51
|
The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes. Biomolecules 2020; 10:biom10030493. [PMID: 32213983 PMCID: PMC7175212 DOI: 10.3390/biom10030493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism); CDS1, PCTP, and MAT1A (phospholipid metabolism); and FATP2, SLC6A12, and AQP3 (uptake of fatty acids, betaine, and glycerol, respectively). They were rapidly induced (4–6 h) upon VDR activation by 10 nM VitD or 100 µM lithocholic acid (LCA). Most of these genes were also upregulated by VDR/VitD in mouse livers in vivo. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) metabolomics demonstrated intracellular accumulation of triglycerides, with concomitant decreases in diglycerides and phosphatidates, at 8 and 24 h upon VDR activation. Significant alterations in phosphatidylcholines, increases in lyso-phosphatidylcholines and decreases in phosphatidylethanolamines and phosphatidylethanolamine plasmalogens were also observed. In conclusion, active VitD/VDR signaling in hepatocytes triggers an unanticipated coordinated gene response leading to triglyceride synthesis and to important perturbations in glycerolipids and phospholipids.
Collapse
|
52
|
Schwahn BC, Scheffner T, Stepman H, Verloo P, Das AM, Fletcher J, Blom HJ, Benoist JF, Barshop BA, Barea JJ, Feigenbaum A. Cystathionine beta synthase deficiency and brain edema associated with methionine excess under betaine supplementation: Four new cases and a review of the evidence. JIMD Rep 2020; 52:3-10. [PMID: 32154053 PMCID: PMC7052692 DOI: 10.1002/jmd2.12092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
CBS deficient individuals undergoing betaine supplementation without sufficient dietary methionine restriction can develop severe hypermethioninemia and brain edema. Brain edema has also been observed in individuals with severe hypermethioninemia without concomitant betaine supplementation. We systematically evaluated reports from 11 published and 4 unpublished patients with CBS deficiency and from additional four cases of encephalopathy in association with elevated methionine. We conclude that, while betaine supplementation does greatly exacerbate methionine accumulation, the primary agent causing brain edema is methionine rather than betaine. Clinical signs of increased intracranial pressure have not been seen in patients with plasma methionine levels below 559 μmol/L but occurred in one patient whose levels did not knowingly exceed 972 μmol/L at the time of manifestation. While levels below 500 μmol/L can be deemed safe it appears that brain edema can develop with plasma methionine levels close to 1000 μmol/L. Patients with CBS deficiency on betaine supplementation need to be regularly monitored for concordance with their dietary plan and for plasma methionine concentrations. Recurrent methionine levels above 500 μmol/L should alert clinicians to check for clinical signs and symptoms of brain edema and review dietary methionine intake. Levels approaching 1000 μmol/L do increase the risk of complications and levels exceeding 1000 μmol/L, despite best dietetic efforts, should be acutely addressed by reducing the prescribed betaine dose.
Collapse
Affiliation(s)
- Bernd C Schwahn
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine Manchester University Hospitals NHS Foundation Trust Manchester UK
| | - Thomas Scheffner
- Klinikum am Steinenberg, Klinik für Kinder und Jugendmedizin School of Medicine University of Tübingen Reutlingen Germany
| | - Hedwig Stepman
- Laboratory for Metabolic diseases Ghent University Hospital Ghent Belgium
| | - Peter Verloo
- Department of Pediatric Neurology and Metabolic Diseases University Hospital Ghent Ghent Belgium
| | - Anibh M Das
- Medizinische Hochschule Hannover Klinik für Pädiatrische Nieren-, Leber- und Stoffwechselerkrankungen Hannover Germany
| | - Janice Fletcher
- Genetics and Molecular Pathology SA Pathology Adelaide Australia
| | - Henk J Blom
- Metabolic Unit, Department of Clinical Genetics Center for Lysosomal and Metabolic Diseases. Erasmus Medical Center Rotterdam The Netherlands
| | | | - Bruce A Barshop
- Department of Pediatrics, Division of Biochemical Genetics, Rady Children's Hospital-San Diego University of California San Diego California
| | - Jaime J Barea
- Department of Pediatrics, Division of Biochemical Genetics, Rady Children's Hospital-San Diego University of California San Diego California
| | - Annette Feigenbaum
- Department of Pediatrics, Division of Biochemical Genetics, Rady Children's Hospital-San Diego University of California San Diego California
| |
Collapse
|
53
|
Liu Z, Li Q, Shen R, Ci L, Wan Z, Shi J, Huang Q, Yang X, Zhang M, Yang H, Sun R, Wang Z, Huang F, Lu T, Fei J. Betaine/GABA transporter-1 (BGT-1) deficiency in mouse prevents acute liver failure in vivo and hepatocytes apoptosis in vitro. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165634. [PMID: 31830527 DOI: 10.1016/j.bbadis.2019.165634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/06/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023]
Abstract
Betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT-1 or Slc6a12) is a transporter for the neurotransmitter GABA and osmolyte betaine. To date, most studies on BGT-1 have focused on its functions in the nervous system and renal osmotic homeostasis. Despite its dominant distribution in the liver, the function of BGT-1 in hepatic physiology or disease remains unknown. Here, we report that BGT-1 was significantly downregulated in patients with liver failure as well as in mice with experimental acute liver failure (ALF). Furthermore, mice deficient in BGT-1 showed significant resistance to ALF compared with wild type (WT) mice, manifesting as improved survival rate, reduced alanine transaminase/aspartate aminotransferase levels, better histopathological symptoms and fewer apoptotic cells in the liver. Similarly, in primary hepatocytes, BGT-1 deficiency or treatment with a BGT-1 inhibitor, NNC 05-2090, attenuated TNF-α mediated apoptosis. In addition, BGT-1 deficiency or dosing with NNC 05-2090 stimulated the expression of the anti-apoptotic gene, c-Met in the liver, suggesting the involvement of c-Met in the function on hepatocytes of BGT-1 apoptosis. Our findings suggest BGT-1 is a promising candidate drug target to prevent and treat hepatocyte apoptosis related diseases, such as ALF.
