51
|
Magne TM, da Silva de Barros AO, de Almeida Fechine PB, Alencar LMR, Ricci-Junior E, Santos-Oliveira R. Lycopene as a Multifunctional Platform for the Treatment of Cancer and Inflammation. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022. [DOI: 10.1007/s43450-022-00250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
52
|
Lau TY, Kwan HY. Fucoxanthin Is a Potential Therapeutic Agent for the Treatment of Breast Cancer. Mar Drugs 2022; 20:md20060370. [PMID: 35736173 PMCID: PMC9229252 DOI: 10.3390/md20060370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers diagnosed and the leading cause of cancer-related death in women. Although there are first-line treatments for BC, drug resistances and adverse events have been reported. Given the incidence of BC keeps increasing, seeking novel therapeutics is urgently needed. Fucoxanthin (Fx) is a dietary carotenoid commonly found in seaweeds and diatoms. Both in vitro and in vivo studies show that Fx and its deacetylated metabolite fucoxanthinol (Fxol) inhibit and prevent BC growth. The NF-κB signaling pathway is considered the major pathway contributing to the anti-proliferation, anti-angiogenesis and pro-apoptotic effects of Fx and Fxol. Other signaling molecules such as MAPK, MMP2/9, CYP and ROS are also involved in the anti-cancer effects by regulating the tumor microenvironment, cancer metastasis, carcinogen metabolism and oxidation. Besides, Fx also possesses anti-obesity effects by regulating UCP1 levels and lipid metabolism, which may help to reduce BC risk. More importantly, mounting evidence demonstrates that Fx overcomes drug resistance. This review aims to give an updated summary of the anti-cancer effects of Fx and summarize the underlying mechanisms of action, which will provide novel strategies for the development of Fx as an anti-cancer therapeutic agent.
Collapse
|
53
|
Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum YS, Lee JH. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants (Basel) 2022; 11:795. [PMID: 35453480 PMCID: PMC9025559 DOI: 10.3390/antiox11040795] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023] Open
Abstract
Natural carotenoids (CARs), viz. β-carotene, lutein, astaxanthin, bixin, norbixin, capsanthin, lycopene, canthaxanthin, β-Apo-8-carotenal, zeaxanthin, and β-apo-8-carotenal-ester, are being studied as potential candidates in fields such as food, feed, nutraceuticals, and cosmeceuticals. CAR research is advancing in the following three major fields: (1) CAR production from natural sources and optimization of its downstream processing; (2) encapsulation for enhanced physical and chemical properties; and (3) preclinical, clinical, and epidemiological studies of CARs' health benefits. This review critically discusses the recent developments in studies of the chemistry and antioxidant activity, marketing trends, dietary sources, extraction, bioaccessibility and bioavailability, encapsulation methods, dietary intake, and health benefits of CARs. Preclinical, clinical, and epidemiological studies on cancer, obesity, type 2 diabetes (T2D), cardiovascular diseases (CVD), osteoporosis, neurodegenerative disease, mental health, eye, and skin health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Parchuri Prasad
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Veeresh Lokesh
- Biocontrol Laboratory, University of Horticultural Sciences, Bagalkote 587104, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| |
Collapse
|
54
|
Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072335. [PMID: 35408734 PMCID: PMC9000630 DOI: 10.3390/molecules27072335] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
Nutrition is of utmost importance in chronic disease management and has often been described as the cornerstone of a variety of non-communicable diseases. In particular, type II diabetes mellitus (T2DM) represents a prevalent and global public health crisis. Lycopene, a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and vegetables, has been extensively studied for its biological activities and treatment efficiency in diabetes care. Epidemiological investigations indicate that lycopene has potential antioxidant properties, is capable of scavenging reactive species, and alleviates oxidative stress in T2DM patients. This review aims to summarize the characteristics and mechanisms of action of lycopene as a potent antioxidant for T2DM. In addition, the evidence demonstrating the effects of lycopene on glycemic control and oxidative stress biomarkers in T2DM are also highlighted using animal and human studies as literature approach.
