51
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
52
|
Bacterial Siderophores: Structure, Functions, and Role in the Pathogenesis of Infections. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2022. [DOI: 10.21055/0370-1069-2022-3-14-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review systematizes and analyzes the data published over the past decade, devoted to the study of low-molecular-weight high affinity iron chelators – siderophores. Siderophores, which are found in bacteria, fungi and mammals, are able to extract iron from insoluble inorganic compounds, and in the host organism – from complexes with proteins that perform the function of nonspecific protection of mammals from infections. The extracted iron is delivered to cells through surface protein receptors specific for each siderophore, as well as various protein transport systems that make up membranes. Siderophores play an important role in virulence in pathogenic bacteria, performing many functions in the host organism, in addition to providing microbes with iron and other biological metals. They participate in the storage of excess iron, toxic to cells, protect bacteria from reactive oxygen compounds, compete for iron with phagocytes, and have a harmful effect on host cells, acting as secreted bacterial toxin in some cases. Bacterial siderophores perform a signaling function and regulate both, their own synthesis and the synthesis of other virulence factors. Many pathogenic bacteria produce several siderophores that are active under different conditions, against various sources of iron in the host organism and at different stages of infectious process. The review presents the results of the experimental studies aimed at elucidating the structure and diverse functions of bacterial siderophores, the mechanisms of their biosynthesis and regulation of expression, as well as the role of these molecules in the physiology and virulence of pathogenic bacteria. Special emphasis is put on siderophores of bacteria causing particularly dangerous infections.
Collapse
|
53
|
Is Caperatic Acid the Only Compound Responsible for Activity of Lichen Platismatia glauca within the Nervous System? Antioxidants (Basel) 2022; 11:antiox11102069. [PMID: 36290793 PMCID: PMC9598164 DOI: 10.3390/antiox11102069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Lichens are a source of various biologically active compounds. However, the knowledge about them is still scarce, and their use in medicine is limited. This study aimed to investigate the therapeutic potential of the lichen Platismatia glauca and its major metabolite caperatic acid in regard to their potential application in the treatment of central nervous system diseases, especially neurodegenerative diseases and brain tumours, such as glioblastoma. First, we performed the phytochemical analysis of the tested P. glauca extracts based on FT-IR derivative spectroscopic and gas chromatographic results. Next the antioxidant properties were determined, and moderate anti-radical activity, strong chelating properties of Cu2+ and Fe2+ ions, and a mild effect on the antioxidant enzymes of the tested extracts and caperatic acid were proved. Subsequently, the influence of the tested extracts and caperatic acid on cholinergic transmission was determined by in vitro and in silico studies confirming that inhibitory effect on butyrylcholinesterase is stronger than against acetylcholinesterase. We also confirmed the anti-inflammatory properties of P. glauca extracts and caperatic acid using a COX-2 and hyaluronidase inhibition models. Moreover, our studies show the cytotoxic and pro-apoptotic activity of the P. glauca extracts against T98G and U-138 MG glioblastoma multiforme cell lines. In conclusion, it is possible to assume that P. glauca extracts and especially caperatic acid can be regarded as the source of the valuable substances to finding new therapies of central nervous system diseases.
Collapse
|
54
|
Shtykov SN. Coordination Compounds (Chelates) in Analytical Chemistry: Solutions, Sorbents, and Nanoplatforms. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Deferiprone for transfusional iron overload in sickle cell disease and other anemias: open-label study of up to 3 years. Blood Adv 2022; 7:611-619. [PMID: 36018224 PMCID: PMC9979751 DOI: 10.1182/bloodadvances.2021006778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Long-term safety and efficacy data on the iron chelator deferiprone in sickle cell disease (SCD) and other anemias are limited. FIRST-EXT was a 2-year extension study of FIRST (Ferriprox in Patients With Iron Overload in Sickle Cell Disease Trial), a 1-year, randomized noninferiority study of deferiprone vs deferoxamine in these populations. Patients who entered FIRST-EXT continued to receive, or were switched to, deferiprone. Altogether, 134 patients were enrolled in FIRST-EXT (mean age: 16.2 years), with mean (SD) exposure to deferiprone of 2.1 (0.8) years over the 2 studies. The primary end point was safety. Secondary end points were change in liver iron concentration (LIC), cardiac T2∗, serum ferritin (SF), and the proportion of responders (≥20% improvement in efficacy measure). The most common adverse events considered at least possibly related to deferiprone were neutropenia (9.0%) and abdominal pain (7.5%). LIC (mg/g dry weight) decreased over time, with mean (SD) changes from baseline at each time point (year 1, -2.64 [4.64]; year 2, -3.91 [6.38]; year 3, -6.64 [7.72], all P < .0001). Mean SF levels (μg/L) decreased significantly after year 2 (-771, P = .0008) and year 3 (-1016, P = .0420). Responder rates for LIC and SF increased each year (LIC: year 1, 46.5%; year 2, 57.1%; year 3, 66.1%; SF: year 1, 35.2%; year 2, 55.2%; year 3, 70.9%). Cardiac T2∗ remained normal in all patients. In conclusion, long-term therapy with deferiprone was not associated with new safety concerns and led to continued and progressive reduction in iron load in individuals with SCD or other anemias. The trial was registered at www.clinicaltrials.gov as #NCT02443545.
