51
|
How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int J Mol Sci 2022; 23:ijms23041995. [PMID: 35216108 PMCID: PMC8879091 DOI: 10.3390/ijms23041995] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants’ growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•−) and hydroxyl (OH−)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
Collapse
|
52
|
Santos Wagner AL, Araniti F, Ishii-Iwamoto EL, Abenavoli MR. Resveratrol exerts beneficial effects on the growth and metabolism of Lactuca sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:26-37. [PMID: 34971953 DOI: 10.1016/j.plaphy.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In order to assist sustainable agriculture, new strategies and methods are being used based on the utilization of new natural molecules. These natural compounds can be used as potential natural crop protectors and growth promoters, and the elucidation of their modes/mechanisms of action can represent a big step towards cleaner agriculture free of agrochemicals. In the present paper, the mechanisms underlying the effects of exogenous resveratrol (R), a natural phytoalexin found in plants, on Lactuca sativa metabolism were investigated through physiological and metabolomic approaches. The results highlighted that R stimulates the growth of lettuce. A reduction of the O2⋅- production in R-treated seedlings and an increase in the photosynthesis efficiency was observed, indicated by a higher Fv/Fm. The metabolomic analysis of lettuce seedlings treated with R identified 116 metabolites related to galactose, amino acids, sugar and nucleotide sugar, and ascorbate and aldarate metabolisms. Increased content of some polyamines and several metabolites was also observed, which may have contributed to scavenging free radicals and activating antioxidant enzymes, thus reducing oxidative damage and improving PSII protection in R-treated seedlings.
Collapse
Affiliation(s)
- Ana Luiza Santos Wagner
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, 87020900, Maringa, Brazil
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Via Celoria, 2, 20133, Milan, Italy
| | - Emy Luiza Ishii-Iwamoto
- Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, 87020900, Maringa, Brazil.
| | - Maria Rosa Abenavoli
- Department of Agriculture, University of Reggio di Calabria, 89124, Reggio Calabria, Italy.
| |
Collapse
|
53
|
Challabathula D, Analin B, Mohanan A, Bakka K. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153583. [PMID: 34871988 DOI: 10.1016/j.jplph.2021.153583] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
Drought and salt stresses are two major abiotic stress factors that hamper crop growth and productivity. Three rice cultivars with different sensitivity and tolerance towards abiotic stress were used in the current study. While cultivar Aiswarya is salt- and drought-sensitive, cultivar Vyttila is salt-tolerant and cultivar Vaisakh is drought-tolerant. We compared the physiological and biochemical responses of these rice cultivars under salt and drought stress conditions after restricting their cytochrome oxidase (COX) and alternative oxidase (AOX) pathways using antimycin A and salicylhydroxamic acid treatment. Further, changes in their expression of AOX genes and corresponding protein levels were compared and analysed. The sensitive and tolerant rice cultivars subjected to drought and salt stress showed differential responses in physiological and biochemical traits. Whereas Aiswarya showed clear phenotypic differences, such as stunted growth, leaf curling, and loss of greening in leaf tissues, with increase in salt content and progressive drought stress, Vyttila and Vaisakh showed no remarkable changes. Moreover, the drought-tolerant cultivar rehydrated after 10 days of drought exposure, whereas the sensitive variety did not show any rehydration of leaf tissue. The leaves of the tolerant cultivars showed lower reactive oxygen species (ROS) production than that of the sensitive plants under drought and salt stress conditions because of the activation of a stronger antioxidant defence. Although, the restriction of COX and AOX pathways increased the susceptibility of sensitive cultivars, it affected the tolerant varieties moderately. Higher photosynthetic rates, an efficient antioxidant system comprising higher superoxide dismutase, ascorbate peroxidase, and catalase activity along with higher AOX1a gene expression levels during drought and salt stress were observed in tolerant cultivars. The results suggest that an efficient antioxidant system and increased transcription of the AOX1a gene along with higher AOX protein levels are important for tolerant rice cultivars to maintain higher photosynthesis rates, lower ROS, and stress tolerance. Restriction of COX and AOX pathways impact the photosynthesis, ROS, and antioxidant enzymes in both sensitive and tolerant cultivars. The restriction of COX and AOX pathways have a stronger impact on gas exchange and fluorescence parameters of the sensitive cultivar than on that of the tolerant cultivars owing to the higher photosynthetic rates in tolerant cultivars.
Collapse
Affiliation(s)
- Dinakar Challabathula
- Plant Molecular Stress Physiology Research Group, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| | - Benedict Analin
- Plant Molecular Stress Physiology Research Group, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Akhil Mohanan
- Plant Molecular Stress Physiology Research Group, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Kavya Bakka
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| |
Collapse
|
54
|
Physiological and transcriptome analysis of γ-aminobutyric acid (GABA) in improving Gracilariopsis lemaneiformis stress tolerance at high temperatures. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Du X, Zhou W, Zhang W, Sun S, Han Y, Tang Y, Shi W, Liu G. Toxicities of three metal oxide nanoparticles to a marine microalga: Impacts on the motility and potential affecting mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118027. [PMID: 34428706 DOI: 10.1016/j.envpol.2021.118027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
With the fast growth of the production and application of engineered nanomaterials (ENMs), nanoparticles (NPs) that escape into the environment have drawn increasing attention due to their ecotoxicological impacts. Motile microalgae are a type of primary producer in most ecosystems; however, the impacts of NPs on the motility of microalgae have not been studied yet. So the toxic impacts of three common metal oxide NPs (nTiO2, nZnO, and nFe2O3) on swimming speed and locomotion mode of a marine microalgae, Platymonas subcordiformis, were investigated in this study. Our results demonstrated that both the velocity and linearity (LIN) of swimming were significantly decreased after the exposure of P. subcordiformis to the tested NPs. In addition, the obtained data indicate that NPs may suppress the motility of P. subcordiformis by constraining the energy available for swimming, as indicated by the significantly lower amounts of intracellular ATP and photosynthetic pigments and the lower activities of enzymes catalyzing glycolysis. Incubation of P. subcordiformis with the tested NPs generally resulted in the overproduction of reactive oxygen species (ROS), aggravation of lipid peroxidation, and induction of antioxidant enzyme activities, suggesting that imposing oxidative stress, which may impair the structural basis for swimming (i.e. the membrane of flagella), could be another reason for the observed motility suppression. Moreover, NP exposure led to significant reductions in the cell viability of P. subcordiformis, which may be due to the disruption of the energy supply (i.e., photosynthesis) and ROS-induced cellular damage. Our results indicate that waterborne NPs may pose a great threat to motile microalgae and subsequently to the health and stability of the marine ecosystem.
