51
|
Yin J, Yan J, Hou L, Jiang L, Xian W, Guo Q. Identification and functional deciphering suggested the regulatory roles of long intergenic ncRNAs (lincRNAs) in increasing grafting pepper resistance to Phytophthora capsici. BMC Genomics 2021; 22:868. [PMID: 34856924 PMCID: PMC8638555 DOI: 10.1186/s12864-021-08183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As a popular and valuable technique, grafting is widely used to protect against soil-borne diseases and nematodes in vegetable production. Growing evidences have revealed that long intergenic ncRNAs (lincRNAs) are strictly regulated and play essential roles in plants development and stress responses. Nevertheless, genome-wide identification and function deciphering of pepper lincRNAs, especially for their roles in improving grafting pepper resistance to Phytophthora capsici is largely unknown. RESULTS In this study, RNA-seq data of grafting and control pepper plants with or without P. capsici inoculation were used to identify lincRNAs. In total, 2,388 reliable lincRNAs were identified. They were relatively longer and contained few exons than protein-coding genes. Similar to coding genes, lincRNAs had higher densities in euchromatin regions; and longer chromosome transcribed more lincRNAs. Expression pattern profiling suggested that lincRNAs commonly had lower expression than mRNAs. Totally, 607 differentially expressed lincRNAs (DE-lincRANs) were identified, of which 172 were found between P. capsici resistance grafting pepper sample GR and susceptible sample LDS. The neighboring genes of DE-lincRNAs and miRNAs competitively sponged by DE-lincRNAs were identified. Subsequently, the expression level of DE-lincRNAs was further confirmed by qRT-PCR and regulation patterns between DE-lincRNAs and neighboring mRNAs were also validated. Function annotation revealed that DE-lincRNAs increased the resistance of grafting prepper to P. capsici by modulating the expression of disease-defense related genes through cis-regulating and/or lincRNA-miRNA-mRNA interaction networks. CONCLUSIONS This study identified pepper lincRNAs and suggested their potential roles in increasing the resistance level of grafting pepper to P. capsici.
Collapse
Affiliation(s)
- Junliang Yin
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agriculture, Yangtze University, 434000 Jingzhou, Hubei China
| | - Jiahui Yan
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Lu Hou
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Liling Jiang
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Wenrong Xian
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
| | - Qingyun Guo
- Qinghai Academy of Agriculture and Forestry Science, Key Laboratory of Agricultural Integrated Pest Management, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai University, 810016 Xining, Qinghai Province China
- Qinghai Academy of Agriculture and Forestry Science, Qinghai University, 810016 Xining, China
| |
Collapse
|
52
|
Xu J, Xian Q, Zhang N, Wang K, Zhou X, Li Y, Dong J, Chen X. Identification of miRNA-Target Gene Pairs Responsive to Fusarium Wilt of Cucumber via an Integrated Analysis of miRNA and Transcriptome Profiles. Biomolecules 2021; 11:1620. [PMID: 34827618 PMCID: PMC8615934 DOI: 10.3390/biom11111620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium wilt (FW) of cucumber (Cucumis sativus L.) caused by Fusarium oxysporum f. sp. cucumerinum (Foc) is a destructive soil-borne disease that severely decreases cucumber yield and quality worldwide. MicroRNAs (miRNAs) are small non-coding RNAs (sRNAs) that are important for regulating host immunity because they affect target gene expression. However, the specific miRNAs and the miRNA/target gene crosstalk involved in cucumber resistance to FW remain unknown. In this study, we compared sRNA-seq and RNA-seq data for cucumber cultivar 'Rijiecheng', which is resistant to FW. The integrated analysis identified FW-responsive miRNAs and their target genes. On the basis of verified expression levels, we detected two highly expressed miRNAs with down-regulated expression in response to Foc. Moreover, an analysis of 21 target genes in cucumber inoculated with Foc indicated that JRL3 (Csa2G362470), which is targeted by miR319a, and BEE1 (Csa1G024150), DAHP1 (Csa2G369040), and PERK2 (Csa4G642480), which are targeted by miR6300, are expressed at high levels, but their expression is further up-regulated after Foc inoculation. These results imply that miR319a-JRL3, miR6300-BEE1, miR6300-DAHP1 and miR6300-PERK2 regulate cucumber defenses against FW, and provide the gene resources that may be useful for breeding programs focused on developing new cucumber varieties with enhanced resistance to FW.
Collapse
Affiliation(s)
- Jun Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
| | - Qianqian Xian
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
| | - Ningyuan Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
| | - Ke Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
| | - Xin Zhou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
| | - Yansong Li
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
| | - Jingping Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.X.); (N.Z.); (K.W.); (X.Z.); (Y.L.); (J.D.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300192, China
| |
Collapse
|
53
|
Li Y, Zheng YP, Zhou XH, Yang XM, He XR, Feng Q, Zhu Y, Li GB, Wang H, Zhao JH, Hu XH, Pu M, Zhou SX, Ji YP, Zhao ZX, Zhang JW, Huang YY, Fan J, Zhang LL, Wang WM. Rice miR1432 Fine-Tunes the Balance of Yield and Blast Disease Resistance via Different Modules. RICE (NEW YORK, N.Y.) 2021; 14:87. [PMID: 34674053 PMCID: PMC8531185 DOI: 10.1186/s12284-021-00529-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/12/2021] [Indexed: 05/02/2023]
Abstract
microRNAs act as fine-tuners in the regulation of plant growth and resistance against biotic and abiotic stress. Here we demonstrate that rice miR1432 fine-tunes yield and blast disease resistance via different modules. Overexpression of miR1432 leads to compromised resistance and decreased yield, whereas blocking miR1432 using a target mimic of miR1432 results in enhanced resistance and yield. miR1432 suppresses the expression of LOC_Os03g59790, which encodes an EF-hand family protein 1 (OsEFH1). Overexpression of OsEFH1 leads to enhanced rice resistance but decreased grain yield. Further study revealed that miR1432 and OsEFH1 are differentially responsive to chitin, a fungus-derived pathogen/microbe-associated molecular pattern (PAMP/MAMP). Consistently, blocking miR1432 or overexpression of OsEFH1 improves chitin-triggered immunity responses. In contrast, overexpression of ACOT, another target gene regulating rice yield traits, has no significant effects on rice blast disease resistance. Altogether, these results indicate that miR1432 balances yield and resistance via different target genes, and blocking miR1432 can simultaneously improve yield and resistance.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ya-Ping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xin-Hui Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Rong He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ling-Li Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
54
|
Li J, Zhang H, Yang R, Zeng Q, Han G, Du Y, Yang J, Yang G, Luo Q. Identification of miRNAs Contributing to the Broad-Spectrum and Durable Blast Resistance in the Yunnan Local Rice Germplasm. FRONTIERS IN PLANT SCIENCE 2021; 12:749919. [PMID: 34721478 PMCID: PMC8551726 DOI: 10.3389/fpls.2021.749919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs are 20-24 nucleotide non-coding RNAs and play important roles in plant-environment interactions. In recent years, many microRNAs (miRNAs) have been found to regulate rice immunity against rice blast fungus. However, there are limited studies about miRNAs that directly target resistance (R) genes to regulate rice immunity. In this study, by deep sequencing, small RNA libraries were constructed from four-leaf stage seedlings of the resistant variety Ziyu44 and susceptible variety Jiangnanxiangnuo (JNXN) upon Magnaporthe oryzae infection, we found that much more miRNAs were significantly differentially expressed in Ziyu44 than in JNXN. Among these miRNAs, we focused on miR9664, a newly identified rice miRNA in our sequencing, which was upregulated lightly in Ziyu44 and drastically in JNXN at 24-48 h post-inoculation (hpi). The transgenic plants overexpressing miR9664 (miR9664-oe) displayed reduced defense responses to M. oryzae, while those knocking down miR9664 (miR9664-m) displayed enhanced defense responses to M. oryzae. Most of the detected miR9664 predicted target genes were reduced in the miR9664-oe lines while increased in the miR9664-m lines. The cleavage site of LOC_Os08g07774 was confirmed by RLM-RACE. Meanwhile, after being inoculated with M. oryzae, the genes were expressed differently between Ziyu44 and JNXN. The results suggest that miR9664-mediated R gene turnover contributes to Ziyu44 broad-spectrum resistance to rice blast fungus. Taken together, our research identified a new rice miRNA that directly targets R genes to regulate rice immunity against rice blast fungus, adding significant information to the study of rice-M. oryzae interaction.
