51
|
Ghafouri-Fard S, Dashti S, Gholami L, Badrlou E, Sadeghpour S, Hussen BM, Hidayat HJ, Nazer N, Shadnoush M, Sayad A, Arefian N. Expression analysis of Wnt signaling pathway related lncRNAs in periodontitis: A pilot case-control study. HUMAN GENE 2022; 33:201069. [DOI: 10.1016/j.humgen.2022.201069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
52
|
Zhang S, Jin H, Da J, Zhang K, Liu L, Guo Y, Zhang W, Geng Y, Liu X, Zhang J, Jiang L, Yuan H, Wang J, Zhan Y, Li Y, Zhang B. Role of ferroptosis-related genes in periodontitis based on integrated bioinformatics analysis. PLoS One 2022; 17:e0271202. [PMID: 35901060 PMCID: PMC9333299 DOI: 10.1371/journal.pone.0271202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background Cell survival or death is one of the key scientific issues of inflammatory response. To regulate cell death during the occurrence and development of periodontitis, various forms of programmed cell death, such as pyroptosis, ferroptosis, necroptosis, and apoptosis, have been proposed. It has been found that ferroptosis characterized by iron-dependent lipid peroxidation is involved in cancer, degenerative brain diseases and inflammatory diseases. Furthermore, NCOA4 is considered one of ferroptosis-related genes (FRGs) contributing to butyrate-induced cell death in the periodontitis. This research aims to analyze the expression of FRGs in periodontitis tissues and to explore the relationship between ferroptosis and periodontitis. Method Genes associated with periodontitis were retrieved from two Gene Expression Omnibus datasets. Then, we normalized microarray data and removed the batch effect using the R software. We used R to convert the mRNA expression data and collected the expression of FRGs. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), transcription factor (TF) and protein-protein interaction (PPI) network analyses were used. In addition, we constructed a receiver operating characteristic curve and obtained relative mRNA expression verified by quantitative reverse-transcription polymerase chain reaction (PCR). Results Eight and 10 FRGs related to periodontitis were upregulated and downregulated, respectively. GO analysis showed that FRGs were enriched in the regulation of glutathione biosynthetic, glutamate homeostasis, and endoplasmic reticulum-nucleus signaling pathway. The top TFs included CEBPB, JUND, ATF2. Based on the PPI network analysis, FRGs were mainly linked to the negative regulation of IRE1-mediated unfolded protein response, regulation of type IIa hypersensitivity, and regulation of apoptotic cell clearance. The expression levels of NCOA4, SLC1A5 and HSPB1 using PCR were significantly different between normal gingival samples and periodontitis samples. Furthermore, the diagnostic value of FRGs for periodontitis were “Good”. Conclusions We found significant associations between FRGs and periodontitis. The present study not only provides a new possible pathomechanism for the occurrence of periodontitis but also offers a new direction for the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yawei Geng
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoze Yuan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail: (YL); (BZ)
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail: (YL); (BZ)
| |
Collapse
|
53
|
Liu Y, Li T, Sun M, Cheng Z, Jia W, Jiao K, Wang S, Jiang K, Yang Y, Dai Z, Liu L, Liu G, Luo Y. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater 2022; 146:37-48. [PMID: 35364317 DOI: 10.1016/j.actbio.2022.03.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque that leads to alveolar bone resorption. In the treatment of periodontitis, it is necessary to reduce the bacterial load and promote alveolar bone regeneration. In this study, zeolitic imidazolate framework-8 (ZIF-8) is used in the treatment of periodontitis, and an injectable photopolymerizable ZIF-8/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z) is constructed. We confirm that ZIF-8 nanoparticles are successfully loaded into GelMA, which demonstrates fluidity and photopolymerizability. GelMA-Z continuously releases Zn2+ and shows good cytocompatibility. In vitro, GelMA-Z can effectively upregulate the expression of osteogenesis-related genes and proteins, increase alkaline phosphatase activity, promote extracellular matrix mineralization by rat bone mesenchymal stem cells, and exert an obvious antibacterial effect against Porphyromonas gingivalis. In vivo, GelMA-Z reduces the bacterial load, relieves inflammation and promotes alveolar bone regeneration in a rat model. The above results show that GelMA-Z has potential prospects in the treatment of periodontitis. STATEMENT OF SIGNIFICANCE: Various methods have been explored for the treatment of periodontitis. However, current regiments have difficulty achieving ideal alveolar bone regeneration. In this study, we constructed a zeolitic imidazolate framework-8 (ZIF-8)/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z). (1) The injectable and photopolymerizable GelMA-Z showed biocompatibility in vitro and in vivo. (2) GelMA-Z continually released zinc ions to promote the osteogenic differentiation of bone mesenchymal stem cells and kill bacteria in vitro. (3) In a rat model, the GelMA-Z pregel solution was used to fill the periodontal pocket and then crosslinked by UV exposure. GelMA-Z can stably remain in the periodontal pocket to reduce the bacterial load, relieve inflammation and promote alveolar bone regeneration. In conclusion, GelMA-Z has great potential for use in the treatment of periodontitis, especially in promoting alveolar bone regeneration.
Collapse
Affiliation(s)
- Yun Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ting Li
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Maolei Sun
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University, Changchun 130000, China
| | - Wenyuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China
| | - Kun Jiao
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Shaoru Wang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Kongzhao Jiang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yuheng Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhihui Dai
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Liping Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Guomin Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China.
| | - Yungang Luo
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
54
|
Yang WY, Meng X, Wang YR, Wang QQ, He X, Sun XY, Cheng N, Zhang L. PRDX6 alleviates lipopolysaccharide-induced inflammation and ferroptosis in periodontitis. Acta Odontol Scand 2022; 80:535-546. [PMID: 35723029 DOI: 10.1080/00016357.2022.2047780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Periodontitis is a progressive and inflammatory oral disease and results in the damage of the supporting tissues of teeth. Peroxiredoxin 6 (PRDX6) is an antioxidant enzyme identified as a regulator in ferroptosis. This study aimed to investigate whether PRDX6 could protect human gingival fibroblasts (HGFs) from lipopolysaccharide (LPS)-induced inflammation and its mechanisms. MATERIAL AND METHODS Both inflamed and non-inflamed human gingival tissues were collected to assess the expression of PRDX6 and nuclear factor erythropoietin 2-related factor 2 (NRF2) by Immunohistochemistry and Western blotting. Furthermore, the molecular mechanisms of PRDX6 have been clarified in PRDX6 silenced cells. The inflammatory cytokines in HGFs were measured by RT-qPCR and ELISA. The lipid hydroperoxide (LOOH) was detected by C11-BODIPY. RESULTS The expression of PRDX6 and NRF2 were decreased in gingival tissues of severe periodontitis patients. The increased LPS-induced LOOH and inflammatory cytokines were found in PRDX6 knockdown HGFs. Besides, the inhibition of ferroptosis or PRDX6 phospholipase A2 activity (PLA2) alleviated LPS-induced inflammatory cytokines and LOOH. However, inhibiting NRF2 signalling upregulated those in HGFs. CONCLUSIONS Therefore, this study provided a new mechanistic insight that PRDX6, regulated by the NRF2 signalling, alleviates LPS-induced inflammation and ferroptosis in human gingival fibroblasts.
Collapse
Affiliation(s)
- Wen-Ying Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Yue-Rong Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Qing-Qing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Xin He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Xiao-Yu Sun
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Nan Cheng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China.,Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
55
|
KUNDAK K, YARAT A, DOĞAN B, KURU L. Effect of Non-surgical Periodontal Therapy on Salivary Melatonin Levels. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1053211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: Melatonin, a hormone secreted predominantly by pineal gland in a circadian manner, has antioxidant and anti-inflammatory effects. The current research is conducted to explore the influence of non-surgical periodontal therapy (NSPT) on levels of salivary melatonin in subjects with gingivitis and periodontitis. Methods: Sixty systemically healthy participants were included in this study; the groups are as follows: gingivitis (G), chronic periodontitis (CP), generalized aggressive periodontitis (GAP) and periodontally healthy (H). NSPT was applied to G group patients for 2 sessions, to CP and GAP group patients for 4 sessions. Plaque and gingival indices, probing depth (PD), bleeding on probing (BOP), and clinical attachment level (CAL) were documented at baseline and 3 months post – treatment and early morning salivary samples were collected. ELISA was used to detect melatonin levels in saliva. Pittsburgh Sleep Quality Index (PSQI) questionnaire was performed to evaluate of sleep quality of patients. Results: At baseline, significant difference in gingival index, PD, BOP and CAL values was detected among all groups (p
Collapse
Affiliation(s)
- Kübra KUNDAK
- MARMARA UNIVERSITY, INSTITUTE OF HEALTH SCIENCES
| | - Ayşen YARAT
- MARMARA ÜNİVERSİTESİ, DİŞ HEKİMLİĞİ FAKÜLTESİ
| | - Başak DOĞAN
- MARMARA ÜNİVERSİTESİ, DİŞ HEKİMLİĞİ FAKÜLTESİ
| | - Leyla KURU
- MARMARA ÜNİVERSİTESİ, DİŞ HEKİMLİĞİ FAKÜLTESİ
| |
Collapse
|
56
|
Guo X, Liang M. Metformin alleviates dexamethasone-induced apoptosis by regulating autophagy via AMPK/mTOR/p70S6K in osteoblasts. Exp Cell Res 2022; 415:113120. [PMID: 35341775 DOI: 10.1016/j.yexcr.2022.113120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis. Osteoblast apoptosis induced by GCs is now considered as a crucial factor for GIOP. Many clinical, in vivo, and in vitro studies have shown that metformin has a beneficial effect on bone metabolism and bone formation. To investigate whether metformin could be used to treat GIOP, we explored the influence of metformin on dexamethasone (Dex)-induced apoptosis of osteoblasts and its underlying mechanisms. In this study, the CCK8 assay was used to determine the optimal metformin concentration and processing time. The expression levels of target proteins were examined by Western blot and immunofluorescence; the expression levels of target genes were tested by quantitative PCR. Apoptotic cells were detected using flow cytometry. Characteristics of autophagy were observed by transmission electron microscopy. An autophagy inhibitor was administered to investigate whether autophagy decreases apoptosis. Sh-AMPK transfection and an mTOR activator were used to investigate the role of AMPK/mTOR signaling in metformin-induced autophagy. The results showed that metformin alleviated Dex-induced apoptosis of osteoblasts accompanied by increased autophagy. Treatment with the autophagy inhibitor 3-methyladenine (3-MA) attenuated the effect of metformin on apoptosis, autophagy, and the AMPK/mTOR/p70S6K signaling pathway. The anti-apoptotic effect of metformin on osteoblasts is associated with the promotion of autophagy. Furthermore, sh-AMPK transfection and the mTOR activator MHY1485 impaired metformin-mediated inhibition of osteoblast apoptosis and promotion of autophagy. The AMPK/mTOR/p70S6K signaling pathway plays a role in metformin-mediated apoptosis suppression and autophagy promotion. In conclusion, metformin can alleviate Dex-induced osteoblast apoptosis by inducing autophagy via the AMPK/mTOR/p70S6K pathway. This study highlights the potential value of metformin in the treatment of GIOP.