Collapse
Affiliation(s)
- Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
56
|
Ghosh TK, Tompa NH, Rahman MM, Mohi-Ud-Din M, Al-Meraj SMZ, Biswas MS, Mostofa MG. Acclimation of liverwort Marchantia polymorpha to physiological drought reveals important roles of antioxidant enzymes, proline and abscisic acid in land plant adaptation to osmotic stress. PeerJ 2021; 9:e12419. [PMID: 34824915 PMCID: PMC8590393 DOI: 10.7717/peerj.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/10/2021] [Indexed: 01/24/2023] Open
Abstract
Liverwort Marchantia polymorpha is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort’s model M. polymorpha. The gemmae, asexual reproductive units of M. polymorpha, were exposed to sucrose (0.2 M), mannitol (0.5 M) and polyethylene glycol (PEG, 10%) for inducing physiological drought to investigate their effects at morphological, physiological and biochemical levels. Our results showed that drought exposure led to extreme growth inhibition, disruption of membrane stability and reduction in photosynthetic pigment contents in M. polymorpha. The increased accumulation of hydrogen peroxide and malondialdehyde, and the rate of electrolyte leakage in the gemmalings of M. polymorpha indicated an evidence of drought-caused oxidative stress. The gemmalings showed significant induction of the activities of key antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase and glutathione S-transferase, and total antioxidant activity in response to increased oxidative stress under drought. Importantly, to counteract the drought effects, the gemmalings also accumulated a significant amount of proline, which coincided with the evolutionary presence of proline biosynthesis gene Δ1-pyrroline-5-carboxylate synthase 1 (P5CS1) in land plants. Furthermore, the application of exogenous abscisic acid (ABA) reduced drought-induced tissue damage and improved the activities of antioxidant enzymes and accumulation of proline, implying an archetypal role of this phytohormone in M. polymorpha for drought tolerance. We conclude that physiological drought tolerance mechanisms governed by the cellular antioxidants, proline and ABA were adopted in liverwort M. polymorpha, and that these findings have important implications in aiding our understanding of osmotic stress acclimation processes in land plants.
Collapse
Affiliation(s)
- Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Naznin Haque Tompa
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S M Zubair Al-Meraj
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States.,Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
57
|
Liu Y, Qu J, Shi Z, Zhang P, Ren M. Comparative genomic analysis of the tricarboxylic acid cycle members in four Solanaceae vegetable crops and expression pattern analysis in Solanum tuberosum. BMC Genomics 2021; 22:821. [PMID: 34773990 PMCID: PMC8590752 DOI: 10.1186/s12864-021-08109-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background The tricarboxylic acid (TCA) cycle is crucial for energy supply in animal, plant, and microbial cells. It is not only the main pathway of carbohydrate catabolism but also the final pathway of lipid and protein catabolism. Some TCA genes have been found to play important roles in the growth and development of tomato and potato, but no comprehensive study of TCA cycle genes in Solanaceae crops has been reported. Results In this study, we analyzed TCA cycle genes in four important Solanaceae vegetable crops (potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum)) based on comparative genomics. The four Solanaceae crops had a total of 180 TCA cycle genes: 43 in potato, 44 in tomato, 40 in eggplant, and 53 in pepper. Phylogenetic analysis, collinearity analysis, and tissue expression patterns revealed the conservation of and differences in TCA cycle genes between the four Solanaceae crops and found that there were unique subgroup members in Solanaceae crops that were independent of Arabidopsis genes. The expression analysis of potato TCA cycle genes showed that (1) they were widely expressed in various tissues, and some transcripts like Soltu.DM.01G003320.1(SCoAL) and Soltu.DM.04G021520.1 (SDH) mainly accumulate in vegetative organs, and some transcripts such as Soltu.DM.12G005620.3 (SDH) and Soltu.DM.02G007400.4 (MDH) are preferentially expressed in reproductive organs; (2) several transcripts can be significantly induced by hormones, such as Soltu.DM.08G023870.2 (IDH) and Soltu.DM.06G029290.1 (SDH) under ABA treatment, and Soltu.DM.07G021850.2 (CSY) and Soltu.DM.09G026740.1 (MDH) under BAP treatment, and Soltu.DM.02G000940.1 (IDH) and Soltu.DM.01G031350.4 (MDH) under GA treatment; (3) Soltu.DM.11G024650.1 (SDH) can be upregulated by the three disease resistance inducers including Phytophthora infestans, acibenzolar-S-methyl (BTH), and DL-β-amino-n-butyric acid (BABA); and (4) the levels of Soltu.DM.01G045790.1 (MDH), Soltu.DM.01G028520.3 (CSY), and Soltu.DM.12G028700.1 (CSY) can be activated by both NaCl and mannitol. The subcellular localization results of three potato citrate synthases showed that Soltu.DM.01G028520.3 was localized in mitochondria, while Soltu.DM.12G028700.1 and Soltu.DM.07G021850.1 were localized in the cytoplasm. Conclusions This study provides a scientific foundation for the comprehensive understanding and functional studies of TCA cycle genes in Solanaceae crops and reveals their potential roles in potato growth, development, and stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08109-9.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 610213, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural, Sciences of Zhengzhou University, 450000, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingtao Qu
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Ziwen Shi
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Peng Zhang
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 610213, Chengdu, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural, Sciences of Zhengzhou University, 450000, Zhengzhou, China. .,Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| |
Collapse
|
58
|
Yu L, Iqbal S, Zhang Y, Zhang G, Ali U, Lu S, Yao X, Guo L. Proteome-wide identification of S-sulphenylated cysteines in Brassica napus. PLANT, CELL & ENVIRONMENT 2021; 44:3571-3582. [PMID: 34347306 DOI: 10.1111/pce.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Deregulation of reduction-oxidation (redox) metabolism under environmental stresses results in enhanced production of intracellular reactive oxygen species (ROS), which ultimately leads to post-translational modifications (PTMs) of responsive proteins. Redox PTMs play an important role in regulation of protein function and cellular signalling. By means of large-scale redox proteomics, we studied reversible cysteine modification during the response to short-term salt stress in Brassica napus (B. napus). We applied an iodoacetyl tandem mass tags (iodoTMT)-based proteomic approach to analyse the redox proteome of B. napus seedlings under control and salt-stressed conditions. We identified 1,821 sulphenylated sites in 912 proteins from all samples. A great number of sulphenylated proteins were predicted to localize to chloroplasts and cytoplasm and GO enrichment analysis of differentially sulphenylated proteins revealed that metabolic processes such as photosynthesis and glycolysis are enriched and enzymes are overrepresented. Redox-sensitive sites in two enzymes were validated in vitro on recombinant proteins and they might affect the enzyme activity. This targeted approach contributes to the identification of the sulphenylated sites and proteins in B. napus subjected to salt stress and our study will improve our understanding of the molecular mechanisms underlying the redox regulation in response to salt stress.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
