51
|
González-García MP, Sáez A, Lanza M, Hoyos P, Bustillo-Avendaño E, Pacios LF, Gradillas A, Moreno-Risueno MA, Hernaiz MJ, del Pozo JC. Synthetically derived BiAux modulates auxin co-receptor activity to stimulate lateral root formation. PLANT PHYSIOLOGY 2024; 195:1694-1711. [PMID: 38378170 PMCID: PMC11142373 DOI: 10.1093/plphys/kiae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/22/2024]
Abstract
The root system plays an essential role in plant growth and adaptation to the surrounding environment. The root clock periodically specifies lateral root prebranch sites (PBS), where a group of pericycle founder cells (FC) is primed to become lateral root founder cells and eventually give rise to lateral root primordia or lateral roots (LRs). This clock-driven organ formation process is tightly controlled by modulation of auxin content and signaling. Auxin perception entails the physical interaction of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) or AUXIN SIGNALING F-BOX (AFBs) proteins with AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to form a co-receptor system. Despite the apparent simplicity, the understanding of how specific auxin co-receptors are assembled remains unclear. We identified the compound bis-methyl auxin conjugated with N-glucoside, or BiAux, in Arabidopsis (Arabidopsis thaliana) that specifically induces the formation of PBS and the emergence of LR, with a slight effect on root elongation. Docking analyses indicated that BiAux binds to F-box proteins, and we showed that BiAux function depends on TIR1 and AFB2 F-box proteins and AUXIN RESPONSE FACTOR 7 activity, which is involved in FC specification and LR formation. Finally, using a yeast (Saccharomyces cerevisiae) heterologous expression system, we showed that BiAux favors the assemblage of specific co-receptors subunits involved in LR formation and enhances AUXIN/INDOLE-3-ACETIC ACID 28 protein degradation. These results indicate that BiAux acts as an allosteric modulator of specific auxin co-receptors. Therefore, BiAux exerts a fine-tune regulation of auxin signaling aimed to the specific formation of LR among the many development processes regulated by auxin.
Collapse
Affiliation(s)
- Mary Paz González-García
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Angela Sáez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Universidad Francisco de Vitoria, Facultad de Ciencias Experimentales, Edificio E., 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Mónica Lanza
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Estefano Bustillo-Avendaño
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - María José Hernaiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juan C del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
52
|
Tiwari K, Tripathi S, Mahra S, Mathew S, Rana S, Tripathi DK, Sharma S. Carrier-based delivery system of phytohormones in plants: stepping outside of the ordinary. PHYSIOLOGIA PLANTARUM 2024; 176:e14387. [PMID: 38925551 DOI: 10.1111/ppl.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 06/28/2024]
Abstract
Climate change is increasing the stresses on crops, resulting in reduced productivity and further augmenting global food security issues. The dynamic climatic conditions are a severe threat to the sustainability of the ecosystems. The role of technology in enhancing agricultural produce with the minimum environmental impact is hence crucial. Active molecule/Plant growth regulators (PGRs) are molecules helping plants' growth, development, and tolerance to abiotic and biotic stresses. However, their degradation, leaching in surrounding soil and ground water, as well as the assessment of the correct dose of application etc., are some of the technical disadvantages faced. They can be resolved by encapsulation/loading of PGRs on polymer matrices. Micro/nanoencapsulation is a revolutionary tool to deliver bioactive compounds in an economically affordable and environmentally friendly way. Carrier-based smart delivery systems could be a better alternative to PGRs application in the agriculture field than conventional methods (e.g., spraying). The physiochemical properties and release kinetics of PGRs from the encapsulating system are being explored. Therefore, the present review emphasizes the current status of PGRs encapsulation approach and their potential benefits to plants. This review also addressed the mechanistic action of carrier-based delivery systems for release, which may aid in developing smart delivery systems with specific tailored properties in future research.
Collapse
Affiliation(s)
- Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Sobhitha Mathew
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| |
Collapse
|
53
|
Zhang J, Li S, Gao X, Liu Y, Fu B. Genome-wide identification and expression pattern analysis of the Aux/IAA (auxin/indole-3-acetic acid) gene family in alfalfa (Medicago sativa) and the potential functions under drought stress. BMC Genomics 2024; 25:382. [PMID: 38637768 PMCID: PMC11025244 DOI: 10.1186/s12864-024-10313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Auxin/induced-3-acetic acid (Aux/IAA) is an important plant hormone that affects plant growth and resistance to abiotic stresses. Drought stress is a vital factor in reducing plant biomass yield and production quality. Alfalfa (Medicago sativa L.) is the most widely planted leguminous forage and one of the most economically valuable crops in the world. Aux/IAA is one of the early responsive gene families of auxin, playing a crucial role in response to drought stress. However, the characteristics of the Aux/IAA gene family in alfalfa and its potential function in response to drought stress are still unknown. RESULT A total of 41 Aux/IAA gene members were identified in alfalfa genome. The physicochemical, peptide structure, secondary and tertiary structure analysis of proteins encoded by these genes revealed functional diversity of the MsIAA gene. A phylogenetic analysis classified the MsIAA genes into I-X classes in two subgroups. And according to the gene domain structure, these genes were classified into typical MsIAA and atypical MsIAA. Gene structure analysis showed that the MsIAA genes contained 1-4 related motifs, and except for the third chromosome without MsIAAs, they were all located on 7 chromosomes. The gene duplication analysis revealed that segmental duplication and tandem duplication greatly affected the amplification of the MsIAA genes. Analysis of the Ka/Ks ratio of duplicated MsAux/IAA genes suggested purification selection pressure was high and functional differences were limited. In addition, identification and classification of promoter cis-elements elucidated that MsIAA genes contained numerous elements associated to phytohormone response and abiotic stress response. The prediction protein-protein interaction network showed that there was a complex interaction between the MsAux/IAA genes. Gene expression profiles were tissue-specific, and MsAux/IAA had a broad response to both common abiotic stress (ABA, salt, drought and cold) and heavy metal stress (Al and Pb). Furthermore, the expression patterns analysis of 41 Aux/IAA genes by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Aux/IAA genes can act as positive or negative factors to regulate the drought resistance in alfalfa. CONCLUSION This study provides useful information for the alfalfa auxin signaling gene families and candidate evidence for further investigation on the role of Aux/IAA under drought stress. Future studies could further elucidate the functional mechanism of the MsIAA genes response to drought stress.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co, Ltd, Hohhot, 010000, China
| | - BingZhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China.
