51
|
Thürich J, Meichsner D, Furch ACU, Pfalz J, Krüger T, Kniemeyer O, Brakhage A, Oelmüller R. Arabidopsis thaliana responds to colonisation of Piriformospora indica by secretion of symbiosis-specific proteins. PLoS One 2018; 13:e0209658. [PMID: 30589877 PMCID: PMC6307754 DOI: 10.1371/journal.pone.0209658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 11/24/2022] Open
Abstract
Plants interact with a wide variety of fungi in a mutualistic, parasitic or neutral way. The associations formed depend on the exchange of nutrients and signalling molecules between the partners. This includes a diverse set of protein classes involved in defence, nutrient uptake or establishing a symbiotic relationship. Here, we have analysed the secretomes of the mutualistic, root-endophytic fungus Piriformospora indica and Arabidopsis thaliana when cultivated alone or in a co-culture. More than one hundred proteins were identified as differentially secreted, including proteins associated with growth, development, abiotic and biotic stress response and mucilage. While some of the proteins have been associated before to be involved in plant-microbial interaction, other proteins are newly described in this context. One plant protein found in the co-culture is PLAT1 (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase). PLAT1 has not been associated with plant-fungal-interaction and is known to play a role in abiotic stress responses. In colonised roots PLAT1 shows an altered gene expression in a stage specific manner and plat1 knock-out plants are colonised stronger. It co-localises with Brassicaceae-specific endoplasmic reticulum bodies (ER-bodies) which are involved in the formation of the defence compound scopolin. We observed degraded ER-bodies in infected Arabidopsis roots and a change in the scopolin level in response to the presence of the fungus.
Collapse
Affiliation(s)
- Johannes Thürich
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Doreen Meichsner
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jeannette Pfalz
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
| | - Axel Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
52
|
Höwing T, Dann M, Müller B, Helm M, Scholz S, Schneitz K, Hammes UZ, Gietl C. The role of KDEL-tailed cysteine endopeptidases of Arabidopsis (AtCEP2 and AtCEP1) in root development. PLoS One 2018; 13:e0209407. [PMID: 30576358 PMCID: PMC6303060 DOI: 10.1371/journal.pone.0209407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Plants encode a unique group of papain-type cysteine endopeptidases (CysEP) characterized by a C-terminal KDEL endoplasmic reticulum retention signal (KDEL-CysEP) and an unusually broad substrate specificity. The three Arabidopsis KDEL-CysEPs (AtCEP1, AtCEP2, and AtCEP3) are differentially expressed in vegetative and generative tissues undergoing programmed cell death (PCD). While KDEL-CysEPs have been shown to be implicated in the collapse of tissues during PCD, roles of these peptidases in processes other than PCD are unknown. Using mCherry-AtCEP2 and EGFP-AtCEP1 reporter proteins in wild type versus atcep2 or atcep1 mutant plants, we explored the participation of AtCEP in young root development. Loss of AtCEP2, but not AtCEP1 resulted in shorter primary roots due to a decrease in cell length in the lateral root (LR) cap, and impairs extension of primary root epidermis cells such as trichoblasts in the elongation zone. AtCEP2 was localized to root cap corpses adherent to epidermal cells in the rapid elongation zone. AtCEP1 and AtCEP2 are expressed in root epidermis cells that are separated for LR emergence. Loss of AtCEP1 or AtCEP2 caused delayed emergence of LR primordia. KDEL-CysEPs might be involved in developmental tissue remodeling by supporting cell wall elongation and cell separation.
Collapse
Affiliation(s)
- Timo Höwing
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Marcel Dann
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Benedikt Müller
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Michael Helm
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Sebastian Scholz
- Plant Developmental Biology, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Ulrich Z. Hammes
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Christine Gietl
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
- * E-mail:
| |
Collapse
|
53
|
Vassão DG, Wielsch N, Gomes AMDMM, Gebauer-Jung S, Hupfer Y, Svatoš A, Gershenzon J. Plant Defensive β-Glucosidases Resist Digestion and Sustain Activity in the Gut of a Lepidopteran Herbivore. FRONTIERS IN PLANT SCIENCE 2018; 9:1389. [PMID: 30349548 PMCID: PMC6186830 DOI: 10.3389/fpls.2018.01389] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/31/2018] [Indexed: 05/07/2023]
Abstract
Two-component activated chemical defenses are a major part of many plants' strategies to disrupt herbivory. The activation step is often the β-glucosidase-catalyzed removal of a glucose moiety from a pro-toxin, leading to an unstable and toxic aglycone. While some β-glucosidases have been well studied, several aspects of their roles in vivo, such as their precise sites of enzymatic activity during and after ingestion, and the importance of particular isoforms in plant defense are still not fully understood. Here, plant defensive β-glucosidases from maize, white mustard and almonds were shown to resist digestion by larvae of the generalist lepidopteran Spodoptera littoralis, and the majority of the ingested activities toward both general and plant pro-toxic substrates was recovered in the frass. Among other proteins potentially involved in defense, we identified specific plant β-glucosidases and a maize β-glucosidase aggregating factor in frass from plant-fed insects using proteomic methods. We therefore found that, while S. littoralis larvae efficiently degraded bulk food protein during digestion, β-glucosidases were among a small number of plant defensive proteins that resist insect digestive proteolysis. These enzymes remain intact in the gut lumen and frass and can therefore further catalyze the activation of plant defenses after ingestion, especially in pH-neutral regions of the digestive system. As most of the ingested enzymatic activity persists in the frass, and only particular β-glucosidases were detected via proteomic analyses, our data support the involvement of specific isoforms (maize ZmGlu1 and S. alba MA1 myrosinase) in defense in vivo.