59
|
Hu X, Zhang T, Ji K, Luo K, Wang L, Chen W. Transcriptome and metabolome analyses of response of Synechocystis sp. PCC 6803 to methyl viologen. Appl Microbiol Biotechnol 2021; 105:8377-8392. [PMID: 34668984 DOI: 10.1007/s00253-021-11628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
The toxicity of methyl viologen (MV) to organisms is mainly due to the oxidative stress caused by reactive oxygen species produced from cell response. This study mainly investigated the response of Synechocystis sp. PCC 6803 to MV by combining transcriptomic and metabolomic analyses. Through transcriptome sequencing, we found many genes responding to MV stress, and analyzed them by weighted gene co-expression network analysis (WGCNA). Meanwhile, many metabolites were also found by metabolomic analysis to be regulated post MV treatment. Based on the analysis results of Kyoto encyclopedia of genes and genomes (KEGG) of the differentially expressed genes (DEGs) in the transcriptome and the differential metabolites in the metabolome, the dynamic changes of genes and metabolites involved in ten metabolic pathways in response to MV were analyzed. The results indicated that although the oxidative stress caused by MV was the strongest at 6 h, the proportion of the upregulated genes and metabolites involved in these ten metabolic pathways was the highest. Photosynthesis positively regulated the response to MV-induced oxidative stress, and the regulation of environmental information processing was inhibited by MV. Other metabolic pathways played different roles at different times and interacted with each other to respond to MV. This study comprehensively analyzed the response of Synechocystis sp. PCC 6803 to oxidative stress caused by MV from a multi-omics perspective, with providing key data and important information for in-depth analysis of the response of organisms to MV, especially photosynthetic organisms. KEY POINTS: • Methyl viologen (MV) treatment caused regulatory changes in genes and metabolites. • Proportion of upregulated genes and metabolites was the highest at 6-h MV treatment. • Photosynthesis and environmental information processing involved in MV response.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tianyuan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai Ji
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
60
|
Reimer JJ, Thiele B, Biermann RT, Junker-Frohn LV, Wiese-Klinkenberg A, Usadel B, Wormit A. Tomato leaves under stress: a comparison of stress response to mild abiotic stress between a cultivated and a wild tomato species. PLANT MOLECULAR BIOLOGY 2021; 107:177-206. [PMID: 34677706 PMCID: PMC8553704 DOI: 10.1007/s11103-021-01194-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/16/2021] [Indexed: 05/03/2023]
Abstract
Tomato is one of the most produced crop plants on earth and growing in the fields and greenhouses all over the world. Breeding with known traits of wild species can enhance stress tolerance of cultivated crops. In this study, we investigated responses of the transcriptome as well as primary and secondary metabolites in leaves of a cultivated and a wild tomato to several abiotic stresses such as nitrogen deficiency, chilling or warmer temperatures, elevated light intensities and combinations thereof. The wild species responded different to varied temperature conditions compared to the cultivated tomato. Nitrogen deficiency caused the strongest responses and induced in particular the secondary metabolism in both species but to much higher extent in the cultivated tomato. Our study supports the potential of a targeted induction of valuable secondary metabolites in green residues of horticultural production, that will otherwise only be composted after fruit harvest. In particular, the cultivated tomato showed a strong induction in the group of mono caffeoylquinic acids in response to nitrogen deficiency. In addition, the observed differences in stress responses between cultivated and wild tomato can lead to new breeding targets for better stress tolerance.
Collapse
Affiliation(s)
- Julia J Reimer
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, PtJ, 52425, Jülich, Germany
| | - Björn Thiele
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Robin T Biermann
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., 14979, Großbeeren, Germany
| | - Laura V Junker-Frohn
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anika Wiese-Klinkenberg
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Bioinformatics (IBG-4), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Björn Usadel
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Bioinformatics (IBG-4), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Heinrich-Heine-University, Chair of Biological Data Science, 40225, Düsseldorf, Germany
| | - Alexandra Wormit
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
61
|
Bharadwaj R, Noceda C, Mohanapriya G, Kumar SR, Thiers KLL, Costa JH, Macedo ES, Kumari A, Gupta KJ, Srivastava S, Adholeya A, Oliveira M, Velada I, Sircar D, Sathishkumar R, Arnholdt-Schmitt B. Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota Effectiveness. FRONTIERS IN PLANT SCIENCE 2021; 12:686274. [PMID: 34659277 PMCID: PMC8518632 DOI: 10.3389/fpls.2021.686274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/10/2021] [Indexed: 05/05/2023]
Abstract
Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Gunasekharan Mohanapriya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Sarma Rajeev Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Karine Leitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Aprajita Kumari
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
62
|
Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V. Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells 2021; 10:cells10102537. [PMID: 34685517 PMCID: PMC8533957 DOI: 10.3390/cells10102537] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Global food security for a growing population with finite resources is often challenged by multiple, simultaneously occurring on-farm abiotic stresses (i.e., drought, salinity, low and high temperature, waterlogging, metal toxicity, etc.) due to climatic uncertainties and variability. Breeding for multiple stress tolerance is a long-term solution, though developing multiple-stress-tolerant crop varieties is still a challenge. Generation of reactive oxygen species in plant cells is a common response under diverse multiple abiotic stresses which play dual role of signaling molecules or damaging agents depending on concentration. Thus, a delicate balance of reactive oxygen species generation under stress may improve crop health, which depends on the natural antioxidant defense system of the plants. Biostimulants represent a promising type of environment-friendly formulation based on natural products that are frequently used exogenously to enhance abiotic stress tolerance. In this review, we illustrate the potential of diverse biostimulants on the activity of the antioxidant defense system of major crop plants under stress conditions and their other roles in the management of abiotic stresses. Biostimulants have the potential to overcome oxidative stress, though their wider applicability is tightly regulated by dose, crop growth stage, variety and type of biostimulants. However, these limitations can be overcome with the understanding of biostimulants’ interaction with ROS signaling and the antioxidant defense system of the plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
- Correspondence: (M.H.); (V.F.)