Collapse
Affiliation(s)
- Xintong Guo
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Min Liang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China.
| |
Collapse
|
57
|
Liu RY, Li L, Zhang ZT, Wu T, Lin S, Zhang XT. Clinical efficacy of melatonin as adjunctive therapy to non-surgical treatment of periodontitis: a systematic review and meta-analysis. Inflammopharmacology 2022; 30:695-704. [PMID: 35290552 DOI: 10.1007/s10787-022-00959-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of adjunctive melatonin supplementation on clinical outcomes after non-surgical periodontal treatment. METHODS PubMed, Embase, and Web of Science databases were systematically searched for randomised controlled trials (RCTs) of melatonin adjuvant therapy for periodontitis from inception until May 2021. The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and registered on The International Prospective Register of Systematic Reviews (PROSPERO) (CRD42021250630). The risk of bias of included studies was assessed according to the Cochrane Handbook for Systematic Reviews of Interventions. The pooled effect estimates were calculated by a random-effects model, and results were expressed as weighted mean differences (WMD). RESULTS Seven RCTs comprising 412 participants were included in the meta-analysis. The pooled results showed that adjuvant use of melatonin for non-surgical periodontal treatment significantly improved the probing depth (PD) [WMD = - 1.18, 95% CI (- 1.75, - 0.62) I2 = 85.7%], clinical attachment loss (CAL) [WMD = - 1.16, 95% CI (- 1.60, - 0.72) I2 = 76.7%] and gingival index (WMD = - 0.29, 95%CI [- 0.48, - 0.11], I2 = 63.6%) compared with non-surgical treatment alone. In addition, subgroup analysis showed that higher doses of melatonin (3-10 mg) significantly improved PD [WMD = - 1.32, 95%CI (- 2.31, - 0.15) I2 = 93%] and CAL [WMD = - 1.30, 95%CI (- 1.80, - 0.81) I2 = 73.7%] compared with lower doses of melatonin (< 3 mg). CONCLUSIONS We found that adjunctive melatonin supplementation can significantly improve the periodontal status after non-surgical treatment, suggesting that melatonin may be a new adjuvant therapy for periodontitis when non-surgical periodontal treatment alone cannot achieve the desired improvement.
Collapse
Affiliation(s)
- Ru-Yue Liu
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Lin Li
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Zhong-Ti Zhang
- VIP Department, School of Stomatology, China Medical University, Shenyang, China.
| | - Ting Wu
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Shuang Lin
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Xu-Tong Zhang
- VIP Department, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
58
|
Wu L, Shi R, Bai H, Wang X, Wei J, Liu C, Wu Y. Porphyromonas gingivalis Induces Increases in Branched-Chain Amino Acid Levels and Exacerbates Liver Injury Through livh/livk. Front Cell Infect Microbiol 2022; 12:776996. [PMID: 35360107 PMCID: PMC8961321 DOI: 10.3389/fcimb.2022.776996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis, a keystone periodontal pathogen, has emerged as a risk factor for systemic chronic diseases, including non-alcoholic fatty liver disease (NAFLD). To clarify the mechanism by which this pathogen induces such diseases, we simultaneously analyzed the transcriptome of intracellular P. gingivalis and infected host cells via dual RNA sequencing. Pathway analysis was also performed to determine the differentially expressed genes in the infected cells. Further, the infection-induced notable expression of P. gingivalis livk and livh genes, which participate in branched-chain amino acid (BCAA) transfer, was also analyzed. Furthermore, given that the results of recent studies have associated NAFLD progression with elevated serum BCAA levels, which reportedly, are upregulated by P. gingivalis, we hypothesized that this pathogen may induce increases in serum BCAA levels and exacerbate liver injury via livh/livk. To verify this hypothesis, we constructed P. gingivalis livh/livk-deficient strains (Δlivk, Δlivh) and established a high-fat diet (HFD)-fed murine model infected with P. gingivalis. Thereafter, the kinetic growth and exopolysaccharide (EPS) production rates as well as the invasion efficiency and in vivo colonization of the mutant strains were compared with those of the parental strain. The serum BCAA and fasting glucose levels of the mice infected with either the wild-type or mutant strains, as well as their liver function were also further investigated. It was observed that P. gingivalis infection enhanced serum BCAA levels and aggravated liver injury in the HFD-fed mice. Additionally, livh deletion had no effect on bacterial growth, EPS production, invasion efficiency, and in vivo colonization, whereas the Δlivk strain showed a slight decrease in invasion efficiency and in vivo colonization. More importantly, however, both the Δlivk and Δlivh strains showed impaired ability to upregulate serum BCAA levels or exacerbate liver injury in HFD-fed mice. Overall, these results suggested that P. gingivalis possibly aggravates NAFLD progression in HFD-fed mice by increasing serum BCAA levels, and this effect showed dependency on the bacterial BCAA transport system.
Collapse
Affiliation(s)
- Leng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
| | - Xingtong Wang
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Wei
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| |
Collapse
|
59
|
Tang H, Ye Y, Li L, Zhou Y, Hou L, Ren S, Xu Y. A20 alleviated caspase-1-mediated pyroptosis and inflammation stimulated by Porphyromonas gingivalis lipopolysaccharide and nicotine through autophagy enhancement. Hum Cell 2022; 35:803-816. [PMID: 35212946 DOI: 10.1007/s13577-022-00678-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/19/2022] [Indexed: 01/16/2023]
Abstract
Periodontitis is the leading cause of tooth loss, and patients with smoking habits are at an increased risk of developing periodontitis. A20 (the tumor necrosis factor alpha-induced protein 3, TNFAIP3) is one of the key regulators of inflammation and cell death in numerous tissues. Emerging researches indicated A20 as a fundamental molecule in the periodontal tissue. This study was to evaluate the role of A20 against cell death and inflammation in periodontitis and to elucidate the underlying mechanisms. In our study, western blot, autophagy detection, and transmission electron microscopy showed that lipopolysaccharide from Porphyromonas gingivalis (Pg.LPS) and nicotine (NI) could enhance the activation of autophagy. Pg.LPS and NI induce the pyroptosis of human periodontal ligament cells (hPDLCs), as evidenced by the decrease of membrane integrity and the increase of NLRP3, GSDMD, GSDMD-N, caspase-1 activity, and the pro-inflammatory cytokines of IL-1β, IL-6, TNF-α. Further researches were focused on that A20, an ubiquitin-editing enzyme, was linked to hPDLCs pyroptosis. Overexpression or silencing A20 could diminish or aggravate pyroptosis in hPDLCs by the modulation of autophagy. The above results demonstrated that A20 dictated the cross-talk between pyroptosis and autophagy. Overexpression of A20 enhanced autophagy to reduce pyroptosis, and thus alleviating inflammation, suggesting that A20 may be a potent target in the treatment of periodontitis.
Collapse
Affiliation(s)
- Hui Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Liguang Hou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China. .,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 1 # Shanghai Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
60
|
Yu Y, Zhao S, Gu D, Zhu B, Liu H, Wu W, Wu J, Wei H, Miao L. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway. NANOSCALE 2022; 14:2628-2637. [PMID: 35088792 DOI: 10.1039/d1nr06043k] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Periodontitis, an inflammatory disease of oxidative stress, occurs due to excess reactive oxygen species (ROS) contributing to cell and tissue damage which in turn leads to alveolar bone resorption as well as the destruction of other periodontal support tissues. With significant recent advances in nanomaterials, we considered a unique type of nanomaterials possessing enzyme-like characteristics (called nanozymes) for potential future clinical applications, especially in light of the increasing number of studies evaluating nanozymes in the setting of inflammatory diseases. Here, we introduced a therapeutic approach for the management of periodontitis utilizing an injection of cerium oxide nanoparticles (CeO2 NPs) in situ. In this study, our synthesized CeO2 NPs could act as ROS scavengers in the inflammatory microenvironment with ideal outcomes. In vitro and in vivo experiments provide strong evidence on the roles of CeO2 NPs in scavenging multiple ROS and suppressing ROS-induced inflammation reactions stimulated by lipopolysaccharides. Moreover, CeO2 NPs could inhibit the MAPK-NFκB signalling pathway to suppress inflammatory factors. In addition, the results from a rat periodontitis model demonstrate that CeO2 NPs could exhibit a remarkable capacity to attenuate alveolar bone resorption, decrease the osteoclast activity and inflammation, and consequently improve the restoration of destroyed tissues. Collectively, our present study underscores the potential of CeO2 NPs for application in the treatment of periodontitis, and provides valuable insights into the application of nanozymes in inflammatory diseases.
Collapse
Affiliation(s)
- Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Sheng Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Hanxiao Liu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Wenlei Wu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
61
|
Intracellular glucose starvation affects gingival homeostasis and autophagy. Sci Rep 2022; 12:1230. [PMID: 35075260 PMCID: PMC8786886 DOI: 10.1038/s41598-022-05398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Human gingival fibroblasts (HGnFs) maintain periodontal tissue homeostasis through active proliferation and migration. Clinically, it is considered that the wound-healing ability of the gingival tissue is maintained even in environments with insufficient supply of nutrients, such as glucose, immediately after periodontal surgery. However, the effects of such glucose-deficient environments on HGnFs remain unclear. This study aimed to investigate the effects of low-glucose environment on HGnFs homeostasis. We evaluated gingival wound healing by examining cell proliferation and migration and collagen synthesis in HGnFs cultured in 100, 50, 25, and 0 mg/dL glucose in vitro. The cellular stress levels were determined by measuring the lactate dehydrogenase (LDH) and reactive oxygen species (ROS) levels. The glucose metabolism of HGnFs in the low-glucose concentrations was studied by measuring glucose transporter type 1 (GLUT1) mRNA expression, glucose uptake assays, lactate and ATP productions. Molecular effects were examined with a focus on the LKB1-AMPK signaling pathway. Autophagy activity in glucose-deprived HGnFs was evaluated by measuring the levels of autophagy-related proteins. Low glucose levels increased cellular stress levels, autophagy activity, and enhanced glucose metabolism through the LKB1-AMPK signaling pathway, providing more ATPs to promote wound healing. Our results regarding glucose transfer suggest the rapid healing of gingival wounds.