Collapse
Affiliation(s)
- Zhenze Liu
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Qing Li
- School of Life Science and Technology, Tongji University. Shanghai, China; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China; Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Qin Huang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Xu Yang
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tianfei Lu
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University. Shanghai, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China; Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.
| |
Collapse
|
54
|
Synthesis and biological evaluation of fluorescent GAT-ligands based on meso-substituted BODIPY dyes. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02483-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
55
|
Kays JS, Yamamoto BK. Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine. Brain Sci 2019; 9:brainsci9120340. [PMID: 31775383 PMCID: PMC6955783 DOI: 10.3390/brainsci9120340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
RNA sequencing (RNAseq) can be a powerful tool in the identification of transcriptional changes after drug treatment. RNAseq was utilized to determine expression changes in Fluorescence-activated cell sorted (FACS) CD11b/c+ cells from the striatum (STR) and prefrontal cortex (PFC) of male Sprague-Dawley rats after a methamphetamine (METH) binge dosing regimen. Resident microglia and infiltrating macrophages were collected 2 h or 3 days after drug administration. Gene expression changes indicated there was an increase toward an overall pro-inflammatory state, or M1 polarization, along with what appears to be a subset of cells that differentiated toward the anti-inflammatory M2 polarization. In general, there were significantly more mRNA expression changes in the STR than the PFC and more at 2 h post-binge METH than at 3 days post-binge METH. Additionally, Ingenuity® Pathway Analysis along with details of RNA expression changes revealed cyclo-oxygenase 2 (COX2)-driven prostaglandin (PG) E2 synthesis, glutamine uptake, and the Nuclear factor erythroid2-related factor 2 (NRF2) canonical pathway in microglia were associated with the binge administration regimen of METH.
Collapse
|
56
|
Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, Iwayama Y, Fujita Y, Tan Y, Hisano Y, Shimamoto-Mitsuyama C, Nozaki Y, Esaki K, Nagaoka A, Matsumoto J, Hino M, Mataga N, Hayashi-Takagi A, Hashimoto K, Kunii Y, Kakita A, Yabe H, Yoshikawa T. Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 2019; 45:432-446. [PMID: 31255657 PMCID: PMC6642071 DOI: 10.1016/j.ebiom.2019.05.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Betaine is known to act against various biological stresses and its levels were reported to be decreased in schizophrenia patients. We aimed to test the role of betaine in schizophrenia pathophysiology, and to evaluate its potential as a novel psychotherapeutic. Methods Using Chdh (a gene for betaine synthesis)-deficient mice and betaine-supplemented inbred mice, we assessed the role of betaine in psychiatric pathophysiology, and its potential as a novel psychotherapeutic, by leveraging metabolomics, behavioral-, transcriptomics and DNA methylation analyses. Findings The Chdh-deficient mice revealed remnants of psychiatric behaviors along with schizophrenia-related molecular perturbations in the brain. Betaine supplementation elicited genetic background-dependent improvement in cognitive performance, and suppressed methamphetamine (MAP)-induced behavioral sensitization. Furthermore, betaine rectified the altered antioxidative and proinflammatory responses induced by MAP and in vitro phencyclidine (PCP) treatments. Betaine also showed a prophylactic effect on behavioral abnormality induced by PCP. Notably, betaine levels were decreased in the postmortem brains from schizophrenia, and a coexisting elevated carbonyl stress, a form of oxidative stress, demarcated a subset of schizophrenia with “betaine deficit-oxidative stress pathology”. We revealed the decrease of betaine levels in glyoxylase 1 (GLO1)-deficient hiPSCs, which shows elevated carbonyl stress, and the efficacy of betaine in alleviating it, thus supporting a causal link between betaine and oxidative stress conditions. Furthermore, a CHDH variant, rs35518479, was identified as a cis-expression quantitative trait locus (QTL) for CHDH expression in postmortem brains from schizophrenia, allowing genotype-based stratification of schizophrenia patients for betaine efficacy. Interpretation The present study revealed the role of betaine in psychiatric pathophysiology and underscores the potential benefit of betaine in a subset of schizophrenia. Fund This study was supported by the Strategic Research Program for Brain Sciences from AMED (Japan Agency for Medical Research and Development) under Grant Numbers JP18dm0107083 and JP19dm0107083 (TY), JP18dm0107129 (MM), JP18dm0107086 (YK), JP18dm0107107 (HY), JP18dm0107104 (AK) and JP19dm0107119 (KH), by the Grant-in-Aid for Scientific Research on Innovative Areas from the MEXT under Grant Numbers JP18H05435 (TY), JP18H05433 (AH.-T), JP18H05428 (AH.-T and TY), and JP16H06277 (HY), and by JSPS KAKENHI under Grant Number JP17H01574 (TY). In addition, this study was supported by the Collaborative Research Project of Brain Research Institute, Niigata University under Grant Numbers 2018–2809 (YK) and RIKEN Epigenetics Presidential Fund (100214–201801063606-340120) (TY).