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari 396450, India;
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, P.O. Box 50329, Lemesos 3603, Cyprus
- Correspondence: (M.H.); (V.F.)
| |
Collapse
|
63
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
64
|
Sagonda T, Adil MF, Sehar S, Rasheed A, Joan HI, Ouyang Y, Shamsi IH. Physio-ultrastructural footprints and iTRAQ-based proteomic approach unravel the role of Piriformospora indica-colonization in counteracting cadmium toxicity in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112390. [PMID: 34098428 DOI: 10.1016/j.ecoenv.2021.112390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Due to its immense capability to concentrate in rice grain and ultimately in food chain, cadmium (Cd) has become the cause of an elevated concern among agriculturists, scientists and the environmental activists. Symbiotic association of Piriformospora indica (P. indica) has been characterized as a potential aid in combating heavy metal stress in plants for sustainable crop production but our scant knowledge regarding ameliorative tendency of P. indica against Cd, specifically in rice, necessitates an in-depth investigation. This study aimed at elaborating the underlying mechanisms involved in P. indica-mediated tolerance against Cd stress in two rice genotypes, IR8 and ZX1H, varying in Cd accumulation pattern. Either colonized or un-inoculated with P. indica, seedlings of both genotypes were subjected to Cd stress. The results showed that P. indica colonization significantly supported plant biomass, photosynthetic attributes and chlorophyll contents in Cd stressed plants. P. indica colonization sustained chloroplast integrity and reduced Cd translocation (46% and 64%), significantly lowering malondialdehyde (MDA) content (11.3% and 50.4%) compared to uninoculated roots under Cd stress in IR8 and ZX1H, respectively. A genotypic difference was evident when a 2-fold enhancement in root peroxidase (POD) activity was recorded in P. indica colonized IR8 plants as compared to ZX1H. The root proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ) and the results showed that P. indica alleviates Cd stress in rice via down-regulation of key glycolysis cycle enzymes in a bid to reduce energy consumption by the plants and possibly re-directing it to Cd defense response pathways; and up-regulation of glutamine synthetase, a key enzyme in the L-Arg-dependent pathway for nitric oxide (NO) production, which acts as a stress signaling molecule, thus conferring tolerance by reduction of NO-mediated modification of essential proteins in response to Cd stress. Conclusively, both the tested genotypes benefited from P. indica symbiosis at varying levels by an enhanced detoxification capacity and signaling efficiency in response to stress. Hence, a step forward towards the employment of an environmentally sound and self-renewing approach holding the hope for a healthy future.
Collapse
Affiliation(s)
- Tichaona Sagonda
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Adeela Rasheed
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Heren Issaka Joan
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Younan Ouyang
- China National Rice Research Institute (CNRRI), Fuyang 311400, PR China
| | - Imran Haider Shamsi
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
65
|
Leitão I, Leclercq CC, Ribeiro DM, Renaut J, Almeida AM, Martins LL, Mourato MP. Stress response of lettuce (Lactuca sativa) to environmental contamination with selected pharmaceuticals: A proteomic study. J Proteomics 2021; 245:104291. [PMID: 34089899 DOI: 10.1016/j.jprot.2021.104291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Pharmaceutical compounds have been found in rivers and treated wastewaters. They often contaminate irrigation waters and consequently accumulate in edible vegetables, causing changes in plants metabolism. The main objective of this work is to understand how lettuce plants cope with the contamination from three selected pharmaceuticals using a label free proteomic analysis. A lettuce hydroponic culture, grown for 36 days, was exposed to metformin, acetaminophen and carbamazepine (at 1 mg/L), during 8 days, after which roots and leaves were sampled and analysed using a liquid chromatography-mass spectrometry proteomics-based approach. In roots, a total of 612 proteins showed differentially accumulation while in leaves 237 proteins were identified with significant differences over controls. Carbamazepine was the contaminant that most affected protein abundance in roots, while in leaves the highest number of differentially accumulated proteins was observed for acetaminophen. In roots under carbamazepine, stress related protein species such as catalase, superoxide dismutase and peroxidases presented higher abundance. Ascorbate peroxidase increased in roots under metformin. Cell respiration protein species were affected by the presence of the three pharmaceuticals suggesting possible dysregulation of the Krebs cycle. Acetaminophen caused the main differences in respiration pathways, with more emphasis in leaves. Lettuce plants revealed different tolerance levels when contaminants were compared, being more tolerant to metformin presence and less tolerant to carbamazepine. SIGNIFICANCE: The significant increase of emerging contaminants in ecosystems makes essential to understand how these compounds may affect the metabolism of different organisms. Our study contributes with a detailed approach of the main interactions that may occur in plant metabolism when subjected to the stress induced by three different pharmaceuticals (acetaminophen, carbamazepine and metformin).
Collapse
Affiliation(s)
- Inês Leitão
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Céline C Leclercq
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Jenny Renaut
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - André M Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Luisa L Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Miguel P Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
66
|
Citric Acid-Mediated Abiotic Stress Tolerance in Plants. Int J Mol Sci 2021; 22:ijms22137235. [PMID: 34281289 PMCID: PMC8268203 DOI: 10.3390/ijms22137235] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 01/07/2023] Open
Abstract
Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA’s involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.