Collapse
|
56
|
Silva FT, Espósito BP. Intracellular Iron Binding and Antioxidant Activity of Phytochelators. Biol Trace Elem Res 2022; 200:3910-3918. [PMID: 34648123 DOI: 10.1007/s12011-021-02965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Phytochelators have been studied as templates for designing new drugs for chelation therapy. This work evaluated key chemical and biological properties of five candidate phytochelators for iron overload diseases: maltol, mimosine, morin, tropolone, and esculetin. Intra- and extracellular iron affinity and antioxidant activity, as well as the ability to scavenge iron from holo-transferrin, were studied in physiologically relevant settings. Tropolone and mimosine (and, to a lesser extent, maltol) presented good binding capacity for iron, removing it from calcein, a high-affinity fluorescent probe. Tropolone and mimosine arrested iron-mediated oxidation of ascorbate with the same efficiency as the standard iron chelator DFO. Also, both were cell permeant and able to access labile pools of iron in HeLa and HepG2 cells. Mimosine was an effective antioxidant in cells stressed by iron and peroxide, being as efficient as the cell-permeant iron chelator deferiprone. These results reinforce the potential of those molecules, especially mimosine, as adjuvants in treatments for iron overload.
Collapse
Affiliation(s)
- Fredson Torres Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
57
|
Attenuation of tryptophan metabolism by Fe chelators: A hypothesis regarding inhibiting tumor suppressive microenvironments in pancreatic ductal adenocarcinoma. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
58
|
Reversal of genetic brain iron accumulation by N,N'-bis(2-mercaptoethyl)isophthalamide, a lipophilic metal chelator, in mice. Arch Toxicol 2022; 96:1951-1962. [PMID: 35445828 DOI: 10.1007/s00204-022-03287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022]
Abstract
N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic metal chelator and antioxidant used in mercury poisoning. Recent studies have suggested that NBMI may also bind to other metals such as lead and iron. Since NBMI can enter the brain, we evaluated if NBMI removes excess iron from the iron-loaded brain and ameliorates iron-induced oxidative stress. First, NBMI exhibited preferential binding to ferrous (Fe2+) iron with a negligible binding affinity to ferric (Fe3+) iron, indicating a selective chelation of labile iron. Second, NBMI protected SH-SY5Y human neuroblastoma cells from the cytotoxic effects of high iron. NBMI also decreased cellular labile iron and lessened the production of iron-induced reactive oxygen species in these cells. Deferiprone (DFP), a commonly used oral iron chelator, failed to prevent iron-induced cytotoxicity or labile iron accumulation. Next, we validated the efficacy of NBMI in Hfe H67D mutant mice, a mouse model of brain iron accumulation (BIA). Oral gavage of NBMI for 6 weeks decreased iron accumulation in the brain as well as liver, whereas DFP showed iron chelation only in the liver, but not in the brain. Notably, depletion of brain copper and anemia were observed in BIA mice treated with DFP, but not with NBMI, suggesting a superior safety profile of NBMI over DFP for long-term use. Collectively, our study demonstrates that NBMI provides a neuroprotective effect against BIA and has therapeutic potential for neurodegenerative diseases associated with BIA.
Collapse
|
59
|
Yoshihara D, Fujiwara N, Eguchi H, Sakiyama H, Suzuki K. Iron deficiency aggravates DMNQ-induced cytotoxicity via redox cycling in kidney-derived cells. Free Radic Res 2022; 56:544-554. [PMID: 36469660 DOI: 10.1080/10715762.2022.2154668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron, an essential element for most of living organisms, participates in many biological functions. Since iron is redox-active transition metal, it is known that excessive levels stimulate the formation of reactive oxygen species (ROS) and exacerbate cytotoxicity. An iron deficiency is the most common nutritional deficiency disorder in the world (about 30% of the population) and is more common than cases of iron overload. However, the effects of iron deficiency on ROS-induced cytotoxicity and the maintenance of intracellular redox homeostasis are not fully understood. The present study reports on an evaluation of the effects of iron deficiency on cytotoxicity induced by several ROS generators. In contrast to hydrogen peroxide and erastin, the cytotoxicity of 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a redox cycling agent that induces intracellular superoxide anion formation, was exacerbated by iron deficiency. Cytochrome b5 reductase was identified as a candidate enzyme responsible for the redox cycling of DMNQ under conditions of iron depletion. Moreover, the DMNQ-induced intracellular accumulation of ROS and a decrease in NADH/NAD+ ratios were enhanced by an iron deficiency. These negative changes were found to be ameliorated by overexpressing NAD(P)H:quinone oxidoreductase 1 (NQO1) in kidney-derived cells that originally showed a very low expression of NQO1. These results indicate that NQO1 plays a protective role against redox cycling quinone-mediated cytotoxicity under iron-depleted conditions. This is because NQO1 generates less-toxic hydroquinones via the two-electron reduction of quinones. The collective findings reported herein demonstrate that not only an iron overload but also an iron deficiency exacerbates ROS-mediated cytotoxicity.
Collapse
Affiliation(s)
- Daisaku Yoshihara
- Department of Biochemistry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hironobu Eguchi
- Department of Biochemistry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Haruhiko Sakiyama
- Department of Biochemistry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Keiichiro Suzuki
- Department of Biochemistry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
60
|
Kontoghiorghes GJ. Deferiprone: A Forty-Year-Old Multi-Targeting Drug with Possible Activity against COVID-19 and Diseases of Similar Symptomatology. Int J Mol Sci 2022; 23:ijms23126735. [PMID: 35743183 PMCID: PMC9223898 DOI: 10.3390/ijms23126735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The need for preparing new strategies for the design of emergency drug therapies against COVID-19 and similar diseases in the future is rather urgent, considering the high rate of morbidity and especially mortality associated with COVID-19, which so far has exceeded 18 million lives. Such strategies could be conceived by targeting the causes and also the serious toxic side effects of the diseases, as well as associated biochemical and physiological pathways. Deferiprone (L1) is an EMA- and FDA-approved drug used worldwide for the treatment of iron overload and also other conditions where there are no effective treatments. The multi-potent effects and high safety record of L1 in iron loaded and non-iron loaded categories of patients suggests that L1 could be developed as a “magic bullet” drug against COVID-19 and diseases of similar symptomatology. The mode of action of L1 includes antiviral, antimicrobial, antioxidant, anti-hypoxic and anti-ferroptotic effects, iron buffering interactions with transferrin, iron mobilizing effects from ferritin, macrophages and other cells involved in the immune response and hyperinflammation, as well as many other therapeutic interventions. Similarly, several pharmacological and other characteristics of L1, including extensive tissue distribution and low cost of production, increase the prospect of worldwide availability, as well as many other therapeutic approach strategies involving drug combinations, adjuvant therapies and disease prevention.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
61
|
Chandra J, Rohatgi S. Pulmonary Functions in Transfusion-Dependent Thalassemia. Indian Pediatr 2022. [PMID: 35695139 PMCID: PMC9253241 DOI: 10.1007/s13312-022-2531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jagdish Chandra
- Department of Pediatrics, PGIMSR and ESIC Model Hospital, Basaidarapur, New Delhi 110015.