Collapse
Affiliation(s)
- Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan; Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yayoi Nozaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Kayoko Esaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Psychiatry, Aizu Medical Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
57
|
Diverse Actions of Astrocytes in GABAergic Signaling. Int J Mol Sci 2019; 20:ijms20122964. [PMID: 31216630 PMCID: PMC6628243 DOI: 10.3390/ijms20122964] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
An imbalance of excitatory and inhibitory neurotransmission leading to over excitation plays a crucial role in generating seizures, while enhancing GABAergic mechanisms are critical in terminating seizures. In recent years, it has been reported in many studies that astrocytes are deeply involved in synaptic transmission. Astrocytes form a critical component of the “tripartite” synapses by wrapping around the pre- and post-synaptic elements. From this location, astrocytes are known to greatly influence the dynamics of ions and transmitters in the synaptic cleft. Despite recent extensive research on excitatory tripartite synapses, inhibitory tripartite synapses have received less attention, even though they influence inhibitory synaptic transmission by affecting chloride and GABA concentration dynamics. In this review, we will discuss the diverse actions of astrocytic chloride and GABA homeostasis at GABAergic tripartite synapses. We will then consider the pathophysiological impacts of disturbed GABA homeostasis at the tripartite synapse.
Collapse
|
58
|
Jawor P, Ząbek A, Wojtowicz W, Król D, Stefaniak T, Młynarz P. Metabolomic studies as a tool for determining the post-mortem interval (PMI) in stillborn calves. BMC Vet Res 2019; 15:189. [PMID: 31174528 PMCID: PMC6555048 DOI: 10.1186/s12917-019-1935-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Background Perinatal mortality may vary between herds, but the cost of deaths are always higher than value of the calf. When diagnosing the cause of a calf’s death it is important to determine when it occurred, before or after calving. Metabolomics is widely used to identify many human diseases, but quite rarely applied in veterinary science. The aim of this study was to compare the metabolic profiles of calves with different times of death and those of calves born alive. Into the study, twenty one healthy controls (singleton, normal assisted calving, born alive) and 75 stillborn (SB) calves (with a gestation length of ≥260 days, SB, or dead within 6 h of birth) were enrolled. Plasma and urine from SB and control calves were investigated by proton nuclear magnetic resonance based metabolomic methods. SB calves were divided into four PMI groups. One PMI group included calves that died after calving and the other groups - three comprised in utero deaths, based on pathophysiological changes (lung inflation, autolysis in internal organs, hemoglobin imbibition in the pleura and aortic arch). Partial Least Squares - Discriminant Analysis models based on plasma metabolites were calculated, reflecting assumed data clustering. Results Twenty six metabolites in plasma and 29 in urine changed significantly with PMI according to one way analysis of variance. Half the metabolites in plasma and the majority in urine increased with PMI. Six metabolites increased simultaneously in plasma and urine: acetate, sn-glycero-3-phosphocholine (GPC), leucine, valine, creatine, and alanine. Conclusions Post-mortem changes in calves were associated with molecular variations in blood plasma and urine, showing the greatest differences for the group in which the post-mortem pathological changes were the most advanced. The results of the study show that evaluation of calf plasma or urine may be used as a diagnostic method for the determination of the PMI. Moreover, the metabolites, which unambiguously increased or decreased, can be used as potential biomarkers of PMI. Electronic supplementary material The online version of this article (10.1186/s12917-019-1935-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paulina Jawor
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Adam Ząbek
- Department of Bioorganic Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Wojciech Wojtowicz
- Department of Bioorganic Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Dawid Król
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Tadeusz Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Młynarz
- Department of Bioorganic Chemistry, Wroclaw University of Technology, Wroclaw, Poland.
| |
Collapse
|
59
|
Kickinger S, Hellsberg E, Frølund B, Schousboe A, Ecker GF, Wellendorph P. Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology 2019; 161:107644. [PMID: 31108110 DOI: 10.1016/j.neuropharm.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
ɣ-aminobutyric-acid (GABA) functions as the principal inhibitory neurotransmitter in the central nervous system. Imbalances in GABAergic neurotransmission are involved in the pathophysiology of various neurological diseases such as epilepsy, Alzheimer's disease and stroke. GABA transporters (GATs) facilitate the termination of GABAergic signaling by transporting GABA together with sodium and chloride from the synaptic cleft into presynaptic neurons and surrounding glial cells. Four different GATs have been identified that all belong to the solute carrier 6 (SLC6) transporter family: GAT1-3 (SLC6A1, SLC6A13, SLC6A11) and betaine/GABA transporter 1 (BGT1, SLC6A12). BGT1 has emerged as an interesting target for treating epilepsy due to animal studies that reported anticonvulsant effects for the GAT1/BGT1 selective inhibitor EF1502 and the BGT1 selective inhibitor RPC-425. However, the precise involvement of BGT1 in epilepsy remains elusive because of its controversial expression levels in the brain and the lack of highly selective and potent tool compounds. This review gathers the current structural and functional knowledge on BGT1 with emphasis on brain relevance, discusses all available compounds, and tries to shed light on the molecular determinants driving BGT1 selectivity. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Stefanie Kickinger
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Eva Hellsberg