Collapse
|
67
|
Arnholdt-Schmitt B, Mohanapriya G, Bharadwaj R, Noceda C, Macedo ES, Sathishkumar R, Gupta KJ, Sircar D, Kumar SR, Srivastava S, Adholeya A, Thiers KL, Aziz S, Velada I, Oliveira M, Quaresma P, Achra A, Gupta N, Kumar A, Costa JH. From Plant Survival Under Severe Stress to Anti-Viral Human Defense - A Perspective That Calls for Common Efforts. Front Immunol 2021; 12:673723. [PMID: 34211468 PMCID: PMC8240590 DOI: 10.3389/fimmu.2021.673723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ramalingam Sathishkumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Sarma Rajeev Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - KarineLeitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Shahid Aziz
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and its Applications, Universidade de Évora, Évora, Portugal
| | - Paulo Quaresma
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- NOVA LINCS – Laboratory for Informatics and Computer Science, University of Évora, Évora, Portugal
| | - Arvind Achra
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Microbiology, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Nidhi Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ashwani Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Hargovind Khorana Chair, Jayoti Vidyapeeth Womens University, Jaipur, India
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
68
|
Selinski J, Scheibe R. Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate. Antioxid Redox Signal 2021; 34:1025-1047. [PMID: 32620064 PMCID: PMC8060724 DOI: 10.1089/ars.2020.8121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Significance: The importance of oxidoreductases in energy metabolism together with the occurrence of enzymes of central metabolism in the nucleus gave rise to the active research field aiming to understand moonlighting enzymes that undergo post-translational modifications (PTMs) before carrying out new tasks. Recent Advances: Cytosolic enzymes were shown to induce gene transcription after PTM and concomitant translocation to the nucleus. Changed properties of the oxidized forms of cytosolic glyceraldehyde 3-phosphate dehydrogenase, and also malate dehydrogenases and others, are the basis for a hypothesis suggesting moonlighting functions that directly link energy metabolism to adaptive responses required for maintenance of redox-homeostasis in all eukaryotes. Critical Issues: Small molecules, such as metabolic intermediates, coenzymes, or reduced glutathione, were shown to fine-tune the redox switches, interlinking redox state, metabolism, and induction of new functions via nuclear gene expression. The cytosol with its metabolic enzymes connecting energy fluxes between the various cell compartments can be seen as a hub for redox signaling, integrating the different signals for graded and directed responses in stressful situations. Future Directions: Enzymes of central metabolism were shown to interact with p53 or the assumed plant homologue suppressor of gamma response 1 (SOG1), an NAM, ATAF, and CUC transcription factor involved in the stress response upon ultraviolet exposure. Metabolic enzymes serve as sensors for imbalances, their inhibition leading to changed energy metabolism, and the adoption of transcriptional coactivator activities. Depending on the intensity of the impact, rerouting of energy metabolism, proliferation, DNA repair, cell cycle arrest, immune responses, or cell death will be induced. Antioxid. Redox Signal. 34, 1025-1047.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology/Chemistry, Osnabrueck University, Osnabrueck, Germany
| |
Collapse
|
69
|
Bruckbauer ST, Minkoff BB, Sussman MR, Cox MM. Proteome Damage Inflicted by Ionizing Radiation: Advancing a Theme in the Research of Miroslav Radman. Cells 2021; 10:cells10040954. [PMID: 33924085 PMCID: PMC8074248 DOI: 10.3390/cells10040954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Oxidative proteome damage has been implicated as a major contributor to cell death and aging. Protein damage and aging has been a particular theme of the recent research of Miroslav Radman. However, the study of how cellular proteins are damaged by oxidative processes is still in its infancy. Here we examine oxidative changes in the proteomes of four bacterial populations—wild type E. coli, two isolates from E. coli populations evolved for high levels of ionizing radiation (IR) resistance, and D. radiodurans—immediately following exposure to 3000 Gy of ionizing radiation. By a substantial margin, the most prominent intracellular oxidation events involve hydroxylation of methionine residues. Significant but much less frequent are carbonylation events on tyrosine and dioxidation events on tryptophan. A few proteins are exquisitely sensitive to targeted oxidation events, notably the active site of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in E. coli. Extensive experimental evolution of E. coli for IR resistance has decreased overall proteome sensitivity to oxidation but not to the level seen in D. radiodurans. Many observed oxidation events may reflect aspects of protein structure and/or exposure of protein surfaces to water. Proteins such as GAPDH and possibly Ef-Tu may have an evolved sensitivity to oxidation by H2O2.
Collapse
Affiliation(s)
- Steven T. Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.T.B.); (M.R.S.)
| | - Benjamin B. Minkoff
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Michael R. Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.T.B.); (M.R.S.)
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.T.B.); (M.R.S.)
- Correspondence:
| |
Collapse
|
70
|
Oxidative Stress-Induced Alteration of Plant Central Metabolism. Life (Basel) 2021; 11:life11040304. [PMID: 33915958 PMCID: PMC8066879 DOI: 10.3390/life11040304] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.
Collapse
|
71
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
72
|
Mohd Amnan MA, Pua TL, Lau SE, Tan BC, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S. Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ 2021; 9:e10879. [PMID: 33614294 PMCID: PMC7879939 DOI: 10.7717/peerj.10879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Drought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.
Collapse
Affiliation(s)
| | - Teen-Lee Pua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi, Japan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Setsuko Komatsu
- Faculty of Life and Environmental and Information Sciences, Fukui University of Technology, Fukui, Japan
| |
Collapse
|
73
|
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants (Basel) 2021; 10:277. [PMID: 33670123 PMCID: PMC7916865 DOI: 10.3390/antiox10020277] [Citation(s) in RCA: 323] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1-2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.