Collapse
Affiliation(s)
- Jinlu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Hui Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Qianchun Zeng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Guangyu Han
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Yunlong Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Genhua Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
55
|
Shu HY, Zhou H, Mu HL, Wu SH, Jiang YL, Yang Z, Hao YY, Zhu J, Bao WL, Cheng SH, Zhu GP, Wang ZW. Integrated Analysis of mRNA and Non-coding RNA Transcriptome in Pepper ( Capsicum chinense) Hybrid at Seedling and Flowering Stages. Front Genet 2021; 12:685788. [PMID: 34490032 PMCID: PMC8417703 DOI: 10.3389/fgene.2021.685788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Pepper is an important vegetable in the world. In this work, mRNA and ncRNA transcriptome profiles were applied to understand the heterosis effect on the alteration in the gene expression at the seedling and flowering stages between the hybrid and its parents in Capsicum chinense. Our phenotypic data indicated that the hybrid has dominance in leaf area, plant scope, plant height, and fruit-related traits. Kyoto Encyclopedia of Genes and Genomes analysis showed that nine members of the plant hormone signal transduction pathway were upregulated in the seedling and flowering stages of the hybrid, which was supported by weighted gene coexpression network analysis and that BC332_23046 (auxin response factor 8), BC332_18317 (auxin-responsive protein IAA20), BC332_13398 (ethylene-responsive transcription factor), and BC332_27606 (ethylene-responsive transcription factor WIN1) were candidate hub genes, suggesting the important potential role of the plant hormone signal transduction in pepper heterosis. Furthermore, some transcription factor families, including bHLH, MYB, and HSF were greatly over-dominant. We also identified 2,525 long ncRNAs (lncRNAs), 47 micro RNAs (miRNAs), and 71 circle RNAs (circRNAs) in the hybrid. In particular, downregulation of miR156, miR169, and miR369 in the hybrid suggested their relationship with pepper growth vigor. Moreover, we constructed some lncRNA–miRNA–mRNA regulatory networks that showed a multi-dimension to understand the ncRNA relationship with heterosis. These results will provide guidance for a better understanding of the molecular mechanism involved in pepper heterosis.
Collapse
Affiliation(s)
- Huang-Ying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - He Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Hai-Ling Mu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Shu-Hua Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Yi-Li Jiang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Zhuang Yang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Yuan-Yuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Wen-Long Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Shan-Han Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Guo-Peng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Zhi-Wei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
56
|
Campo S, Sánchez‐Sanuy F, Camargo‐Ramírez R, Gómez‐Ariza J, Baldrich P, Campos‐Soriano L, Soto‐Suárez M, San Segundo B. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1798-1811. [PMID: 33780108 PMCID: PMC8428829 DOI: 10.1111/pbi.13592] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species. miR812w is a 24nt-long that requires DCL3 for its biogenesis and is loaded into AGO4 proteins. Whereas overexpression of miR812w increased resistance to infection by the rice blast fungus Magnaporthe oryzae, CRISPR/Cas9-mediated MIR812w editing enhances disease susceptibility, supporting that miR812w plays a role in blast resistance. We show that miR812w derives from the Stowaway type of rice MITEs (Miniature Inverted-Repeat Transposable Elements). Moreover, miR812w directs DNA methylation in trans at target genes that have integrated a Stowaway MITE copy into their 3' or 5' untranslated region (ACO3, CIPK10, LRR genes), as well as in cis at the MIR812w locus. The target genes of miR812 were found to be hypo-methylated around the miR812 recognition site, their expression being up-regulated in transgene-free CRISPR/Cas9-edited miR812 plants. These findings further support that, in addition to post-transcriptional regulation of gene expression, miRNAs can exert their regulatory function at the transcriptional level. This relationship between miR812w and Stowaway MITEs integrated into multiple coding genes might eventually create a network for miR812w-mediated regulation of gene expression with implications in rice immunity.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Ferran Sánchez‐Sanuy
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Rosany Camargo‐Ramírez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Jorge Gómez‐Ariza
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Donald Danforth Plant Science Center975 N Warson RoadSt. LouisMO63132USA
| | - Lidia Campos‐Soriano
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Mauricio Soto‐Suárez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Corporación Colombiana de Investigación Agropecuaria. AGROSAVIAKm 14 vía Mosquera‐BogotáMosquera250047Colombia
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| |
Collapse
|
57
|
Wang KL, Zhang Y, Zhang HM, Lin XC, Xia R, Song L, Wu AM. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode. THE NEW PHYTOLOGIST 2021; 231:2215-2230. [PMID: 34101835 DOI: 10.1111/nph.17542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is a fast-growing species with uneven growth and lignification from lower to upper segments within one internode. MicroRNAs (miRNAs) play a vital role in post-transcriptional regulation in plants. However, how miRNAs regulate fast growth in bamboo internodes is poorly understood. In this study, one moso bamboo internode was divided during early rapid growth into four segments called F4 (bottom) to F1 (upper) and these were then analysed for transcriptomes, miRNAs and degradomes. The F4 segment had a higher number of actively dividing cells as well as a higher content of auxin (IAA), cytokinin (CK) and gibberellin (GA) compared with the F1 segment. RNA-seq analysis showed DNA replication and cell division-associated genes highly expressed in F4 rather than in F1. In total, 63 miRNAs (DEMs) were identified as differentially expressed between F4 and F1. The degradome and the transcriptome indicated that many downstream transcription factors and hormonal responses genes were modulated by DEMs. Several miR-target interactions were further validated by tobacco co-infiltration. Our findings give new insights into miRNA-mediated regulatory pathways in bamboo, and will contribute to a comprehensive understanding of the molecular mechanisms governing rapid growth.
