066-022-02012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND 4DCT (four-dimensional computed tomography) can effectively obtain functional lung ventilation images for patients and integrate them into radiotherapy treatment planning. Studies have not been performed on esophageal cancer, and there is no clear consensus on the optimal functional lung threshold for functional lung. METHODS Functional lung images were generated for 11 patients with esophageal cancer. The correlation between the dose-volume parameters of functional lung (FL) as defined by different thresholds and the change of PFT/PDFT (pulmonary [diffusion] function test) metrics before and after radiotherapy were evaluated. FL-sparing planning was generated for each patient to preserve the functional lung and compared to conventional anatomical CT (non-sparing) planning. RESULTS There was a significant positive correlation between the FL0.8 (defined Jacobian value ≤ 0.8), FL0.84, and FL0.9 dose-volume parameters and ΔFEV1/FVC (reduction before and after radiotherapy), and the FL0.8‑V30 correlation was the strongest (r = 0.819, P < 0.01). The FL-sparing planning had a target area conformity index and homogeneity index comparable to the non-sparing planning (P > 0.05). For FL, the FL-sparing planning achieved lower FL-MLD (6.30 ± 2.14 Gy vs. 7.83 ± 2.70 Gy), V10 (17.13 ± 7.70% vs. 27.40 ± 9.48%), and V20 (6.96 ± 3.85% vs. 11.63 ± 7.19%) compared to the non-sparing planning (P < 0.05), while heart and spinal cord doses were not significantly different between the two planning groups. CONCLUSION The 4DCT-based FL irradiation dose for esophageal cancer was significantly associated with a decrease in FEV1/FVC. The optimal FL defined as a Jacobian value ≤ 0.8 or about 21% of the whole lung volume may be a good choice. FL-sparing planning significantly reduced the FL dose without compromising target area coverage.
Collapse
Affiliation(s)
- Pixiao Zhou
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ruihao Wang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui Yu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Liao
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zouqin Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Shuxu Zhang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
87
|
陈 迪, 肖 要, 钟 铠. [Risk Factors and Pathogenic Mechanism for Secondary Primary Lung Cancer
in Breast Cancer Patients: A Review]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:750-755. [PMID: 36167461 PMCID: PMC9619345 DOI: 10.3779/j.issn.1009-3419.2022.101.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023]
Abstract
Breast cancer and lung cancer are the two most common malignancies in China. With the continuous improvement of breast cancer diagnosis and treatment technology, the survival time of breast cancer patients has been prolonged, and the number of breast cancer patients with second primary lung cancer (SPLC) has increased. In addition, breast cancer is the most common primary cancer in female patients with SPLC, and SPLC is the main cause of death in this population. More and more physicians pay attention to this clinical phenomenon. This paper summarized the risk and risk factors of SPLC in breast cancer patients, and elaborated its pathogenesis, in order to provide a theoretical basis for the clinical management of breast cancer patients and achieve accurate early intervention as soon as possible.
.