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Bente Frølund
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Arne Schousboe
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
60
|
Tóth K, Höfner G, Wanner KT. Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with a cis-alkene spacer as GABA uptake inhibitors. Bioorg Med Chem 2019; 27:822-831. [DOI: 10.1016/j.bmc.2019.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
61
|
Shi H, Wang XL, Quan HF, Yan L, Pei XY, Wang R, Peng XD. Effects of Betaine on LPS-Stimulated Activation of Microglial M1/M2 Phenotypes by Suppressing TLR4/NF-κB Pathways in N9 Cells. Molecules 2019; 24:molecules24020367. [PMID: 30669620 PMCID: PMC6359206 DOI: 10.3390/molecules24020367] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Microglia mediate multiple facets of neuroinflammation. They can be phenotypically divided into a classical phenotype (pro-inflammatory, M1) or an alternative phenotype (anti-inflammatory, M2) with different physiological characteristics and biological functions in the inflammatory process. Betaine has been shown to exert anti-inflammatory effects. In this study, we aimed to verify the anti-inflammatory effects of betaine and elucidate its possible molecular mechanisms of action in vitro. Lipopolysaccharide (LPS)-activated microglial cells were used as an inflammatory model to study the anti-inflammatory efficacy of betaine and explore its mechanism of regulating microglial polarisation by investigating the morphological changes and associated inflammatory changes. Cytokine and inflammatory mediator expression was also measured by ELISA, flow cytometry, immunofluorescence, and western blot analysis. Toll-like receptor (TLR)-myeloid differentiation factor 88 (Myd88)-nuclear factor-kappa B (NF-κB) p65, p-NF-κB p65, IκB, p-IκB, IκB kinase (IKK), and p-IKK expression was determined by western blot analysis. Betaine significantly mitigated the production of pro-inflammatory cytokines and increased the release of anti-inflammatory cytokines. It promoted the conversion of the microglia from M1 to M2 phenotype by decreasing the expression of inducible nitric oxide synthase and CD16/32 and by increasing that of CD206 and arginase-1. Betaine treatment inhibited the TLR4/NF-κB pathways by attenuating the expression of TLR4-Myd88 and blocking the phosphorylation of IκB and IKK. In conclusion, betaine could significantly alleviate LPS-induced inflammation by regulating the polarisation of microglial phenotype; thus, it might be an effective therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Hui Shi
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiao-Long Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Hong-Feng Quan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Yan
- Functional Experiment Center, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiu-Ying Pei
- Laboratory in Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Rui Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Laboratory in Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiao-Dong Peng
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Functional Experiment Center, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
- Laboratory in Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
62
|
Nowaczyk A, Fijałkowski Ł, Kowalska M, Podkowa A, Sałat K. Studies on the Activity of Selected Highly Lipophilic Compounds toward hGAT1 Inhibition. Part II. ACS Chem Neurosci 2019; 10:337-347. [PMID: 30222312 DOI: 10.1021/acschemneuro.8b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this paper, we describe the latest results involving molecular modeling and pharmacodynamic studies of the selected highly lipophilic compounds acting by human GABA transporter 1 (hGAT1) inhibition. The chemical interaction of 17 GABA analogues with a model of hGAT1 is described using the molecular docking method. The biological role of GAT1 is related to the regulation of GABA level in the central nervous system and GAT1 inhibition plays an important role in the control of seizure threshold. To confirm that GAT1 can be also a molecular target for drugs used to treat other neurological and psychiatric diseases (e.g., pain and anxiety), in the in vivo part of this study, potential antinociceptive and anxiolytic-like properties of tiagabine, a selective GAT1 inhibitor, are described.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Magdalena Kowalska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Adrian Podkowa
- Chair of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
63
|
Hosseiniyan Khatibi SM, Zununi Vahed F, Sharifi S, Ardalan M, Mohajel Shoja M, Zununi Vahed S. Osmolytes resist against harsh osmolarity: Something old something new. Biochimie 2019; 158:156-164. [PMID: 30629975 DOI: 10.1016/j.biochi.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
From the halophilic bacteria to human, cells have to survive under the stresses of harsh environments. Hyperosmotic stress is a process that triggers cell shrinkage, oxidative stress, DNA damage, and apoptosis and it potentially contributes to a number of human diseases. Remarkably, by high salts and organic solutes concentrations, a variety of organisms struggle with these conditions. Different strategies have been developed for cellular osmotic adaptations among which organic osmolyte synthesis/accumulation is a conserved once. Osmolytes are naturally occurring solutes used by cells of several halophilic (micro) organisms to preserve cell volume and function. In this review, the osmolytes diversity and their protective roles in harsh hyperosmolar environments from bacteria to human cells are highlighted. Moreover, it provides a close look at mammalian kidney osmoregulation at a molecular level. This review provides a concise view on the recent developments and advancements on the applications of osmolytes. Identification of disease-related osmolytes and their targeted-delivery may be used as a therapeutic measurement for treatment of the pathological conditions and the inherited diseases related to protein misfolding and aggregation. The molecular and cellular aspects of cell adaptation against harsh environmental osmolarity will benefit the development of effective drugs for many diseases.