Collapse
|
55
|
Kordiak J, Bielec F, Jabłoński S, Pastuszak-Lewandoska D. Role of Beta-Carotene in Lung Cancer Primary Chemoprevention: A Systematic Review with Meta-Analysis and Meta-Regression. Nutrients 2022; 14:nu14071361. [PMID: 35405977 PMCID: PMC9003277 DOI: 10.3390/nu14071361] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer is one of the most common neoplasms globally, with about 2.2 million new cases and 1.8 million deaths annually. Although the most important factor in reducing lung cancer risk is lifestyle change, most patients favour the use of supplements, for example, rather than quitting smoking or following a healthy diet. To better understand the efficacy of such interventions, a systematic review was performed of data from randomized controlled trials concerning the influence of beta-carotene supplementation on lung cancer risk in subjects with no lung cancer before the intervention. The search corpus comprised a number of databases and eight studies involving 167,141 participants, published by November 2021. The findings indicate that beta-carotene supplementation was associated with an increased risk of lung cancer (RR = 1.16, 95% CI = 1.06-1.26). This effect was even more noticeable among smokers and asbestos workers (RR = 1.21, 95% CI = 1.08-1.35) and non-medics (RR = 1.18, 95% CI = 1.07-1.29). A meta-regression found no relationship between the beta-carotene supplementation dose and the size of the negative effect associated with lung cancer risk. Our findings indicate that beta-carotene supplementation has no effect on lung cancer risk. Moreover, when used as the primary chemoprevention, beta-carotene may, in fact, increase the risk of lung cancer.
Collapse
Affiliation(s)
- Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland; (J.K.); (S.J.)
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland;
- Correspondence:
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland; (J.K.); (S.J.)
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland;
| |
Collapse
|
56
|
Bonagurio LP, Murakami AE, Cruz FK, Kaneko IN, Gasparino E, Oliveira CAL, Lozano-Poveda CA, Silva CC, Santos TC. Dietary supplementation with canthaxanthin and 25-hydroxycholecalciferol on the incubation performance and fertility of European quail breeders. Poult Sci 2022; 101:101823. [PMID: 35468423 PMCID: PMC9046627 DOI: 10.1016/j.psj.2022.101823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
This study assessed the effects of combined supplementation with canthaxanthin (Cx) and 25-hydroxycholecalciferol (25-OH-D3) on incubation performance, fertility, and chick quality in European quail breeders. A total of 240 birds were distributed in a completely randomized design with 5 diets and 8 replicates. The animals were fed a basal diet containing 50 µg of vitamin D3 or the basal diet supplemented with 3 ppm Cx and 34.5 µg 25-OH-D3, 6 ppm Cx, and 69 µg 25-OH-D3, 9 ppm Cx and 103.5 µg 25-OH-D3, or 12 ppm Cx and 138 µg 25-OH-D3. Incubation performance was analyzed in 2 periods (32 and 38 wk). Breeders aged 32 wk produced eggs with higher hatchability (P = 0.024), hatchability of fertile eggs (P = 0.026) and lower initial plus mid embryonic mortality (P = 0.021), whereas 38-week-old breeders generated chicks with a higher length at hatching (P < 0.001) and lower final plus pipped embryonic mortality (P = 0.021). In both age groups, Cx + 25-OH-D3 levels had a quadratic effect on egg fertility (P < 0.001), hatchability of total (P < 0.001), and fertile eggs (P < 0.001). The fertility and the number of sperm cells in the perivitelline membrane was analyzed in two periods (26 and 40 wk). A quadratic effect of diet and days after mating on both parameters (P < 0.05) was observed. Eggs from supplementing breeders showed a high fertility (P < 0.001) and sperm cell counts (P < 0.001) for up to 7 and 3 d after mating, respectively, then the control group. Moreover, the supplementation of quail breeder diets with 6 ppm Cx + 69 µg 25-OH-D3 enhances sperm cell longevity in sperm storage tubules, hatchability of total and fertile eggs, fertility, and chick quality, especially in older quail's breeders and reduces embryonic mortality.
Collapse
Affiliation(s)
- L P Bonagurio
- Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil
| | - A E Murakami
- Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil
| | - F K Cruz
- Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil
| | - I N Kaneko
- Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil
| | - E Gasparino
- Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil
| | - C A L Oliveira
- Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil
| | | | - C C Silva
- DSM Nutritional Products, São Paulo, Brazil
| | - T C Santos
- Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná 87020-900, Brazil.