Collapse
Affiliation(s)
- 迪 陈
- 272000 济宁,济宁医学院临床医学院Clinical College of Jining Medical University, Jining 272000, China
| | - 要来 肖
- 272000 济宁,济宁市第一人民医院呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, Jining No.1 People's Hospital, Jining 272000, China
| | - 铠泽 钟
- 272000 济宁,济宁市第一人民医院胸外科Department of Thoracic Surgery, Jining No.1 People's Hospital, Jining 272000, China
| |
Collapse
|
88
|
Guan S, Tustison N, Qing K, Shim YM, Mugler J, Altes T, Albon D, Froh D, Mehrad B, Patrie J, Ropp A, Miller B, Nehrbas J, Mata J. 3D Single-Breath Chemical Shift Imaging Hyperpolarized Xe-129 MRI of Healthy, CF, IPF, and COPD Subjects. Tomography 2022; 8:2574-2587. [PMID: 36287814 PMCID: PMC9607398 DOI: 10.3390/tomography8050215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
3D Single-breath Chemical Shift Imaging (3D-SBCSI) is a hybrid MR-spectroscopic imaging modality that uses hyperpolarized xenon-129 gas (Xe-129) to differentiate lung diseases by probing functional characteristics. This study tests the efficacy of 3D-SBCSI in differentiating physiology among pulmonary diseases. A total of 45 subjects-16 healthy, 11 idiopathic pulmonary fibrosis (IPF), 13 cystic fibrosis (CF), and 5 chronic obstructive pulmonary disease (COPD)-were given 1/3 forced vital capacity (FVC) of hyperpolarized Xe-129, inhaled for a ~7 s MRI acquisition. Proton, Xe-129 ventilation, and 3D-SBCSI images were acquired with separate breath-holds using a radiofrequency chest coil tuned to Xe-129. The Xe-129 spectrum was analyzed in each lung voxel for ratios of spectroscopic peaks, chemical shifts, and T2* relaxation. CF and COPD subjects had significantly more ventilation defects than IPF and healthy subjects, which correlated with FEV1 predicted (R = -0.74). FEV1 predicted correlated well with RBC/Gas ratio (R = 0.67). COPD and IPF had significantly higher Tissue/RBC ratios than other subjects, longer RBC T2* relaxation times, and greater RBC chemical shifts. CF subjects had more ventilation defects than healthy subjects, elevated Tissue/RBC ratio, shorter Tissue T2* relaxation, and greater RBC chemical shift. 3D-SBCSI may be helpful in the detection and characterization of pulmonary disease, following treatment efficacy, and predicting disease outcomes.
Collapse
Affiliation(s)
- Steven Guan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| | - Nick Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| | - Kun Qing
- Department of Radiation Oncology, City of Hope, Duarte, CA 91010, USA
| | - Yun Michael Shim
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| | - Talissa Altes
- Department of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dana Albon
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Deborah Froh
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Borna Mehrad
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - James Patrie
- Department of Public Health, University of Virginia, Charlottesville, VA 22903, USA
| | - Alan Ropp
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| | - Braden Miller
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| | - Jill Nehrbas
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| | - Jaime Mata
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
89
|
Lai X, Najafi M. Redox Interactions in Chemo/Radiation Therapy-induced Lung Toxicity; Mechanisms and Therapy Perspectives. Curr Drug Targets 2022; 23:1261-1276. [PMID: 35792117 DOI: 10.2174/1389450123666220705123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
Lung toxicity is a key limiting factor for cancer therapy, especially lung, breast, and esophageal malignancies. Radiotherapy for chest and breast malignancies can cause lung injury. However, systemic cancer therapy with chemotherapy may also induce lung pneumonitis and fibrosis. Radiotherapy produces reactive oxygen species (ROS) directly via interacting with water molecules within cells. However, radiation and other therapy modalities may induce the endogenous generation of ROS and nitric oxide (NO) by immune cells and some nonimmune cells such as fibroblasts and endothelial cells. There are several ROS generating enzymes within lung tissue. NADPH Oxidase enzymes, cyclooxygenase-2 (COX-2), dual oxidases (DUOX1 and DUOX2), and the cellular respiratory system in the mitochondria are the main sources of ROS production following exposure of the lung to anticancer agents. Furthermore, inducible nitric oxide synthase (iNOS) has a key role in the generation of NO following radiotherapy or chemotherapy. Continuous generation of ROS and NO by endothelial cells, fibroblasts, macrophages, and lymphocytes causes apoptosis, necrosis, and senescence, which lead to the release of inflammatory and pro-fibrosis cytokines. This review discusses the cellular and molecular mechanisms of redox-induced lung injury following cancer therapy and proposes some targets and perspectives to alleviate lung toxicity.