Collapse
|
62
|
Dharuman S, Ajith Kumar S, Kanakasabapathy Balaji S, Vishwanath U, Parthasarathy Parameshwari R, Santhanakrishnan M. Evaluation of Levels of Advanced Oxidative Protein Products in Patients with Polycystic Ovary Syndrome with and without Chronic Periodontitis: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:55-59. [PMID: 35103433 PMCID: PMC8808248 DOI: 10.22074/ijfs.2021.522861.1073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/15/2021] [Indexed: 06/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common condition with a multifactorial aetiology. Chronic periodontitis (CP) is an immunoinflammatory disease that is linked to PCOS via the excessive production of reactive oxygen species (ROS), which leads to an imbalance in the antioxidant system. However, limited studies have evaluated the relationship between these diseases. The current study aims to evaluate the levels of advanced oxidation protein products (AOPP) in patients with periodontitis and PCOS. Four groups, each consisting of 12 patients, with both PCOS and CP (PCOSCP), systemically healthy women with CP, periodontally healthy women with PCOS (PCOSPH), and periodontally and systemically healthy women (PH) were included in the study. Clinical parameters such as clinical attachment loss, bleeding on probing (BOP), and periodontal inflamed surface area (PISA) index were noted. AOPP were evaluated in the saliva and serum samples by spectrophotometric detection. Salivary and serum AOPP levels were highest in the PCOSCP group (75.16 ± 7.50 μmol/l, 97.92 ± 6.50 μmol/l, respectively). Statistical significance (P<0.05) was noted between the salivary AOPP levels of the PCOSCP group and PCOS group. PISA was greatest in the PCOSCP group (1338.40 ± 285.96 mm2 ) followed by the PCOS group (680.33 ± 79.49 mm2 ), which showed the impact of PCOS on gingival inflammation. According to the results of this study, increased levels of advanced oxidative protein products appeared to show the effect of CP on worsening PCOS.
Collapse
Affiliation(s)
- Smriti Dharuman
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, TamilNadu, India
| | - Supraja Ajith Kumar
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, TamilNadu, India
| | - Subbusamy Kanakasabapathy Balaji
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, TamilNadu, India
| | - Usha Vishwanath
- Department of Obstetrics and Gynaecology, Sri Ramachandra Institute of Higher Education and Research, Chennai, TamilNadu, India
| | | | - Muthukumar Santhanakrishnan
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, TamilNadu, India.
| |
Collapse
|
63
|
Ebersole JL, Gonzalez OA. Mucosal circadian rhythm pathway genes altered by aging and periodontitis. PLoS One 2022; 17:e0275199. [PMID: 36472983 PMCID: PMC9725147 DOI: 10.1371/journal.pone.0275199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
As circadian processes can impact the immune system and are affected by infections and inflammation, this study examined the expression of circadian rhythm genes in periodontitis. METHODS Macaca mulatta were used with naturally-occurring and ligature-induced periodontitis. Gingival tissue samples were obtained from healthy, diseased, and resolved sites in four groups: young (≤3 years), adolescent (3-7 years), adult (12-26) and aged (18-23 years). Microarrays targeted circadian rhythm (n = 42), inflammation/tissue destruction (n = 11), bone biology (n = 8) and hypoxia pathway (n = 7) genes. RESULTS The expression of many circadian rhythm genes, across functional components of the pathway, was decreased in healthy tissues from younger and aged animals, as well as showing significant decreases with periodontitis. Negative correlations of the circadian rhythm gene levels with inflammatory mediators and tissue destructive/remodeling genes were particularly accentuated in disease. A dominance of positive correlations with hypoxia genes was observed, except HIF1A, that was uniformly negatively correlated in health, disease and resolution. CONCLUSIONS The chronic inflammation of periodontitis exhibits an alteration of the circadian rhythm pathway, predominantly via decreased gene expression. Thus, variation in disease expression and the underlying molecular mechanisms of disease may be altered due to changes in regulation of the circadian rhythm pathway functions.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Nevada, Nevada Las Vegas
- * E-mail:
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
64
|
Zhao X, Yang Y, Yu J, Ding R, Pei D, Zhang Y, He G, Cheng Y, Li A. Injectable hydrogels with high drug loading through B–N coordination and ROS-triggered drug release for efficient treatment of chronic periodontitis in diabetic rats. Biomaterials 2022; 282:121387. [DOI: 10.1016/j.biomaterials.2022.121387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 12/27/2022]
|
65
|
Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, The Bad, and The Unknown. Front Cell Infect Microbiol 2021; 11:766944. [PMID: 34950607 PMCID: PMC8688827 DOI: 10.3389/fcimb.2021.766944] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributory factors in periodontitis. These factors have collectively expanded the established narrative of periodontal disease progression. In line with this, new ideologies related to maintaining periodontal health and treating existing disease have been explored, such as the application of oral probiotics, to limit and attenuate disease progression. The role of systemic host pathologies, such as autoimmune disorders and diabetes, in periodontal disease pathogenesis has been well noted. Recent studies have additionally identified the reciprocated importance of periodontal disease in potentiating systemic disease states at distal sites, such as in Alzheimer's disease, inflammatory bowel diseases, and oral cancer, further highlighting the importance of the oral cavity in systemic health. Here we review long-standing knowledge of periodontal disease progression while integrating novel research concepts that have broadened our understanding of periodontal health and disease. Further, we delve into innovative hypotheses that may evolve to address significant gaps in the foundational knowledge of periodontal disease.
Collapse
Affiliation(s)
- Lea M. Sedghi
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Margot Bacino
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Yvonne Lorraine Kapila
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Periodontology, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
66
|
Qiu X, Yu Y, Liu H, Li X, Sun W, Wu W, Liu C, Miao L. Remodeling the periodontitis microenvironment for osteogenesis by using a reactive oxygen species-cleavable nanoplatform. Acta Biomater 2021; 135:593-605. [PMID: 34390848 DOI: 10.1016/j.actbio.2021.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Modestly removing the excessive reactive oxygen species (ROS) plays a crucial role in regulating the microenvironment of periodontitis and provides favorable conditions for osteogenesis. However, the current strategy for scavenging ROS is not controllable, substantially limiting the outcomes in periodontitis. Herein, we introduced a controllable ROS-scavenging nanoplatform by encasing N-acetylcysteine (NAC, (a well-known ROS scavenger) into tailor-made ROS-cleavable amphiphilic polymer nanoparticles (PEG-ss-PCL NPs) as an intracellular delivery carrier. The existing ROS in the inflammatory microenvironment facilitated polymer degradation via breakage of thioketal bonds, and then led to encapsulated NAC release. NAC eliminated all ROS induced by lipopolysaccharide (LPS), while PssL-NAC adjusted the ROS level slightly higher than that of the control group. The percentage of apoptotic cells cultured with NAC and PssL-NAC decreased observably compared with that of cells cultured with 10 µg/ml LPS. The microenvironment regulated by PssL-NAC was highly suitable for osteogenic differentiation based on PCR and Western blot results, which showed higher expression levels of BMP2, Runx2, and PKA. Analysis of ALP activity and Alizarin red S staining showed consistent results. Additionally, the injection of PssL-NAC into the periodontitis area could alleviate the tissue destruction induced by ligation of the maxillary second molar. PssL-NAC showed a better ability to decrease osteoclast activity and inflammation, consequently improving the restoration of destroyed tissue. Our study suggests that ROS-responsive polymer nanoparticles loaded with NAC (PssL-NAC) can be new promising materials for the treatment of periodontitis. STATEMENT OF SIGNIFICANCE: More and more studies indicate that periodontal tissue damage is closely related to the high reactive oxygen species (ROS) environment. Excessive ROS will aggravate periodontal tissue damage and is not conducive to tissue repair. However, as an essential signal molecule in human physiological activities, ROS absence is also useless for tissue repair. In this study, we proposed to improve ROS imbalance in the environment of periodontitis as a strategy to promote periodontal regeneration and successfully synthesized a smart drug-releasing nanoplatform that can respond to ROS. Besides, we validated its ability to regulate the ROS environment and promote osteogenesis through experimental data in vivo and in vitro.
Collapse
|
67
|
Li Z, Ali Shah SW, Zhou Q, Yin X, Teng X. The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117554. [PMID: 34174664 DOI: 10.1016/j.envpol.2021.117554] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can be discharged into water environment through industrial activities, threatening the health of aquatic organisms and humans. MicroRNA (miRNA) plays an important role in the process of autophagy. The purpose of this experiment was to study the mechanism of Cd-induced autophagy in common carp hepatopancreas. We established a Cd poisoning model of common carp and explored ultrastructure, two oxidation indicators, three antioxidant indicators, miR-25-3p, two heat shock proteins (Hsps), and nine autophagy-related genes. The results confirmed that deleterious effect of Cd caused the injury of hepatopancreas and the appearance of hepatopancreas autophagic cells in common carp. At the same time, Cd exposure increased the contents of hydrogen peroxide (H2O2) and malonaldehyde (MDA), and decreased the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC), meaning that Cd caused oxidative stress via the imbalance between peroxide level and antioxidant capacity. Moreover, exposure to Cd increased mRNA expression of microtubule associated protein-1 light chain 3 beta (LC3-II), Dynein, Beclin 1, autophagy-related gene 5 (Atg5), and autophagy-related gene 12 (Atg12); and decreased mRNA expression of mechanistic target of rapamycin kinase (mTOR), indicating that excess Cd caused autophagy, and AMPK/mTOR/ULK1 signaling pathway took part in autophagy induced by Cd in common carp hepatopancreas. Furthermore, Cd down-regulated miR-25-3p and up-regulated its three target genes (AMPK, ULK1 as well as PTEN), suggesting that miR-25-3p mediated autophagy induced by Cd. In addition, we found that Hsps were activated via the up-regulation of Hsp70 and Hsp90. Moreover, oxidative stress mediated autophagy via Hsps in Cd-treated common carp hepatopancreas and Cd-induced autophagy was time dependent. In summary, miR-25-3p, oxidative stress, and Hsps participated in autophagy caused by Cd in common carp hepatopancreas. This study provided a new idea for the mechanism of Cd-induced autophagy in hepatopancreas.