Collapse
Affiliation(s)
- Kai-Li Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin-Chun Lin
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Rui Xia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lili Song
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
58
|
Tang J, Gu X, Liu J, He Z. Roles of small RNAs in crop disease resistance. STRESS BIOLOGY 2021; 1:6. [PMID: 37676520 PMCID: PMC10429495 DOI: 10.1007/s44154-021-00005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Small RNAs (sRNAs) are a class of short, non-coding regulatory RNAs that have emerged as critical components of defense regulatory networks across plant kingdoms. Many sRNA-based technologies, such as host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS), virus-induced gene silencing (VIGS), artificial microRNA (amiRNA) and synthetic trans-acting siRNA (syn-tasiRNA)-mediated RNA interference (RNAi), have been developed as disease control strategies in both monocot and dicot plants, particularly in crops. This review aims to highlight our current understanding of the roles of sRNAs including miRNAs, heterochromatic siRNAs (hc-siRNAs), phased, secondary siRNAs (phasiRNAs) and natural antisense siRNAs (nat-siRNAs) in disease resistance, and sRNAs-mediated trade-offs between defense and growth in crops. In particular, we focus on the diverse functions of sRNAs in defense responses to bacterial and fungal pathogens, oomycete and virus in crops. Further, we highlight the application of sRNA-based technologies in protecting crops from pathogens. Further research perspectives are proposed to develop new sRNAs-based efficient strategies to breed non-genetically modified (GMO), disease-tolerant crops for sustainable agriculture.
Collapse
Affiliation(s)
- Jun Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueting Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
59
|
Liu Y, Yan J, Wang K, Li D, Yang R, Luo H, Zhang W. MiR396-GRF module associates with switchgrass biomass yield and feedstock quality. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1523-1536. [PMID: 33567151 PMCID: PMC8384596 DOI: 10.1111/pbi.13567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/10/2023]
Abstract
Improving plant biomass yield and/or feedstock quality for highly efficient lignocellulose conversion has been the main research focus in genetic modification of switchgrass (Panicum virgatum L.), a dedicated model plant for biofuel production. Here, we proved that overexpression of miR396 (OE-miR396) leads to reduced plant height and lignin content mainly by reducing G-lignin monomer content. We identified nineteen PvGRFs in switchgrass and proved thirteen of them were cleaved by miR396. MiR396-targeted PvGRF1, PvGRF9 and PvGRF3 showed significantly higher expression in stem. By separately overexpressing rPvGRF1, 3 and 9, in which synonymous mutations abolished the miR396 target sites, and suppression of PvGRF1/3/9 activity via PvGRF1/3/9-SRDX overexpression in switchgrass, we confirmed PvGRF1 and PvGRF9 played positive roles in improving plant height and G-lignin content. Overexpression of PvGRF9 was sufficient to complement the defective phenotype of OE-miR396 plants. MiR396-PvGRF9 modulates these traits partly by interfering GA and auxin biosynthesis and signalling transduction and cell wall lignin, glucose and xylan biosynthesis pathways. Moreover, by enzymatic hydrolysis analyses, we found that overexpression of rPvGRF9 significantly enhanced per plant sugar yield. Our results suggest that PvGRF9 can be utilized as a candidate molecular tool in modifying plant biomass yield and feedstock quality.
Collapse
Affiliation(s)
- Yanrong Liu
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
| | - Jianping Yan
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
| | - Kexin Wang
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
| | - Dayong Li
- College of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Rui Yang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Wanjun Zhang
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
- Key Lab of Grassland Science in BeijingChina Agricultural UniversityBeijingChina
| |
Collapse
|
60
|
Chen JF, Zhao ZX, Li Y, Li TT, Zhu Y, Yang XM, Zhou SX, Wang H, Zhao JQ, Pu M, Feng H, Fan J, Zhang JW, Huang YY, Wang WM. Fine-Tuning Roles of Osa-miR159a in Rice Immunity Against Magnaporthe oryzae and Development. RICE (NEW YORK, N.Y.) 2021; 14:26. [PMID: 33677712 PMCID: PMC7937009 DOI: 10.1186/s12284-021-00469-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice. An increasing number of microRNAs (miRNAs) have been reported to fine-tune rice immunity against M. oryzae and coordinate with growth and development. RESULTS Here, we showed that rice microRNA159a (Osa-miR159a) played a positive role in rice resistance to M. oryzae. The expression of Osa-miR159a was suppressed in a susceptible accession at 12, 24, and 48 h post-inoculation (hpi); it was upregulated in a resistant accession of M. oryzae at 24 hpi. The transgenic rice lines overexpressing Osa-miR159a were highly resistant to M. oryzae. In contrast, the transgenic lines expressing a short tandem target mimic (STTM) to block Osa-miR159a showed enhanced susceptibility. Knockout mutations of the target genes of Osa-miR159a, including OsGAMYB, OsGAMYBL, and OsZF, led to resistance to M. oryzae. Alteration of the expression of Osa-miR159a impacted yield traits including pollen and grain development. CONCLUSIONS Our results indicated that Osa-miR159a positively regulated rice immunity against M. oryzae by downregulating its target genes. Proper expression of Osa-miR159a was critical for coordinating rice blast resistance with grain development.
Collapse
Affiliation(s)
- Jin-Feng Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi-Xue Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting-Ting Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Mei Yang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shi-Xin Zhou
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Pu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Feng
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
61
|
Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:633-647. [PMID: 33854289 PMCID: PMC7981355 DOI: 10.1007/s12298-021-00960-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
The broad-spectrum resistance gene Pi54 confers resistance to multiple isolates of Magnaporthe oryzae in rice. In order to decipher the molecular mechanism underlying the Pi54 mediated resistance in rice line Taipei309 Pi54 (carrying Pi54), miRNAome study was performed at 24 h post-inoculation (hpi) with M. oryzae. A total of 222 known miRNAs representing 101 miRNA families were found in this study. Of these, 29 and 24 miRNAs were respectively up- and down-regulated in the resistant Taipei309 Pi54 . Defence response (DR) genes, like, NBSGO35, and OsWAK129b, and genes related to transcription factors were up-regulated in Taipei309 Pi54 line. The vast array of miRNA candidates identified here are miR159c, miR167c, miR2100, miR2118o, miR2118l, miR319a, miR393, miR395l, miR397a, miR397b, miR398, miR439g, miR531b, miR812f, and miR815c, and they manifest their role in balancing the interplay between various DR genes during Pi54 mediated resistance. We also validated miRNA/target gene pairs involved in hormone signalling, and cross-talk among hormone pathways regulating the rice immunity. This study suggests that the Pi54 gene mediated blast resistance is influenced by several microRNAs through PTI and ETI components in the rice line Taipei309 Pi54 , leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Kirti Arora
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - B. N. Devanna
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| |
Collapse
|
62
|
Feng Q, Li Y, Zhao ZX, Wang WM. Contribution of Small RNA Pathway to Interactions of Rice with Pathogens and Insect Pests. RICE (NEW YORK, N.Y.) 2021; 14:15. [PMID: 33547972 PMCID: PMC7867673 DOI: 10.1186/s12284-021-00458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/28/2021] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs) are mainly classified into microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their origin. miRNAs originate from single-stranded RNA precursors, whereas siRNAs originate from double-stranded RNA precursors that are synthesized by RNA-dependent RNA polymerases. Both of single-stranded and double-stranded RNA precursors are processed into sRNAs by Dicer-like proteins. Then, the sRNAs are loaded into ARGONAUTE proteins, forming RNA-induced silencing complexes (RISCs). The RISCs repress the expression of target genes with sequences complementary to the sRNAs through the cleavage of transcripts, the inhibition of translation or DNA methylation. Here, we summarize the recent progress of sRNA pathway in the interactions of rice with various parasitic organisms, including fungi, viruses, bacteria, as well as insects. Besides, we also discuss the hormone signal in sRNA pathway, and the emerging roles of circular RNAs and long non-coding RNAs in rice immunity. Obviously, small RNA pathway may act as a part of rice innate immunity to coordinate with growth and development.