Collapse
Affiliation(s)
- Xixi Lai
- The Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
90
|
Zhou PX, Zhang SX. Functional lung imaging in thoracic tumor radiotherapy: Application and progress. Front Oncol 2022; 12:908345. [PMID: 36212454 PMCID: PMC9544588 DOI: 10.3389/fonc.2022.908345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy plays an irreplaceable and unique role in treating thoracic tumors, but the occurrence of radiation-induced lung injury has limited the increase in tumor target doses and has influenced patients' quality of life. However, the introduction of functional lung imaging has been incorporating functional lungs into radiotherapy planning. The design of the functional lung protection plan, while meeting the target dose requirements and dose limitations of the organs at risk (OARs), minimizes the radiation dose to the functional lung, thus reducing the occurrence of radiation-induced lung injury. In this manuscript, we mainly reviewed the lung ventilation or/and perfusion functional imaging modalities, application, and progress, as well as the results based on the functional lung protection planning in thoracic tumors. In addition, we also discussed the problems that should be explored and further studied in the practical application based on functional lung radiotherapy planning.
Collapse
Affiliation(s)
- Pi-Xiao Zhou
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Oncology, The First People's Hospital of Changde City, Changde, China
| | - Shu-Xu Zhang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
91
|
Talebpour Amiri F, Arzani S, Farzipour S, Hosseinimehr SJ. Radioprotective effects of gliclazide against irradiation-induced cardiotoxicity and lung injury through inhibiting oxidative stress. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:199. [PMID: 36071308 DOI: 10.1007/s12032-022-01803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 10/14/2022]
Abstract
Radiotherapy is one of the main treatments for localized primary cancer in patients. Cardiotoxicity and lung injury are two of the main side effects of oxidative stress following radiotherapy in patients with thoracic region cancer. Gliclazide (GLZ) as an antihyperglycemic drug has antioxidant, anti-inflammatory, and anti-apoptotic activities. This study aimed to evaluate the effect of GLZ in cardiotoxicity and lung injury induced by irradiation (IR). In this experimental study, 64 mice were divided into eight groups: control, GLZ (5, 10, and 25 mg/kg), IR (6 Gy), and IR + GLZ (in three doses). GLZ was administrated for 8 consecutive successive days and mice were exposed with IR on the 9th day of study. On the 10th day of study, tissue biochemical assay and at 14th day of study, histopathological assay were performed to evaluate for cardiotoxicity and lung injury. The findings revealed that IR induces atypical features in heart and lung histostructure, and oxidative stress (an increase of MDA, PC levels, and decrease of GSH content) in these tissues. GLZ administration preserved heart and lung damages and improves oxidative stress markers in mice. Data have authenticated that GLZ could protect heart and lung histostructure against oxidative stress-induced injury through inhibiting oxidative stress.
Collapse
Affiliation(s)
- Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soroush Arzani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soghra Farzipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
92
|
Wang J, Zhang K, Liu T, Song Y, Hua P, Chen S, Li J, Liu Y, Zhao Y. Efficacy and safety of neoadjuvant immunotherapy combined with chemotherapy in locally advanced esophageal cancer: A meta-analysis. Front Oncol 2022; 12:974684. [PMID: 36158679 PMCID: PMC9495441 DOI: 10.3389/fonc.2022.974684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveThe progress of neoadjuvant therapy for resectable locally advanced esophageal cancer has been stagnant. There has been much progress in immunotherapy for advanced esophageal cancer, but the efficacy and safety of neoadjuvant immunotherapy for resectable locally advanced esophageal cancer have not yet been definitively demonstrated.MethodsOriginal articles describing the safety and efficacy of neoadjuvant immunotherapy in resectable locally advanced esophagus published until July 2022 were retrieved from PubMed, Embase, and the Cochrane Library. The ratio (OR) and 95% confidence interval (CI) were calculated to conduct heterogeneity and subgroup analysis.ResultsIn total, 759 patients from 21 studies were enrolled. The effectiveness of neoadjuvant immunotherapy in combination with chemotherapy was evaluated using the major pathologic response (MPR) and pathologic complete response (PCR). In the enrolled patients, 677 were treated surgically and 664 achieved R0 resection. Major pathological remission was achieved in 52.0% (95% CI: 0.44–0.57) of patients on neoadjuvant immunotherapy combined with chemotherapy and complete pathological remission in 29.5% (95% CI: 0.25–0.32) of patients. The safety was primarily assessed by the incidence of treatment-related adverse events (TRAEs) and surgical resection rates. The incidence of TRAEs and the surgical resection rate combined ORs were 0.15 (95% CI: 0.09–0.22) and 0.86 (95% CI: 0.83–0.89), respectively.ConclusionNeoadjuvant immunotherapy combined with chemotherapy in locally advanced resectable esophageal cancer is effective and safe.