Collapse
Affiliation(s)
- Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
68
|
Wang X, Sato F, Tanimoto K, Rajeshwaran N, Thangavelu L, Makishima M, Bhawal UK. The Potential Roles of Dec1 and Dec2 in Periodontal Inflammation. Int J Mol Sci 2021; 22:10349. [PMID: 34638690 PMCID: PMC8508764 DOI: 10.3390/ijms221910349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal inflammation is a common inflammatory disease associated with chronic inflammation that can ultimately lead to alveolar attachment loss and bone destruction. Understanding autophagy and pyroptosis has suggested their significant roles in inflammation. In recent years, studies of differentiated embryo-chondrocyte expressed genes 1 and 2 (Dec1 and Dec2) have shown that they play important functions in autophagy and in pyroptosis, which contribute to the onset of periodontal inflammation. In this review, we summarize recent studies on the roles of clock genes, including Dec1 and Dec2, that are related to periodontal inflammation and other diseases.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Fuyuki Sato
- Pathology Division, Shizuoka Cancer Center, Shizuoka 411-8777, Japan;
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 739-8511, Japan;
| | - Niveda Rajeshwaran
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Ujjal K. Bhawal
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
69
|
Effect of Artemisinin-Loaded Mesoporous Cerium-Doped Calcium Silicate Nanopowder on Cell Proliferation of Human Periodontal Ligament Fibroblasts. NANOMATERIALS 2021; 11:nano11092189. [PMID: 34578505 PMCID: PMC8465982 DOI: 10.3390/nano11092189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ion doping has rendered mesoporous structures important materials in the field of tissue engineering, as apart from drug carriers, they can additionally serve as regenerative materials. The purpose of the present study was the synthesis, characterization and evaluation of the effect of artemisinin (ART)-loaded cerium-doped mesoporous calcium silicate nanopowders (NPs) on the hemocompatibility and cell proliferation of human periodontal ligament fibroblasts (hPDLFs). Mesoporous NPs were synthesized in a basic environment via a surfactant assisted cooperative self-assembly process and were characterized using Scanning Electron Microscopy (SEM), X-ray Fluorescence Spectroscopy (XRF), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction Analysis (XRD) and N2 Porosimetry. The loading capacity of NPs was evaluated using Ultrahigh Performance Liquid Chromatography/High resolution Mass Spectrometry (UHPLC/HRMS). Their biocompatibility was evaluated with the MTT assay, and the analysis of reactive oxygen species was performed using the cell-permeable ROS-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). The synthesized NPs presented a mesoporous structure with a surface area ranging from 1312 m2/g for undoped silica to 495 m2/g for the Ce-doped NPs, excellent bioactivity after a 1-day immersion in c-SBF, hemocompatibility and a high loading capacity (around 80%). They presented ROS scavenging properties, and both the unloaded and ART-loaded NPs significantly promoted cell proliferation even at high concentrations of NPs (125 μg/mL). The ART-loaded Ce-doped NPs with the highest amount of cerium slightly restricted cell proliferation after 7 days of culture, but the difference was not significant compared with the control untreated cells.
Collapse
|
70
|
Wei Y, Fu J, Wu W, Ma P, Ren L, Yi Z, Wu J. Quercetin Prevents Oxidative Stress-Induced Injury of Periodontal Ligament Cells and Alveolar Bone Loss in Periodontitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3509-3522. [PMID: 34408403 PMCID: PMC8366957 DOI: 10.2147/dddt.s315249] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
Purpose Emerging evidence has indicated that oxidative stress (OS) contributes to periodontitis. Periodontal ligament cells (PDLCs) are important for the regeneration of periodontal tissue. Quercetin, which is extracted from fruits and vegetables, has strong antioxidant capabilities. However, whether and how quercetin affects oxidative damage in PDLCs during periodontitis remains unknown. The aim of this study was to assess the effects of quercetin on oxidative damage in PDLCs and alveolar bone loss in periodontitis and underlying mechanisms. Materials and Methods The tissue block culture method was used to extract human PDLCs (hPDLCs). First, a cell counting kit 8 (CCK-8) assay was used to identify the optimal concentrations of hydrogen peroxide (H2O2) and quercetin. Subsequently, a 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe, RT-qPCR, Western blotting and other methods were used to explore the effects of quercetin on OS in hPDLCs and the underlying mechanism. Finally, quercetin was administered to mice with periodontitis through gavage, and the effect of quercetin on the level of OS and alveolar bone resorption in these mice was observed by immunofluorescence, microcomputed tomography (micro-CT), hematoxylin and eosin staining (H&E) staining and so on. Results Quercetin at 5 μM strongly activated NF-E2-related factor 2 (NRF2) signaling, alleviated oxidative damage and enhanced the antioxidant capacity of hPDLCs. In addition, quercetin reduced cellular senescence and protected the osteogenic ability of hPDLCs. Finally, quercetin activated NRF2 signaling in the periodontal ligaments, reduced the OS level of mice with periodontitis, and slowed the absorption of alveolar bone in vivo. Conclusion Quercetin can increase the antioxidant capacity of PDLCs and reduce OS damage by activating the NRF2 signaling pathway, which alleviates alveolar bone loss in periodontitis.
Collapse
Affiliation(s)
- Yu Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Wenjing Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Pengfei Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Le Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Zimei Yi
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People's Republic of China
| |
Collapse
|
71
|
Kocherova I, Bryja A, Błochowiak K, Kaczmarek M, Stefańska K, Matys J, Grzech-Leśniak K, Dominiak M, Mozdziak P, Kempisty B, Dyszkiewicz-Konwińska M. Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts. MATERIALS 2021; 14:ma14123427. [PMID: 34205573 PMCID: PMC8233986 DOI: 10.3390/ma14123427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023]
Abstract
Photobiomodulation (PBM), also called low-level laser treatment (LLLT), has been considered a promising tool in periodontal treatment due to its anti-inflammatory and wound healing properties. However, photobiomodulation's effectiveness depends on a combination of parameters, such as energy density, the duration and frequency of the irradiation sessions, and wavelength, which has been shown to play a key role in laser-tissue interaction. The objective of the study was to compare the in vitro effects of two different wavelengths-635 nm and 808 nm-on the human primary gingival fibroblasts in terms of viability, oxidative stress, inflammation markers, and specific gene expression during the four treatment sessions at power and energy density widely used in dental practice (100 mW, 4 J/cm2). PBM with both 635 and 808 nm at 4 J/cm2 increased the cell number, modulated extracellular oxidative stress and inflammation markers and decreased the susceptibility of human primary gingival fibroblasts to apoptosis through the downregulation of apoptotic-related genes (P53, CASP9, BAX). Moreover, modulation of mesenchymal markers expression (CD90, CD105) can reflect the possible changes in the differentiation status of irradiated fibroblasts. The most pronounced results were observed following the third irradiation session. They should be considered for the possible optimization of existing low-level laser irradiation protocols used in periodontal therapies.
Collapse
Affiliation(s)
- Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, 8952 Schlieren, Switzerland
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
| | - Katarzyna Błochowiak
- Department of Oral Surgery and Periodontology, Poznan University of Medical Sciences, 61-812 Poznań, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
| | - Jacek Matys
- Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wrocław, Poland; (J.M.); (K.G.-L.); (M.D.)
| | - Kinga Grzech-Leśniak
- Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wrocław, Poland; (J.M.); (K.G.-L.); (M.D.)
- Department of Periodontics, School of Dentistry Virginia Commonwealth University, VCU, Richmond, VA 23298, USA
| | - Marzena Dominiak
- Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wrocław, Poland; (J.M.); (K.G.-L.); (M.D.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (I.K.); (A.B.); (B.K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8547067
| |
Collapse
|
72
|
Mei Y, Shen X, Wang X, Zhang M, Li Q, Yan J, Xu J, Xu Y. Expression of autophagy and apoptosis-related factors in the periodontal tissue of experimental diabetic rats: a histomorphometric, microtomographic and immunohistochemical study. PeerJ 2021; 9:e11577. [PMID: 34178461 PMCID: PMC8197035 DOI: 10.7717/peerj.11577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to investigate the expression of autophagy-related factors microtubule-associated protein l light chain 3 (LC3) and the apoptosis-related factors BCL2-associated X protein (Bax) and B cell lymphoma-2 (Bcl-2) in the periodontal tissue of experimental diabetic rats. These data were used to explore the potential mechanism in diabetes-induced periodontal tissue lesions. Methods A total of 32 Sprague Dawley (SD) rats were randomly assigned into diabetes (group D, n = 16) and control groups (group N, n = 16). The diabetic group was induced by intraperitoneal injection of 1% streptozotocin (STZ, 60 mg/kg) and the control group was injected with citrate buffer (0.1mol/L). Rats were sacrificed after 4 and 8 weeks of feeding and collected as D1, N1 groups and D2, N2 groups, and the maxilla were retained for analysis. The changes in periodontal tissue structure were observed by hematoxylin-eosin (HE) staining. The expression and distribution of LC3, Bax and Bcl-2 in the periodontium of the rats was detected by immunohistochemical (SP) staining. Results Diabetic rats showed several changes compared to control animals including sparse alveolar bone trabecular structure, loss of the lamina dura and absorption of the local alveolar bone. The positive expression level of LC3 in the gingival epithelial, periodontal ligament and alveolar bone of group D1 was significantly higher than in the N1, N2 and D2 groups (P < 0.05). The level of Bax expression in the group D2 rats was significantly higher than those in the N1, N2 and D1 groups (P < 0.05), while the positive degree of Bcl-2 was significantly lower than those of other groups (P < 0.001). LC3 was negatively correlated with Bax and was irrelevant with Bcl-2; Bcl-2 was not correlated with Bax. Conclusions The expression of LC3, Bax and Bcl-2 changes in the periodontal tissue of diabetic rats may indicate that autophagy and apoptotic are involved in the process of periodontal tissue damage in diabetic rats. These changes may be one of the mechanisms of periodontal tissue lesions.