Collapse
Affiliation(s)
- Swati Sachdev
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow 226 025, India;
| | | | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
74
|
Dawood MFA, Sohag AAM, Tahjib-Ul-Arif M, Abdel Latef AAH. Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:347-362. [PMID: 33434783 DOI: 10.1016/j.plaphy.2020.12.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/30/2020] [Indexed: 05/20/2023]
Abstract
Regulatory roles of hydrogen sulfide (H2S) under saline-alkaline and/or aniline stress have not been studied yet. In this study, we investigated the insights into saline-alkaline and/or aniline stresses-induced toxicity in artichoke plants and its alleviation by H2S priming. Individual saline-alkaline or aniline stress and their combination reduced plant growth and photosynthetic pigments. Principal component analysis (PCA) revealed that these detrimental impacts were caused by the higher oxidative damage and disruption of osmolyte homeostasis. Interestingly, only aniline stress (25 mg L-1) caused neither oxidative nor osmotic stress thus almost slight growth retarding effects had ensued. On the other hand, the presence of aniline in saline-alkaline conditions exacerbated stress-induced deleterious effects on plants, as evidenced by PCA and heatmap. However, H2S priming markedly eased the stress-induced deleteriousness as evident by enhanced chlorophyll, soluble proteins, soluble carbohydrates and up-regulated water relation in H2S-primmed plants compared with only stressed plants resulting in improved plant phenotypic features. Furthermore, H2S priming enhanced endogenous H2S content, phenylalanine ammonia-lyase, non-enzymatic antioxidants (ascorbic acid, flavonoids, glutathione, α-tocopherol, and anthocyanins) and enzymatic antioxidants (superoxide dismutase, catalase, and ascorbate peroxidase), whereas reduced oxidative stress markers (superoxide, hydrogen peroxide, hydroxyl radical, malondialdehyde, and methylglyoxal) compared with only stressed plants, indicating a protective function of H2S against oxidative damage. The PCA also clarified that H2S-mediated saline-alkaline and/or aniline stress tolerance strongly connected with the improved antioxidant system. Overall, our finding proposed that H2S priming could be an effective technique to mitigate saline-alkaline and/or aniline stress in artichoke, and perhaps in other crop plants.
Collapse
Affiliation(s)
- Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arafat Abdel Hamed Abdel Latef
- Department of Biology, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
75
|
Xiao M, Li Z, Zhu L, Wang J, Zhang B, Zheng F, Zhao B, Zhang H, Wang Y, Zhang Z. The Multiple Roles of Ascorbate in the Abiotic Stress Response of Plants: Antioxidant, Cofactor, and Regulator. FRONTIERS IN PLANT SCIENCE 2021; 12:598173. [PMID: 33912200 PMCID: PMC8072462 DOI: 10.3389/fpls.2021.598173] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/17/2021] [Indexed: 05/13/2023]
Abstract
Ascorbate (ASC) plays a critical role in plant stress response. The antioxidant role of ASC has been well-studied, but there are still several confusing questions about the function of ASC in plant abiotic stress response. ASC can scavenge reactive oxygen species (ROS) and should be helpful for plant stress tolerance. But in some cases, increasing ASC content impairs plant abiotic stress tolerance, whereas, inhibiting ASC synthesis or regeneration enhances plant stress tolerance. This confusing phenomenon indicates that ASC may have multiple roles in plant abiotic stress response not just as an antioxidant, though many studies more or less ignored other roles of ASC in plant. In fact, ACS also can act as the cofactor of some enzymes, which are involved in the synthesis, metabolism, and modification of a variety of substances, which has important effects on plant stress response. In addition, ASC can monitor and effectively regulate cell redox status. Therefore, we believe that ASC has atleast triple roles in plant abiotic stress response: as the antioxidant to scavenge accumulated ROS, as the cofactor to involve in plant metabolism, or as the regulator to coordinate the actions of various signal pathways under abiotic stress. The role of ASC in plant abiotic stress response is important and complex. The detail role of ASC in plant abiotic stress response should be analyzed according to specific physiological process in specific organ. In this review, we discuss the versatile roles of ASC in the response of plants to abiotic stresses.
Collapse
Affiliation(s)
- Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zixuan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Jiayi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Bo Zhang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fuyu Zheng
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Beiping Zhao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Yujie Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Yujie Wang,
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Zhijin Zhang,
| |
Collapse
|
76
|
Li Y, Zhang Q, Yu Y, Li X, Tan H. Integrated proteomics, metabolomics and physiological analyses for dissecting the toxic effects of halosulfuron-methyl on soybean seedlings (Glycine max merr.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:303-315. [PMID: 33157422 DOI: 10.1016/j.plaphy.2020.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Halosulfuron methyl (HSM) is a herbicide widely used to control sedge and broad-leaved weeds during crop production, but its environmental residue may damage non-target crops. Here, proteomics and metabolomics methods were used to explore the phytotoxicity mechanisms of HSM against soybean (Glycine max Merr.). Soybean seedlings were exposed to 0.01, 0.05 and 0.5 mg/L HSM for 8 d. The HSM applications significantly reduced chlorophyll and carotenoid contents in HSM-treated seedlings. Additionally, chlorophyll a fluorescence was seriously affected. The glutathione, hydrogen peroxide and malondialdehyde contents, as well as antioxidant enzyme activities, significantly increased in seedlings exposed to HSM. Furthermore, five enzymes involved in the tricarboxylic acid (TCA) cycle, α-ketoglutarate dehydrogenase, isocitrate dehydrogenase, aconitase, malic dehydrogenase and succinate dehydrogenase, were inhibited to varying degrees in HSM-treated seedlings compared with controls. Proteomics results showed multiple differentially abundant proteins involved in chlorophyll synthesis, photosystem processes and chloroplast ATP synthetase were down-regulated. Metabolomics analyses revealed that metabolites involved in the TCA cycle decreased significantly. Moreover, metabolites and proteins related to reactive oxygen species detoxification accumulated. In conclusion, the phytotoxicity mechanisms of HSM against soybean mainly act by damaging the photosynthetic machinery, inhibiting chlorophyll synthesis, interrupting the TCA cycle and causing oxidative stress. These results provide new insights into the toxicity mechanisms of sulfonylurea herbicides against non-target crops.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiannan Zhang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yinfang Yu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
77
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
78
|
Phytotoxicity, Morphological, and Metabolic Effects of the Sesquiterpenoid Nerolidol on Arabidopsis thaliana Seedling Roots. PLANTS 2020; 9:plants9101347. [PMID: 33053766 PMCID: PMC7650555 DOI: 10.3390/plants9101347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Natural herbicides that are based on allelopathy of compounds, can offer effective alternatives to chemical herbicides towards sustainable agricultural practices. Nerolidol, a sesquiterpenoid alcohol synthesized by many plant families, was shown to be the most effective allelopathic compound in a preliminary screening performed with several other sesquiterpenoids. In the present study, Arabidopsis thaliana seedlings were treated for 14 d with various cis-nerolidol concentrations (0, 50, 100, 200, 400, and 800 µM) to investigate its effects on root growth and morphology. To probe the underlying changes in root metabolome, we conducted untargeted gas chromatography mass spectrometry (GC-MS) based metabolomics to find out the specificity or multi-target action of this sesquiterpenoid alcohol. Oxidative stress (measured as levels of H2O2 and malondialdehyde (MDA) by-product) and antioxidant enzyme activities, i.e., superoxide dismutase (SOD) and catalase (CAT) were also evaluated in the roots. Nerolidol showed an IC50 (120 µM), which can be considered low for natural products. Nerolidol caused alterations in root morphology, brought changes in auxin balance, induced changes in sugar, amino acid, and carboxylic acid profiles, and increased the levels of H2O2 and MDA in root tissues in a dose-dependent manner. Several metabolomic-scale changes induced by nerolidol support the multi-target action of nerolidol, which is a positive feature for a botanical herbicide. Though it warrants further mechanistic investigation, nerolidol is a promising compound for developing a new natural herbicide.