Collapse
Affiliation(s)
- Jincheng Wang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Tianzhou Liu
- Department of the Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Peiyan Hua
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Shu Chen
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Jindong Li
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yinghao Zhao
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Yinghao Zhao,
| |
Collapse
|
93
|
Zhang A, Yang F, Gao L, Shi X, Yang J. Research Progress on Radiotherapy Combined with Immunotherapy for Associated Pneumonitis During Treatment of Non-Small Cell Lung Cancer. Cancer Manag Res 2022; 14:2469-2483. [PMID: 35991677 PMCID: PMC9386171 DOI: 10.2147/cmar.s374648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation pneumonitis is a common and serious complication of radiotherapy for thoracic tumours. Although radiotherapy technology is constantly improving, the incidence of radiation pneumonitis is still not low, and severe cases can be life-threatening. Once radiation pneumonitis develops into radiation fibrosis (RF), it will have irreversible consequences, so it is particularly important to prevent the occurrence and development of radiation pneumonitis. Immune checkpoint inhibitors (ICIs) have rapidly altered the treatment landscape for multiple tumour types, providing unprecedented survival in some patients, especially for the treatment of non-small cell lung cancer (NSCLC). However, in addition to its remarkable curative effect, ICls may cause immune-related adverse events. The incidence of checkpoint inhibitor pneumonitis (CIP) is 3% to 5%, and its mortality rate is 10% to 17%. In addition, the incidence of CIP in NSCLC is higher than in other tumour types, reaching 7%–13%. With the increasing use of immune checkpoint inhibitors (ICls) and thoracic radiotherapy in the treatment of patients with NSCLC, ICIs may induce delayed radiation pneumonitis in patients previously treated with radiation therapy, or radiation activation of the systemic immune system increases the toxicity of adverse reactions, which may lead to increased pulmonary toxicity and the incidence of pneumonitis. In this paper, the data about the occurrence of radiation pneumonitis, immune pneumonitis, and combined treatment and the latest related research results will be reviewed.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Fuyuan Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Lei Gao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Xiaoyan Shi
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Jiyuan Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
94
|
Wang Z, Chen J, Su L, Hong J. Downregulation of miR-761 ameliorates radiation-induced pulmonary fibrosis by regulating PGC-1α. Exp Lung Res 2022; 48:158-167. [PMID: 35903964 DOI: 10.1080/01902148.2022.2104407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Radiation-induced pulmonary fibrosis (RIPF) is a serious complication in patients treated with transthoracic irradiation. To date, there are no effective drugs for RIPF treatment. In this study, we attempted to explore the function of miR-761 in RIPF, further investigate its potential mechanism and evaluate its effectiveness in the treatment of RIPF. Methods: qRT-PCR analysis was used to detect miR-761 and peroxisome proliferator-activated receptor gamma (PPARg) coactivator-1 (PGC-1α) expression. Western Blot (WB) assay was applied to verify the regulation of PGC-1α by miR-761 and the expression of fibrosis-related proteins. Gel contraction assay was performed to demonstrate the level of fibroblast activation in vitro. A mouse RIPF model was used to validate the anti-fibrotic effect of Antagomir761. Bioinformatics analysis and dual-luciferase reporter assays were utilized to confirm the regulation relationship between miR-761 and PGC-1α. Results: The results showed that miR-761 was significantly elevated in irradiated mice lungs and fibroblasts. Overexpression of miR-761 in vitro promoted fibroblast activation. Whereas inhibition of miR-761 attenuated the degree of RIPF and inhibited fibroblast activation. Mechanistically, PGC-1α was a direct and functional target of miR-761, overexpression of PGC-1α inhibited irradiation-induced fibroblast activation, and knockdown of PGC-1α caused miR-761 inhibitor loses its anti-activation ability in irradiated cells. Conclusion: Our findings demonstrated that miR-761 regulated RIPF by targeting PGC-1α. Inhibition of miR-761 restored PGC-1α expression and attenuated RIPF damage, and miR-761 was a potential target for preventing the development of RIPF.