Collapse
Affiliation(s)
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Steffi Gebauer-Jung
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yvonne Hupfer
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
54
|
Cui Y, Chen CL, Cui M, Zhou WJ, Wu HL, Ling HQ. Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. MOLECULAR PLANT 2018; 11:1166-1183. [PMID: 29960107 DOI: 10.1016/j.molp.2018.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated genetic networks to regulate iron (Fe) homeostasis for their survival. Several classes of plant hormones including jasmonic acid (JA) have been shown to be involved in regulating the expression of iron uptake and/or deficiency-responsive genes in plants. However, the molecular mechanisms by which JA regulates iron uptake remain unclear. In this study, we found that JA negatively modulates iron uptake by downregulating the expression of FIT (bHLH29), bHLH38, bHLH39, bHLH100, and bHLH101 and promoting the degradation of FIT protein, a key regulator of iron uptake in Arabidopsis. We further demonstrated that the subgroup IVa bHLH proteins, bHLH18, bHLH19, bHLH20, and bHLH25, are novel interactors of FIT, which promote JA-induced FIT protein degradation. These four IVa bHLHs function redundantly to antagonize the activity of the Ib bHLHs (such as bHLH38) in regulating FIT protein stability under iron deficiency. The four IVa bHLH genes are primarily expressed in roots, and are inducible by JA treatment. Moreover, we found that MYC2 and JAR1, two critical components of the JA signaling pathway, play critical roles in mediating JA suppression of the expression of FIT and Ib bHLH genes, whereas they differentially modulate the expression of bHLH18, bHLH19, bHLH20, and bHLH25 to regulate FIT accumulation under iron deficiency. Taken together, these results indicate that by transcriptionally regulating the expression of different sets of bHLH genes JA signaling promotes FIT degradation, resulting in reduced expression of iron-uptake genes, IRT1 and FRO2, and increased sensitivity to iron deficiency. Our data suggest that there is a multilayered inhibition of iron-deficiency response in the presence JA in Arabidopsis.
Collapse
Affiliation(s)
- Yan Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Juan Zhou
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui-Lan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
55
|
Brandt S, Fachinger S, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. Extended darkness induces internal turnover of glucosinolates in Arabidopsis thaliana leaves. PLoS One 2018; 13:e0202153. [PMID: 30092103 PMCID: PMC6084957 DOI: 10.1371/journal.pone.0202153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
Prolonged darkness leads to carbohydrate starvation, and as a consequence plants degrade proteins and lipids to oxidize amino acids and fatty acids as alternative substrates for mitochondrial ATP production. We investigated, whether the internal breakdown of glucosinolates, a major class of sulfur-containing secondary metabolites, might be an additional component of the carbohydrate starvation response in Arabidopsis thaliana (A. thaliana). The glucosinolate content of A. thaliana leaves was strongly reduced after seven days of darkness. We also detected a significant increase in the activity of myrosinase, the enzyme catalyzing the initial step in glucosinolate breakdown, coinciding with a strong induction of the main leaf myrosinase isoforms TGG1 and TGG2. In addition, nitrilase activity was increased suggesting a turnover via nitriles and carboxylic acids. Internal degradation of glucosinolates might also be involved in diurnal or developmental adaptations of the glucosinolate profile. We observed a diurnal rhythm for myrosinase activity in two-week-old plants. Furthermore, leaf myrosinase activity and protein abundance of TGG2 varied during plant development, whereas leaf protein abundance of TGG1 remained stable indicating regulation at the transcriptional as well as post-translational level.