Collapse
Affiliation(s)
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
64
|
Ibi D, Tsuchihashi A, Nomura T, Hiramatsu M. Involvement of GAT2/BGT-1 in the preventive effects of betaine on cognitive impairment and brain oxidative stress in amyloid β peptide-injected mice. Eur J Pharmacol 2019; 842:57-63. [DOI: 10.1016/j.ejphar.2018.10.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
|
65
|
Tóth K, Höfner G, Wanner KT. Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with a trans-alkene spacer as potent GABA uptake inhibitors. Bioorg Med Chem 2018; 26:5944-5961. [DOI: 10.1016/j.bmc.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
|
66
|
Suemasa A, Watanabe M, Kobayashi T, Suzuki H, Fukuda H, Minami M, Shuto S. Design and synthesis of cyclopropane-based conformationally restricted GABA analogues as selective inhibitors for betaine/GABA transporter 1. Bioorg Med Chem Lett 2018; 28:3395-3399. [DOI: 10.1016/j.bmcl.2018.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 12/26/2022]
|
67
|
He J, Sun C, Li T, Luo Z, Huang L, Song X, Li X, Abliz Z. A Sensitive and Wide Coverage Ambient Mass Spectrometry Imaging Method for Functional Metabolites Based Molecular Histology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800250. [PMID: 30479912 PMCID: PMC6247026 DOI: 10.1002/advs.201800250] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/19/2018] [Indexed: 05/21/2023]
Abstract
Histological examination with a deep link between functional metabolites and tissue structure and biofunctions will provide important in situ biochemical information, and then essentially reveal what has happened in tissue at the molecular level. However, due to the complexity and heterogeneity of tissue samples and the large number of metabolites, it is still a challenge to globally map the diverse metabolites, especially for those low-abundance functional ones. Here, a sensitive air flow-assisted desorption electrospray ionization mass spectrometry imaging method for the mapping of a broad range of metabolites is presented. It exhibits properties characteristic of wide coverage, high sensitivity, wide dynamic range, rapid analysis procedure, and high specificity for tissue metabolites imaging. More than 1500 metabolites, including cholines, polyamines, amino acids, carnitines, nucleosides, nucleotides, nitrogen bases, organic acids, carbohydrates, cholesterol sulfate, cholic acid, lipids, etc., can be visualized in an untargeted analysis. The distribution of metabolites shows good spatial match with tissue histological structure and biofunctions in heterogeneous rat kidney, rat brain, and human esophageal cancer tissue. This method possesses the ability to globally showcase the molecular processes in tissue, and provide an insightful way for structural and functional molecular recognition in histological examination, even for intraoperative decision-making.
Collapse
Affiliation(s)
- Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Chenglong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Luojiao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Xiaowei Song
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050P. R. China
- Center for Imaging and Systems BiologyMinzu University of ChinaBeijing100081P. R. China
| |
Collapse
|
68
|
Hubbard AH, Zhang X, Jastrebski S, Lamont SJ, Singh A, Schmidt CJ. Identifying mechanisms of regulation to model carbon flux during heat stress and generate testable hypotheses. PLoS One 2018; 13:e0205824. [PMID: 30365526 PMCID: PMC6203350 DOI: 10.1371/journal.pone.0205824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding biological response to stimuli requires identifying mechanisms that coordinate changes across pathways. One of the promises of multi-omics studies is achieving this level of insight by simultaneously identifying different levels of regulation. However, computational approaches to integrate multiple types of data are lacking. An effective systems biology approach would be one that uses statistical methods to detect signatures of relevant network motifs and then builds metabolic circuits from these components to model shifting regulatory dynamics. For example, transcriptome and metabolome data complement one another in terms of their ability to describe shifts in physiology. Here, we extend a previously described linear-modeling based method used to identify single nucleotide polymorphisms (SNPs) associated with metabolic changes. We apply this strategy to link changes in sulfur, amino acid and lipid production under heat stress by relating ratios of compounds to potential precursors and regulators. This approach provides integration of multi-omics data to link previously described, discrete units of regulation into functional pathways and identifies novel biology relevant to the heat stress response, in addition to generating hypotheses.
Collapse
Affiliation(s)
- Allen H. Hubbard
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Xiaoke Zhang
- Department of Statistics, George Washington University, Washington, District of Columbia, Unites States of America
| | - Sara Jastrebski
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Abhyudai Singh
- Department of Electrical Engineering and Computer Science, University of Delaware, Newark, Delaware, United States of America
| | - Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
69
|
Heidari R, Niknahad H, Sadeghi A, Mohammadi H, Ghanbarinejad V, Ommati MM, Hosseini A, Azarpira N, Khodaei F, Farshad O, Rashidi E, Siavashpour A, Najibi A, Ahmadi A, Jamshidzadeh A. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed Pharmacother 2018; 103:75-86. [DOI: 10.1016/j.biopha.2018.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/29/2022] Open
|
70
|
Tóth K, Höfner G, Wanner KT. Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with an alkyne spacer as GABA uptake inhibitors. Bioorg Med Chem 2018; 26:3668-3687. [DOI: 10.1016/j.bmc.2018.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
|
71
|
Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W, Peng Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front Immunol 2018; 9:1070. [PMID: 29881379 PMCID: PMC5976740 DOI: 10.3389/fimmu.2018.01070] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Betaine is known as trimethylglycine and is widely distributed in animals, plants, and microorganisms. Betaine is known to function physiologically as an important osmoprotectant and methyl group donor. Accumulating evidence has shown that betaine has anti-inflammatory functions in numerous diseases. Mechanistically, betaine ameliorates sulfur amino acid metabolism against oxidative stress, inhibits nuclear factor-κB activity and NLRP3 inflammasome activation, regulates energy metabolism, and mitigates endoplasmic reticulum stress and apoptosis. Consequently, betaine has beneficial actions in several human diseases, such as obesity, diabetes, cancer, and Alzheimer's disease.