| |
Collapse
|
57
|
Mrowicka M, Mrowicki J, Kucharska E, Majsterek I. Lutein and Zeaxanthin and Their Roles in Age-Related Macular Degeneration-Neurodegenerative Disease. Nutrients 2022; 14:827. [PMID: 35215476 PMCID: PMC8874683 DOI: 10.3390/nu14040827] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Lutein and zeaxanthin belong to the xanthophyll family of carotenoids, which are pigments produced by plants. Structurally, they are very similar, differing only slightly in the arrangement of atoms. Key sources of these carotenoids include kale, savoy cabbage, spinach, broccoli, peas, parsley, corn, and egg yolks. The recommended daily intake of lutein is approximately 10.0 mg and that of zeaxanthin is 2 mg. Lutein intake in adults varies, with average intakes being 1-2 mg/day. Due to the lack of synthesis of consumption of these compounds in humans, these substances are extremely important for the proper functioning of certain organs of the body (eye, skin, heart, intestines). Eating a lot of dark leafy vegetables and some fruits can help to prevent our bodies from developing diseases. The protective effects of carotenoids are mainly related to their defense against oxidative stress and their ability to scavenge free radicals. Lutein and zeaxanthin are the only dietary carotenoids that accumulate in the retina, specifically the macula, and are called macular pigments. These carotenoids are concentrated by the action of specific binding proteins such as StARD3, which binds lutein, and GSTP1, which binds zeaxanthin and its dietary metabolite, mesozeaxanthin. It has been shown that supportive therapy with lutein and zeaxanthin can have a beneficial effect in delaying the progression of eye diseases such as age-related macular degeneration (AMD) and cataracts. This article presents the current state of knowledge on the role of lutein and zeaxanthin, especially from human studies targeting their metabolism and bioavailability, with recommendations to consume xanthophyll-rich foods.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.M.); (J.M.)
| | - Jerzy Mrowicki
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.M.); (J.M.)
| | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.M.); (J.M.)
| |
Collapse
|
58
|
Shin J, Nile A, Saini RK, Oh JW. Astaxanthin Sensitizes Low SOD2-Expressing GBM Cell Lines to TRAIL Treatment via Pathway Involving Mitochondrial Membrane Depolarization. Antioxidants (Basel) 2022; 11:antiox11020375. [PMID: 35204257 PMCID: PMC8869337 DOI: 10.3390/antiox11020375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Carotenoids have been suggested to have either anti- or pro-oxidative effects in several cancer cells, and those effects can trigger an unbalanced reactive oxygen species (ROS) production resulting in an apoptotic response. Our study aimed to evaluate the effect of the well-known carotenoid 3, 3′-dihydroxy-β, β’-carotene-4, 4-dione (astaxanthin, AXT) on glioblastoma multiforme (GBM) cells, especially as a pretreatment of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), that was previously shown to increase ROS and to induce apoptosis in cancer cells. We found that AXT by itself did not trigger apoptosis in four investigated GBM cell lines upon a 24 h treatment at various concentrations from 2.5 to 50 µM. However, in U251-MG and T98-MG GBM cells, pretreatment of 2.5 to 10 µM AXT sensitized cells to TRAIL treatment in a statistically significant manner (p < 0.05) while it did not affect CRT-MG and U87-MG GBM cells. We further compared AXT-sensitive U251-MG and -insensitive CRT-MG response to AXT and showed that 5 µM AXT treatment had a beneficial effect on both cell lines, as it enhanced mitochondrial potential and TRAIL treatment had the opposite effect, as it decreased mitochondrial potential. Interestingly, in U251-MG, 5 µM AXT pretreatment to TRAIL-treated cells mitochondrial potential further decreased compared to TRAIL alone cells. In addition, while 25 and 50 ng/mL TRAIL treatment increased ROS for both cell lines, pretreatment of 5 µM AXT induced a significant ROS decrease in CRT-MG (p < 0.05) while less effective in U251-MG. We found that in U251-MG, superoxide dismutase (SOD) 2 expression and enzymatic activity were lower compared to CRT-MG and that overexpression of SOD2 in U251-MG abolished AXT sensitization to TRAIL treatment. Taken together, these results suggest that while AXT acts as an ROS scavenger in GBM cell lines, it also has some role in decreasing mitochondrial potential together with TRAIL in a pathway that can be inhibited by SOD2.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (J.S.); (A.N.)
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (J.S.); (A.N.)
| | | | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (J.S.); (A.N.)