Collapse
Affiliation(s)
- Zeng Wang
- Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junying Chen
- Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Su
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
95
|
Ma L, Ye Y, Lu H, Xing Y, Zhao Z, Quan C, Jia Z, Lu Y, Li Y, Zhou G. A Study on the Radiosensitivity of Radiation-Induced Lung Injury at the Acute Phase Based on Single-Cell Transcriptomics. Front Immunol 2022; 13:941976. [PMID: 35967301 PMCID: PMC9364823 DOI: 10.3389/fimmu.2022.941976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Aims Radiation-induced lung injury (RILI) is the most common complication associated with chest tumors, such as lung and breast cancers, after radiotherapy; however, the pathogenic mechanisms are unclear. Single-cell RNA sequencing has laid the foundation for studying RILI at the cellular microenvironmental level. This study focused on changes during the acute pneumonitis stage of RILI at the cellular microenvironmental level and investigated the interactions between different cell types. Methods An acute RILI model in mice and a single-cell transcriptional library were established. Intercellular communication networks were constructed to study the heterogeneity and intercellular interactions among different cell types. Results A single-cell transcriptome map was established in a mouse model of acute lung injury. In total, 18,500 single-cell transcripts were generated, and 10 major cell types were identified. The heterogeneity and radiosensitivity of each cell type or subtype in the lung tissues during the acute stage were revealed. It was found that immune cells had higher radiosensitivity than stromal cells. Immune cells were highly heterogeneous in terms of radiosensitivity, while some immune cells had the characteristics of radiation resistance. Two groups of radiation-induced Cd8+Mki67+ T cells and Cd4+Cxcr6+ helper T cells were identified. The presence of these cells was verified using immunofluorescence. The ligand-receptor interactions were analyzed by constructing intercellular communication networks. These explained the origins of the cells and revealed that they had been recruited from endothelial cells to the inflammatory site. Conclusions This study revealed the heterogeneity of in vivo radiosensitivity of different cell types in the lung at the initial stage post irradiation
Collapse
Affiliation(s)
- Luyu Ma
- Beijing Institute of Radiation Medicine, Beijing, China
- Department of Rehabilitation Medicine, Eighth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yumeng Ye
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Lu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuan Xing
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhen Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Cheng Quan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhaoqian Jia
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiming Lu
- Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Gangqiao Zhou, ; Yang Li, ; Yiming Lu,
| | - Yang Li
- Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pharmacy, Academy of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Gangqiao Zhou, ; Yang Li, ; Yiming Lu,
| | - Gangqiao Zhou
- Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Gangqiao Zhou, ; Yang Li, ; Yiming Lu,
| |
Collapse
|
96
|
Single-Cell Transcriptome Analysis of Radiation Pneumonitis Mice. Antioxidants (Basel) 2022; 11:antiox11081457. [PMID: 35892659 PMCID: PMC9331247 DOI: 10.3390/antiox11081457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced lung injury (RILI), especially radiation pneumonitis (RP), is a common clinical complication associated with thoracic radiotherapy for malignant tumors. However, the specific contributions of each cell subtype to this process are unknown. Here, we provide the single-cell pathology landscape of the RP in a mouse model by unbiased single-cell RNA-seq (scRNA-seq). We found a decline of type 2 alveolar cells in the RP lung tissue, with an expansion of macrophages, especially the Fabp4low and Spp1high subgroup, while Fabp4high macrophages were almost depleted. We observed an elevated expression of multiple mitochondrial genes in the RP group, indicating a type 2 alveolar cell (AT2) response to oxidative stress. We also calculated the enrichment of a cGAS-STING signaling pathway, which may be involved in regulating inflammatory responses and cancer progression in AT2 cells of PR mice. We delineate markers and transcriptional states, identify a type 2 alveolar cell, and uncover fundamental determinants of lung fibrosis and inflammatory response in RP lung tissue of mice.