| | - Smriti Rohatgi
- Department of Pediatrics, PGIMSR and ESIC Model Hospital, Basaidarapur, New Delhi 110015
| |
Collapse
|
62
|
Modelling of polyphenol and flavonoid extraction from bottle gourd fruit using green and cost effective LTTM glycerol-ammonium acetate in neat and diluted forms. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01445-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
63
|
Rodrigues MJ, Jekő J, Cziáky Z, Pereira CG, Custódio L. The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101353. [PMID: 35631777 PMCID: PMC9148066 DOI: 10.3390/plants11101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 05/03/2023]
Abstract
This work explored the medicinal halophyte Frankenia laevis L. (sea heath) as a potential source of bioactive natural products. In this sense, methanol and dichloromethane extracts were prepared from aerial organs containing flowers, leaves and stems, and were profiled for their chemical composition using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were evaluated for their in vitro antioxidant capacity using five complementary methods: enzyme inhibitory effects on enzymes related with neurodegeneration (acetyl (AChE) and butyrylcholinesterase (BuChE)), Type 2 diabetes (α-glucosidase and α-amylase), hyperpigmentation/food oxidation (tyrosinase), and cytotoxicity towards human hepatocarcinoma (HepG2) cells. Fifty-one molecules were identified in the extracts, including several derivatives of phenolic acids, lignans and flavonoids, monoterpenes, and hydroxylated derivatives of linoleic acid. The methanol extract was effective in DPPH and ABTS radical scavenging (EC50 = 0.25 and 0.65 mg/mL, respectively), copper chelation (EC50 = 0.78 mg/mL), and iron reduction (EC50 = 0.51 mg/mL) activities, whereas the dichloromethane extract had high iron chelating ability (EC50 = 0.76 mg/mL). Both extracts showed the capacity to inhibit α-glucosidase, especially the dichloromethane (EC50 = 0.52 mg/mL). This extract also exerted a significant selective cytotoxicity towards HepG2 cells (EC50 = 52.1 μg/mL, SI > 1.9). In conclusion, extracts from the aerial parts of sea heath were shown to be a promising source of natural products for pharmaceutical and/or food additive applications due to their high antioxidant, anti-diabetic, and cytotoxic properties.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (L.C.)
- Correspondence:
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Catarina G. Pereira
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (L.C.)
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (L.C.)
| |
Collapse
|
64
|
Saxena S, Saini S, Sasmal S. General Public Awareness Survey Drive on Impact of Indian Culinary Practices on Nutritional Profile of Food: Special Emphasis on Millet Awareness. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2073936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sarthak Saxena
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
- DBT- ICT, Center for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Sonia Saini
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Soumya Sasmal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
65
|
Equine lactoferrin: Antioxidant properties related to divalent metal chelation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
67
|
Sharifi-Rad M, Pohl P, Epifano F, Zengin G, Jaradat N, Messaoudi M. Teucrium polium (L.): Phytochemical Screening and Biological Activities at Different Phenological Stages. Molecules 2022; 27:1561. [PMID: 35268662 PMCID: PMC8911654 DOI: 10.3390/molecules27051561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the changes in the content of phytochemical compounds and in vitro antioxidant, antibacterial, and anti-inflammatory activities of Teucrium polium L. aerial parts and root methanolic extracts at different phenological stages (vegetative, flowering, and seeding). The T. polium extracts were analyzed using gas chromatography−mass spectrometry (GC-MS), and their antioxidant properties were tested with the 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), ferrous ions (Fe2+), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. Forty-nine compounds were identified with the majority of germacrene D, t-cadinol, β-pinene, carvacrol, bicyclogermacrene, α-pinene, and limonene. The results show that the extracts significantly differ between different phenological stages of the plant material used in terms of the phytochemical composition (total phenolic compounds, total flavonoids, total alkaloids, and total saponin contents) and bioactivities (antioxidant, antibacterial, and anti-inflammatory) (p < 0.05). The highest total contents of phenolics (72.4 ± 2.5 mg gallic acid equivalent (GAE)/g dry weight), flavonoids (36.2 ± 3.1 mg quercetin equivalent (QE)/g dry weight), alkaloids (105.7 ± 2.8 mg atropine equivalent (AE)/g dry weight), and saponins (653 ± 6.2 mg escin equivalent (EE)/g dry weight), as well as antioxidant, antibacterial, and anti-inflammatory activities, were measured for the extract of the aerial parts obtained at the flowering stage. The minimum inhibitory concentration (MIC) values for the extracts were varied within 9.4−300 µg/mL, while the minimum bactericidal concentration (MBC) values were varied within 18.75−600 µg/mL. In addition, they were more active on Gram-positive bacteria than Gram-negative bacteria. The data of this work confirm that the T. polium extracts have significant biological activity and hence can be used in the pharmaceutical industry, clinical applications, and medical research, as well as cosmetic and food industries.