Collapse
|
79
|
Zechmann B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. PLANTS 2020; 9:plants9091067. [PMID: 32825274 PMCID: PMC7569779 DOI: 10.3390/plants9091067] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| |
Collapse
|
80
|
Bruckbauer ST, Minkoff BB, Yu D, Cryns VL, Cox MM, Sussman MR. Ionizing Radiation-induced Proteomic Oxidation in Escherichia coli. Mol Cell Proteomics 2020; 19:1375-1395. [PMID: 32536603 PMCID: PMC8015010 DOI: 10.1074/mcp.ra120.002092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Recent work has begun to investigate the role of protein damage in cell death because of ionizing radiation (IR) exposure, but none have been performed on a proteome-wide basis, nor have they utilized MS (MS) to determine chemical identity of the amino acid side chain alteration. Here, we use Escherichia coli to perform the first MS analysis of IR-treated intact cells on a proteome scale. From quintuplicate IR-treated (1000 Gy) and untreated replicates, we successfully quantified 13,262 peptides mapping to 1938 unique proteins. Statistically significant, but low in magnitude (<2-fold), IR-induced changes in peptide abundance were observed in 12% of all peptides detected, although oxidative alterations were rare. Hydroxylation (+15.99 Da) was the most prevalent covalent adduct detected. In parallel with these studies on E. coli, identical experiments with the IR-resistant bacterium, Deinococcus radiodurans, revealed orders of magnitude less effect of IR on the proteome. In E. coli, the most significant target of IR by a wide margin was glyceraldehyde 3'-phosphate dehydrogenase (GAPDH), in which the thiol side chain of the catalytic Cys residue was oxidized to sulfonic acid. The same modification was detected in IR-treated human breast carcinoma cells. Sensitivity of GAPDH to reactive oxygen species (ROS) has been described previously in microbes and here, we present GAPDH as an immediate, primary target of IR-induced oxidation across all domains of life.
Collapse
Affiliation(s)
- Steven T Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin B Minkoff
- Center for Genomic Science Innovation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Deyang Yu
- Department of Medicine, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Center for Genomic Science Innovation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
81
|
Araniti F, Miras-Moreno B, Lucini L, Landi M, Abenavoli MR. Metabolomic, proteomic and physiological insights into the potential mode of action of thymol, a phytotoxic natural monoterpenoid phenol. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:141-153. [PMID: 32502716 DOI: 10.1016/j.plaphy.2020.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Thymol is a natural phenolic monoterpene widely produced by different species belonging to the Labiateae family. Although the thymol phytotoxicity is well known, the knowledge of its potential toxic mechanism is still limited. In this regard, the model species Arabidopsis thaliana was treated for 16 days by sub-irrigation with 300 μM of thymol. The results confirmed the high phytotoxic potential of this phenolic compound, which caused a reduction in plant growth and development. Thymol induced a water status alteration accompanied by an increase in ABA content and stomatal closure. Furthermore, leaves appeared necrotic in the margins and their temperature rinsed. The increase in H2O2 content suggested an oxidative stress experienced by treated plants. Both metabolomic and proteomic analysis confirmed this hypothesis showing a strong increase in osmoprotectants content, such as galactinol and proline, and a significant up-accumulation of proteins involved in ROS detoxification. Furthermore, the down-accumulation of proteins and pigments involved in the photosynthetic machinery, the increase in light sensitivity and the lower PSII efficiency well indicated a reduction in photosynthetic activity. Overall, we can postulate that thymol-induced phytotoxicity could be related to a combined osmotic and oxidative stress that resulted in reduced plant development.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria, RC, Italy.
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Maria Rosa Abenavoli
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria, RC, Italy
| |
Collapse
|
82
|
O'Leary B, Plaxton WC. Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:28-37. [PMID: 32200227 DOI: 10.1016/j.pbi.2020.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Glycolysis is a central feature of metabolism and its regulation plays important roles during plant developmental and stress responses. Recent advances in proteomics and mass spectrometry have documented extensive and dynamic post-translational modifications (PTMs) of most glycolytic enzymes in diverse plant tissues. Protein PTMs represent fundamental regulatory events that integrate signalling and gene expression with cellular metabolic networks, and can regulate glycolytic enzyme activity, localization, protein:protein interactions, moonlighting functions, and turnover. Serine/threonine phosphorylation and redox PTMs of cysteine thiol groups appear to be the most prevalent forms of reversible covalent modification involved in plant glycolytic control. Additional PTMs including monoubiquitination also have important functions. However, the molecular functions and mechanisms of most glycolytic enzyme PTMs remain unknown, and represent important objectives for future studies.