Collapse
Affiliation(s)
- Qin Feng
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| | - Yan Li
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| | - Zhi-Xue Zhao
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| | - Wen-Ming Wang
- Rice Research Institute and Research Center for Crop Disease and Insect Pests, Sichuan Agricultural University at Wenjiang, 211 Huimin Road, Wenjiang District, Chengdu, 611130 China
| |
Collapse
|
63
|
Wang H, Li Y, Chern M, Zhu Y, Zhang LL, Lu JH, Li XP, Dang WQ, Ma XC, Yang ZR, Yao SZ, Zhao ZX, Fan J, Huang YY, Zhang JW, Pu M, Wang J, He M, Li WT, Chen XW, Wu XJ, Li SG, Li P, Li Y, Ronald PC, Wang WM. Suppression of rice miR168 improves yield, flowering time and immunity. NATURE PLANTS 2021; 7:129-136. [PMID: 33594262 DOI: 10.1038/s41477-021-00852-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/12/2021] [Indexed: 05/20/2023]
Abstract
MicroRNA168 (miR168) is a key miRNA that targets Argonaute1 (AGO1), a major component of the RNA-induced silencing complex1,2. Previously, we reported that miR168 expression was responsive to infection by Magnaporthe oryzae, the causal agent of rice blast disease3. However, how miR168 regulates immunity to rice blast and whether it affects rice development remains unclear. Here, we report our discovery that the suppression of miR168 by a target mimic (MIM168) not only improves grain yield and shortens flowering time in rice but also enhances immunity to M. oryzae. These results were validated through repeated tests in rice fields in the absence and presence of rice blast pressure. We found that the miR168-AGO1 module regulates miR535 to improve yield by increasing panicle number, miR164 to reduce flowering time, and miR1320 and miR164 to enhance immunity. Our discovery demonstrates that changes in a single miRNA enhance the expression of multiple agronomically important traits.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California Davis, and the Joint BioEnergy Institute, Davis, CA, USA
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ling-Li Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jun-Hua Lu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xu-Pu Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wen-Qiang Dang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Chun Ma
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Rui Yang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Sheng-Ze Yao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wei-Tao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xue-Wei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Shi-Gui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Pamela C Ronald
- Department of Plant Pathology, University of California Davis, and the Joint BioEnergy Institute, Davis, CA, USA
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
64
|
Bednarek R, David M, Fuentes S, Kreuze J, Fei Z. Transcriptome analysis provides insights into the responses of sweet potato to sweet potato virus disease (SPVD). Virus Res 2021; 295:198293. [PMID: 33412165 PMCID: PMC7985617 DOI: 10.1016/j.virusres.2020.198293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
Transcriptome responses in sweet potato infected with SPCSV and/or SPFMV were studied. Numerous genes, miRNAs and phasiRNAs were responsive mainly to the dual infection. Salicylic acid-mediated pathways play important roles in antiviral defense responses.
Sweet potato (Ipomoea batatas) ranks among the most important crops in the world and provides nutritional and economic sustainability for subsistence farmers in sub-Saharan Africa. Its production is mainly constrained by sweet potato virus disease (SPVD) caused by the coinfection of two positive-sense single-stranded RNA viruses, sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus (SPFMV). Current understanding of sweet potato responses to SPCSV and SPFMV at the molecular level remains very limited. In this study, we performed deep sequencing of both messenger RNA (mRNA) and small RNA (sRNA) populations in an SPVD-susceptible cultivar ‘Beauregard’ upon viral infection, to identify biological pathways that contribute to both general and specific host responses to these important viral pathogens. We found that pathways related to stress response and signaling were significantly affected by viral infection. sRNA components of these pathways were predominantly affected in late stages of the coinfection by SPCSV and SPFMV. We identified several novel microRNAs that were responsive to viral infection, some of which were predicted to target nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes. The downregulation of the salicylic acid-mediated defense response pathway in particular seems to be a result of the viral infection process, and can in part explain the susceptible nature of the ‘Beauregard’ cultivar.
Collapse
Affiliation(s)
- Ryland Bednarek
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA; Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Maria David
- Virology Laboratory, Crop and Systems Science Division, International Potato Center (CIP), Lima 12, Peru
| | - Segundo Fuentes
- Virology Laboratory, Crop and Systems Science Division, International Potato Center (CIP), Lima 12, Peru
| | - Jan Kreuze
- Virology Laboratory, Crop and Systems Science Division, International Potato Center (CIP), Lima 12, Peru.
| | - Zhangjun Fei
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA; Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA; USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| |
Collapse
|
65
|
Li Y, Wang LF, Bhutto SH, He XR, Yang XM, Zhou XH, Lin XY, Rajput AA, Li GB, Zhao JH, Zhou SX, Ji YP, Pu M, Wang H, Zhao ZX, Huang YY, Zhang JW, Qin P, Fan J, Wang WM. Blocking miR530 Improves Rice Resistance, Yield, and Maturity. FRONTIERS IN PLANT SCIENCE 2021; 12:729560. [PMID: 34527014 PMCID: PMC8435866 DOI: 10.3389/fpls.2021.729560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/27/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs fine-tune plant growth and resistance against multiple biotic and abiotic stresses. The trade-off between biomass and resistance can penalize crop yield. In this study, we have shown that rice miR530 regulates blast disease resistance, yield, and growth period. While the overexpression of miR530 results in compromised blast disease resistance, reduced grain yield, and late maturity, blocking miR530 using a target mimic (MIM530) leads to enhanced resistance, increased grain yield, and early maturity. Further study revealed that the accumulation of miR530 was decreased in both leaves and panicles along with the increase of age. Such expression patterns were accordant with the enhanced resistance from seedlings to adult plants, and the grain development from panicle formation to fully-filled seeds. Divergence analysis of miR530 precursor with upstream 1,000-bp promoter sequence in 11 rice species revealed that miR530 was diverse in Oryza sativa japonica and O. sativa indica group, which was consistent with the different accumulation of miR530 in japonica accessions and indica accessions. Altogether, our results indicate that miR530 coordinates rice resistance, yield, and maturity, thus providing a potential regulatory module for breeding programs aiming to improve yield and disease resistance.