Collapse
Affiliation(s)
- Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol 98613-35856, Iran
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Francesco Epifano
- Dipartimento di Farmacia, Università “Gabriele d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box. 7, Palestine;
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa 17200, Algeria;
- Chemistry Department, University of Hamma Lakhdar El-Oued, B.P. 789, El-Oued 39000, Algeria
| |
Collapse
|
68
|
Kwiatkowski JL, Hamdy M, El-Beshlawy A, Ebeid FSE, Badr M, Alshehri A, Kanter J, Inusa B, Adly AAM, Williams S, Kilinc Y, Lee D, Tricta F, Elalfy MS. Deferiprone vs deferoxamine for transfusional iron overload in SCD and other anemias: a randomized, open-label noninferiority study. Blood Adv 2022; 6:1243-1254. [PMID: 34847228 PMCID: PMC8864642 DOI: 10.1182/bloodadvances.2021004938] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022] Open
Abstract
Many people with sickle cell disease (SCD) or other anemias require chronic blood transfusions, which often causes iron overload that requires chelation therapy. The iron chelator deferiprone is frequently used in individuals with thalassemia syndromes, but data in patients with SCD are limited. This open-label study assessed the efficacy and safety of deferiprone in patients with SCD or other anemias receiving chronic transfusion therapy. A total of 228 patients (mean age: 16.9 [range, 3-59] years; 46.9% female) were randomized to receive either oral deferiprone (n = 152) or subcutaneous deferoxamine (n = 76). The primary endpoint was change from baseline at 12 months in liver iron concentration (LIC), assessed by R2* magnetic resonance imaging (MRI). The least squares mean (standard error) change in LIC was -4.04 (0.48) mg/g dry weight for deferiprone vs -4.45 (0.57) mg/g dry weight for deferoxamine, with noninferiority of deferiprone to deferoxamine demonstrated by analysis of covariance (least squares mean difference 0.40 [0.56]; 96.01% confidence interval, -0.76 to 1.57). Noninferiority of deferiprone was also shown for both cardiac T2* MRI and serum ferritin. Rates of overall adverse events (AEs), treatment-related AEs, serious AEs, and AEs leading to withdrawal did not differ significantly between the groups. AEs related to deferiprone treatment included abdominal pain (17.1% of patients), vomiting (14.5%), pyrexia (9.2%), increased alanine transferase (9.2%) and aspartate transferase levels (9.2%), neutropenia (2.6%), and agranulocytosis (0.7%). The efficacy and safety profiles of deferiprone were acceptable and consistent with those seen in patients with transfusion-dependent thalassemia. This trial study was registered at www://clinicaltrials.gov as #NCT02041299.
Collapse
Affiliation(s)
- Janet L. Kwiatkowski
- Division of Hematology, The Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | - Mona Hamdy
- Department of Pediatrics, School of Medicine, Cairo University, Cairo, Egypt
| | - Amal El-Beshlawy
- Department of Pediatric Hematology, Pediatric Hospital of Cairo University, Cairo, Egypt
| | - Fatma S. E. Ebeid
- Pediatric Hematology Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammed Badr
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Julie Kanter
- Division of Hematology and Oncology, Department of Medicine, University of Alabama, Birmingham, AL
| | - Baba Inusa
- Paediatric Haematology, Evelina Children's Hospital, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - Amira A. M. Adly
- Pediatric Hematology Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Suzan Williams
- Department of Haematology and Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Yurdanur Kilinc
- Department of Pediatric Hematology, Faculty of Medicine, Cukurova University, Adana, Turkey; and
| | - David Lee
- Hematology/Immunology Program, Chiesi Rare Disease, Toronto, ON, Canada
| | - Fernando Tricta
- Hematology/Immunology Program, Chiesi Rare Disease, Toronto, ON, Canada
| | - Mohsen S. Elalfy
- Pediatric Hematology Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
69
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
70
|
Kontoghiorghes GJ. Questioning Established Theories and Treatment Methods Related to Iron and Other Metal Metabolic Changes, Affecting All Major Diseases and Billions of Patients. Int J Mol Sci 2022; 23:1364. [PMID: 35163288 PMCID: PMC8836132 DOI: 10.3390/ijms23031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
The medical and scientific literature is dominated by highly cited historical theories and findings [...].
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
71
|
Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Int J Mol Sci 2022; 23:ijms23031247. [PMID: 35163169 PMCID: PMC8835618 DOI: 10.3390/ijms23031247] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant/pro-oxidant activity of drugs and dietary molecules and their role in the maintenance of redox homeostasis, as well as the implications in health and different diseases, have not yet been fully evaluated. In particular, the redox activity and other interactions of drugs with essential redox metal ions, such as iron and copper, need further investigation. These metal ions are ubiquitous in human nutrition but also widely found in dietary supplements and appear to exert major effects on redox homeostasis in health, but also on many diseases of free radical pathology. In this context, the redox mechanistic insights of mainly three prototype groups of drugs, namely alpha-ketohydroxypyridines (alpha-hydroxypyridones), e.g., deferiprone, anthraquinones, e.g., doxorubicin and thiosemicarbazones, e.g., triapine and their metal complexes were examined; details of the mechanisms of their redox activity were reviewed, with emphasis on the biological implications and potential clinical applications, including anticancer activity. Furthermore, the redox properties of these three classes of chelators were compared to those of the iron chelating drugs and also to vitamin C, with an emphasis on their potential clinical interactions and future clinical application prospects in cancer, neurodegenerative and other diseases.