Collapse
Affiliation(s)
- Guangfu Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chenlu Wu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Nengzhang Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
72
|
Al-Khawaja A, Haugaard AS, Marek A, Löffler R, Thiesen L, Santiveri M, Damgaard M, Bundgaard C, Frølund B, Wellendorph P. Pharmacological Characterization of [ 3H]ATPCA as a Substrate for Studying the Functional Role of the Betaine/GABA Transporter 1 and the Creatine Transporter. ACS Chem Neurosci 2018; 9:545-554. [PMID: 29131576 DOI: 10.1021/acschemneuro.7b00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) is one of the four GABA transporters (GATs) involved in the termination of GABAergic neurotransmission. Although suggested to be implicated in seizure management, the exact functional importance of BGT1 in the brain is still elusive. This is partly owing to the lack of potent and selective pharmacological tool compounds that can be used to probe its function. We previously reported the identification of 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid (ATPCA), a selective substrate for BGT1 over GAT1/GAT3, but also an agonist for GABAA receptors. With the aim of providing new functional insight into BGT1, we here present the synthesis and pharmacological characterization of the tritiated analogue, [3H]ATPCA. Using traditional uptake assays at recombinant transporters expressed in cell lines, [3H]ATPCA displayed a striking selectivity for BGT1 among the four GATs ( Km and Vmax values of 21 μM and 3.6 nmol ATPCA/(min × mg protein), respectively), but was also found to be a substrate for the creatine transporter (CreaT). In experiments with mouse cortical cell cultures, we observed a Na+-dependent [3H]ATPCA uptake in neurons, but not in astrocytes. The neuronal uptake could be inhibited by GABA, ATPCA, and a noncompetitive BGT1-selective inhibitor, indicating functional BGT1 in neurons. In conclusion, we report [3H]ATPCA as a novel radioactive substrate for both BGT1 and CreaT. The dual activity of the radioligand makes it most suitable for use in recombinant studies.
Collapse
Affiliation(s)
- Anas Al-Khawaja
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anne S. Haugaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam 542/2, 16610 Prague 6, Czech Republic
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Louise Thiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mònica Santiveri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Maria Damgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
73
|
Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 2017; 42:3490-3503. [PMID: 28918494 DOI: 10.1007/s11064-017-2397-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.
Collapse
|
74
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
75
|
Jo YK, Park MH, Choi H, Lee H, Park JM, Sim JJ, Chang C, Jeong KY, Kim HM. Enhancement of the Antitumor Effect of Methotrexate on Colorectal Cancer Cells via Lactate Calcium Salt Targeting Methionine Metabolism. Nutr Cancer 2017; 69:663-673. [PMID: 28353361 DOI: 10.1080/01635581.2017.1299879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
76
|
Kunisawa K, Kido K, Nakashima N, Matsukura T, Nabeshima T, Hiramatsu M. Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus. Eur J Pharmacol 2017; 796:122-130. [DOI: 10.1016/j.ejphar.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023]
|
77
|
Sung HY, Yang SD, Park AK, Ju W, Ahn JH. Aberrant Hypomethylation of Solute Carrier Family 6 Member 12 Promoter Induces Metastasis of Ovarian Cancer. Yonsei Med J 2017; 58:27-34. [PMID: 27873492 PMCID: PMC5122649 DOI: 10.3349/ymj.2017.58.1.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Ovarian cancer (OC) is the most fatal of gynecological malignancies with a high rate of recurrence. We aimed to evaluate the expression of solute carrier family 6, member 12 (SLC6A12) and methylation of its promoter CpG sites in a xenograft mouse model of metastatic OC, and to investigate the regulatory mechanisms that promote aggressive properties during OC progression. MATERIALS AND METHODS Expression of SLC6A12 mRNA was determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR), and DNA methylation status of its promoter CpGs was detected by quantitative methylation-specific PCR. The metastatic potential of SLC6A12 was evaluated by in vitro migration/invasion transwell assays. Gene expression and DNA methylation of SLC6A12 and clinical outcomes were further investigated from publicly available databases from curatedOvarianData and The Cancer Genome Atlas. RESULTS SLC6A12 expression was 8.1-14.0-fold upregulated and its DNA methylation of promoter CpG sites was 41-62% decreased in tumor metastases. After treatment with DNA methyltransferase inhibitor and/or histone deacetylase inhibitor, the expression of SLC6A12 was profoundly enhanced (~8.0-fold), strongly supporting DNA methylation-dependent epigenetic regulation of SLC6A12. Overexpression of SLC6A12 led to increased migration and invasion of ovarian carcinoma cells in vitro, approximately 2.0-fold and 3.3-fold, respectively. The meta-analysis showed that high expression of SLC6A12 was significantly associated with poor overall survival [hazard ratio (HR)=1.07, p value=0.016] and that low DNA methylation levels of SLC6A12 at specific promoter CpG site negatively affected patient survival. CONCLUSION Our findings provide novel evidence for the biological and clinical significance of SLC6A12 as a metastasis-promoting gene.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Korea
| | - San Duk Yang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Woong Ju
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Korea.
| | - Jung Hyuck Ahn
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
78
|
Gogiashvili M, Edlund K, Gianmoena K, Marchan R, Brik A, Andersson JT, Lambert J, Madjar K, Hellwig B, Rahnenführer J, Hengstler JG, Hergenröder R, Cadenas C. Metabolic profiling of ob/ob mouse fatty liver using HR-MAS 1H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway. Anal Bioanal Chem 2016; 409:1591-1606. [PMID: 27896396 DOI: 10.1007/s00216-016-0100-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.
Collapse
Affiliation(s)
- Mikheil Gogiashvili
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany.