Collapse
Affiliation(s)
- Saskia Brandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Sara Fachinger
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | | |
Collapse
|
56
|
Shirakawa M, Hara-Nishimura I. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. PLANT & CELL PHYSIOLOGY 2018; 59:1309-1316. [PMID: 29897512 DOI: 10.1093/pcp/pcy082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Plant vacuoles display many versatile functions. Vacuoles in vegetative tissues are generally involved in protein degradation, and are called lytic vacuoles. However, vegetative vacuoles in specialized cells can accumulate large concentrations of proteins, such as those in idioblast myrosin cells along veins in the order Brassicales, which store large amounts of myrosinases (thioglucoside glucohydrolase and thioglucoside glucohydrolase). Myrosinases cleave the bond between sulfur and glucose in sulfur-rich compounds (glucosinolates) to produce toxic compounds (isothiocyanates) when plants are damaged by pests. This defense strategy is called the myrosinase-glucosinolate system. Recent studies identified atypical myrosinases, PENETRATION 2 (PEN2) and PYK10, along with key components for development of myrosin cells. In this review, we discuss three topics in the myrosinase-glucosinolate system. First, we summarize the complexity and importance of the myrosinase-glucosinolate system, including classical myrosinases, atypical myrosinases and the system that counteracts the myrosinase-glucosinolate system. Secondly, we describe molecular machineries underlying myrosin cell development, including specific reporters, cell lineage, cell differentiation and cell fate determination. The master regulators for myrosin cell differentiation, FAMA and SCREAM, are key transcription factors involved in guard cell differentiation. This indicates that myrosin cells and guard cells share similar transcriptional networks. Finally, we hypothesize that the myrosinase-glucosinolate system may have originated in stomata of ancestral Brassicales plants and, after that, plants co-opted this defense strategy into idioblasts near veins at inner tissue layers.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
57
|
Vik D, Mitarai N, Wulff N, Halkier BA, Burow M. Dynamic Modeling of Indole Glucosinolate Hydrolysis and Its Impact on Auxin Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:550. [PMID: 29755493 PMCID: PMC5932361 DOI: 10.3389/fpls.2018.00550] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/09/2018] [Indexed: 05/21/2023]
Abstract
Plants release chemicals to deter attackers. Arabidopsis thaliana relies on multiple defense compounds, including indol-3-ylmethyl glucosinolate (I3G), which upon hydrolysis initiated by myrosinase enzymes releases a multitude of bioactive compounds, among others, indole-3-acetonitrile and indole-3-acetoisothiocyanate. The highly unstable isothiocyanate rapidly reacts with other molecules. One of the products, indole-3-carbinol, was reported to inhibit auxin signaling through binding to the TIR1 auxin receptor. On the contrary, the nitrile product of I3G hydrolysis can be converted by nitrilase enzymes to form the primary auxin molecule, indole-3-acetic acid, which activates TIR1. This suggests that auxin signaling is subject to both antagonistic and protagonistic effects of I3G hydrolysis upon attack. We hypothesize that I3G hydrolysis and auxin signaling form an incoherent feedforward loop and we build a mathematical model to examine the regulatory network dynamics. We use molecular docking to investigate the possible antagonistic properties of different I3G hydrolysis products by competitive binding to the TIR1 receptor. Our simulations reveal an uncoupling of auxin concentration and signaling, and we determine that enzyme activity and antagonist binding affinity are key parameters for this uncoupling. The molecular docking predicts that several I3G hydrolysis products strongly antagonize auxin signaling. By comparing a tissue disrupting attack - e.g., by chewing insects or necrotrophic pathogens that causes rapid release of I3G hydrolysis products - to sustained cell-autonomous I3G hydrolysis, e.g., upon infection by biotrophic pathogens, we find that each scenario gives rise to distinct auxin signaling dynamics. This suggests that plants have different defense versus growth strategies depending on the nature of the attack.
Collapse
Affiliation(s)
- Daniel Vik
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Namiko Mitarai
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nikolai Wulff
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara A. Halkier
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Meike Burow
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
58
|
Chuberre C, Plancot B, Driouich A, Moore JP, Bardor M, Gügi B, Vicré M. Plant Immunity Is Compartmentalized and Specialized in Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1692. [PMID: 30546372 PMCID: PMC6279857 DOI: 10.3389/fpls.2018.01692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
Roots are important organs for plant survival. In recent years, clear differences between roots and shoots in their respective plant defense strategies have been highlighted. Some putative gene markers of defense responses usually used in leaves are less relevant in roots and are sometimes not even expressed. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in root systems. Furthermore, roots are able to activate specific defense mechanisms in response to various elicitors including Molecular/Pathogen Associated Molecular Patterns, (MAMPs/PAMPs), signal compounds (e.g., hormones) and plant defense activator (e.g., β-aminobutyric acid, BABA). This review discusses recent findings in root defense mechanisms and illustrates the necessity to discover new root specific biomarkers. The development of new strategies to control root disease and improve crop quality will also be reviewed.