Collapse
|
72
|
Soulières D, Mercier-Ross J, Fradette C, Rozova A, Tsang YC, Tricta F. The pharmacokinetic and safety profile of single-dose deferiprone in subjects with sickle cell disease. Ann Hematol 2022; 101:533-539. [PMID: 34981144 PMCID: PMC8810455 DOI: 10.1007/s00277-021-04728-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022]
Abstract
Abstract
Patients with sickle cell disease (SCD) who undergo repeated blood transfusions often develop iron overload. Deferiprone (Ferriprox®) is an oral iron chelator indicated for the treatment of transfusional iron overload due to thalassemia syndromes and has been recently approved as a treatment for iron overload in adult and pediatric patients with SCD and other anemias. The present study aims to characterize the pharmacokinetic (PK) profile of deferiprone (DFP) in adult subjects with SCD. In this phase I, open-label study, subjects with SCD were administered a single 1500 mg dose of DFP. Blood and urine samples were collected for PK assessments of DFP and its main metabolite, deferiprone 3-O-glucuronide (DFP-G). Eight subjects were enrolled and completed the study. Following drug administration, serum levels of DFP and DFP-G rose to maximum concentrations at 1.0 and 2.8 h post-dose, respectively. The half-lives of DFP and DFP-G were 1.5 and 1.6 h, respectively. The majority of administered drug was metabolized and excreted as DFP-G, with less than 4% excreted unchanged in urine up to 10 h post-dose. Subjects received a safety assessment 7 (± 3) days post-dose. Two subjects reported mild adverse events unrelated to the study drug, and no other safety concerns were reported. The PK profile of DFP in SCD subjects is consistent with previous reports in healthy adult volunteers, suggesting no special dosing adjustments are indicated for this population. These findings provide valuable insight for treating iron overload in patients with SCD, who have limited chelation therapy treatment options (trial registration number: NCT01835496, date of registration: April 19, 2013).
Collapse
|
73
|
Md Yusop AH, Al Sakkaf A, Nur H. Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. J Biomed Mater Res B Appl Biomater 2022; 110:18-44. [PMID: 34132457 DOI: 10.1002/jbm.b.34893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Iron (Fe) and Fe-based scaffolds have become a research frontier in absorbable materials which is inherent to their promising mechanical properties including fatigue strength and ductility. Nevertheless, their slow corrosion rate and low biocompatibility have been their major obstacles to be applied in clinical applications. Over the last decade, various modifications on porous Fe-based scaffolds have been performed to ameliorate both properties encompassing surface coating, microstructural alteration via alloying, and advanced topologically order structural design produced by additive manufacturing (AM) techniques. The recent advent of AM produces topologically ordered porous Fe-based structures with an optimized architecture having controllable pore size and strut thickness, intricate internal design, and larger exposed surface area. This undoubtedly opens up new options for controlling Fe corrosion and its structural strengths. However, the in vitro biocompatibility of the AM porous Fe still needs to be addressed considering its higher corrosion rate due to the larger exposed surface area. This review summarizes the latest progress of the modifications on porous Fe-based scaffolds with a specific focus on their responses on the corrosion behavior and biocompatibility.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmed Al Sakkaf
- School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Sciences, State University of Malang, Malang, Indonesia
| |
Collapse
|
74
|
Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology 2021; 19:327. [PMID: 34663344 PMCID: PMC8522232 DOI: 10.1186/s12951-021-01059-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have been proposed as targeted carriers to deliver therapeutic molecules in the central nervous system (CNS). However, IONPs may damage neural tissue via free iron accumulation, protein aggregation, and oxidative stress. Neuroprotective effects of quercetin (QC) have been proven due to its antioxidant and anti-inflammatory properties. However, poor solubility and low bioavailability of QC have also led researchers to make various QC-involved nanoparticles to overcome these limitations. We wondered how high doses or prolonged treatment with quercetin conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) could improve cognitive dysfunction and promote neurogenesis without any toxicity. It can be explained that the QC inhibits protein aggregation and acts against iron overload via iron-chelating activity, iron homeostasis genes regulation, radical scavenging, and attenuation of Fenton/Haber-Weiss reaction. In this review, first, we present brain iron homeostasis, molecular mechanisms of iron overload that induced neurotoxicity, and the role of iron in dementia-associated diseases. Then by providing evidence of IONPs neurotoxicity, we discuss how QC neutralizes IONPs neurotoxicity, and finally, we make a brief comparison between QC and conventional iron chelators. In this review, we highlight that QC as supplementation and especially in conjugated form reduces iron oxide nanoparticles neurotoxicity in clinical application.
Collapse
Affiliation(s)
- Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Ali Esmaeili
- School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| |
Collapse
|
75
|
Abstract
Metal homeostasis in the central nervous system (CNS) is a crucial component of healthy brain function, because metals serve as enzymatic cofactors and are key components of intra- and inter-neuronal signaling. Metal dysregulation wreaks havoc on neural networks via induction and proliferation of pathological pathways that cause oxidative stress, synaptic impairment, and ultimately, cognitive deficits. Thus, exploration of metal biology in relation to neurodegenerative pathology is essential in pursuing novel therapies for Alzheimer's Disease and other neurodegenerative disorders. This review covers mechanisms of action of aluminum, iron, copper, and zinc ions with respect to the progressive, toxic accumulation of extracellular β-amyloid plaques and intracellular hyperphosphorylated neurofibrillary tau tangles that characterizes Alzheimer's Disease, with the goal of evaluating the therapeutic potential of metal ion interference in neurodegenerative disease prevention and treatment. As neuroscientific interest in the role of metals in neurodegeneration escalates-in large part due to emerging evidence substantiating the interplay between metal imbalances and neuropathology-it becomes clear that the use of metal chelating agents may be a viable method for ameliorating Alzheimer's Disease pathology, as its etiology remains obscure. We conclude that, although metal therapies can potentially deter neurodegenerative processes, the most promising treatments will remain elusive until further understanding of neurodegenerative etiology is achieved. New research directions may best be guided by animal models of neurodegeneration, which reveal specific insights into biological mechanisms underlying dementia.