- Correspondence:
| |
Collapse
|
59
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
60
|
Starska-Kowarska K. Dietary Carotenoids in Head and Neck Cancer-Molecular and Clinical Implications. Nutrients 2022; 14:nu14030531. [PMID: 35276890 PMCID: PMC8838110 DOI: 10.3390/nu14030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Head and neck cancer (HNC) is one of the most common cancers in the world according to GLOBCAN. In 2018, it was reported that HNC accounts for approximately 3% of all human cancers (51,540 new cases) and is the cause of nearly 1.5% of all cancer deaths (10,030 deaths). Despite great advances in treatment, HNC is indicated as a leading cause of death worldwide. In addition to having a positive impact on general health, a diet rich in carotenoids can regulate stages in the course of carcinogenesis; indeed, strong epidemiological associations exist between dietary carotenoids and HNS, and it is presumed that diets with carotenoids can even reduce cancer risk. They have also been proposed as potential chemotherapeutic agents and substances used in chemoprevention of HNC. The present review discusses the links between dietary carotenoids and HNC. It examines the prospective anticancer effect of dietary carotenoids against intracellular cell signalling and mechanisms, oxidative stress regulation, as well as their impact on apoptosis, cell cycle progression, cell proliferation, angiogenesis, metastasis, and chemoprevention; it also provides an overview of the limited preclinical and clinical research published in this arena. Recent epidemiological, key opinion-forming systematic reviews, cross-sectional, longitudinal, prospective, and interventional studies based on in vitro and animal models of HNC also indicate that high carotenoid content obtained from daily supplementation has positive effects on the initiation, promotion, and progression of HNC. This article presents these results according to their increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
61
|
Vrdoljak N. Carotenoids and Carcinogenesis: Exploring the Antioxidant and Cell Signaling Roles of Carotenoids in the Prevention of Cancer. Crit Rev Oncog 2022; 27:1-13. [PMID: 37183934 DOI: 10.1615/critrevoncog.2022045331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carotenoids are lipid soluble pigments found in various fruits and vegetables and are naturally produced in photoautotrophic plants. Various studies have investigated the properties of carotenoids to determine how they are able to mitigate numerous diseases, including cancer. Carotenoids present in human serum, including β-carotene, α-carotene, lycopene, β-cryptoxanthin, zeaxanthin, and lutein have demonstrated the ability to act as anticarcinogenic agents. Prevention of disease is often described to be more effective than treatment; as cancer impacts millions of lives globally, the role of carotenoids in the prevention of oncogenesis for numerous types of cancers have been extensively researched. This review provides an in-depth analysis of the structure and properties of carotenoids, as well as the identified and potential mechanisms by which carotenoids can act as a chemopreventative agent.
Collapse
Affiliation(s)
- Nikolina Vrdoljak
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
62
|
Wang C, Ren J, Song H, Chen X, Qi H. Characterization of whey protein-based nanocomplex to load fucoxanthin and the mechanism of action on glial cells PC12. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS. Antioxidants (Basel) 2021; 10:antiox10101612. [PMID: 34679747 PMCID: PMC8533610 DOI: 10.3390/antiox10101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Acacia Seyal gum (ASG), also known as gum Arabic, is an antioxidant-rich soluble fiber. ASG has been reported to have many biological activities, including anticancer, antidiabetic, antiulcer, and immunomodulatory activity. Extraction of bioactive compounds from ASG is commonly performed using conventional extraction methods. However, these techniques have certain limitation in terms of extraction time, energy, and solvent requirements. Ultrasound-assisted extraction (UAE) could be used as an alternative technique to extract bioactive compounds in less time, at low temperature, and with less energy and solvent requirements. In this study, the UAE extraction of ASG was optimized using response surface methodology (RSM). A face-centered central composite design (FCCCD) was used to monitor the effect of different independent factors of ultrasound operation (sonication time, temperature, and solvent ratio) on ASG extraction yield. In addition, screening and characterization of phytochemicals in 60% ethanol ASG extract was carried out using Raman microscopy, Fourier transform infrared spectroscopy (FTIR), and gas chromatography time-of-flight mass spectroscopy (GC-TOFMS) analysis. The results indicated that, under optimal conditions (extraction time 45 min, extraction temperature 40 °C, and solid–liquid ratio of 1:25 g/mL), the yield of ASG was 75.87% ± 0.10. This yield was reasonably close to the predicted yield of 75.39% suggested by the design of experiment. The ANOVA revealed that the model was highly significant due to the low probability value (p < 0.0001). Raman spectrum fingerprint detected polysaccharides, such as galactose and glucose, and protein like lysine and proline, while FTIR spectrum revealed the presence of functional groups peaks value of alkanes, aldehydes, aliphatic amines, and phenol. GC-TOFMS spectroscopic detected the presence of strong d-galactopyranose, carotenoid, and lycopene antioxidant compounds. In conclusion, this study demonstrated that the UAE technique is an efficient method to achieve a high yield of ASG extracts. The selected model is adequate to optimize the extraction of several chemical compounds reported in this study.