Collapse
Affiliation(s)
- Coralie Chuberre
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Barbara Plancot
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - John P. Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- Institut Universitaire de France, Paris, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| | - Maïté Vicré
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| |
Collapse
|
59
|
Wang JZ, Li B, Xiao Y, Ni Y, Ke H, Yang P, de Souza A, Bjornson M, He X, Shen Z, Balcke GU, Briggs SP, Tissier A, Kliebenstein DJ, Dehesh K. Initiation of ER Body Formation and Indole Glucosinolate Metabolism by the Plastidial Retrograde Signaling Metabolite, MEcPP. MOLECULAR PLANT 2017; 10:1400-1416. [PMID: 28965830 PMCID: PMC6368977 DOI: 10.1016/j.molp.2017.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/09/2023]
Abstract
Plants have evolved tightly regulated signaling networks to respond and adapt to environmental perturbations, but the nature of the signaling hub(s) involved have remained an enigma. We have previously established that methylerythritol cyclodiphosphate (MEcPP), a precursor of plastidial isoprenoids and a stress-specific retrograde signaling metabolite, enables cellular readjustments for high-order adaptive functions. Here, we specifically show that MEcPP promotes two Brassicaceae-specific traits, namely endoplasmic reticulum (ER) body formation and induction of indole glucosinolate (IGs) metabolism selectively, via transcriptional regulation of key regulators NAI1 for ER body formation and MYB51/122 for IGs biosynthesis). The specificity of MEcPP is further confirmed by the lack of induction of wound-inducible ER body genes as well as IGs by other altered methylerythritol phosphate pathway enzymes. Genetic analyses revealed MEcPP-mediated COI1-dependent induction of these traits. Moreover, MEcPP signaling integrates the biosynthesis and hydrolysis of IGs through induction of nitrile-specifier protein1 and reduction of the suppressor, ESM1, and production of simple nitriles as the bioactive end product. The findings position the plastidial metabolite, MEcPP, as the initiation hub, transducing signals to adjust the activity of hard-wired gene circuitry to expand phytochemical diversity and alter the associated subcellular structure required for functionality of the secondary metabolites, thereby tailoring plant stress responses.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yu Ni
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Panyu Yang
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Amancio de Souza
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Marta Bjornson
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Xiang He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zhouxin Shen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Steve P Briggs
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | | | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Department of Plant Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
60
|
Involvement of Arabidopsis thaliana endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 (AtCEP1) in powdery mildew-induced and AtCPR5-controlled cell death. PLoS One 2017; 12:e0183870. [PMID: 28846731 PMCID: PMC5573131 DOI: 10.1371/journal.pone.0183870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022] Open
Abstract
Programmed cell death (PCD) is a prerequisite for successful development and it limits the spread of biotrophic pathogens in a rapid hypersensitive response at the site of infection. KDEL-tailed cysteine endopeptidases (KDEL CysEP) are a subgroup of papain-type cysteine endopeptidases expressed in tissues undergoing PCD. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2, and AtCEP3) are expressed. We have previously shown that AtCEP1 is a factor of basal resistance to powdery mildew caused by the biotrophic ascomycete Erysiphe cruciferarum, and is expressed in spatiotemporal association with the late fungal development on Arabidopsis leaves. The endoplasmic reticulum-localized proenzyme of AtCEP1 was further visualized at the haustorial complex encased with callose. The AtCPR5 gene (CONSTITUTIVE EXPRESSION OF PR GENES 5) is a regulator of expression of pathogenesis related genes. Loss of AtCPR5 leads to spontaneous expression of chlorotic lesions which was associated with enhanced expression of AtCEP1. We used the atcpr5-2 mutant plants and the atcep1 atcpr5-2 double mutants harboring a non-functional reporter (PCEP1::pre-pro-3xHA-EGFP-KDEL) for visualization of AtCEP1 promoter activity. We found the specific up-regulation of AtCEP1 in direct neighborhood of spreading leaf lesions thus likely representing cells undergoing PCD. Furthermore, we found a strong resistance of atcpr5 mutant plants against infection with E. cruciferarum. Loss of AtCEP1 had no obvious influence on the strong resistance of atcpr5-2 mutant plants against infection with E. cruciferarum. However, the area of necrotic leaf lesions associated with E. cruciferarum colonies was significantly larger in atcpr5-2 as compared to atcep1 atcpr5-2 double mutant plants. The presence of AtCEP1 thus contributes to AtCPR5-controlled PCD at the sites of powdery mildew infection.
Collapse
|
61
|
Agostini A, Palm DM, Schmitt FJ, Albertini M, Valentin MD, Paulsen H, Carbonera D. An unusual role for the phytyl chains in the photoprotection of the chlorophylls bound to Water-Soluble Chlorophyll-binding Proteins. Sci Rep 2017; 7:7504. [PMID: 28790428 PMCID: PMC5548782 DOI: 10.1038/s41598-017-07874-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/30/2017] [Indexed: 01/16/2023] Open
Abstract
Water-Soluble Chlorophyll Proteins (WSCPs) from Brassicaceae are non-photosynthetic proteins which tetramerize upon binding four chlorophyll (Chl) molecules. The bound Chls are highly photostable, despite the lack of bound carotenoids known, in Chl-containing photosynthetic proteins, to act as singlet oxygen and Chl triplet (3Chl) quenchers. Although the physiological function of WSCPs is still unclear, it is likely to be related to their biochemical stability and their resistance to photodegradation. To get insight into the origin of this photostability, the properties of the 3Chl generated in WSCPs upon illumination were investigated. We found that, unlike the excited singlet states, which are excitonic states, the triplet state is localized on a single Chl molecule. Moreover, the lifetime of the 3Chl generated in WSCPs is comparable to that observed in other Chl-containing systems and is reduced in presence of oxygen. In contrast to previous observations, we found that WSCP actually photosensitizes singlet oxygen with an efficiency comparable to that of Chl in organic solvent. We demonstrated that the observed resistance to photooxidation depends on the conformation of the phytyl moieties, which in WSCP are interposed between the rings of Chl dimers, hindering the access of singlet oxygen to the oxidizable sites of the pigments.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Daniel M Palm
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Franz-Josef Schmitt
- Institute of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Marco Albertini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
62
|
Xue H, Veit C, Abas L, Tryfona T, Maresch D, Ricardi MM, Estevez JM, Strasser R, Seifert GJ. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:613-630. [PMID: 28482115 PMCID: PMC5575511 DOI: 10.1111/tpj.13591] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 05/12/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation.