Collapse
Affiliation(s)
- Nikita Das
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - James Raymick
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology HFT-132, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
76
|
Salmonella Typhimurium and Pseudomonas aeruginosa Respond Differently to the Fe Chelator Deferiprone and to Some Novel Deferiprone Derivatives. Int J Mol Sci 2021; 22:ijms221910217. [PMID: 34638558 PMCID: PMC8508819 DOI: 10.3390/ijms221910217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The ability to obtain Fe is critical for pathogens to multiply in their host. For this reason, there is significant interest in the identification of compounds that might interfere with Fe management in bacteria. Here we have tested the response of two Gram-negative pathogens, Salmonella enterica serovar Typhimurium (STM) and Pseudomonas aeruginosa (PAO1), to deferiprone (DFP), a chelating agent already in use for the treatment of thalassemia, and to some DFP derivatives designed to increase its lipophilicity. Our results indicate that DFP effectively inhibits the growth of PAO1, but not STM. Similarly, Fe-dependent genes of the two microorganisms respond differently to this agent. DFP is, however, capable of inhibiting an STM strain unable to synthesize enterochelin, while its effect on PAO1 is not related to the capability to produce siderophores. Using a fluorescent derivative of DFP we have shown that this chelator can penetrate very quickly into PAO1, but not into STM, suggesting that a selective receptor exists in Pseudomonas. Some of the tested derivatives have shown a greater ability to interfere with Fe homeostasis in STM compared to DFP, whereas most, although not all, were less active than DFP against PAO1, possibly due to interference of the added chemical tails with the receptor-mediated recognition process. The results reported in this work indicate that DFP can have different effects on distinct microorganisms, but that it is possible to obtain derivatives with a broader antimicrobial action.
Collapse
|
77
|
Timoshnikov VA, Kichigina LA, Selyutina OY, Polyakov NE, Kontoghiorghes GJ. Antioxidant Activity of Deferasirox and Its Metal Complexes in Model Systems of Oxidative Damage: Comparison with Deferiprone. Molecules 2021; 26:molecules26165064. [PMID: 34443652 PMCID: PMC8401497 DOI: 10.3390/molecules26165064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Deferasirox is an orally active, lipophilic iron chelating drug used on thousands of patients worldwide for the treatment of transfusional iron overload. The essential transition metals iron and copper are the primary catalysts of reactive oxygen species and oxidative damage in biological systems. The redox effects of deferasirox and its metal complexes with iron, copper and other metals are of pharmacological, toxicological, biological and physiological importance. Several molecular model systems of oxidative damage caused by iron and copper catalysis including the oxidation of ascorbic acid, the peroxidation of linoleic acid micelles and the oxidation of dihydropyridine have been investigated in the presence of deferasirox using UV-visible and NMR spectroscopy. Deferasirox has shown antioxidant activity in all three model systems, causing substantial reduction in the rate of oxidation and oxidative damage. Deferasirox showed the greatest antioxidant activity in the oxidation of ascorbic acid with the participation of iron ions and reduced the reaction rate by about a 100 times. Overall, deferasirox appears to have lower affinity for copper in comparison to iron. Comparative studies of the antioxidant activity of deferasirox and the hydrophilic oral iron chelating drug deferiprone in the peroxidation of linoleic acid micelles showed lower efficiency of deferasirox in comparison to deferiprone.
Collapse
Affiliation(s)
- Viktor A. Timoshnikov
- Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia; (V.A.T.); (L.A.K.); (O.Y.S.); (N.E.P.)
| | - Lilia A. Kichigina
- Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia; (V.A.T.); (L.A.K.); (O.Y.S.); (N.E.P.)
| | - Olga Yu. Selyutina
- Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia; (V.A.T.); (L.A.K.); (O.Y.S.); (N.E.P.)
| | - Nikolay E. Polyakov
- Institute of Chemical Kinetics & Combustion, 630090 Novosibirsk, Russia; (V.A.T.); (L.A.K.); (O.Y.S.); (N.E.P.)
| | - George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol CY-3021, Cyprus
- Correspondence:
| |
Collapse
|
78
|
Sychantha D, Rotondo CM, Tehrani KHME, Martin NI, Wright GD. Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn 2. J Biol Chem 2021; 297:100918. [PMID: 34181945 PMCID: PMC8319579 DOI: 10.1016/j.jbc.2021.100918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/05/2022] Open
Abstract
Class B metallo-β-lactamases (MBLs) are Zn2+-dependent enzymes that catalyze the hydrolysis of β-lactam antibiotics to confer resistance in bacteria. Several problematic groups of MBLs belong to subclass B1, including the binuclear New Delhi MBL (NDM), Verona integrin-encoded MBL, and imipenemase-type enzymes, which are responsible for widespread antibiotic resistance. Aspergillomarasmine A (AMA) is a natural aminopolycarboxylic acid that functions as an effective inhibitor of class B1 MBLs. The precise mechanism of action of AMA is not thoroughly understood, but it is known to inactivate MBLs by removing one catalytic Zn2+ cofactor. We investigated the kinetics of MBL inactivation in detail and report that AMA is a selective Zn2+ scavenger that indirectly inactivates NDM-1 by encouraging the dissociation of a metal cofactor. To further investigate the mechanism in living bacteria, we used an active site probe and showed that AMA causes the loss of a Zn2+ ion from a low-affinity binding site of NDM-1. Zn2+-depleted NDM-1 is rapidly degraded, contributing to the efficacy of AMA as a β-lactam potentiator. However, MBLs with higher metal affinity and stability such as NDM-6 and imipenemase-7 exhibit greater tolerance to AMA. These results indicate that the mechanism of AMA is broadly applicable to diverse Zn2+ chelators and highlight that leveraging Zn2+ availability can influence the survival of MBL-producing bacteria when they are exposed to β-lactam antibiotics.