Collapse
Affiliation(s)
- Youmin Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiang Shen
- Department of Stomatology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoqian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Qiao Li
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Junyi Yan
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Jiali Xu
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
73
|
Zenobia C, Herpoldt KL, Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021; 6:80. [PMID: 34078913 PMCID: PMC8172910 DOI: 10.1038/s41541-021-00341-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Freire
- Departments of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
74
|
Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol 2021; 110:565-576. [PMID: 34043832 DOI: 10.1002/jlb.4mr0421-750r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is characterized by the periodontium's pathologic destruction due to the host's overwhelmed inflammation to the dental plaque. The bacterial infections and subsequent host immune responses have shaped a distinct microenvironment, which generally affects resident periodontal ligament stem cells (PDLSCs). Interestingly, recent studies have revealed that impaired PDLSCs may also contribute to the disturbance of periodontal homeostasis. The putative vicious circle underlying the interesting "positive feedback" of PDLSCs in the periodontitis niche remains a hot research topic, whereas the inseparable interactions between resident PDLSCs and the periodontitis niche are still not fully understood. This review provides a microscopic view on the periodontitis progression, especially the quick but delicate immune responses to oral dysbacterial infections. We also summarize the interesting crosstalk of the resident PDLSCs with their surrounding periodontitis niche and potential mechanisms. Particularly, the microenvironment reduces the osteogenic properties of resident PDLSCs, which are closely related to their reparative activity. Reciprocally, these impaired PDLSCs may disrupt the microenvironment by aggravating the host immune responses, promoting aberrant angiogenesis, and facilitating the osteoclastic activity. We further recommend that more in-depth studies are required to elucidate the interactions of PDLSCs with the periodontal microenvironment and provide novel interventions for periodontitis.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Deng
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hao
- Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
75
|
The diagnostic role of salivary biomarkers of oxidative stress and inflammatory status and their relationship in periodontitis stage III and grade C. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
76
|
Sun X, Sun J, Sun Y, Li C, Fang J, Zhang T, Wan Y, Xu L, Zhou Y, Wang L, Dong B. Oxygen Self‐Sufficient Nanoplatform for Enhanced and Selective Antibacterial Photodynamic Therapy against Anaerobe‐Induced Periodontal Disease. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101040. [DOI: 10.1002/adfm.202101040] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 07/31/2023]
Affiliation(s)
- Xiaolin Sun
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Jiao Sun
- Department of Cell Biology Norman Bethune College of Medicine Jilin University Changchun 130021 China
| | - Yue Sun
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Chunyan Li
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Changchun 130021 China
| | - Jiao Fang
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Tianshou Zhang
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Changchun 130021 China
| | - Yao Wan
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 China
| | - Yanmin Zhou
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Lin Wang
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 China
| |
Collapse
|
77
|
Beneficial Role of Carica papaya Extracts and Phytochemicals on Oxidative Stress and Related Diseases: A Mini Review. BIOLOGY 2021; 10:biology10040287. [PMID: 33916114 PMCID: PMC8066973 DOI: 10.3390/biology10040287] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary This review highlights the medicinal benefits of a natural remedy, the Carica papaya extracts and its phytochemicals. In this review, the potential of Carica papaya against various conditions, including cancer, inflammation, aging, healing of the skin, and lifelong diseases has been summarized and discussed. In short, more research and development should focus on this natural remedy that can potentially act as a prophylaxis against chronic diseases. Abstract Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.
Collapse
|
78
|
The Roles of FOXO1 in Periodontal Homeostasis and Disease. J Immunol Res 2021; 2021:5557095. [PMID: 33860060 PMCID: PMC8026307 DOI: 10.1155/2021/5557095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is an oral chronic inflammatory disease that is initiated by periodontal microbial communities and requires disruption of the homeostatic responses. The prevalence of periodontal disease increases with age; more than 70% of adults 65 years and older have periodontal disease. A pathogenic microbial community is required for initiating periodontal disease. Dysbiotic immune-inflammatory response and bone remodeling are characteristics of periodontitis. The transcription factor forkhead box protein O1 (FOXO1) is a key regulator of a number of cellular processes, including cell survival and differentiation, immune status, reactive oxygen species (ROS) scavenging, and apoptosis. Although accumulating evidence indicates that FOXO1 activity can be induced by periodontal pathogens, the roles of FOXO1 in periodontal homeostasis and disease have not been well documented. The present review summarizes how the FOXO1 signaling axis can regulate periodontal bacteria-epithelial interactions, immune-inflammatory response, bone remodeling, and wound healing.
Collapse
|
79
|
Wang J, Zhou Y, Ren B, Zou L, He B, Li M. The Role of Neutrophil Extracellular Traps in Periodontitis. Front Cell Infect Microbiol 2021; 11:639144. [PMID: 33816343 PMCID: PMC8012762 DOI: 10.3389/fcimb.2021.639144] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic, destructive disease of periodontal tissues caused by multifaceted, dynamic interactions. Periodontal bacteria and host immunity jointly contribute to the pathological processes of the disease. The dysbiotic microbial communities elicit an excessive immune response, mainly by polymorphonuclear neutrophils (PMNs). As one of the main mechanisms of PMN immune response in the oral cavity, neutrophil extracellular traps (NETs) play a crucial role in the initiation and progression of late-onset periodontitis. NETs are generated and released by neutrophils stimulated by various irritants, such as pathogens, host-derived mediators, and drugs. Chromatin and proteins are the main components of NETs. Depending on the characteristics of the processes, three main pathways of NET formation have been described. NETs can trap and kill pathogens by increased expression of antibacterial components and identifying and trapping bacteria to restrict their spread. Moreover, NETs can promote and reduce inflammation, inflicting injuries on the tissues during the pro-inflammation process. During their long-term encounter with NETs, periodontal bacteria have developed various mechanisms, including breaking down DNA of NETs, degrading antibacterial proteins, and impacting NET levels in the pocket environment to resist the antibacterial function of NETs. In addition, periodontal pathogens can secrete pro-inflammatory factors to perpetuate the inflammatory environment and a friendly growth environment, which are responsible for the progressive tissue damage. By learning the strategies of pathogens, regulating the periodontal concentration of NETs becomes possible. Some practical ways to treat late-onset periodontitis are reducing the concentration of NETs, administering anti-inflammatory therapy, and prescribing broad-spectrum and specific antibacterial agents. This review mainly focuses on the mechanism of NETs, pathogenesis of periodontitis, and potential therapeutic approaches based on interactions between NETs and periodontal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
80
|
Oka S, Li X, Sato F, Zhang F, Tewari N, Chen C, Zhong L, Makishima M, Liu Y, Bhawal UK. Dec2 attenuates autophagy in inflamed periodontal tissues. Immun Inflamm Dis 2021; 9:265-273. [PMID: 33270996 PMCID: PMC7860609 DOI: 10.1002/iid3.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Transcriptional regulation of autophagy depends on the transcription factors coordinated inflammatory feedback mechanism. Here, we provide a comprehensive functional characterization of periodontal ligament fibroblasts (PDLFs) treated with Porphyromonas gingivalis lipopolysaccharide (LPS), aiming to reveal previously unappreciated biological changes and to investigate how a transcription factor differentiated embryonic chondrocytes 2 (Dec2)-deficient environment influences the function of autophagy in nflamed human PDLFs. METHODS A Dec2-deficient (Dec2KO) experimental periodontal inflammation mouse model and treatment with P. gingivalis LPS were employed to examine the role of autophagy in PDLFs using hematoxylin and eosin staining and immunohistochemistry in vivo. A Dec2 small interfering RNA (siRNA) was used to modulate autophagy, and the effect of autophagy on the Dec2 pathway was explored using real-time polymerase chain reaction and western blot analysis in vitro. RESULTS LPS-treated human PDLFs (HPDLFs) induced autophagy, as demonstrated by the enhanced levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and the induction of ATG5, Beclin1, and Dec2. Compared with a scrambled siRNA, a Dec2 siRNA triggered the detrimental influences of LPS and markedly enhanced autophagy expression in inflamed HPDLFs. The expression of phosphorylated ERK was increased and levels of phosphorylated mammalian target of rapamycin (mTOR) were decreased after exposure to LPS in Dec2 siRNA transfected HPDLFs. The Dec2KO model exhibited that P. gingivalis in Dec2 deficient conditions increases the inflammation of PDLFs by regulating autophagy. CONCLUSIONS These results demonstrate that a Dec2 deficiency can alleviate LPS-induced inflammation via the ERK/mTOR signaling pathway by regulating autophagy, conceivably delivering a novel approach for the detection of periodontal treatments.
Collapse
Affiliation(s)
- Shunichi Oka
- Department of AnesthesiologyNihon University School of DentistryTokyoJapan
- Division of Immunology and Pathology, Dental Research CenterNihon University School of DentistryTokyoJapan
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingPeople's Republic of China
| | - Fuyuki Sato
- Pathology DivisionShizuoka Cancer CenterShizuokaJapan
| | - Fengzhu Zhang
- Department of AnesthesiologyNihon University School of Dentistry at MatsudoChibaJapan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and ResearchAll India Institute of Medical SciencesNew DelhiIndia
| | - Chongchong Chen
- Department of StomatologyHangzhou Normal UniversityHangzhouPeople's Republic of China
| | - Liangjun Zhong
- Department of StomatologyHangzhou Normal UniversityHangzhouPeople's Republic of China
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical SciencesNihon University School of MedicineTokyoJapan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingPeople's Republic of China
| | - Ujjal K. Bhawal
- Department of Disaster Medicine and Dental SociologyKanagawa Dental UniversityYokosukaJapan
- Department of Biochemistry and Molecular BiologyNihon University School of Dentistry at MatsudoChibaJapan
| |
Collapse
|
81
|
Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants (Basel) 2021; 10:antiox10020309. [PMID: 33670526 PMCID: PMC7922506 DOI: 10.3390/antiox10020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.