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Kathrin Gianmoena
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Institute of the Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jan T Andersson
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jörg Lambert
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany
| | - Katrin Madjar
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Birte Hellwig
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Jörg Rahnenführer
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Roland Hergenröder
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| |
Collapse
|
79
|
Jouret F, Leenders J, Poma L, Defraigne JO, Krzesinski JM, de Tullio P. Nuclear Magnetic Resonance Metabolomic Profiling of Mouse Kidney, Urine and Serum Following Renal Ischemia/Reperfusion Injury. PLoS One 2016; 11:e0163021. [PMID: 27657885 PMCID: PMC5033333 DOI: 10.1371/journal.pone.0163021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 09/01/2016] [Indexed: 12/29/2022] Open
Abstract
Background Ischemia/reperfusion (I/R) is the most common cause of acute kidney injury (AKI). Its pathophysiology remains unclear. Metabolomics is dedicated to identify metabolites involved in (patho)physiological changes of integrated living systems. Here, we performed 1H-Nuclear Magnetic Resonance metabolomics using urine, serum and kidney samples from a mouse model of renal I/R. Methods Renal 30-min ischemia was induced in 12-week-old C57BL/6J male mice by bilaterally clamping vascular pedicles, and was followed by 6, 24 or 48-hour reperfusion (n = 12/group). Sham-operated mice were used as controls. Statistical discriminant analyses, i.e. principal component analysis and orthogonal projections to latent structures (OPLS-DA), were performed on urine, serum and kidney lysates at each time-point. Multivariate receiver operating characteristic (ROC) curves were drawn, and sensitivity and specificity were calculated from ROC confusion matrix (with averaged class probabilities across 100 cross-validations). Results Urine OPLS-DA analysis showed a net separation between I/R and sham groups, with significant variations in levels of taurine, di- and tri-methylamine, creatine and lactate. Such changes were observed as early as 6 hours post reperfusion. Major metabolome modifications occurred at 24h post reperfusion. At this time-point, correlation coefficients between urine spectra and conventional AKI biomarkers, i.e. serum creatinine and urea levels, reached 0.94 and 0.95, respectively. The area under ROC curve at 6h, 24h and 48h post surgery were 0.73, 0.98 and 0.97, respectively. Similar discriminations were found in kidney samples, with changes in levels of lactate, fatty acids, choline and taurine. By contrast, serum OPLS-DA analysis could not discriminate sham-operated from I/R-exposed animals. Conclusions Our study demonstrates that renal I/R in mouse causes early and sustained metabolomic changes in urine and kidney composition. The most implicated pathways at 6h and 24h post reperfusion include gluconeogenesis, taurine and hypotaurine metabolism, whereas protein biosynthesis, glycolysis, and galactose and arginine metabolism are key at 48h post reperfusion.
Collapse
Affiliation(s)
- François Jouret
- Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
- * E-mail:
| | - Justine Leenders
- Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Laurence Poma
- Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Jean-Olivier Defraigne
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Jean-Marie Krzesinski
- Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Pascal de Tullio
- Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| |
Collapse
|
80
|
Sun WP, Zhai MZ, Li D, Zhou Y, Chen NN, Guo M, Zhou SS. Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clin Nutr 2016; 36:1136-1142. [PMID: 27567458 DOI: 10.1016/j.clnu.2016.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
AIM The present study was to compare the effects of nicotinic acid and nicotinamide on the plasma methyl donors, choline and betaine. METHODS Thirty adult subjects were randomly divided into three groups of equal size, and orally received purified water (C group), nicotinic acid (300 mg, NA group) or nicotinamide (300 mg, NM group). Plasma nicotinamide, N1-methylnicotinamide, homocysteine, betaine and choline levels before and 1.5-h and 3-h post-dosing, plasma normetanephrine and metanephrine concentrations at 3-h post-dosing, and the urinary excretion of N1-methyl-2-pyridone-5-carboxamide during the test period were examined. RESULTS The level of 3-h plasma nicotinamide, N1-methylnicotinamide, homocysteine, the urinary excretion of N1-methyl-2-pyridone-5-carboxamide and pulse pressure (PP) in the NM group was 221%, 3972%, 61%, 1728% and 21.2% higher than that of the control group (P < 0.01, except homocysteine and PP P < 0.05), while the 3-h plasma betaine, normetanephrine and metanephrine level in the NM group was 24.4%, 9.4% and 11.7% lower (P < 0.05, except betaine P < 0.01), without significant difference in choline levels. Similar but less pronounced changes were observed in the NA group, with a lower level of 3-h plasma N1-methylnicotinamide (1.90 ± 0.20 μmol/l vs. 3.62 ± 0.27 μmol/l, P < 0.01) and homocysteine (12.85 ± 1.39 μmol/l vs. 18.08 ± 1.02 μmol/l, P < 0.05) but a higher level of betaine (27.44 ± 0.71 μmol/l vs. 23.52 ± 0.61 μmol/l, P < 0.05) than that of the NM group. CONCLUSION The degradation of nicotinamide consumes more betaine than that of nicotinic acid at identical doses. This difference should be taken into consideration in niacin fortification.
Collapse
Affiliation(s)
- Wu-Ping Sun
- Institute of Basic Medical Sciences, Medical College, Dalian University, Dalian 116622, China; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Ming-Zhu Zhai
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Da Li
- Institute of Basic Medical Sciences, Medical College, Dalian University, Dalian 116622, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yiming Zhou
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Na-Na Chen
- Institute of Basic Medical Sciences, Medical College, Dalian University, Dalian 116622, China
| | - Ming Guo
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Shi-Sheng Zhou
- Institute of Basic Medical Sciences, Medical College, Dalian University, Dalian 116622, China.
| |
Collapse
|
81
|
Amin HK, El-Sayed MIK, Leheta OF. Homocysteine as a predictive biomarker in early diagnosis of renal failure susceptibility and prognostic diagnosis for end stages renal disease. Ren Fail 2016; 38:1267-75. [PMID: 27435113 DOI: 10.1080/0886022x.2016.1209382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Glomerular filtration rate and/or creatinine are not accurate methods for renal failure prediction. This study tested homocysteine (Hcy) as a predictive and prognostic marker for end stage renal disease (ESRD). In total, 176 subjects were recruited and divided into: healthy normal group (108 subjects); mild-to-moderate impaired renal function group (21 patients); severe impaired renal function group (7 patients); and chronic renal failure group (40 patients) who were on regular hemodialysis. Blood samples were collected, and serum was separated for analysis of total Hcy, creatinine, high sensitive C-reactive protein (CRP), serum albumin, and calcium. Data showed that Hcy level was significantly increased from normal-to-mild impairment then significantly decreases from mild impairment until the patient reaches severe impairment while showing significant elevation in the last stage of chronic renal disease. Creatinine level was increased in all stages of kidney impairment in comparison with control. CRP level was showing significant elevation in the last stage. A significant decrease in both albumin and calcium was occurred in all stages of renal impairment. We conclude Hcy in combination with CRP, creatinine, albumin, and calcium can be used as a prognostic marker for ESRD and an early diagnostic marker for the risk of renal failure.