Collapse
Affiliation(s)
- David Sychantha
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Caitlyn M Rotondo
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
79
|
Sfera A, Osorio C, Maguire G, Rahman L, Afzaal J, Cummings M, Maldonado JC. COVID-19, ferrosenescence and neurodegeneration, a mini-review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110230. [PMID: 33373681 PMCID: PMC7832711 DOI: 10.1016/j.pnpbp.2020.110230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Exacerbation of cognitive, motor and nonmotor symptoms have been described in critically ill COVID-19 patients, indicating that, like prior pandemics, neurodegenerative sequelae may mark the aftermath of this viral infection. Moreover, SARS-CoV-2, the causative agent of COVID-19 disease, was associated with hyperferritinemia and unfavorable prognosis in older individuals, suggesting virus-induced ferrosenescence. We have previously defined ferrosenescence as an iron-associated disruption of both the human genome and its repair mechanisms, leading to premature cellular senescence and neurodegeneration. As viruses replicate more efficiently in iron-rich senescent cells, they may have developed the ability to induce this phenotype in host tissues, predisposing to both immune dysfunction and neurodegenerative disorders. In this mini-review, we summarize what is known about the SARS-CoV-2-induced cellular senescence and iron dysmetabolism. We also take a closer look at immunotherapy with natural killer cells, angiotensin II receptor blockers ("sartans"), iron chelators and dipeptidyl peptidase 4 inhibitors ("gliptins") as adjunct treatments for both COVID-19 and its neurodegenerative complications.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, California, United States of America.
| | | | - Gerald Maguire
- University of California, Riverside, United States of America
| | - Leah Rahman
- Patton State Hospital, California, United States of America
| | - Jafri Afzaal
- Patton State Hospital, California, United States of America
| | | | | |
Collapse
|
80
|
Wang X, Li Y, Han L, Li J, Liu C, Sun C. Role of Flavonoids in the Treatment of Iron Overload. Front Cell Dev Biol 2021; 9:685364. [PMID: 34291050 PMCID: PMC8287860 DOI: 10.3389/fcell.2021.685364] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Iron overload, a high risk factor for many diseases, is seen in almost all human chronic and common diseases. Iron chelating agents are often used for treatment but, at present, most of these have a narrow scope of application, obvious side effects, and other disadvantages. Recent studies have shown that flavonoids can affect iron status, reduce iron deposition, and inhibit the lipid peroxidation process caused by iron overload. Therefore, flavonoids with iron chelating and antioxidant activities may become potential complementary therapies. In this study, we not only reviewed the research progress of iron overload and the regulation mechanism of flavonoids, but also studied the structural basis and potential mechanism of their function. In addition, the advantages and disadvantages of flavonoids as plant iron chelating agents are discussed to provide a foundation for the prevention and treatment of iron homeostasis disorders using flavonoids.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Han
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
81
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
82
|
Shi J, Wang Y, Chen J, Lao Y, Huang P, Liao L, Jiang C, Li X, Wen J, Zhou S, Zhang J. Synthesis and biological evaluation of 1,2,4-oxadiazole core derivatives as potential neuroprotectants against acute ischemic stroke. Neurochem Int 2021; 148:105103. [PMID: 34147514 DOI: 10.1016/j.neuint.2021.105103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
Here, we report the synthesis and neuroprotective capacity of 27 compounds with a bisphenol hydroxyl-substituted 1,2,4-triazole core or 1,2,4-oxadiazole core for stroke therapy. In vitro studies of the neuroprotective effects of compounds 1-27 on sodium nitroprusside (SNP)-induced apoptosis in PC12 cells indicate that compound 24 is the most effective compound conferring potent protection against oxidative injury. Compound 24 inhibits reactive oxygen species (ROS) accumulation and restores the mitochondrial membrane potential (MMP). Moreover, further analysis of the mechanism showed that compound 24 activates the antioxidant defence system by promoting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increasing the expression of haem oxygenase 1 (HO-1). An in vivo study was performed in a rat model of transient focal cerebral ischaemia generated by the intraluminal occlusion of the middle cerebral artery (MCAO). Compound 24 significantly reduced brain infarction and improved neurological function. Overall, compound 24 potentially represents a promising compound for the treatment of stroke.
Collapse
Affiliation(s)
- Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xinhua Li
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jin Wen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shujia Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
83
|
Kaviani S, Shahab S, Sheikhi M, Khaleghian M, Al Saud S. Characterization of the binding affinity between some anti-Parkinson agents and Mn2+, Fe3+ and Zn2+ metal ions: A DFT insight. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
84
|
Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules 2021; 26:molecules26113255. [PMID: 34071479 PMCID: PMC8198152 DOI: 10.3390/molecules26113255] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Deferoxamine B is an outstanding molecule which has been widely studied in the past decade for its ability to bind iron and many other metal ions. The versatility of this metal chelator makes it suitable for a number of medicinal and analytical applications, from the well-known iron chelation therapy to the most recent use in sensor devices. The three bidentate hydroxamic functional groups of deferoxamine B are the centerpiece of its metal binding ability, which allows the formation of stable complexes with many transition, lanthanoid and actinoid metal ions. In addition to the ferric ion, in fact, more than 20 different metal complexes of deferoxamine b have been characterized in terms of their chemical speciation in solution. In addition, the availability of a terminal amino group, most often not involved in complexation, opens the way to deferoxamine B modification and functionalization. This review aims to collect and summarize the available data concerning the complex-formation equilibria in solutions of deferoxamine B with different metal ions. A general overview of the progress of its applications over the past decade is also discussed, including the treatment of iron overload-associated diseases, its clinical use against cancer and neurodegenerative disorders and its role as a diagnostic tool.