Collapse
|
82
|
Johnson A, Kong F, Miao S, Thomas S, Ansar S, Kong ZL. In-Vitro Antibacterial and Anti-Inflammatory Effects of Surfactin-Loaded Nanoparticles for Periodontitis Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:356. [PMID: 33535497 PMCID: PMC7912741 DOI: 10.3390/nano11020356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Periodontitis is an inflammatory disease associated with biofilm formation and gingival recession. The practice of nanotechnology in the clinical field is increased overtime due to its potential advantages in drug delivery applications. Nanoparticles can deliver drugs into the targeted area with high efficiency and cause less damages to the tissues. In this study, we investigated the antibacterial and anti-inflammatory properties of surfactin-loaded κ-carrageenan oligosaccharides linked cellulose nanofibers (CO-CNF) nanoparticles. Three types of surfactin-loaded nanoparticles were prepared based on the increasing concentration of surfactin such as 50SNPs (50 mg surfactin-loaded CO-CNF nanoparticles), 100SNPs (100 mg surfactin-loaded CO-CNF nanoparticles), and 200SNPs (200 mg surfactin-loaded CO-CNF nanoparticles). The results showed that the nanoparticles inhibited the growth of Fusobacterium nucleatum and Pseudomonas aeruginosa. The reduction in biofilm formation and metabolic activity of the bacteria were confirmed by crystal violet and MTT assay, respectively. Besides, an increase in oxidative stress was also observed in bacteria. Furthermore, anti-inflammatory effects of surfactin-loaded CO-CNF nanoparticles was observed in lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGF) cells. A decrease in the production of reactive oxygen species (ROS), transcription factor, and cytokines were observed in the presence of nanoparticles. Collectively, these observations supported the use of surfactin-loaded CO-CNF as a potential candidate for periodontitis management.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA;
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork P61 C996, Ireland;
| | - Sabu Thomas
- School of Energy Studies and School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, Kerala 686560, India;
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| |
Collapse
|
83
|
Yang Y, Huang Y, Li W. Autophagy and its significance in periodontal disease. J Periodontal Res 2020; 56:18-26. [PMID: 33247437 DOI: 10.1111/jre.12810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/24/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Autophagy is an evolutionarily conserved process essential for cellular homeostasis and human health. As a lysosome-dependent degradation pathway, autophagy acts as a modulator of the pathogenesis of diverse diseases. The relationship between autophagy and oral diseases has been explored in recent years, and there is increasing interest in the role of autophagy in periodontal disease. Periodontal disease is a prevalent chronic inflammatory disorder characterized by the destruction of periodontal tissues. It is initiated through pathogenic bacterial infection and interacts with the host immune defense, leading to inflammation and alveolar bone resorption. In this review, we outline the machinery of autophagy and present an overview of work on the significance of autophagy in regulating pathogen invasion, the immune response, inflammation, and alveolar bone homeostasis of periodontal disease. Existing data provide support for the importance of autophagy as a multi-dimensional regulator in the pathogenesis of periodontal disease and demonstrate the importance of future research on the potential roles of autophagy in periodontal disease.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
84
|
Inhibition of Cathepsin K Alleviates Autophagy-Related Inflammation in Periodontitis-Aggravating Arthritis. Infect Immun 2020; 88:IAI.00498-20. [PMID: 32900814 DOI: 10.1128/iai.00498-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis share many epidemiological and pathological features, with emerging studies reporting a relationship between the two diseases. Recently, RA and periodontitis have been associated with autophagy. In the present study, we investigated the effects of cathepsin K (CtsK) inhibition on RA with periodontitis in a mouse model and its immunological function affecting autophagy. To topically inhibit CtsK periodontitis with arthritis in the animal model, adeno-associated virus (AAV) transfection was performed in periodontal and knee joint regions. Transfection of small interfering RNA (siRNA) was performed to inhibit CtsK in RAW264.7 cells. The effects of CtsK inhibition on the autophagy pathway were then evaluated in both in vivo and in vitro experiments. RA and periodontitis aggravated destruction and inflammation in their respective lesion areas. Inhibition of CtsK had multiple effects: (i) reduced destruction of alveolar bone and articular tissue, (ii) decreased macrophage numbers and inflammatory cytokine expression in the synovium, and (iii) alleviated expression of the autophagy-related transcription factor EB (TFEB) and microtubule-associated protein 1A/1B-light chain 3 (LC3) at the protein level in knee joints. Inhibition of CtsK in vitro reduced the expression of autophagy-related proteins and related inflammatory factors. Our data revealed that the inhibition of CtsK resisted the destruction of articular tissues and relieved inflammation from RA with periodontitis. Furthermore, CtsK was implicated as an imperative regulator of the autophagy pathway in RA and macrophages.
Collapse
|
85
|
Wang Y, Song Y, Zhong Q, Wu Y, Zhuang J, Qu F, Xu C. Suppressing ROS generation by apocynin inhibited cyclic stretch-induced inflammatory reaction in HPDLCs via a caspase-1 dependent pathway. Int Immunopharmacol 2020; 90:107129. [PMID: 33199234 DOI: 10.1016/j.intimp.2020.107129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
It has been reported that cyclic stretch could induce inflammatory reaction in human periodontal ligament cells (HPDLCs). Though reactive oxygen species (ROS) has been reported to be involved in pathogen-induced periodontal inflammatory reaction, its role in the force-related periodontal diseases has not been well clarified. This study inspected the role of ROS in the cyclic stretch-induced inflammatory reaction in HPDLCs and studied the inhibitory effect of antioxidant apocynin on this inflammatory reaction. Results confirmed that cyclic stretch induced inflammatory reaction and production of ROS in HPDLCs. This inflammatory reaction was inhibited by apocynin through blocking the production of ROS. The cyclic stretch also induced the expression of caspase-1 and NLRP3 inflammasome, which could also be inhibited by apocynin. Moreover, the cyclic stretch-induced inflammatory reaction was inhibited by caspase-1 inhibitor. Collectively, it is the first time that increased intracellular ROS was proved to play as an intermediate signal in the cyclic stretch-induced inflammatory reaction in HPDLCs, via a caspase-1-dependent pathway. The inhibitory effect of apocynin on the cyclic stretch-induced inflammatory reaction in HPDLCs shows the potential of antioxidants in the treatment of force-related periodontal inflammatory diseases.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingshuang Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
86
|
Zhang S, Niu Y, Yang Z, Zhang Y, Guo Q, Yang Y, Zhou X, Ding Y, Liu C. Biochanin A alleviates gingival inflammation and alveolar bone loss in rats with experimental periodontitis. Exp Ther Med 2020; 20:251. [PMID: 33178349 PMCID: PMC7654219 DOI: 10.3892/etm.2020.9381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/20/2020] [Indexed: 02/05/2023] Open
Abstract
Biochanin A (BA) is an organic compound produced by Trifolium pretense and Arachis hypogaea with anti-inflammatory and antioxidative effects. The aim of the current study was to evaluate the effects of BA on gingival inflammation and alveolar bone destruction in rats with experimental periodontitis. Experimental rats (n=25) were distributed equally into five groups: i) Healthy control (control) group; ii) experimental periodontitis (ligation) group; and iii) and ligation plus low, medium and high dose of BA (12.5, 25 and 50 mg/kg/day, respectively) groups. A nylon ligature was inserted around rats' maxillary molars for 14 days to trigger the experimental periodontitis. BA was intravenous injected once daily for 4 weeks. After that, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS) and osteocalcin (OCN) levels were determined in gingival and/or serum samples using ELISA or reverse transcription-quantitative PCR. Alveolar bone volume was assessed via hematoxylin and eosin staining and micro-computed tomography. Osteoclasts were identified by tartrate-resistant acid phosphatase staining, and the level of the nuclear factor erythroid-2 related factor 2 (Nrf2) was also detected by immunohistochemical staining. BA treatment groups showed alleviated alveolar bone resorption compared with the ligation group. Moreover, BA treatment significantly inhibited IL-1β, TNF-α, ROS levels, and reduced leukocyte acid phosphatase-positive cells, as well as increased OCN and Nrf2 levels compared with the ligation group. BA had beneficial effects on experimental periodontitis of rats. BA treatment inhibited inflammation, regulated unbalanced oxidative stress response and ameliorated the alveolar bone loss.
Collapse
Affiliation(s)
- Shengdan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo Yang
- General Stomatology Clinic, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Yuwei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Ding
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chengcheng Liu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
87
|
Zhao Y, Liu H, Xi X, Chen S, Liu D. TRIM16 protects human periodontal ligament stem cells from oxidative stress-induced damage via activation of PICOT. Exp Cell Res 2020; 397:112336. [PMID: 33091421 DOI: 10.1016/j.yexcr.2020.112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/09/2023]
Abstract
Periodontitis is a chronic inflammatory disease that result in severe loss of supporting structures and substantial tooth loss. Oxidative stress is tightly involved in the progression of periodontitis. Tripartite Motif 16 (TRIM16) has been identified as a novel regulatory protein in response to oxidative and proteotoxic stresses. The present study aimed to investigate the role of TRIM16 in human periodontal ligament stem cells (hPDLSCs) under oxidative stress. First, we found that the expression of TRIM16 decreased after exposure to H2O2. Then TRIM16 overexpression alleviated H2O2-induced oxidative stress by enhancing antioxidant capacity and reducing the amount of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). TRIM16 increased cell viability, inhibited cell apoptosis and the depolarization of the mitochondrial membrane potential in hPDLSCs. Furthermore, TRIM16 attenuated H2O2-induced suppression of osteogenic differentiation. Mechanistically, TRIM16 promoted the activation of protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT), p-Akt and Nrf2, while knockdown of PICOT reversed TRIM16-mediated ROS resistance and decreased the expression of p-Akt and Nrf2. In conclusion, TRIM16 alleviated oxidative damage in hPDLSCs via the activation of PICOT/Akt/Nrf2 pathway, suggesting that TRIM16 could be a promising target to develop effective therapies for periodontitis.
Collapse
Affiliation(s)
- Yi Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Hong Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Xun Xi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Shuai Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Dongxu Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China.