Collapse
|
64
|
Fatima N, Baqri SSR, Alsulimani A, Fagoonee S, Slama P, Kesari KK, Roychoudhury S, Haque S. Phytochemicals from Indian Ethnomedicines: Promising Prospects for the Management of Oxidative Stress and Cancer. Antioxidants (Basel) 2021; 10:1606. [PMID: 34679741 PMCID: PMC8533600 DOI: 10.3390/antiox10101606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 01/02/2023] Open
Abstract
Oxygen is indispensable for most organisms on the earth because of its role in respiration. However, it is also associated with several unwanted effects which may sometimes prove fatal in the long run. Such effects are more evident in cells exposed to strong oxidants containing reactive oxygen species (ROS). The adverse outcomes of oxidative metabolism are referred to as oxidative stress, which is a staple theme in contemporary medical research. Oxidative stress leads to plasma membrane disruption through lipid peroxidation and has several other deleterious effects. A large body of literature suggests the involvement of ROS in cancer, ageing, and several other health hazards of the modern world. Plant-based cures for these conditions are desperately sought after as supposedly safer alternatives to mainstream medicines. Phytochemicals, which constitute a diverse group of plant-based substances with varying roles in oxidative reactions of the body, are implicated in the treatment of cancer, aging, and all other ROS-induced anomalies. This review presents a summary of important phytochemicals extracted from medicinal plants which are a part of Indian ethnomedicine and Ayurveda and describes their possible therapeutic significance.
Collapse
Affiliation(s)
- Nishat Fatima
- Department of Chemistry, Shia PG College, Lucknow 226003, India;
| | | | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, 10124 Turin, Italy;
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland; or
| | | | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Faculty of Medicine, Bursa Uludağ University, Görükle Campus, Nilüfer, Bursa 16059, Turkey
| |
Collapse
|
65
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
66
|
Fernandes AS, Nascimento TC, Pinheiro PN, Vendruscolo RG, Wagner R, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility of microalgae-based carotenoids and their association with the lipid matrix. Food Res Int 2021; 148:110596. [PMID: 34507741 DOI: 10.1016/j.foodres.2021.110596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
The composition of microalgae can contribute to nutritious and functional diets. Among the functional compounds, carotenoids are in focus since positive effects on human health have been established, which are in turn related to their bioaccessibility. In addition to essential nutrients, our hypothesis was that microalgae biomasses could be used as sources of bioaccessible carotenoids. Thus, this study determined for the first time the bioaccessibility of carotenoids from biomass of Scenedesmus bijuga and Chlorella sorokiniana and their possible relationship with the lipid composition of the matrix. The samples were submitted to in vitro digestion protocol, and carotenoids were determined by HPLC-PDA-MS/MS. Individual bioaccessibility of carotenoids was ≥ 3.25%. In general, compounds in their cis conformation were more bioaccessible than trans; and total carotenes more than total xanthophylls. Twelve compounds were bioaccessible from the biomass of S. bijuga, and eight in C. sorokiniana. In S. bijuga, the bioaccessibility of total carotenoids was 7.30%, and the major bioaccessible carotenoids were 9-cis-β-carotene (43.78%), 9-cis-zeaxanthin (42.30%) followed by 9-cis-lutein (26.73%); while in C. sorokiniana, the total bioaccessibility was 8.03%, and 9-cis-β-carotene (26.18%), all-trans-β-carotene (13.56%), followed by 13-cis-lutein (10.71%) were the major compounds. Overall, the total content of lipids does not influence the bioaccessibility of total carotenoids. Still, the lipid composition, including structural characteristics such as degree of saturation and chain length of the fatty acid, impacts the promotion of individual bioaccessibility of carotenes and xanthophylls of microalgae. Finally, the results of this study can assist the development of microalgae-based functional food ingredients and products.
Collapse
Affiliation(s)
- Andrêssa S Fernandes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Tatiele C Nascimento
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Pricila N Pinheiro
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Raquel G Vendruscolo
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Veridiana V de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Leila Q Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| |
Collapse
|
67
|
Moisoiu V, Iancu SD, Stefancu A, Moisoiu T, Pardini B, Dragomir MP, Crisan N, Avram L, Crisan D, Andras I, Fodor D, Leopold LF, Socaciu C, Bálint Z, Tomuleasa C, Elec F, Leopold N. SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids Surf B Biointerfaces 2021; 208:112064. [PMID: 34517219 DOI: 10.1016/j.colsurfb.2021.112064] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is emerging as a novel strategy for biofluid analysis. In this review, we delineate four experimental SERS protocols that are frequently used for the profiling of biofluids: 1) liquid SERS for the detection of purine metabolites; 2) iodide-modified liquid SERS for the detection of proteins; 3) dried SERS for the detection of both purine metabolites and proteins; 4) resonant Raman for the detection of carotenoids. To explain the selectivity of each experimental SERS protocol, we introduce a heuristic model for the chemisorption of analytes mediated by adsorbed ions (adions) onto the SERS substrate. Next, we show that the promising results of SERS liquid biopsy stem from the fact that the concentration levels of purine metabolites, proteins and carotenoids are informative of the cellular turnover rate, inflammation, and oxidative stress, respectively. These processes are perturbed in virtually every disease, from cancer to autoimmune maladies. Finally, we review recent SERS liquid biopsy studies and discuss future steps that are required for translating SERS in the clinical setting.