Collapse
Affiliation(s)
- Hui Xue
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Lindy Abas
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1QWUK
| | - Daniel Maresch
- Department of ChemistryUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Martiniano M. Ricardi
- Biología Molecular y Neurociencias–Consejo Nacional de Investigaciones Científicas y Técnicas(IFIByNE‐CONICET)Instituto de FisiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresC1428EGAArgentina
| | - José Manuel Estevez
- Biología Molecular y Neurociencias–Consejo Nacional de Investigaciones Científicas y Técnicas(IFIByNE‐CONICET)Instituto de FisiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresC1428EGAArgentina
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos AiresBuenos Aires CPC1405BWEArgentina
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Georg J. Seifert
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| |
Collapse
|
63
|
Nukarinen E, Tomanov K, Ziba I, Weckwerth W, Bachmair A. Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:505-517. [PMID: 28419593 PMCID: PMC5518230 DOI: 10.1111/tpj.13575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 05/09/2023]
Abstract
Conjugation of the small ubiquitin-related modifier (SUMO) to protein substrates has an impact on stress responses and on development. We analyzed the proteome and phosphoproteome of mutants in this pathway. The mutants chosen had defects in SUMO ligase SIZ1, which catalyzes attachment of single SUMO moieties onto substrates, and in ligases PIAL1 and PIAL2, which are known to form SUMO chains. A total of 2657 proteins and 550 phosphopeptides were identified and quantified. Approximately 40% of the proteins and 20% of the phosphopeptides showed differences in abundance in at least one of the analyzed genotypes, demonstrating the influence of SUMO conjugation on protein abundance and phosphorylation. The data show that PIAL1 and PIAL2 are integral parts of the SUMO conjugation system with an impact on stress response, and confirm the involvement of SIZ1 in plant defense. We find a high abundance of predicted SUMO attachment sites in phosphoproteins (70% versus 40% in the total proteome), suggesting convergence of phosphorylation and sumoylation signals onto a set of common targets.
Collapse
Affiliation(s)
- Ella Nukarinen
- Department of Ecogenomics and Systems BiologyBZAUniversity of ViennaViennaAustria
| | - Konstantin Tomanov
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| | - Ionida Ziba
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems BiologyBZAUniversity of ViennaViennaAustria
- Vienna Metabolomics CenterUniversity of ViennaA‐1060ViennaAustria
| | - Andreas Bachmair
- Department of Biochemistry and Cell BiologyCenter for Molecular BiologyMax F. Perutz LaboratoriesViennaAustria
| |
Collapse
|
64
|
Floyd BE, Mugume Y, Morriss SC, MacIntosh GC, Bassham DC. Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis. PLANTA 2017; 245:779-792. [PMID: 28025674 DOI: 10.1007/s00425-016-2644-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 05/28/2023]
Abstract
Localization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis. The Arabidopsis thaliana class II RNase T2, RNS2, is encoded by a single gene and functions in rRNA degradation. Loss of RNS2 results in RNA accumulation and constitutive activation of autophagy, possibly as a compensatory mechanism. While the majority of RNase T2 enzymes is secreted, RNS2 is located within the vacuole and in the endoplasmic reticulum (ER), possibly within ER bodies. As RNS2 has a neutral pH optimum, and the endomembrane organelles are connected by vesicle transport, the site within the endomembrane system at which RNS2 functions is unclear. Here we demonstrate that localization to the vacuole is essential for the physiological function of RNS2. A mutant allele of RNS2, rns2-1, results in production of an active RNS2 RNase but with a mutation that removes a putative C-terminal vacuolar targeting signal. The mutant protein is, therefore, secreted from the cell. This results in a constitutive autophagy phenotype similar to that observed in rns2 null mutants. These findings illustrate that the intracellular retention of RNS2 and localization within the vacuole are critical for its cellular function.
Collapse
Affiliation(s)
- Brice E Floyd
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie C Morriss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
65
|
Palm DM, Agostini A, Tenzer S, Gloeckle BM, Werwie M, Carbonera D, Paulsen H. Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls. Biochemistry 2017; 56:1726-1736. [PMID: 28252285 DOI: 10.1021/acs.biochem.7b00075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concentrations, the recombinant WSCP apoprotein binds substoichiometric amounts of Chl (two Chls per tetramer) to form complexes that are as stable toward thermal dissociation, denaturation, and photodamage as the fully pigmented ones. If more Chl is added, these two-Chl complexes can bind another two Chls to reach the fully pigmented state. The protection of WSCP Chls against photodamage has been attributed to the apoprotein serving as a diffusion barrier for oxygen, preventing its access to triplet excited Chls and, thus, the formation of singlet oxygen. By contrast, the sequential binding of Chls by WSCP suggests a partially open or at least flexible structure, raising the question of how WSCP photoprotects its Chls without the help of carotenoids.