| |
Collapse
|
88
|
Greabu M, Giampieri F, Imre MM, Mohora M, Totan A, Pituru SM, Ionescu E. Autophagy, One of the Main Steps in Periodontitis Pathogenesis and Evolution. Molecules 2020; 25:E4338. [PMID: 32971808 PMCID: PMC7570503 DOI: 10.3390/molecules25184338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontitis represents a complex inflammatory disease that compromises the integrity of the tooth-supporting tissue through the interaction of specific periodontal pathogens and the host's immune system. Experimental data help to outline the idea that the molecular way towards periodontitis initiation and progression presents four key steps: bacterial infection, inflammation, oxidative stress, and autophagy. The aim of this review is to outline the autophagy involvement in the pathogenesis and evolution of periodontitis from at least three points of view: periodontal pathogen invasion control, innate immune signaling pathways regulation and apoptosis inhibition in periodontal cells. The exact roles played by reactive oxygen species (ROS) inside the molecular mechanisms for autophagy initiation in periodontitis still require further investigation. However, clarifying the role and the mechanism of redox regulation of autophagy in the periodontitis context may be particularly beneficial for the elaboration of new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Francesca Giampieri
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy;
| | - Marina Melescanu Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Mohora
- Department of Biochemistry, Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ecaterina Ionescu
- Department of Orthodontics and Dento-Facial Orthopedics’, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
89
|
Ebersole JL, Kirakodu S, Novak MJ, Dawson D, Stromberg AJ, Orraca L, Gonzalez-Martinez J, Burgos A, Gonzalez OA. Gingival tissue autophagy pathway gene expression profiles in periodontitis and aging. J Periodontal Res 2020; 56:34-45. [PMID: 32776336 DOI: 10.1111/jre.12789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We hypothesized that autophagy-related genes will be differentially expressed in periodontitis, suggesting an impaired gingival autophagic response associated with disease. BACKGROUND Autophagy is a cellular physiologic mechanism to maintain tissue homeostasis, while deficient autophagic responses increase inflammation and susceptibility to infection. METHODS Rhesus monkeys [<3 years to 23 years of age (n = 34)] were examined for periodontal health and naturally occurring periodontitis. Gingival tissues samples were obtained from healthy or diseased sites, total RNA was isolated, and the Rhesus Gene Chip 1.0 ST (Affymetrix) was used for gene expression analysis of 150 autophagy-related genes. RESULTS Comparison of expression levels with adult healthy tissues demonstrated a rather limited number of individual genes that were significantly different across the age-groups. In contrast, with periodontitis in the adults and aged animals, about 15% of the genes were significantly increased or decreased. The differences were reflected in the mTOR complex (5/12), ULK1/ATG1 complex (5/9), PI3K complex (5/21), ATG9 complex (2/7), ATG12 conjugation/LC3 lipidation (7/22), and lysosome fusion/vesicle degradation [LF/VD (5/10)] activities within the broader autophagic pathway. The genes most greatly altered in gingival tissues of naturally occurring periodontitis were identified in the ATG12 and LF/VD pathways that approximated 50% of the genes in each of those categories. While healthy gingival aging did not appear to reflect altered autophagy gene expression, substantial differences were noted with periodontitis irrespective of the age of the animals. Future studies into the role of autophagy in periodontitis and could offer potential new therapeutic strategies to prevent and/or treat periodontal disease.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, NV, USA.,Center for Oral Health Research, University of Kentucky, Lexington, KY, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, University of Kentucky, Lexington, KY, USA
| | - Michael J Novak
- Center for Oral Health Research, University of Kentucky, Lexington, KY, USA
| | - Dolph Dawson
- Center for Oral Health Research, University of Kentucky, Lexington, KY, USA.,Department of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, USA
| | | | - Armando Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, University of Kentucky, Lexington, KY, USA.,Department of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
90
|
Fujitani T, Aoyama N, Hirata F, Minabe M. Association between periodontitis and vascular endothelial function using noninvasive medical device-A pilot study. Clin Exp Dent Res 2020; 6:576-582. [PMID: 32737946 PMCID: PMC7545230 DOI: 10.1002/cre2.312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to assess the relationship between periodontal condition and endothelial function using a noninvasive device. Many recent studies have reported associations between periodontitis and cardiovascular diseases. Endothelial dysfunction is the first step of atherosclerosis, but information on the association between periodontal disease and endothelial dysfunction remains limited. Thirty‐three subjects were recruited from among patients at a private medical clinic. We examined vascular endothelial function using a noninvasive medical device and periodontal measurements including probing pocket depth, attachment level, tooth mobility, and oral cleaning condition. Subjects were divided into two groups according to endothelial function score. Tooth mobility and number of lost teeth were increased in the group with endothelial dysfunction. A greater frequency of elderly subjects and altered hemoglobin A1c levels were seen in the endothelial dysfunction group. On multiple logistic regression analysis, increased tooth mobility was independently associated with endothelial dysfunction. Increased tooth mobility, a major periodontal parameter, appears related to endothelial dysfunction.
Collapse
Affiliation(s)
- Takahito Fujitani
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Norio Aoyama
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | | | - Masato Minabe
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| |
Collapse
|
91
|
Zhang T, Qu J, Yao Y, Zhang Y, Ma Y, Wu D, Cao Y, Yang M, Zhang Y, Tang M, Pu Y. N-doped carbon dots triggered the induction of ROS-mediated cytoprotective autophagy in Hepa1-6 cells. CHEMOSPHERE 2020; 251:126440. [PMID: 32169699 DOI: 10.1016/j.chemosphere.2020.126440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Carbon dots (CDs) are an emerging fluorescent nano-imaging probe due to their unique characteristics, such as good conductivity, carbon-based chemical composition, and photochemical stability, which sets up the potential of outperforming the classic metal-based quantum dots (QDs). It is a timely effort to proactively investigate the biocompatibility feature of CDs with a view to safely utilize this emerging nanomaterial in biological systems. In this study, we assessed the safety profile of an in-house synthesized CDs in hepatocyte-like Hepa 1-6 cells, which represents an important target organ for CDs exposure through either particle uptake and/or accumulation and elimination from primary exposure sites post particle administration. We not only demonstrated a dose- and time-dependent compromised cell viability, but also observed the induction of autophagy at high concentration (i.e. 400 μg mL-1), authenticated by the conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II. We attributed these changes as the protective mechanism by which the cells used to compensate for CDs-induced apoptosis and cytotoxicity. The involvement of autophagy was further confirmed because the cytotoxicity profile can be increased or reduced by the use of 3-MA (autophagy inhibitor) and NAC (ROS inhibitor), respectively. Collectively, our findings revealed dose-dependent moderate cytotoxicity in Hepa 1-6 cells. Mechanistic understanding of autophagy during the cellular process revealed the homeostasis when liver cells deal with CDs as an external insult.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Jing Qu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yitenng Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mengran Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| |
Collapse
|
92
|
Chathoth K, Martin B, Cornelis P, Yvenou S, Bonnaure-Mallet M, Baysse C. The events that may contribute to subgingival dysbiosis: a focus on the interplay between iron, sulfide and oxygen. FEMS Microbiol Lett 2020; 367:5860280. [DOI: 10.1093/femsle/fnaa100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
This minireview considers the disruption of the host–microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche. We propose hypothesis and discuss strategies for the therapeutic modulation of the microbiota to prevent periodontitis and promote oral health.
Collapse
Affiliation(s)
- Kanchana Chathoth
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Bénédicte Martin
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Laboratory of Microbiology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, F-27000 Évreux, France
| | - Stéven Yvenou
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Martine Bonnaure-Mallet
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
- CHU Pontchaillou Rennes, 35000 Rennes, France
| | - Christine Baysse
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|
93
|
Effects of Endotoxin Tolerance Induced by Porphyromonas gingivalis Lipopolysaccharide on Inflammatory Responses in Neutrophils. Inflammation 2020; 43:1692-1706. [PMID: 32440987 DOI: 10.1007/s10753-020-01243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Periodontitis is a dental plaque-induced chronic inflammatory disease. Long-term exposure of the host to periodontal pathogens leads to a hyporesponsive state to the following stimulations, which is described as endotoxin tolerance. Neutrophils are the most abundant innate immune cells in the body. To clarify the roles of endotoxin tolerance in periodontitis, inflammatory responses in Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS)-tolerized neutrophils were explored in this study. Here, apoptosis and respiratory burst in neutrophils upon single or repeated P. gingivalis LPS stimulations were explored by flow cytometry. Cytokine production (TNF-α, IL-8, and IL-10) in tolerized neutrophils or neutrophils co-cultured with peripheral blood mononuclear cells was determined by ELISA. Phagocytosis of P. gingivalis by tolerized neutrophils was also assayed by flow cytometry. In addition, quality and quantitation of neutrophil extracellular trap (NET) formation were detected using immunofluorescence microscope and microplate reader, respectively. The protein expressions of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) were examined to identify possible mechanisms for the abovementioned changes. Tolerance induced by P. gingivalis LPS significantly suppressed apoptosis, reactive oxygen species (ROS) generation, and phagocytosis in neutrophils (p < 0.05). In both neutrophils alone and co-culture system, repeated P. gingivalis LPS stimulations significantly decreased TNF-α production, but increased IL-10 secretion (p < 0.05). Moreover, in tolerized neutrophils, NET formations were strengthened and there were more released extracellular DNA (p < 0.05). In P. gingivalis LPS-tolerized neutrophils, phosphorylation of ERK1/2 was suppressed compared with that in non-tolerized cells. Taken together, immune responses in neutrophils were reprogrammed by P. gingivalis LPS-induced tolerance, which might be related with the development of inflammation in periodontal tissues. Moreover, ERK1/2 might play important roles in endotoxin tolerance triggered by P. gingivalis LPS.
Collapse
|
94
|
Vicencio E, Cordero EM, Cortés BI, Palominos S, Parra P, Mella T, Henrríquez C, Salazar N, Monasterio G, Cafferata EA, Murgas P, Vernal R, Cortez C. Aggregatibacter Actinomycetemcomitans Induces Autophagy in Human Junctional Epithelium Keratinocytes. Cells 2020; 9:E1221. [PMID: 32423042 PMCID: PMC7290389 DOI: 10.3390/cells9051221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
The adverse environmental conditions found in the periodontium during periodontitis pathogenesis stimulate local autophagy responses, mainly due to a continuous inflammatory response against the dysbiotic subgingival microbiome. The junctional epithelium represents the main site of the initial interaction between the host and the dysbiotic biofilm. Here, we investigated the role of autophagy in junctional epithelium keratinocytes (JEKs) in response to Aggregatibacter actinomycetemcomitans or its purified lipopolysaccharides (LPS). Immunofluorescence confocal analysis revealed an extensive nuclear translocation of transcription factor EB (TFEB) and consequently, an increase in autophagy markers and LC3-turnover assessed by immunoblotting and qRT-PCR. Correspondingly, challenged JEKs showed a punctuate cytosolic profile of LC3 protein contrasting with the diffuse distribution observed in untreated controls. Three-dimensional reconstructions of confocal images displayed a close association between intracellular bacteria and LC3-positive vesicles. Similarly, a close association between autophagic vesicles and the protein p62 was observed in challenged JEKs, indicating that p62 is the main adapter protein recruited during A. actinomycetemcomitans infection. Finally, the pharmacological inhibition of autophagy significantly increased the number of bacteria-infected cells as well as their death, similar to treatment with LPS. Our results indicate that A. actinomycetemcomitans infection induces autophagy in JEKs, and this homeostatic process has a cytoprotective effect on the host cells during the early stages of infection.
Collapse
Affiliation(s)
- Emiliano Vicencio
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Esteban M. Cordero
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- Parasitology Section, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa 7780050, Chile
| | - Bastián I. Cortés
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Sebastián Palominos
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
| | - Pedro Parra
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
| | - Tania Mella
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Constanza Henrríquez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Nelda Salazar
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
| | - Emilio A. Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Av. Paseo de la República 5544, Lima 15074, Peru
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (B.I.C.); (P.M.)