Collapse
Affiliation(s)
- Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy; Italian Institute of Genomic Medicine (IIGM), 10060, Candiolo, Italy
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Nicolae Crisan
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Lucretia Avram
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; Department of Geriatrics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Dana Crisan
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; 5th Internal Medicine Department, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Daniela Fodor
- 2nd Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Loredana F Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; BIODIATECH Research Centre for Applied Biotechnology, SC Proplanta, 400478, Cluj-Napoca, Romania
| | - Zoltán Bálint
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124, Cluj-Napoca, Romania; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349, Cluj-Napoca, Romania
| | - Florin Elec
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania.
| |
Collapse
|
68
|
Vimal J, Himal I, Kannan S. Role of microbial dysbiosis in carcinogenesis & cancer therapies. Indian J Med Res 2021; 152:553-561. [PMID: 34145094 PMCID: PMC8224166 DOI: 10.4103/ijmr.ijmr_1026_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human body supports a heterogeneous population of microorganisms. Every microorganism has the ability to contribute to the unique microenvironment around it. The aim of this review is to discuss the changes in the microbial population and their relative abundance across different ecosystems of the human body, the interactions within the microbial communities, metabolites they secrete to their external environment, their immunomodulatory functions, their signal transduction pathways and how these respond to environmental stimuli such as various diets, alcohol and drug consumption, smoking and finally suggest new therapeutic approaches. The microbiota may leads to cancer through inflammation mediated mechanisms which modulate immune responses, or produce carcinogenic metabolites and genotoxins, or deregulate cell proliferative signalling pathways. The identification of these molecular mechanisms in carcinogenesis may lead to better treatment strategies. In this review we have tried to explore the changes in microbial composition between cancer and normal tissues and what molecular mechanisms provide a connecting link between microbial dysbiosis and cancer.
Collapse
Affiliation(s)
- Joseph Vimal
- Laboratory of Cell Cycle Regulation & Molecular Oncology, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Iris Himal
- Laboratory of Cell Cycle Regulation & Molecular Oncology, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - S Kannan
- Laboratory of Cell Cycle Regulation & Molecular Oncology, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| |
Collapse
|
69
|
Mitra S, Rauf A, Tareq AM, Jahan S, Emran TB, Shahriar TG, Dhama K, Alhumaydhi FA, Aljohani ASM, Rebezov M, Uddin MS, Jeandet P, Shah ZA, Shariati MA, Rengasamy KR. Potential health benefits of carotenoid lutein: An updated review. Food Chem Toxicol 2021; 154:112328. [PMID: 34111488 DOI: 10.1016/j.fct.2021.112328] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Carotenoids in food substances are believed to have health benefits by lowering the risk of diseases. Lutein, a carotenoid compound, is one of the essential nutrients available in green leafy vegetables (kale, broccoli, spinach, lettuce, and peas), along with other foods, such as eggs. As nutrition plays a pivotal role in maintaining human health, lutein, as a nutritional substance, confers promising benefits against numerous health issues, including neurological disorders, eye diseases, skin irritation, etc. This review describes the in-depth health beneficial effects of lutein. As yet, a minimal amount of literature has been undertaken to consider all its promising bioactivities. The step-by-step biosynthesis of lutein has also been taken into account in this review. Besides, this review demonstrates the drug interactions of lutein with β-carotene, as well as safety concerns and dosage. The potential benefits of lutein have been assessed against neurological disorders, eye diseases, cardiac complications, microbial infections, skin irritation, bone decay, etc. Additionally, recent studies ascertained the significance of lutein nanoformulations in the amelioration of eye disorders, which are also considered in this review. Moreover, a possible approach for the use of lutein in bioactive functional foods will be discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Shamima Jahan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims Cedex 2, France
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University (MSUTM), Russian Federation
| | - Kannan Rr Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Private Bag X1106, Polokwane, Sovenga, 0727, South Africa.
| |
Collapse
|
70
|
Goji berry (Lycium barbarum L.) juice reduces lifespan and premature aging of Caenorhabditis elegans: Is it safe to consume it? Food Res Int 2021; 144:110297. [PMID: 34053563 DOI: 10.1016/j.foodres.2021.110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Goji berry fruit is considered a healthy food. However, studies on its effects on aging and safety are rare. This study is the first to evaluate the effects of goji berry juice (GBJ) on oxidative stress, metabolic markers, and lifespan of Caenorhabditis elegans. GBJ caused toxicity, reduced the lifespan of C. elegans by 50%, and increased the reactive oxygen species (ROS) production by 45-50% at all tested concentrations (1-20 mg/µL) of GBJ. Moreover, the highest concentration of GBJ increased lipid peroxidation by 80% and altered the antioxidant enzymes. These effects could be attributed to a pro-oxidant effect induced by GBJ polyphenols and carotenoids. Moreover, GBJ increased lipofuscin, glucose levels, number of apoptotic bodies, and lipase activity. The use of mutant strains demonstrated that these effects observed in the worms treated with GBJ were not associated with the Daf-16/FOXO or SKN-1 pathways. Our findings revealed that GBJ (mainly the highest concentration) exerted toxic effects and promoted premature aging in C. elegans. Therefore, its consumption should be carefully considered until further studies in mammals are conducted.