Collapse
|
97
|
Wiedemann J, Coppes RP, van Luijk P. Radiation-induced cardiac side-effects: The lung as target for interacting damage and intervention. Front Oncol 2022; 12:931023. [PMID: 35936724 PMCID: PMC9354542 DOI: 10.3389/fonc.2022.931023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is part of the treatment for many thoracic cancers. During this treatment heart and lung tissue can often receive considerable doses of radiation. Doses to the heart can potentially lead to cardiac effects such as pericarditis and myocardial fibrosis. Common side effects after lung irradiation are pneumonitis and pulmonary fibrosis. It has also been shown that lung irradiation has effects on cardiac function. In a rat model lung irradiation caused remodeling of the pulmonary vasculature increasing resistance of the pulmonary vascular bed, leading to enhanced pulmonary artery pressure, right ventricle hypertrophy and reduced right ventricle performance. Even more pronounced effects are observed when both, lung and heart are irradiated. The effects observed after lung irradiation show striking similarities with symptoms of pulmonary arterial hypertension. In particular, the vascular remodeling in lung tissue seems to have similar underlying features. Here, we discuss the similarities and differences of vascular remodeling observed after thoracic irradiation compared to those in pulmonary arterial hypertension patients and research models. We will also assess how this knowledge of similarities could potentially be translated into interventions which would be beneficial for patients treated for thoracic tumors, where dose to lung tissue is often unavoidable.
Collapse
Affiliation(s)
- Julia Wiedemann
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Peter van Luijk,
| |
Collapse
|
98
|
Zeitlmayr S, Zierler S, Staab-Weijnitz CA, Dietrich A, Geiger F, Horgen FD, Gudermann T, Breit A. TRPM7 restrains plasmin activity and promotes transforming growth factor-β1 signaling in primary human lung fibroblasts. Arch Toxicol 2022; 96:2767-2783. [PMID: 35864199 PMCID: PMC9302958 DOI: 10.1007/s00204-022-03342-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Sustained exposure of the lung to various environmental or occupational toxins may eventually lead to pulmonary fibrosis, a devastating disease with no cure. Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins such as fibronectin and collagens. The peptidase plasmin degrades the ECM, but protein levels of the plasmin activator inhibitor-1 (PAI-1) are increased in fibrotic lung tissue, thereby dampening plasmin activity. Transforming growth factor-β1 (TGF-β1)-induced activation of SMAD transcription factors promotes ECM deposition by enhancing collagen, fibronectin and PAI-1 levels in pulmonary fibroblasts. Hence, counteracting TGF-β1-induced signaling is a promising approach for the therapy of pulmonary fibrosis. Transient receptor potential cation channel subfamily M Member 7 (TRPM7) supports TGF-β1-promoted SMAD signaling in T-lymphocytes and the progression of fibrosis in kidney and heart. Thus, we investigated possible effects of TRPM7 on plasmin activity, ECM levels and TGF-β1 signaling in primary human pulmonary fibroblasts (pHPF). We found that two structurally unrelated TRPM7 blockers enhanced plasmin activity and reduced fibronectin or PAI-1 protein levels in pHPF under basal conditions. Further, TRPM7 blockade strongly inhibited fibronectin and collagen deposition induced by sustained TGF-β1 stimulation. In line with these data, inhibition of TRPM7 activity diminished TGF-β1-triggered phosphorylation of SMAD-2, SMAD-3/4-dependent reporter activation and PAI-1 mRNA levels. Overall, we uncover TRPM7 as a novel supporter of TGF-β1 signaling in pHPF and propose TRPM7 blockers as new candidates to control excessive ECM levels under pathophysiological conditions conducive to pulmonary fibrosis.