Collapse
Affiliation(s)
- Daniel M Palm
- Institute of General Botany, Johannes-Gutenberg University Mainz , Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Alessandro Agostini
- Institute of General Botany, Johannes-Gutenberg University Mainz , Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
- Department of Chemical Sciences, University of Padova , Via Marzolo 1, 35131 Padova, Italy
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center Mainz , Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Barbara M Gloeckle
- Institute of General Botany, Johannes-Gutenberg University Mainz , Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Mara Werwie
- Institute of General Botany, Johannes-Gutenberg University Mainz , Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova , Via Marzolo 1, 35131 Padova, Italy
| | - Harald Paulsen
- Institute of General Botany, Johannes-Gutenberg University Mainz , Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| |
Collapse
|
66
|
Abstract
Brassica crop species are prolific producers of indole-sulfur phytoalexins that are thought to have an important role in plant disease resistance. These molecules are conspicuously absent in the model plant Arabidopsis thaliana, and little is known about the enzymatic steps that assemble the key precursor brassinin. Here, we report the minimum set of biosynthetic genes required to generate cruciferous phytoalexins starting from the well-studied glucosinolate pathway. In vitro biochemical characterization revealed an additional role for the previously described carbon-sulfur lyase SUR1 in processing cysteine-isothiocyanate conjugates, as well as the S-methyltransferase DTCMT that methylates the resulting dithiocarbamate, together completing a pathway to brassinin. Additionally, the β-glucosidase BABG that is present in Brassica rapa but absent in Arabidopsis was shown to act as a myrosinase and may be a determinant of plants that synthesize phytoalexins from indole glucosinolate. Transient expression of the entire pathway in Nicotiana benthamiana yields brassinin, demonstrating that the biosynthesis of indole-sulfur phytoalexins can be engineered into noncruciferous plants. The identification of these biosynthetic enzymes and the heterologous reconstitution of the indole-sulfur phytoalexin pathway sheds light on an important pathway in an edible plant and opens the door to using metabolic engineering to systematically quantify the impact of cruciferous phytoalexins on plant disease resistance and human health.
Collapse
Affiliation(s)
- Andrew P Klein
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
67
|
Nakano RT, Piślewska-Bednarek M, Yamada K, Edger PP, Miyahara M, Kondo M, Böttcher C, Mori M, Nishimura M, Schulze-Lefert P, Hara-Nishimura I, Bednarek P. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:204-220. [PMID: 27612205 DOI: 10.1111/tpj.13377] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum body (ER body) is an organelle derived from the ER that occurs in only three families of the order Brassicales and is suggested to be involved in plant defense. ER bodies in Arabidopsis thaliana contain large amounts of β-glucosidases, but the physiological functions of ER bodies and these enzymes remain largely unclear. Here we show that PYK10, the most abundant β-glucosidase in A. thaliana root ER bodies, hydrolyzes indole glucosinolates (IGs) in addition to the previously reported in vitro substrate scopolin. We found a striking co-expression between ER body-related genes (including PYK10), glucosinolate biosynthetic genes and the genes for so-called specifier proteins affecting the terminal products of myrosinase-mediated glucosinolate metabolism, indicating that these systems have been integrated into a common transcriptional network. Consistent with this, comparative metabolite profiling utilizing a number of A. thaliana relatives within Brassicaceae identified a clear phylogenetic co-occurrence between ER bodies and IGs, but not between ER bodies and scopolin. Collectively, our findings suggest a functional link between ER bodies and glucosinolate metabolism in planta. In addition, in silico three-dimensional modeling, combined with phylogenomic analysis, suggests that PYK10 represents a clade of 16 myrosinases that arose independently from the other well-documented class of six thioglucoside glucohydrolases. These findings provide deeper insights into how glucosinolates are metabolized in cruciferous plants and reveal variation of the myrosinase-glucosinolate system within individual plants.
Collapse
Affiliation(s)
- Ryohei T Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Kenji Yamada
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Mado Miyahara
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Christoph Böttcher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Masashi Mori
- Ishikawa Prefectural University, Nonoichi, Ishikawa, 834-1213, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute of Basic Biology, Okazaki, 444-8585, Japan
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
68
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
69
|
Gotté M, Bénard M, Kiefer-Meyer MC, Jaber R, Moore JP, Vicré-Gibouin M, Driouich A. Endoplasmic Reticulum Body-Related Gene Expression in Different Root Zones of Arabidopsis Isolated by Laser-Assisted Microdissection. THE PLANT GENOME 2016; 9. [PMID: 27898830 DOI: 10.3835/plantgenome2015.08.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Endoplasmic reticulum (ER) bodies are important organelles for root defense. However, little is known regarding the genetic control of their formation in root tissues. In the present study, (L.) Heynh. roots were dissected using laser-assisted microdissection (LAM) with minimal sample preparation (no fixation or embedding steps) and the expression of genes associated with ER body formation and function was assessed by real-time quantitative reverse-transcription polymerase chain reaction (RT-qRT-PCR) in the presence and absence of the defense phytohormone methyl jasmonate (MeJA). Zones of interest were identified in plants overexpressing a fluorescent construct; these being the root cap zone, meristematic zone, elongation zone, and differentiation zone. Given their role in ER body formation, the expression of the genes , , , , and was evaluated in the whole root and in the four dissected root zones using RT-qRT-PCR. Our data show that the expression level of all five genes differs in a root-zone-specific manner in untreated roots. They also reveal that all of them are overexpressed in response to MeJA with the two genes being the most highly overexpressed in the EZ. Finally, the gene, encoding for a transcription factor that regulates the expression of the four other genes, is the first to respond to MeJA, supporting its central role in ER body formation and function in root defense.