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, Independencia 8380492, Chile; (G.M.); (E.A.C.)
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile; (E.V.); (E.M.C.); (S.P.); (P.P.); (T.M.); (C.H.); (N.S.)
- School of Dentistry, Faculty of Science, Universidad Mayor, Avenida Libertador Bernardo O’higgins 2013, Huechuraba 8580745, Chile
- School of Medical Technology, Faculty of Science, Universidad Mayor, Camino la Pirámide 5750, Huechuraba 8580745, Chile
| |
Collapse
|
95
|
A Diet Rich in Saturated Fat and Cholesterol Aggravates the Effect of Bacterial Lipopolysaccharide on Alveolar Bone Loss in a Rabbit Model of Periodontal Disease. Nutrients 2020; 12:nu12051405. [PMID: 32422858 PMCID: PMC7284766 DOI: 10.3390/nu12051405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence connects periodontitis with a variety of systemic diseases, including metabolic syndrome, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). The proposal of this study was to evaluate the role of diets rich in saturated fat and cholesterol in some aspects of periodontal diseases in a lipopolysaccharide (LPS)-induced model of periodontal disease in rabbits and to assess the influence of a periodontal intervention on hyperlipidemia, atherosclerosis, and NAFLD progression to non-alcoholic steatohepatitis. Male rabbits were maintained on a commercial standard diet or a diet rich in saturated fat (3% lard w/w) and cholesterol (1.3% w/w) (HFD) for 40 days. Half of the rabbits on each diet were treated 2 days per week with intragingival injections of LPS from Porphyromonas gingivalis. Morphometric analyses revealed that LPS induced higher alveolar bone loss (ABL) around the first premolar in animals receiving standard diets, which was exacerbated by the HFD diet. A higher score of acinar inflammation in the liver and higher blood levels of triglycerides and phospholipids were found in HFD-fed rabbits receiving LPS. These results suggest that certain dietary habits can exacerbate some aspects of periodontitis and that bad periodontal health can contribute to dyslipidemia and promote NAFLD progression, but only under certain conditions.
Collapse
|
96
|
Lee HA, Park MH, Song Y, Na HS, Chung J. Role of
Aggregatibacter actinomycetemcomitans‐
induced autophagy in inflammatory response. J Periodontol 2020; 91:1682-1693. [DOI: 10.1002/jper.19-0639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Hyun Ah Lee
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
| | - Mi Hee Park
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| | - Yuri Song
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| | - Hee Sam Na
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| | - Jin Chung
- Department of Oral Microbiology School of Dentistry Pusan National University Yangsan Korea
- Oral Genomics Research Center Pusan National University Yangsan Korea
| |
Collapse
|
97
|
Gholami L, Ghafouri-Fard S, Mirzajani S, Arsang-Jang S, Taheri M, Dehbani Z, Dehghani S, Houshmand B, Amid R, Sayad A, Shams B. The lncRNA ANRIL is down-regulated in peripheral blood of patients with periodontitis. Noncoding RNA Res 2020; 5:60-66. [PMID: 32346660 PMCID: PMC7182695 DOI: 10.1016/j.ncrna.2020.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have crucial roles in lncRNAs in periodontal development and disorders of this tissue. A number of lncRNAs especially those regulating immune responses contribute in the pathophysiology of periodontitis. In the current case-control study, we assessed expression levels of two immune response-related lncRNAs namely the antisense non-coding RNA in the INK4 locus (ANRIL) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in gingival tissues and blood samples of patients with periodontitis and healthy subjects. Expression of ANRIL was significantly lower in peripheral blood of patients compared with controls (Posterior Beta RE = -1.734, P value = 0.035). However, when diving study participants based on their gender, no significant difference was found between patients and sex-matched controls. Expression of this lncRNA was not different between periodontitis tissues and normal tissues. Expression of MALAT1 was not different between samples obtained from cases and controls. Tissue or blood expressions of ANRIL or MALAT1 were not correlated with age of either patients or controls. There were significant correlations between expression levels of ANRIL and MALAT1 in gingival tissues both in cases (r = 0.62, P < 0.0001) and in controls (r = 0.37, P < 0.0001). However, blood levels of these lncRNAs were not correlated with each other either in cases or in controls. Most notably, there was no significant correlation between expression levels of these lncRNAs in gingival tissues and in the blood of study participants. The current study indicates dysregulation of ANRIL in the peripheral blood of patients with periodontitis in spite of its normal levels in gingival tissues which might reflect disturbance in systemic immune responses in these patients.
Collapse
Affiliation(s)
- Leila Gholami
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Mirzajani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Biostatistics and Epidemiology, Cancer Gene Therapy Research Center, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Dehbani
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoora Dehghani
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Behzad Houshmand
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Shams
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
98
|
Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol 2020; 11:153. [PMID: 32184728 PMCID: PMC7059186 DOI: 10.3389/fphar.2020.00153] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory diseases are caused by abnormal immune responses and are characterized by an imbalance of inflammatory mediators and cells. In recent years, the anti-inflammatory activity of natural products has attracted wide attention. Rosmarinic acid (RosA) is a water-soluble phenolic compound that is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is discovered in many plants, like those of the Boraginaceae and Lamiaceae families. RosA has a wide range of pharmacological effects, including anti-oxidative, anti-apoptotic, anti-tumorigenic, and anti-inflammatory effects. The anti-inflammatory effects of RosA have been revealed through in vitro and in vivo studies of various inflammatory diseases like arthritis, colitis, and atopic dermatitis. This article mainly describes the preclinical research of RosA on inflammatory diseases and depicts a small amount of clinical research data. The purpose of this review is to discuss the anti-inflammatory effects of RosA in inflammatory diseases and its underlying mechanism.
Collapse
Affiliation(s)
- Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lin Zou
- Department of Internal Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Research Center of Pharmacodynamic, Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co., Ltd., Tianjin, China
| |
Collapse
|
99
|
Díaz CM, Bullon B, Ruiz-Salmerón RJ, Fernández-Riejos P, Fernández-Palacín A, Battino M, Cordero MD, Quiles JL, Varela-López A, Bullón P. Molecular inflammation and oxidative stress are shared mechanisms involved in both myocardial infarction and periodontitis. J Periodontal Res 2020; 55:519-528. [PMID: 32106337 DOI: 10.1111/jre.12739] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Our aims were to improve the understanding of the pathogenic relationship between cardiovascular diseases and periodontitis and to generate new perspectives in the prevention and treatment of acute myocardial infarction (AMI) and periodontitis. The present study evaluates possible differences in inflammation, oxidative stress, and autophagy markers among subject suffering AMI, periodontitis, or both, to explore possible common pathogenic mechanisms. MATERIAL AND METHODS A total of 260 subjects were enrolled in the study: 106 subjects that survived to a first AMI (AMI group) and 154 subjects had no cardiac events in their clinical record (control group). A questionnaire was used to assess age, height, weight, blood pressure, and heart rate. The clinical probing depth, clinical attachment loss, number of remaining teeth, and average number of sites with bleeding on probing were assessed. Lipid peroxidation and protein levels of phosphorylated AMP-activated protein kinase (p-AMPK) and microtubule-associated proteins 1A/1B-light chain 3-II (LC3-II) were determined in isolated peripheral blood mononuclear cells by thiobarbituric acid reactive substances (TBARS) assay and Western blot, respectively. Plasma levels of interleukin-1β were determined using a commercial ELISA kit. All the obtained variables were compared between subjects suffering an AMI with or without periodontitis and control subject periodontal healthy or with periodontitis. RESULTS A higher proportion of subjects suffering AMI + periodontitis than only AMI (without periodontitis) was found. Higher levels of TBARS were found in subjects with periodontitis than in subjects without periodontitis in both AMI and control subjects. Positive correlations between IL-1β levels and TBARS and between IL-1β levels and LC3-II were found only in control subjects. CONCLUSION Results from the present study are consistent with the suggestion of periodontitis as a potential risk factor for AMI. Periodontitis association with circulating lipid peroxides in both AMI and control subjects were found. The absence of differences in IL-1β levels between AMI subjects (only AMI vs AMI + periodontitis) suggests that oxidative stress could be the main pathogenic link between AMI and periodontitis.
Collapse
Affiliation(s)
- Carmen M Díaz
- Department of Oral Medicine and Periodontology, University of Seville, Sevilla, Spain
| | - Beatriz Bullon
- Department of Oral Medicine and Periodontology, University of Seville, Sevilla, Spain
| | | | | | | | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy.,Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Mario D Cordero
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.,College of Food Science and Technology, Northwest University, Xi'an, China
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Pedro Bullón
- Department of Oral Medicine and Periodontology, University of Seville, Sevilla, Spain
| |
Collapse
|
100
|
Zhang P, Zhang H, Lin J, Xiao T, Xu R, Fu Y, Zhang Y, Du Y, Cheng J, Jiang H. Insulin impedes osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence via the TGF-β1 pathway. Aging (Albany NY) 2020; 12:2084-2100. [PMID: 32017705 PMCID: PMC7041775 DOI: 10.18632/aging.102723] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
The dysfunction of bone marrow stromal cells (BMSCs) may be a core factor in Type 2 diabetes mellitus (T2DM) associated osteoporosis. However, the underlying mechanism is not well understood. Here, we delineated the critical role of insulin impeding osteogenesis of BMSCs in T2DM. Compared with BMSCs from healthy people (H-BMSCs), BMSCs from T2DM patient (DM-BMSCs) showed decreased osteogenic differentiation and autophagy level, and increased senescent phenotype. H-BMSCs incubated in hyperglycemic and hyperinsulinemic conditions similarly showed these phenotypes of DM-BMSCs. Notably, enhanced TGF-β1 expression was detected not only in DM-BMSCs and high-glucose and insulin-treated H-BMSCs, but also in bone callus of streptozocin-induced diabetic rats. Moreover, inhibiting TGF-β1 signaling not only enhanced osteogenic differentiation and autophagy level of DM-BMSCs, but also delayed senescence of DM-BMSCs, as well as promoted mandible defect healing of diabetic rats. Finally, we further verified that it was TGF-β receptor II (TβRII), not TβRI, markedly increased in both DM-BMSCs and insulin-treated H-BMSCs. Our data revealed that insulin impeded osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence, which it should be responsible for T2DM-induced bone loss, at least in part. These findings suggest that inhibiting TGF-β1 pathway may be a potential therapeutic target for T2DM associated bone disorders.
Collapse
Affiliation(s)
- Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hengguo Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jialin Lin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tao Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yuchao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|