Collapse
|
71
|
Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Harish, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. CURRENT PLANT BIOLOGY 2021; 26:100203. [DOI: 10.1016/j.cpb.2021.100203] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
72
|
Nutritional cognitive neuroscience of aging: Focus on carotenoids and cognitive frailty. Redox Biol 2021; 44:101996. [PMID: 34090844 PMCID: PMC8212151 DOI: 10.1016/j.redox.2021.101996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
The term „nutritional cognitive neuroscience” was recently established to define a research field focusing on the impact of nutrition on cognition and brain health across the life span. In this overview, we summarize the robust evidence on the role of carotenoids as micronutrients with different biological properties in persons with cognitive (pre)frailty. As neurodegenerative processes during aging occur in a continuum from brain aging to dementia, we propose the name „nutritional cognitive neuroscience of aging“ to define research on the role of nutrition and micronutrients in cognitive frailty. Further studies are warranted which integrate carotenoid interventions in multidomain, personalized lifestyle strategies. Cognitive integrity is an essential element of healthy and active ageing. Oxidative distress is strongly linked to neurodegeneration. Consumption and levels of carotenoids are linked to cognitive frailty. There is conflict of evidence for intervention trials with carotenoids in dementia. Future studies with carotenoids should be within personalized and multidomain strategies.
Collapse
|
73
|
Hellmann H, Goyer A, Navarre DA. Antioxidants in Potatoes: A Functional View on One of the Major Food Crops Worldwide. Molecules 2021; 26:2446. [PMID: 33922183 PMCID: PMC8122721 DOI: 10.3390/molecules26092446] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
With a growing world population, accelerating climate changes, and limited arable land, it is critical to focus on plant-based resources for sustainable food production. In addition, plants are a cornucopia for secondary metabolites, of which many have robust antioxidative capacities and are beneficial for human health. Potato is one of the major food crops worldwide, and is recognized by the United Nations as an excellent food source for an increasing world population. Potato tubers are rich in a plethora of antioxidants with an array of health-promoting effects. This review article provides a detailed overview about the biosynthesis, chemical and health-promoting properties of the most abundant antioxidants in potato tubers, including several vitamins, carotenoids and phenylpropanoids. The dietary contribution of diverse commercial and primitive cultivars are detailed and document that potato contributes much more than just complex carbohydrates to the diet. Finally, the review provides insights into the current and future potential of potato-based systems as tools and resources for healthy and sustainable food production.
Collapse
Affiliation(s)
- Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Aymeric Goyer
- Hermiston Agricultural Research and Extension Center, Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR 97838, USA;
| | | |
Collapse
|
74
|
Mussagy CU, Khan S, Kot AM. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit Rev Food Sci Nutr 2021; 62:6932-6946. [PMID: 33798005 DOI: 10.1080/10408398.2021.1908222] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbial carotenoids have attracted rising interest from several industries as a sustainable alternative to substitute the synthetic ones. Traditionally, carotenoids available in the market are obtained by the chemical route using nonrenewable sources (petrochemicals), revealing the negative impact on the environment and consumers. The most promising developments in the upstream and downstream processes of microbial carotenoids are reviewed in this work. The use of agro-based raw materials for bioproduction, and alternative solvents such as biosolvents, deep eutectic solvents, and ionic liquids for the recovery/polishing of microbial carotenoids were also reviewed. The principal advances in the field, regarding the biorefinery and circular economy concepts, were also discussed for a better understanding of the current developments. This review provides comprehensive overview of the hot topics in the field besides an exhaustive analysis of the main advantages/drawbacks and opportunities regarding the implementation of microbial carotenoids in the market.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Sabir Khan
- Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Anna Maria Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
75
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
76
|