Collapse
|
66
|
Peng W, Song N, Li W, Yan M, Huang C, Yang Y, Duan K, Dai L, Wang B. Integrated Analysis of MicroRNA and Target Genes in Brachypodium distachyon Infected by Magnaporthe oryzae by Small RNA and Degradome Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:742347. [PMID: 34659311 PMCID: PMC8517397 DOI: 10.3389/fpls.2021.742347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most important diseases that seriously threaten rice production. Brachypodium distachyon is a grass species closely related to grain crops, such as rice, barley, and wheat, and has become a new model plant of Gramineae. In this study, 15 small RNA samples were sequenced to examine the dynamic changes in microRNA (miRNA) expression in B. distachyon infected by M. oryzae at 0, 24, and 48 h after inoculation. We identified 432 conserved miRNAs and 288 predicted candidate miRNAs in B. distachyon. Additionally, there were 7 and 19 differentially expressed miRNAs at 24 and 48 h post-inoculation, respectively. Furthermore, using degradome sequencing, we identified 2,126 genes as targets for 308 miRNAs; using quantitative real-time PCR (qRT-PCR), we validated five miRNA/target regulatory units involved in B. distachyon-M. oryzae interactions. Moreover, using co-transformation technology, we demonstrated that BdNAC21 was negatively regulated by miR164c. This study provides a new approach for identifying resistance genes in B. distachyon by mining the miRNA regulatory network of host-pathogen interactions.
Collapse
Affiliation(s)
- Weiye Peng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Na Song
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Mingxiong Yan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Chenting Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Kangle Duan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Liangying Dai,
| | - Bing Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- *Correspondence: Bing Wang,
| |
Collapse
|
67
|
Xu T, Zhang L, Yang Z, Wei Y, Dong T. Identification and Functional Characterization of Plant MiRNA Under Salt Stress Shed Light on Salinity Resistance Improvement Through MiRNA Manipulation in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:665439. [PMID: 34220888 PMCID: PMC8247772 DOI: 10.3389/fpls.2021.665439] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Abstract
Salinity, as a major environmental stressor, limits plant growth, development, and crop yield remarkably. However, plants evolve their own defense systems in response to salt stress. Recently, microRNA (miRNA) has been broadly studied and considered to be an important regulator of the plant salt-stress response at the post-transcription level. In this review, we have summarized the recent research progress on the identification, functional characterization, and regulatory mechanism of miRNA involved in salt stress, have discussed the emerging manipulation of miRNA to improve crop salt resistance, and have provided future direction for plant miRNA study under salt stress, suggesting that the salinity resistance of crops could be improved by the manipulation of microRNA.
Collapse
Affiliation(s)
- Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Tao Xu,
| | - Long Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhengmei Yang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Tingting Dong,
| |
Collapse
|
68
|
Liao Y, Zhang Q, Cui R, Xu X, Zhu F, Cheng Q, Li X. High-Throughput Sequencing Reveals the Regulatory Networks of Transcriptome and Small RNAs During the Defense Against Marssonina brunnea in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:719549. [PMID: 34567031 PMCID: PMC8456019 DOI: 10.3389/fpls.2021.719549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 05/06/2023]
Abstract
MicroRNAs are implicated in the adjustment of gene expression in plant response to biotic stresses. However, the regulatory networks of transcriptome and miRNAs are still poorly understood. In the present study, we ascertained the induction of genes for small RNA biosynthesis in poplar defense to a hemibiotrophic fungus Marssonina brunnea and afterward investigated the molecular regulatory networks by performing comprehensive sequencing analysis of mRNAs and small RNAs in M. brunnea-inoculated leaves. Differentially expressed genes in M. brunnea-infected poplar are mainly involved in secondary metabolisms, phytohormone pathways, the recognition of pathogens, and MAPK pathway in the plant, with real-time quantitative PCR (qPCR) validating the mRNA-seq results. Furthermore, differentially expressed miRNAs, such as MIR167_1-6, MIR167_1-12, MIR171_2-3, MIR395-13, MIR396-3, MIR396-16, MIR398-8, and MIR477-6, were identified. Through psRobot and TargetFinder programs, MIR167-1-6, MIR395-13, MIR396-3, MIR396-16, and MIR398-8 were annotated to modulate the expression of genes implicated in transportation, signaling, and biological responses of phytohormones and activation of antioxidants for plant immunity. Besides, validated differentially expressed genes involved in lignin generation, which were phenylalanine ammonia-lyase, ferulate-5-hydroxylase, cinnamyl alcohol dehydrogenase, and peroxidase 11, were selected as targets for the identification of novel miRNAs. Correspondingly, novel miRNAs, such as Novel MIR8567, Novel MIR3228, Novel MIR5913, and Novel MIR6493, were identified using the Mireap online program, which functions in the transcriptional regulation of lignin biosynthesis for poplar anti-fungal response. The present study underlines the roles of miRNAs in the regulation of transcriptome in the anti-fungal response of poplar and provides a new idea for molecular breeding of woody plants.
Collapse
|
69
|
Chen Y, Dan Z, Li S. Rice GROWTH-REGULATING FACTOR 7 controls tiller number by regulating strigolactone synthesis. PLANT SIGNALING & BEHAVIOR 2020; 15:1804685. [PMID: 32780621 PMCID: PMC7588192 DOI: 10.1080/15592324.2020.1804685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
As an important transcription factor family, GROWTH-REGULATING FACTORs (GRFs) are involved in central development processes, including growth regulation, insect and disease resistance, and stress response. The OsGRF7 has recently been shown involving in modulating leaf angle through regulating GA and IAA metabolism. Interestingly, we found that OsGRF7 negatively regulates the tiller number. However, the detailed molecular mechanisms of OsGRF7 underlying the tiller number determination are still not understood. Here, we report that OsGRF7 directly targets the promoter of the NODULATION SIGNALING PATHWAY2 (OsNSP2), a key factor involving in the strigolactone synthesis. Correspondingly, OsGRF7 alters the expression level of OsNSP2 and the endogenous strigolactone content, which rendered repression of the outgrowth of the axillary buds. These findings unveil a novel function of OsGRF7 in rice tillering determination.