Collapse
Affiliation(s)
- Sarah Zeitlmayr
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.,Faculty of Medicine, Johannes Kepler University, Life Science Park, Huemerstraße 3-5, 4020, Linz, Austria
| | - Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Zentrum München GmbH, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Fabienne Geiger
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.
| |
Collapse
|
99
|
May JM, Shankavaram U, Bylicky MA, Chopra S, Scott K, Martello S, Thrall K, Axtelle J, Menon N, Coleman CN, Aryankalayil MJ. Serum RNA biomarkers for predicting survival in non-human primates following thoracic radiation. Sci Rep 2022; 12:12333. [PMID: 35853961 PMCID: PMC9296457 DOI: 10.1038/s41598-022-16316-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
In a mass radiation exposure, the healthcare system may rely on differential expression of miRNA to determine exposure and effectively allocate resources. To this end, miRNome analysis was performed on non-human primate serum after whole thorax photon beam irradiation of 9.8 or 10.7 Gy with dose rate 600 cGy/min. Serum was collected up to 270 days after irradiation and sequenced to determine immediate and delayed effects on miRNA expression. Elastic net based GLM methods were used to develop models that predicted the dose vs. controls at 81% accuracy at Day 15. A three-group model at Day 9 achieved 71% accuracy in determining if an animal would die in less than 90 days, between 90 and 269 days, or survive the length of the study. At Day 21, we achieved 100% accuracy in determining whether an animal would later develop pleural effusion. These results demonstrate the potential ability of miRNAs to determine thorax partial-body irradiation dose and forecast survival or complications early following whole thorax irradiation in large animal models. Future experiments incorporating additional doses and independent animal cohorts are warranted to validate these results. Development of a serum miRNA assay will facilitate the administration of medical countermeasures to increase survival and limit normal tissue damage following a mass exposure.
Collapse
Affiliation(s)
- Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kevin Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karla Thrall
- Altasciences Preclinical Seattle LLC, Everett, WA, USA
| | | | | | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
100
|
Berg J, Halvorsen AR, Bengtson MB, Lindberg M, Halvorsen B, Aukrust P, Helland Å, Ueland T. Circulating T Cell Activation and Exhaustion Markers Are Associated With Radiation Pneumonitis and Poor Survival in Non-Small-Cell Lung Cancer. Front Immunol 2022; 13:875152. [PMID: 35911763 PMCID: PMC9329944 DOI: 10.3389/fimmu.2022.875152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Persistent inflammation and immune activation in the lungs are associated with adverse outcomes such as radiation pneumonitis (RP) and poor survival in non-small-cell lung cancer (NSCLC) patients. However, it is unknown how this is reflected by leukocyte activation markers in serum. Objective The aim was to evaluate the serum levels of activation of different leukocyte subsets and to examine those in relation to the pathogenesis of RP and survival in NSCLC. Methods We analyzed the serum levels of MPO, sCD25, sTIM-3, sPD-L1, sCD14, sCD163, CCL19 and CCL21 in 66 inoperable NSCLC patients with stage IA-IIIA disease. The patients were treated with stereotactic body radiation therapy (SBRT) or concurrent chemoradiation therapy (CCRT), followed by regular blood sampling for 12 months after treatment and for 5 years for survival. Results Nineteen (29%) patients developed RP, which occurred more frequently and earlier in patients receiving CCRT than in those receiving SBRT. Increases in sCD25, sTIM-3 and CCL21 levels were observed at the last 6 months of follow-up in patients who had RP after SBRT. Patients who had RP after CCRT had higher sTIM-3 levels during the first 3 months of follow-up. Baseline sCD25 was independently associated with both 2- and 5-year mortality outcomes, while baseline sTIM-3 was independently associated with 2-year mortality. Conclusion We showed that T cell activation and exhaustion markers such as sCD25 and sTIM-3 are enhanced in patients developing RP and are associated with poor survival in NSCLC.
Collapse
Affiliation(s)
- Janna Berg
- Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Janna Berg,
| | - Ann Rita Halvorsen
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Morten Lindberg
- Department of Medical Biochemistry, Vestfold Hospital Trust, Tønsberg, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|