Oxidative Stress, Folate Receptor Autoimmunity, and CSF Findings in Severe Infantile Autism. AUTISM RESEARCH AND TREATMENT 2020; 2020:9095284. [PMID: 33294225 PMCID: PMC7688371 DOI: 10.1155/2020/9095284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Background Biomarkers such as oxidative stress, folate receptor alpha (FRα) autoimmunity, and abnormal brain serotonin turnover are common in autism. Methods Oxidative stress biomarkers with pro- and antioxidants were measured in the severe form of infantile autism (n = 38) and controls (n = 24). Children and parents had repeated testing for serum FR autoantibodies, spinal fluid dopamine and serotonin metabolites, pterins, and N5-methyltetrahydrofolate (MTHF). Statistical analysis assessed correlations between variables. Genetic analysis included the SLC6A4 and SLC29A4 genes encoding synaptic serotonin reuptake proteins. Results Compared to controls, the autism group showed a significant increase in oxidative DNA damage in lymphocytes, plasma ceruloplasmin and copper levels with a high copper/zinc ratio, thiol proteins, and superoxide dismutase (SOD) activity. Vitamin C levels were significantly diminished. In most autistic patients, the vitamin A (64%) and D (70%) levels were low. Serum FR autoantibodies fluctuating over 5–7 week periods presented in 68% of all autistic children, 41% of parents vs. 3.3% of control children and their parents. CSF showed lowered serotonin 5-hydroxyindole acetic acid (5HIAA) metabolites in 13 (34%), a low 5HIAA to HVA (dopamine metabolite) ratio in 5 (13%), low 5HIAA and MTHF in 2 (5%), and low MTHF in 8 patients (21%). A known SLC6A4 mutation was identified only in 1 autistic child with low CSF 5HIAA and a novel SLC29A4 mutation was identified in identical twins. Low CSF MTHF levels among only 26% of subjects can be explained by the fluctuating FR antibody titers. Two or more aberrant pro-oxidant and/or antioxidant factors predisposed to low CSF serotonin metabolites. Three autistic children having low CSF 5HIAA and elevated oxidative stress received antioxidative supplements followed by CSF 5HIAA normalisation. Conclusion In autism, we found diverse combinations for FR autoimmunity and/or oxidative stress, both amenable to treatment. Parental and postnatal FR autoantibodies tend to block folate passage to the brain affecting folate-dependent pathways restored by folinic acid treatment, while an abnormal redox status tends to induce reduced serotonin turnover, corrected by antioxidant therapy. Trial Registration. The case-controlled study was approved in 2008 by the IRB at Liège University (Belgian Number: B70720083916). Lay Summary. Children with severe infantile autism frequently have serum folate receptor autoantibodies that block the transport of the essential vitamin folate across the blood-brain barrier to the brain. Parents are often asymptomatic carriers of these serum folate receptor autoantibodies, which in mothers can block folate passage across the placenta to their unborn child. This folate deficiency during the child's intrauterine development may predispose to neural tube defects and autism. Oxidative stress represents a condition with the presence of elevated toxic oxygen derivatives attributed to an imbalance between the formation and protection against these toxic reactive oxygen derivatives. Oxidative stress was found to be present in autistic children where these reactive oxygen derivatives can cause damage to DNA, which changes DNA function and regulation of gene expression. In addition, excessive amounts of these toxic oxygen derivatives are likely to damage the enzyme producing the neuromessenger serotonin in the brain, diminished in about 1/3 of the autistic children. Testing children with autism for oxidative stress and its origin, as well as testing for serum folate receptor autoantibodies, could open new approaches towards more effective treatments.
Collapse
|
77
|
Shin J, Song MH, Oh JW, Keum YS, Saini RK. Pro-Oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants (Basel) 2020; 9:E532. [PMID: 32560478 PMCID: PMC7346220 DOI: 10.3390/antiox9060532] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Carotenoids are well known for their potent antioxidant function in the cellular system. However, in cancer cells with an innately high level of intracellular reactive oxygen species (ROS), carotenoids may act as potent pro-oxidant molecules and trigger ROS-mediated apoptosis. In recent years, the pro-oxidant function of several common dietary carotenoids, including astaxanthin, β-carotene, fucoxanthin, and lycopene, has been investigated for their effective killing effects on various cancer cell lines. Besides, when carotenoids are delivered with ROS-inducing cytotoxic drugs (e.g., anthracyclines), they can minimize the adverse effects of these drugs on normal cells by acting as antioxidants without interfering with their cytotoxic effects on cancer cells as pro-oxidants. These dynamic actions of carotenoids can optimize oxidative stress in normal cells while enhancing oxidative stress in cancer cells. This review discusses possible mechanisms of carotenoid-triggered ROS production in cancer cells, the activation of pro-apoptotic signaling by ROS, and apoptotic cell death. Moreover, synergistic actions of carotenoids with ROS-inducing anti-cancer drugs are discussed, and research gaps are suggested.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
- Institute of Natural Science and Agriculture, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|