Collapse
|
85
|
Kontoghiorghes GJ, Kolnagou A, Demetriou T, Neocleous M, Kontoghiorghe CN. New Era in the Treatment of Iron Deficiency Anaemia Using Trimaltol Iron and Other Lipophilic Iron Chelator Complexes: Historical Perspectives of Discovery and Future Applications. Int J Mol Sci 2021; 22:ijms22115546. [PMID: 34074010 PMCID: PMC8197347 DOI: 10.3390/ijms22115546] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The trimaltol iron complex (International Non-proprietary Name: ferric maltol) was originally designed, synthesised, and screened in vitro and in vivo in 1980–1981 by Kontoghiorghes G.J. following his discovery of the novel alpha-ketohydroxyheteroaromatic (KHP) class of iron chelators (1978–1981), which were intended for clinical use, including the treatment of iron deficiency anaemia (IDA). Iron deficiency anaemia is a global health problem affecting about one-third of the world’s population. Many (and different) ferrous and ferric iron complex formulations are widely available and sold worldwide over the counter for the treatment of IDA. Almost all such complexes suffer from instability in the acidic environment of the stomach and competition from other dietary molecules or drugs. Natural and synthetic lipophilic KHP chelators, including maltol, have been shown in in vitro and in vivo studies to form stable iron complexes, to transfer iron across cell membranes, and to increase iron absorption in animals. Trimaltol iron, sold as Feraccru or Accrufer, was recently approved for clinical use in IDA patients in many countries, including the USA and in EU countries, and was shown to be effective and safe, with a better therapeutic index in comparison to other iron formulations. Similar properties of increased iron absorption were also shown by lipophilic iron complexes of 8-hydroxyquinoline, tropolone, 2-hydroxy-4-methoxypyridine-1-oxide, and related analogues. The interactions of the KHP iron complexes with natural chelators, drugs, metal ions, proteins, and other molecules appear to affect the pharmacological and metabolic effects of both iron and the KHP chelators. A new era in the treatment of IDA and other possible clinical applications, such as theranostic and anticancer formulations and metal radiotracers in diagnostic medicine, are envisaged from the introduction of maltol, KHP, and similar lipophilic chelators.
Collapse
|
86
|
Vadolas J, Ng GZ, Kysenius K, Crouch PJ, Dames S, Eisermann M, Nualkaew T, Vilcassim S, Schaeper U, Grigoriadis G. SLN124, a GalNac-siRNA targeting transmembrane serine protease 6, in combination with deferiprone therapy reduces ineffective erythropoiesis and hepatic iron-overload in a mouse model of β-thalassaemia. Br J Haematol 2021; 194:200-210. [PMID: 33942901 PMCID: PMC8359948 DOI: 10.1111/bjh.17428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Beta‐thalassaemia is an inherited blood disorder characterised by ineffective erythropoiesis and anaemia. Consequently, hepcidin expression is reduced resulting in increased iron absorption and primary iron overload. Hepcidin is under the negative control of transmembrane serine protease 6 (TMPRSS6) via cleavage of haemojuvelin (HJV), a co‐receptor for the bone morphogenetic protein (BMP)‐mothers against decapentaplegic homologue (SMAD) signalling pathway. Considering the central role of the TMPRSS6/HJV/hepcidin axis in iron homeostasis, the inhibition of TMPRSS6 expression represents a promising therapeutic strategy to increase hepcidin production and ameliorate anaemia and iron overload in β‐thalassaemia. In the present study, we investigated a small interfering RNA (siRNA) conjugate optimised for hepatic targeting of Tmprss6 (SLN124) in β‐thalassaemia mice (Hbbth3/+). Two subcutaneous injections of SLN124 (3 mg/kg) were sufficient to normalise hepcidin expression and reduce anaemia. We also observed a significant improvement in erythroid maturation, which was associated with a significant reduction in splenomegaly. Treatment with the iron chelator, deferiprone (DFP), did not impact any of the erythroid parameters. However, the combination of SLN124 with DFP was more effective in reducing hepatic iron overload than either treatment alone. Collectively, we show that the combination therapy can ameliorate several disease symptoms associated with chronic anaemia and iron overload, and therefore represents a promising pharmacological modality for the treatment of β‐thalassaemia and related disorders.
Collapse
Affiliation(s)
- Jim Vadolas
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Garrett Z Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Kai Kysenius
- Department of Pharmacology and Therapeutics, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Tiwaporn Nualkaew
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Shahla Vilcassim
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | | | - George Grigoriadis
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
87
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
88
|
Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. MEDICINES 2020; 7:medicines7080045. [PMID: 32751493 PMCID: PMC7460366 DOI: 10.3390/medicines7080045] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Iron and ascorbic acid (vitamin C) are essential nutrients for the normal growth and development of humans, and their deficiency can result in serious diseases. Their interaction is of nutritional, physiological, pharmacological and toxicological interest, with major implications in health and disease. Millions of people are using pharmaceutical and nutraceutical preparations of these two nutrients, including ferrous ascorbate for the treatment of iron deficiency anaemia and ascorbate combination with deferoxamine for increasing iron excretion in iron overload. The main function and use of vitamin C is its antioxidant activity against reactive oxygen species, which are implicated in many diseases of free radical pathology, including biomolecular-, cellular- and tissue damage-related diseases, as well as cancer and ageing. Ascorbic acid and its metabolites, including the ascorbate anion and oxalate, have metal binding capacity and bind iron, copper and other metals. The biological roles of ascorbate as a vitamin are affected by metal complexation, in particular following binding with iron and copper. Ascorbate forms a complex with Fe3+ followed by reduction to Fe2+, which may potentiate free radical production. The biological and clinical activities of iron, ascorbate and the ascorbate–iron complex can also be affected by many nutrients and pharmaceutical preparations. Optimal therapeutic strategies of improved efficacy and lower toxicity could be designed for the use of ascorbate, iron and the iron–ascorbate complex in different clinical conditions based on their absorption, distribution, metabolism, excretion, toxicity (ADMET), pharmacokinetic, redox and other properties. Similar strategies could also be designed in relation to their interactions with food components and pharmaceuticals, as well as in relation to other aspects concerning personalized medicine.
Collapse
|