Collapse
|
70
|
Matsuzawa T, Jo T, Uchiyama T, Manninen JA, Arakawa T, Miyazaki K, Fushinobu S, Yaoi K. Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase Td2F2. FEBS J 2016; 283:2340-53. [DOI: 10.1111/febs.13743] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/11/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| | - Toshinori Jo
- Department of Biotechnology; The University of Tokyo; Japan
| | - Taku Uchiyama
- Department of Biomaterial Sciences; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Japan
| | | | | | - Kentaro Miyazaki
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
- Department of Computational Biology and Medical Sciences; Graduate School of Frontier Sciences; The University of Tokyo; Chiba Japan
| | | | - Katsuro Yaoi
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki Japan
| |
Collapse
|
71
|
Ketudat Cairns JR, Mahong B, Baiya S, Jeon JS. β-Glucosidases: Multitasking, moonlighting or simply misunderstood? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:246-59. [PMID: 26706075 DOI: 10.1016/j.plantsci.2015.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 05/23/2023]
Abstract
β-Glucosidases have a wide range of functions in plants, including roles in recycling of cell-wall oligosaccharides, defense, phytohormone signaling, secondary metabolism, and scent release, among others. It is not always clear which one is responsible for a specific function, as plants contain a large set of β-glucosidases. However, progress has been made in recent years in elucidating these functions. To help understand what is known and what remains ambiguous, we review the general approaches to investigating plant β-glucosidase functions. We consider information that has been gained regarding glycoside hydrolase family 1 enzyme functions utilizing these approaches in the past decade. In several cases, one enzyme has been assigned different biological functions by different research groups. We suggest that, at least in some cases, the ambiguity of an enzyme's function may come from having multiple functions that may help coordinate the response to injury or other stresses.
Collapse
Affiliation(s)
- James R Ketudat Cairns
- School of Biochemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | - Bancha Mahong
- Graduate School of Biotechnology, Kyung-Hee University, Yongin 17104, South Korea
| | - Supaporn Baiya
- School of Biochemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung-Hee University, Yongin 17104, South Korea
| |
Collapse
|
72
|
Ocaña S, Seoane P, Bautista R, Palomino C, Claros GM, Torres AM, Madrid E. Large-Scale Transcriptome Analysis in Faba Bean (Vicia faba L.) under Ascochyta fabae Infection. PLoS One 2015; 10:e0135143. [PMID: 26267359 PMCID: PMC4534337 DOI: 10.1371/journal.pone.0135143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/17/2015] [Indexed: 12/21/2022] Open
Abstract
Faba bean is an important food crop worldwide. However, progress in faba bean genomics lags far behind that of model systems due to limited availability of genetic and genomic information. Using the Illumina platform the faba bean transcriptome from leaves of two lines (29H and Vf136) subjected to Ascochyta fabae infection have been characterized. De novo transcriptome assembly provided a total of 39,185 different transcripts that were functionally annotated, and among these, 13,266 were assigned to gene ontology against Arabidopsis. Quality of the assembly was validated by RT-qPCR amplification of selected transcripts differentially expressed. Comparison of faba bean transcripts with those of better-characterized plant genomes such as Arabidopsis thaliana, Medicago truncatula and Cicer arietinum revealed a sequence similarity of 68.3%, 72.8% and 81.27%, respectively. Moreover, 39,060 single nucleotide polymorphism (SNP) and 3,669 InDels were identified for genotyping applications. Mapping of the sequence reads generated onto the assembled transcripts showed that 393 and 457 transcripts were overexpressed in the resistant (29H) and susceptible genotype (Vf136), respectively. Transcripts involved in plant-pathogen interactions such as leucine rich proteins (LRR) or plant growth regulators involved in plant adaptation to abiotic and biotic stresses were found to be differently expressed in the resistant line. The results reported here represent the most comprehensive transcript database developed so far in faba bean, providing valuable information that could be used to gain insight into the pathways involved in the resistance mechanism against A. fabae and to identify potential resistance genes to be further used in marker assisted selection.