Collapse
Affiliation(s)
- Yunping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
70
|
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP. Altering Plant Architecture to Improve Performance and Resistance. TRENDS IN PLANT SCIENCE 2020; 25:1154-1170. [PMID: 32595089 DOI: 10.1016/j.tplants.2020.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
High-stress resistance and yield are major goals in crop cultivation, which can be addressed by modifying plant architecture. Significant progress has been made in recent years to understand how plant architecture is controlled under various growth conditions, recognizing the central role phytohormones play in response to environmental stresses. miRNAs, transcription factors, and other associated proteins regulate plant architecture, mainly via the modulation of hormone homeostasis and signaling. To generate crop plants of ideal architecture, we propose simultaneous editing of multiple genes involved in the regulatory networks associated with plant architecture as a feasible strategy. This strategy can help to address the need to increase grain yield and/or stress resistance under the pressures of the ever-increasing world population and climate change.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, TX, USA
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
71
|
A Comprehensive Analysis of MicroRNAs Expressed in Susceptible and Resistant Rice Cultivars during Rhizoctonia solani AG1-IA Infection Causing Sheath Blight Disease. Int J Mol Sci 2020; 21:ijms21217974. [PMID: 33120987 PMCID: PMC7662745 DOI: 10.3390/ijms21217974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs regulate plant responses to fungal infections and immunity. In this study, miRNAs were identified in six rice cultivars during a Rhizoctonia solani Kühn AG1-IA infection using a deep sequencing approach. Known and novel miRNAs were analyzed in these rice cultivars, and a set of fungal infection/immunity-associated miRNAs and target genes were quantified by reverse transcription (RT)-qPCR in six rice cultivars. Additionally, the relative expression of these miRNAs was analyzed in different time points of the infection, wild species of rice, and in response to different strains of R. solani. Osa-miR1320-5p showed preferential expression during the fungal infection in all the six rice genotypes, while Osa-miR156d, Osa-miR159b, Osa-miR820c, and Osa-miR1876 were differentially regulated in susceptible and resistant genotypes. A greater degree of downregulation of miRNAs was observed during the initial time points of infection (24-72 h), suggesting a maximum molecular activity of rice-R. solani interaction and resistance response of the host during the early phase of infection. After R. solani infection, the expression of Osa-miR820c and Osa-miR156d was downregulated in Oryza rufipogon, O. alta, O. latifolia, and O. minuta, while Osa-miR397b was downregulated in all the wild rice species except O. officinalis. This study provided comprehensive information on the repertoire of miRNAs expressed in six sheath blight disease-susceptible and resistant indica and aus rice cultivars.
Collapse
|
72
|
Zheng X, Li H, Chen M, Zhang J, Tan R, Zhao S, Wang Z. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2020; 39:1263-1283. [PMID: 32607753 DOI: 10.1007/s00299-020-02562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Hang Li
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Min Chen
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
73
|
Chen Y, Dan Z, Gao F, Chen P, Fan F, Li S. Rice GROWTH-REGULATING FACTOR7 Modulates Plant Architecture through Regulating GA and Indole-3-Acetic Acid Metabolism. PLANT PHYSIOLOGY 2020; 184:393-406. [PMID: 32581114 PMCID: PMC7479900 DOI: 10.1104/pp.20.00302] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
Plant-specific GROWTH-REGULATING FACTORs (GRFs) participate in central developmental processes, including leaf and root development; inflorescence, flower, and seed formation; senescence; and tolerance to stresses. In rice (Oryza sativa), there are 12 GRFs, but the role of the miR396-OsGRF7 regulatory module remains unknown. Here, we report that OsGRF7 shapes plant architecture via the regulation of auxin and GA metabolism in rice. OsGRF7 is mainly expressed in lamina joints, nodes, internodes, axillary buds, and young inflorescences. Overexpression of OsGRF7 causes a semidwarf and compact plant architecture with an increased culm wall thickness and narrowed leaf angles mediated by shortened cell length, altered cell arrangement, and increased parenchymal cell layers in the culm and adaxial side of the lamina joints. Knockout and knockdown lines of OsGRF7 exhibit contrasting phenotypes with severe degradation of parenchymal cells in the culm and lamina joints at maturity. Further analysis indicated that OsGRF7 binds the ACRGDA motif in the promoters of a cytochrome P450 gene and AUXIN RESPONSE FACTOR12, which are involved in the GA synthesis and auxin signaling pathways, respectively. Correspondingly, OsGRF7 alters the contents of endogenous GAs and auxins and sensitivity to exogenous phytohormones. These findings establish OsGRF7 as a crucial component in the OsmiR396-OsGRF-plant hormone regulatory network that controls rice plant architecture.
Collapse
Affiliation(s)
- Yunping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pian Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
74
|
Sinha P, Singh VK, Saxena RK, Kale SM, Li Y, Garg V, Meifang T, Khan AW, Kim KD, Chitikineni A, Saxena KB, Sameer Kumar CV, Liu X, Xu X, Jackson S, Powell W, Nevo E, Searle IR, Lodha M, Varshney RK. Genome-wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1697-1710. [PMID: 31925873 PMCID: PMC7336283 DOI: 10.1111/pbi.13333] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 12/26/2019] [Indexed: 05/20/2023]
Abstract
Hybrids are extensively used in agriculture to deliver an increase in yield, yet the molecular basis of heterosis is not well understood. Global DNA methylation analysis, transcriptome analysis and small RNA profiling were aimed to understand the epigenetic effect of the changes in gene expression level in the two hybrids and their parental lines. Increased DNA methylation was observed in both the hybrids as compared to their parents. This increased DNA methylation in hybrids showed that majority of the 24-nt siRNA clusters had higher expression in hybrids than the parents. Transcriptome analysis revealed that various phytohormones (auxin and salicylic acid) responsive hybrid-MPV DEGs were significantly altered in both the hybrids in comparison to MPV. DEGs associated with plant immunity and growth were overexpressed whereas DEGs associated with basal defence level were repressed. This antagonistic patterns of gene expression might contribute to the greater growth of the hybrids. It was also noticed that some common as well as unique changes in the regulatory pathways were associated with heterotic growth in both the hybrids. Approximately 70% and 67% of down-regulated hybrid-MPV DEGs were found to be differentially methylated in ICPH 2671 and ICPH 2740 hybrid, respectively. This reflected the association of epigenetic regulation in altered gene expressions. Our findings also revealed that miRNAs might play important roles in hybrid vigour in both the hybrids by regulating their target genes, especially in controlling plant growth and development, defence and stress response pathways. The above finding provides an insight into the molecular mechanism of pigeonpea heterosis.
Collapse
Affiliation(s)
- Pallavi Sinha
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Vikas K. Singh
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
- International Rice Research Institute, South‐Asia HubPatancheruIndia
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Sandip M. Kale
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
- The Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | | | - Vanika Garg
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | | | - Aamir W. Khan
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Kyung Do Kim
- University of GeorgiaAthensUSA
- Myongji UniversityYonginRepublic of Korea
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - K. B. Saxena
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - C. V. Sameer Kumar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | | | - Xun Xu
- BGI‐ShenzhenShenzhenChina
| | | | | | | | | | - Mukesh Lodha
- Centre for Cellular and Molecular Biology (CSIR)HyderabadIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| |
Collapse
|
75
|
Zhou SX, Zhu Y, Wang LF, Zheng YP, Chen JF, Li TT, Yang XM, Wang H, Li XP, Ma XC, Zhao JQ, Pu M, Feng H, Li Y, Fan J, Zhang JW, Huang YY, Wang WM. Osa-miR1873 fine-tunes rice immunity against Magnaporthe oryzae and yield traits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1213-1226. [PMID: 31863525 DOI: 10.1111/jipb.12900] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/20/2019] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are known to fine-tune growth, development, and stress-induced responses. Osa-miR1873 is a rice-specific miRNA targeting LOC_Os05g01790. Here, we show that Osa-miR1873 fine-tunes rice immunity against Magnaporthe oryzae and yield traits via LOC_Os05g01790. Osa-miR1873 was significantly upregulated in a susceptible accession but downregulated in a resistance accession at 24 h post-inoculation (hpi) of M. oryzae. Overexpressing Osa-miR1873 enhanced susceptibility to M. oryzae and compromised induction of defense responses. In contrast, blocking Osa-miR1873 through target mimicry compromised susceptibility to M. oryzae and enhanced induction of defense responses. Altered expression of Osa-miR1873 also resulted in some defects in yield traits, including grain numbers and seed setting rate. Moreover, overexpression of the target gene LOC_Os05g01790 increased rice blast disease resistance but severely penalized growth and yield. Taken together, we demonstrate that Osa-miR1873 fine-tunes the rice immunity-growth trade-off via LOC_Os05g01790, and blocking Osa-miR1873 could improve blast disease resistance without significant yield penalty. Thus, the Osa-miR1873-LOC_Os05g01790 regulatory module is valuable in balancing yield traits and blast resistance.