Collapse
Affiliation(s)
- Brendan O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
83
|
Wu Q, Gao H, Zhang Z, Li T, Qu H, Jiang Y, Yun Z. Deciphering the Metabolic Pathways of Pitaya Peel after Postharvest Red Light Irradiation. Metabolites 2020; 10:metabo10030108. [PMID: 32183356 PMCID: PMC7143668 DOI: 10.3390/metabo10030108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Red light irradiation can effectively prolong the shelf-life of many fruit. However, little is known about red light-induced metabolite and enzyme activities. In this study, pitaya fruit was treated with 100 Lux red light for 24 h. Red light irradiation significantly attenuated the variation trend of senescence traits, such as the decrease of total soluble solid (TSS) and TSS/acidity (titratable acidity, TA) ratio, the increase of TA, and respiratory rate. In addition, the reactive oxygen species (ROS) related characters, primary metabolites profiling, and volatile compounds profiling were determined. A total of 71 primary metabolites and 67 volatile compounds were detected and successfully identified by using gas chromatography mass spectrometry (GC-MS). Red light irradiation enhanced glycolysis, tricarboxylic acid (TCA) cycle, aldehydes metabolism, and antioxidant enzymes activities at early stage of postharvest storage, leading to the reduction of H2O2, soluble sugars, organic acids, and C-6 and C-7 aldehydes. At a later stage of postharvest storage, a larger number of resistance-related metabolites and enzyme activities were induced in red light-treated pitaya peel, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging, reducing power, fatty acids, and volatile aroma.
Collapse
Affiliation(s)
- Qixian Wu
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510600, China;
| | - Zhengke Zhang
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Taotao Li
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Hongxia Qu
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Yueming Jiang
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Ze Yun
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
- Correspondence: ; Tel.: +86-20-37252525
| |
Collapse
|
84
|
Perez de Souza L, Garbowicz K, Brotman Y, Tohge T, Fernie AR. The Acetate Pathway Supports Flavonoid and Lipid Biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2020; 182:857-869. [PMID: 31719153 PMCID: PMC6997690 DOI: 10.1104/pp.19.00683] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/31/2019] [Indexed: 05/21/2023]
Abstract
The phenylpropanoid pathway of flavonoid biosynthesis has been the subject of considerable research attention. By contrast, the proposed polyketide pathway, also known as the acetate pathway, which provides malonyl-CoA moieties for the C2 elongation reaction catalyzed by chalcone synthase, is less well studied. Here, we identified four genes as candidates for involvement in the supply of cytosolic malonyl-CoA from the catabolism of acyl-CoA, based on coexpression analysis with other flavonoid-related genes. Two of these genes, ACC and KAT5, have been previously characterized with respect to their involvement in lipid metabolism, but no information concerning their relationship to flavonoid biosynthesis is available. To assess the occurrence and importance of the acetate pathway, we characterized the metabolomes of two mutant or transgenic Arabidopsis lines for each of the four enzymes of this putative pathway using a hierarchical approach covering primary and secondary metabolites as well as lipids. Intriguingly, not only flavonoid content but also glucosinolate content was altered in lines deficient in the acetate pathway, as were levels of lipids and most primary metabolites. We discuss these data in the context of our current understanding of flavonoids and lipid metabolism as well as with regard to improving human nutrition.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Karolina Garbowicz
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653 Beersheba, Israel
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
85
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
86
|
Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. FRONTIERS IN PLANT SCIENCE 2020; 11:552969. [PMID: 33488637 PMCID: PMC7815643 DOI: 10.3389/fpls.2020.552969] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/02/2020] [Indexed: 05/21/2023]
Abstract
In plants, there is a complex and multilevel network of the antioxidative system (AOS) operating to counteract harmful reactive species (RS), the foremost important of which are reactive oxygen species (ROS), and maintain homeostasis within the cell. Specific AOSs for plant cells are, first and foremost, enzymes of the glutathione-ascorbate cycle (Asc-GSH), followed by phenolic compounds and lipophilic antioxidants like carotenoids and tocopherols. Evidence that plant cells have excellent antioxidative defense systems is their ability to survive at H2O2 concentrations incompatible with animal cell life. For the survival of stressed plants, it is of particular importance that AOS cooperate and participate in redox reactions, therefore, providing better protection and regeneration of the active reduced forms. Considering that plants abound in antioxidant compounds, and humans are not predisposed to synthesize the majority of them, new fields of research have emerged. Antioxidant potential of plant compounds has been exploited for anti-aging formulations preparation, food fortification and preservation but also in designing new therapies for diseases with oxidative stress implicated in etiology.
Collapse
Affiliation(s)
- Jelena Dumanović
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
- *Correspondence: Kamil Kuča, ;
| | - Vesna Jaćević
- Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
- Vesna Jaćević,
| |
Collapse
|
87
|
Lu Q, Meng X, Yang F, Liu X, Cui J. Characterization of LcGAPC and its transcriptional response to salt and alkali stress in two ecotypes of Leymus chinensis (Trin.) Tzvelev. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1719020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin, PR China
| | - Xue Meng
- College of Life Science and Technology, Harbin Normal University, Harbin, PR China
| | - Fanghui Yang
- College of Life Science and Technology, Harbin Normal University, Harbin, PR China
| | - Xin Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, PR China
| | - Jizhe Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, PR China
| |
Collapse
|
88
|
Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 10:800. [PMID: 31293607 PMCID: PMC6603150 DOI: 10.3389/fpls.2019.00800] [Citation(s) in RCA: 537] [Impact Index Per Article: 107.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/03/2019] [Indexed: 05/19/2023]
Abstract
Plants are subjected to various environmental stresses throughout their life cycle. Reactive oxygen species (ROS) play important roles in maintaining normal plant growth, and improving their tolerance to stress. This review describes the production and removal of ROS in plants, summarizes recent progress in understanding the role of ROS during plant vegetative apical meristem development, organogenesis, and abiotic stress responses, and some novel findings in recent years are discussed. More importantly, interplay between ROS and epigenetic modifications in regulating gene expression is specifically discussed. To summarize, plants integrate ROS with genetic, epigenetic, hormones and external signals to promote development and environmental adaptation.
Collapse
Affiliation(s)
- Honglin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Farhan Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ming Yi
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yu Zhao,
| |
Collapse
|