Collapse
Affiliation(s)
- Sara Ocaña
- Área de Mejora y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rocio Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, E-29071, Málaga, Spain
| | - Carmen Palomino
- Área de Mejora y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain
| | - Gonzalo M. Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, E-29071, Málaga, Spain
| | - Ana M. Torres
- Área de Mejora y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain
| | - Eva Madrid
- Institute for Sustainable Agriculture, CSIC, Apdo 4084, E-14080, Córdoba, Spain
| |
Collapse
|
73
|
Khachatoorian C, Ramirez RA, Hernandez F, Serna R, Kwok EY. Overexpressed Arabidopsis Annexin4 accumulates in inclusion body-like structures. Acta Histochem 2015; 117:279-87. [PMID: 25818562 PMCID: PMC4409563 DOI: 10.1016/j.acthis.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/31/2022]
Abstract
Large protein complexes form in the cytosol of prokaryotes and eukaryotes as assemblies of functional enzymes or aggregates of misfolded proteins. Their roles in the cell range from critical components of metabolism to disease-causing agents. We have observed a novel structure in the cells of transgenic Arabidopsis thaliana that appears to be a form of inclusion body. These long, spindle-shaped structures form when Arabidopsis are transformed to express high levels of the protein Annexin4 fused to a fluorescent protein. These structures, previously named darts, are visible in all cells of the plant throughout development. Darts take on a variety of morphologies including rings and figure-eights. These structures are not associated with the endomembrane system and are not membrane bounded. Darts appear to be insoluble aggregates of protein analogous to bacterial inclusion bodies and eukaryotic aggresomes. Similar structures have not been observed in untransformed plants, suggesting darts are artifacts of transgenic overexpression.
Collapse
Affiliation(s)
- Careen Khachatoorian
- Department of Biology, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8303, USA
| | - Rigoberto A Ramirez
- Department of Biology, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8303, USA
| | - Fernando Hernandez
- Department of Biology, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8303, USA
| | - Raphael Serna
- Department of Biology, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8303, USA
| | - Ernest Y Kwok
- Department of Biology, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8303, USA.
| |
Collapse
|
74
|
Gotté M, Ghosh R, Bernard S, Nguema-Ona E, Vicré-Gibouin M, Hara-Nishimura I, Driouich A. Methyl Jasmonate Affects Morphology, Number and Activity of Endoplasmic Reticulum Bodies in Raphanus sativus Root Cells. ACTA ACUST UNITED AC 2014; 56:61-72. [DOI: 10.1093/pcp/pcu141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
75
|
Subcellular Targeting of Bacterial CusF Enhances Cu Accumulation and Alters Root to Shoot Cu Translocation in Arabidopsis. ACTA ACUST UNITED AC 2014; 55:1568-81. [DOI: 10.1093/pcp/pcu087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Meng W, Chye ML. Rice acyl-CoA-binding proteins OsACBP4 and OsACBP5 are differentially localized in the endoplasmic reticulum of transgenic Arabidopsis. PLANT SIGNALING & BEHAVIOR 2014; 9:e29544. [PMID: 25763631 PMCID: PMC4205152 DOI: 10.4161/psb.29544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 05/20/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) are known to bind and transport acyl-CoA esters and phospholipids intracellularly. In our recent paper in the New Phytologist, we reported that the six acyl-CoA-binding proteins (OsACBPs) in rice (Oryza sativa) are distributed across various subcellular compartments in transgenic Arabidopsis (Arabidopsis thaliana) such as the cytosol (OsACBP1, OsACBP2 and OsACBP3), the endoplasmic reticulum (ER) including the tubules (OsACBP4 and OsACBP5) and the cisternae (OsACBP4), and the peroxisomes (OsACBP6). Localization of OsACBP4::GFP to the peripheral ER cisternae and the central cisternal ER-like structures in transgenic Arabidopsis distinguished it from OsACBP5::GFP. We further report that besides the ER, OsACBP4::GFP and OsACBP5::GFP were also targeted to the membrane of ER bodies and ER-derived spherical structures, respectively, in transgenic Arabidopsis. These findings support our previous conclusion that OsACBP4 and OsACBP5 are not redundant proteins in the ER.
Collapse
Affiliation(s)
- Wei Meng
- School of Biological Sciences; The University of Hong Kong; Pokfulam, Hong Kong, PR China
- College of Life Science; Northeast Forestry University; Harbin, PR China
| | - Mee-Len Chye
- School of Biological Sciences; The University of Hong Kong; Pokfulam, Hong Kong, PR China
- Correspondence to: Mee-Len Chye,
| |
Collapse
|
77
|
Brandizzi F, Frigerio L, Howell SH, Schäfer P. Endoplasmic reticulum-shape and function in stress translation. FRONTIERS IN PLANT SCIENCE 2014; 5:425. [PMID: 25225498 PMCID: PMC4150462 DOI: 10.3389/fpls.2014.00425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 05/03/2023]
Affiliation(s)
- Federica Brandizzi
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: ; ; ;
| | - Lorenzo Frigerio
- School of Life Sciences, University of WarwickCoventry, UK
- *Correspondence: ; ; ;
| | - Stephen H. Howell
- Department of Genetics, Development and Cell Biology, Plant Sciences Institute, Iowa State UniversityAmes, IA, USA
- *Correspondence: ; ; ;
| | - Patrick Schäfer
- School of Life Sciences, University of WarwickCoventry, UK
- *Correspondence: ; ; ;
| |
Collapse
|