Collapse
Affiliation(s)
- Hatem K Amin
- a Department of Biochemistry and Molecular Biology, Faculty of Pharmacy , Helwan University , Cairo , Egypt ;,b Cell Cycle Control Group, Center for Chromosome Biology , National University of Ireland , Galway , Ireland
| | - Mohamed-I Kotb El-Sayed
- a Department of Biochemistry and Molecular Biology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Ola F Leheta
- c Department of Clinical Pathology, Faculty of Medicine , University Hospital, Suez Canal University , Ismailia , Egypt
| |
Collapse
|
82
|
Knowles L, Morris AAM, Walter JH. Treatment with Mefolinate (5-Methyltetrahydrofolate), but Not Folic Acid or Folinic Acid, Leads to Measurable 5-Methyltetrahydrofolate in Cerebrospinal Fluid in Methylenetetrahydrofolate Reductase Deficiency. JIMD Rep 2016; 29:103-107. [PMID: 26898294 DOI: 10.1007/8904_2016_529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/03/2022] Open
Abstract
S-adenosyl methionine, which is formed from methionine, is an essential methyl donor within the central nervous system. Methionine is formed by the enzyme methionine synthase for which 5-methyltetrahydrofolate (5-MTHF) and homocysteine are substrates. Patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency cannot make 5-MTHF and have extremely low levels in the CSF. As a consequence, methylation reactions in the CNS are compromised, and this is likely to play an important role in the neurological abnormalities that occur in MTHFR deficiency. Although treatment with oral betaine can remethylate homocysteine to methionine in the liver, betaine crosses the blood-brain barrier poorly, and CSF levels of methionine remain low. We report three patients with severe MTHFR deficiency (enzyme activity ≤1% of controls) who had undetectable levels of CSF 5-MTHF at diagnosis and while on treatment with either folic acid or calcium folinate. Only treatment with oral 5-MTHF given as calcium mefolinate at doses of 15-60 mg/kg/day resulted in an increase in CSF 5-MTHF.
Collapse
Affiliation(s)
- L Knowles
- Willink Biochemical Genetics Unit, Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - A A M Morris
- Willink Biochemical Genetics Unit, Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - J H Walter
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
83
|
Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta Gen Subj 2016; 1860:1098-106. [PMID: 26850693 DOI: 10.1016/j.bbagen.2016.02.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. SCOPE OF REVIEW The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. MAJOR CONCLUSIONS A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. GENERAL SIGNIFICANCE The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease.
Collapse
|
84
|
Jang YS, Jo YK, Sim JJ, Ji E, Jeong KY, Kim HM. Lactate calcium salt affects the viability of colorectal cancer cells via betaine homeostasis. Life Sci 2016; 147:71-6. [PMID: 26800787 DOI: 10.1016/j.lfs.2016.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 01/18/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Yeong-Su Jang
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Young-Kwon Jo
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Jae Jun Sim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Eunhee Ji
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Keun-Yeong Jeong
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea.
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
85
|
Metabolic Serum Profiles for Patients Receiving Allogeneic Stem Cell Transplantation: The Pretransplant Profile Differs for Patients with and without Posttransplant Capillary Leak Syndrome. DISEASE MARKERS 2015; 2015:943430. [PMID: 26609191 PMCID: PMC4644835 DOI: 10.1155/2015/943430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Abstract
Allogeneic stem cell transplantation is commonly used in the treatment of younger patients with severe hematological diseases, and endothelial cells seem to be important for the development of several posttransplant complications. Capillary leak syndrome is a common early posttransplant complication where endothelial cell dysfunction probably contributes to the pathogenesis. In the present study we investigated whether the pretreatment serum metabolic profile reflects a risk of posttransplant capillary leak syndrome. We investigated the pretransplant serum levels of 766 metabolites for 80 consecutive allotransplant recipients. Patients with later capillary leak syndrome showed increased pretherapy levels of metabolites associated with endothelial dysfunction (homocitrulline, adenosine) altered renal regulation of fluid and/or electrolyte balance (betaine, methoxytyramine, and taurine) and altered vascular function (cytidine, adenosine, and methoxytyramine). Additional bioinformatical analyses showed that capillary leak syndrome was also associated with altered purine/pyrimidine metabolism (i.e., metabolites involved in vascular regulation and endothelial functions), aminoglycosylation (possibly important for endothelial cell functions), and eicosanoid metabolism (also involved in vascular regulation). Our observations are consistent with the hypothesis that the pretransplant metabolic status can be a marker for posttransplant abnormal fluid and/or electrolyte balance.
Collapse
|
86
|
Abstract
We demonstrated in the present study that betaine-homocysteine (Hcy) methyltransferase (BHMT) is a major pathway for Hcy removal in all situations of hyperhomocysteinaemia (HHcy). Hperhomocysteinaemia induces betaine depletion in plasma and tissues except in kidney, where betaine may play a crucial role as an osmolyte. Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.
Collapse
|