Collapse
Affiliation(s)
- Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang-Fang Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ya-Ping Zheng
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin-Feng Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting-Ting Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Mei Yang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu-Pu Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Chun Ma
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
76
|
Wang J, Long X, Chern M, Chen X. Understanding the molecular mechanisms of trade-offs between plant growth and immunity. SCIENCE CHINA-LIFE SCIENCES 2020; 64:234-241. [PMID: 32710363 DOI: 10.1007/s11427-020-1719-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Trade-offs between plant growth and immunity are a well-known phenomenon in plants that are meant to ensure the best use of limited resources. Recently, many advances have been achieved on molecular regulations of the trade-offs between plant growth and immunity. Here, we provide an overview on molecular understanding of these trade-offs including those regulated at the transcriptional level or post-transcriptional level by transcriptional factors, microRNAs, and post-translational modifications of proteins, respectively The understanding on the molecular regulation of these trade-offs will provide new strategies to breed crops with high yield and enhanced resistance to disease.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, California, 95616, USA
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
77
|
Li XP, Ma XC, Wang H, Zhu Y, Liu XX, Li TT, Zheng YP, Zhao JQ, Zhang JW, Huang YY, Pu M, Feng H, Fan J, Li Y, Wang WM. Osa-miR162a fine-tunes rice resistance to Magnaporthe oryzae and Yield. RICE (NEW YORK, N.Y.) 2020; 13:38. [PMID: 32524307 PMCID: PMC7287001 DOI: 10.1186/s12284-020-00396-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/27/2020] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in rice immunity against Magnaporthe oryzae, the causative agent of rice blast disease. Here we demonstrate that Osa-miR162a fine-tunes rice immunity against M. oryzae and yield traits. Overexpression of Osa-miR162a enhances rice resistance to M. oryzae accompanying enhanced induction of defense-related genes and accumulation of hydrogen peroxide (H2O2). In contrast, blocking Osa-miR162 by overexpressing a target mimic of Osa-miR162a enhances susceptibility to blast fungus associating with compromised induction of defense-related gene expression and H2O2 accumulation. Moreover, the transgenic lines overexpressing Osa-miR162a display decreased seed setting rate resulting in slight reduced yield per plant, whereas the transgenic lines blocking Osa-miR162 show an increased number of grains per panicle, resulting in increased yield per plant. Altered accumulation of Osa-miR162 had a limited impact on the expression of rice Dicer-like 1 (OsDCL1) in these transgenic lines showing normal gross morphology, and silencing of OsDCL1 led to enhanced resistance to blast fungus similar to that caused by overexpression of Osa-miR162a, suggesting the involvement of OsDCL1 in Osa-miR162a-regulated resistance. Together, our results indicate that Osa-miR162a is involved in rice immunity against M. oryzae and fine-tunes resistance and yield.
Collapse
Affiliation(s)
- Xu-Pu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Chun Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ting-Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ya-Ping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ji-Qun Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China.
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
78
|
Tseng KC, Chiang-Hsieh YF, Pai H, Wu NY, Zheng HQ, Chow CN, Lee TY, Chang SB, Lin NS, Chang WC. sRIS: A Small RNA Illustration System for Plant Next-Generation Sequencing Data Analysis. PLANT & CELL PHYSIOLOGY 2020; 61:1204-1212. [PMID: 32181856 DOI: 10.1093/pcp/pcaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Small RNA (sRNA), such as microRNA (miRNA) and short interfering RNA, are well-known to control gene expression based on degradation of target mRNA in plants. A considerable amount of research has applied next-generation sequencing (NGS) to reveal the regulatory pathways of plant sRNAs. Consequently, numerous bioinformatics tools have been developed for the purpose of analyzing sRNA NGS data. However, most methods focus on the study of sRNA expression profiles or novel miRNAs predictions. The analysis of sRNA target genes is usually not integrated into their pipelines. As a result, there is still no means available for identifying the interaction mechanisms between host and virus or the synergistic effects between two viruses. For the present study, a comprehensive system, called the Small RNA Illustration System (sRIS), has been developed. This system contains two main components. The first is for sRNA overview analysis and can be used not only to identify miRNA but also to investigate virus-derived small interfering RNA. The second component is for sRNA target prediction, and it employs both bioinformatics calculations and degradome sequencing data to enhance the accuracy of target prediction. In addition, this system has been designed so that figures and tables for the outputs of each analysis can be easily retrieved and accessed, making it easier for users to quickly identify and quantify their results. sRIS is available at http://sris.itps.ncku.edu.tw/.
Collapse
Affiliation(s)
- Kuan-Chieh Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Fan Chiang-Hsieh
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsuan Pai
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Nai-Yun Wu
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Qin Zheng
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Nga Chow
- College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Tzong-Yi Lee
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Chi Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
- College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
79
|
Zhang LL, Li Y, Zheng YP, Wang H, Yang X, Chen JF, Zhou SX, Wang LF, Li XP, Ma XC, Zhao JQ, Pu M, Feng H, Fan J, Zhang JW, Huang YY, Wang WM. Expressing a Target Mimic of miR156fhl-3p Enhances Rice Blast Disease Resistance Without Yield Penalty by Improving SPL14 Expression. Front Genet 2020; 11:327. [PMID: 32391053 PMCID: PMC7191088 DOI: 10.3389/fgene.2020.00327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) play essential roles in the regulation of plant growth and defense responses. More and more, miRNA-3ps are reported to act in plant development and immunity. miR156 is a conserved miRNA, and most previous studies focus on its roles in plant growth, development, and yield determinacy. Here, we show that expressing a target mimic of miR156fhl-3p led to enhanced rice blast disease resistance without a yield penalty. miR156fhl-3p was differentially responsive to Magnaporthe oryzae in susceptible and resistant accessions. Transgenic lines expressing a target mimic of miR156fhl-3p (MIM156-3p) exhibited enhanced rice blast disease resistance and increased expression of defense-related genes. MIM156-3p also enhanced the mRNA abundance of SPL14 and WRKY45 by down-regulating miR156-5p and pre-miR156. Moreover, MIM156-3p lines displayed a decreased number of second rachis branches per panicle but enlarged grains, leading to unchanged yield per plant. Consistently, overexpressing miR156h (OX156) led to enhanced susceptibility to M. oryzae and decreased the expression of SPL14 and WRKY45. Our results indicate that miR156fhl-3p mounts a regulatory role on miR156-5p, which subsequently regulates the expression of SPL14 and WRKY45 to improve rice blast disease resistance.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Yan Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Ya-Ping Zheng
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - He Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xuemei Yang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Jin-Feng Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Shi-Xin Zhou
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Liang-Fang Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xu-Pu Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Xiao-Chun Ma
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Ji-Qun Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Mei Pu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Hui Feng
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Ji-Wei Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Yan-Yan Huang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, China
| |
Collapse
|
80
|
Liebsch D, Palatnik JF. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:31-42. [PMID: 31726426 DOI: 10.1016/j.pbi.2019.09.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 05/23/2023]
Abstract
Multicellular life relies on complex regulatory mechanisms ensuring proper growth and development. In plants, these mechanisms construct a body plan that is both reproducible, and highly flexible for adaptation to different environmental conditions. A crucial regulatory module - consisting of microRNA miR396, GROWTH REGULATING FACTORS (GRFs) and GRF-INTERACTING FACTORS (GIFs) - has been shown to control growth of multiple tissues and organs in a variety of species. Especially in the last few years, research has expanded our knowledge of miR396-GRF/GIF function to crops, where it affects agronomically important traits, and highlighted its role in coordinating growth with endogenous and environmental factors. Special properties make the miR396-GRF/GIF system highly efficient in growth regulation and a promising target for improving plant yield.
Collapse
Affiliation(s)
- Daniela Liebsch
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina.
| | - Javier F Palatnik
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina; Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
81
|
Characteristic Dissection of Xanthomonas oryzae pv. o ryzae Responsive MicroRNAs in Rice. Int J Mol Sci 2020; 21:ijms21030785. [PMID: 31991765 PMCID: PMC7037501 DOI: 10.3390/ijms21030785] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial player in plant-pathogen interaction. While the evidence has demonstrated that rice miRNAs mediate immune response to pathogens invasion, the roles of miRNAs on Xanthomonas oryzae pv. oryzae (Xoo) attack remain be in place. Herein, we monitored the responsive changes of rice miRNAs at 0, 8, 24 h across Xoo strain PXO86 infection in its compatible rice variety IR24 and incompatible variety IRBB5 by small RNA sequencing, and the genes targeted by miRNAs were also detected via degradome technology. The faithfulness of sequencing data was validated through quantitative real-time stem-loop reverse transcription-polymerase chain reaction assay. Bioinformatic analysis showed that the differentially expressed miRNAs could be divided into three immunity-related clusters, and 80 regulatory units were emerged in infection process, which comprises 29 differentially expressed known miRNAs and 38 cleaved targets. Furthermore, the miRNA presumptive function of separate immunity cluster in rice-Xoo interplay was confirmed through overexpressing osa-miR164a, osa-miR167d and osa-miR159b, and the disruption of regulatory units, osa-miR164a/OsNAC60, osa-miR167d-5p/OsWD40-174 and osa-miR159b/OsMYBGA, OsLRR-RLK2, OsMPK20-4, may reset rice defense response to Xoo infestation in a controllable manner. These findings provide new insights into the complex roles of characteristic miRNAs and their targets in rice-Xoo interactions.
Collapse
|
82
|
Fan J, Quan W, Li GB, Hu XH, Wang Q, Wang H, Li XP, Luo X, Feng Q, Hu ZJ, Feng H, Pu M, Zhao JQ, Huang YY, Li Y, Zhang Y, Wang WM. circRNAs Are Involved in the Rice- Magnaporthe oryzae Interaction. PLANT PHYSIOLOGY 2020; 182:272-286. [PMID: 31628150 PMCID: PMC6945833 DOI: 10.1104/pp.19.00716] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/07/2019] [Indexed: 05/03/2023]
Abstract
Circular RNAs (circRNAs) play roles in various biological processes, but their functions in the rice (Oryza sativa) response to Magnaporthe oryzae remain elusive. Here, we demonstrate that circRNAs are involved in the rice-M. oryzae interaction using comparative circRNA-sequencing and transgenic approaches. We identified 2932 high-confidence circRNAs from young leaves of the blast-resistant accession International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake (IR25) and the blast-susceptible accession Lijiangxin Tuan Heigu (LTH) under M oryzae-infected or uninfected conditions; 636 were detected specifically upon M oryzae infection. The circRNAs in IR25 were significantly more diverse than those in LTH, especially under M. oryzae infection. Particularly, the number of circRNAs generated per parent gene was much higher in IR25 than in LTH and increased in IR25 but decreased in LTH upon M. oryzae infection. The higher diversity of circRNAs in IR25 was further associated with more frequent 3' and 5' alternative back-splicing and usage of complex splice sites. Moreover, a subset of circRNAs was differentially responsive to M oryzae in IR25 and LTH. We further confirmed that circR5g05160 promotes rice immunity against M oryzae Therefore, our data indicate that circRNA diversity is associated with different responses to M oryzae infection in rice and provide a starting point to investigate a new layer of regulation in the rice-M oryzae interaction.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Weili Quan
- Center for Genome Analysis, ABLife Inc., Wuhan 430075, Hubei, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qi Wang
- Center for Genome Analysis, ABLife Inc., Wuhan 430075, Hubei, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xu-Pu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaotian Luo
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan 430075, Hubei, China
| | - Qin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zi-Jin Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ji-Qun Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan 430075, Hubei, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
83
|
Guo XY, Li Y, Fan J, Xiong H, Xu FX, Shi J, Shi Y, Zhao JQ, Wang YF, Cao XL, Wang WM. Host-Induced Gene Silencing of MoAP1 Confers Broad-Spectrum Resistance to Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2019; 10:433. [PMID: 31024598 PMCID: PMC6465682 DOI: 10.3389/fpls.2019.00433] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/21/2023]
Abstract
Rice blast caused by Magnaporthe oryzae (M. oryzae) is a major threat to global rice production. In recent years, small interference RNAs (siRNAs) and host-induced gene silencing (HIGS) has been shown to be new strategies for the development of transgenic plants to control fungal diseases and proved a useful tool to study gene function in pathogens. We here tested whether in vitro feeding artificial siRNAs (asiRNAs) could compromise M. oryzae virulence and in vivo HIGS technique could improve rice blast resistance. Our data revealed that silencing of M. oryzae MoAP1 by feeding asiRNAs targeting MoAP1 (i.e., asiR1245, asiR1362, and asiR1115) resulted in inhibited fungal growth, abnormal spores, and decreased pathogenicity. Among the asiRNAs, asiR1115 was the most inhibitory toward the rice blast fungus. Conversely, the asiRNAs targeting three other genes (i.e., MoSSADH, MoACT, and MoSOM1) had no effect on fungal growth. Transgenic rice plants expressing RNA hairpins targeting MoAP1 exhibited improved resistance to 11 tested M. oryzae strains. Confocal microscopy also revealed profoundly restricted appressoria and mycelia in rice blast-infected transgenic rice plants. Our results demonstrate that in vitro asiRNA and in vivo HIGS were useful protection approaches that may be valuable to enhance rice blast resistance.
Collapse
Affiliation(s)
- Xiao-Yi Guo
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang, China
| | - Yan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Xiong
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang, China
| | - Fu-Xian Xu
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang, China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Yi Shi
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ji-Qun Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi-Fu Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Xiao-Long Cao
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Wen-Ming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|