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Xixia District, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, 750021, China.
| |
Collapse
|
54
|
Agbodjato NA, Babalola OO. Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ 2024; 12:e16836. [PMID: 38638155 PMCID: PMC11025545 DOI: 10.7717/peerj.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/04/2024] [Indexed: 04/20/2024] Open
Abstract
Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Nadège Adoukè Agbodjato
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire, Université d’Abomey-Calavi, Calavi, Benin
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
| |
Collapse
|
55
|
Zhang Y, Wu W, Shen H, Yang L. Genome-wide identification and expression analysis of ARF gene family in embryonic development of Korean pine (Pinus koraiensis). BMC PLANT BIOLOGY 2024; 24:267. [PMID: 38600459 PMCID: PMC11005186 DOI: 10.1186/s12870-024-04827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND The Auxin Responsive Factor (ARF) family plays a crucial role in mediating auxin signal transduction and is vital for plant growth and development. However, the function of ARF genes in Korean pine (Pinus koraiensis), a conifer species of significant economic value, remains unclear. RESULTS This study utilized the whole genome of Korean pine to conduct bioinformatics analysis, resulting in the identification of 13 ARF genes. A phylogenetic analysis revealed that these 13 PkorARF genes can be classified into 4 subfamilies, indicating the presence of conserved structural characteristics within each subfamily. Protein interaction prediction indicated that Pkor01G00962.1 and Pkor07G00704.1 may have a significant role in regulating plant growth and development as core components of the PkorARFs family. Additionally, the analysis of RNA-seq and RT-qPCR expression patterns suggested that PkorARF genes play a crucial role in the development process of Korean pine. CONCLUSION Pkor01G00962.1 and Pkor07G00704.1, which are core genes of the PkorARFs family, play a potentially crucial role in regulating the fertilization and developmental process of Korean pine. This study provides a valuable reference for investigating the molecular mechanism of embryonic development in Korean pine and establishes a foundation for cultivating high-quality Korean pine.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Wei Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hailong Shen
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
56
|
Zhang X, Li J, Xing X, Li H, Zhang S, Chang J, Wei F, Zhang Y, Huang J, Zhang X, Wang Z. Transcriptome disclosure of hormones inducing stigma exsertion in Nicotiana tabacum by corolla shortening. BMC Genomics 2024; 25:320. [PMID: 38549066 PMCID: PMC10976690 DOI: 10.1186/s12864-024-10195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/06/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Stigma exsertion is an essential agricultural trait that can promote cross-pollination to improve hybrid seed production efficiency. However, the molecular mechanism controlling stigma exsertion remains unknown. RESULTS In this study, the Nicotiana tabacum cv. K326 and its two homonuclear-heteroplasmic lines, MSK326 (male-sterile) and MSK326SE (male-sterile and stigma exserted), were used to investigate the mechanism of tobacco stigma exsertion. A comparison of the flowers between the three lines showed that the stigma exsertion of MSK326SE was mainly due to corolla shortening. Therefore, the corollas of the three lines were sampled and presented for RNA-seq analysis, which found 338 candidate genes that may cause corolla shortening. These genes were equally expressed in K326 and MSK326, but differentially expressed in MSK326SE. Among these 338 genes, 15 were involved in hormone synthesis or signal transduction pathways. Consistently, the content of auxin, dihydrozeatin, gibberellin, and jasmonic acid was significantly decreased in the MSK326SE corolla, whereas abscisic acid levels were significantly increased. Additionally, seven genes involved in cell division, cell cycle, or cell expansion were identified. Protein-protein interaction network analysis identified 45 nodes and 79 protein interactions, and the largest module contained 20 nodes and 52 protein interactions, mainly involved in the hormone signal transduction and pathogen defensive pathways. Furthermore, a putative hub gene coding a serine/threonine-protein kinase was identified for the network. CONCLUSIONS Our results suggest that hormones may play a key role in regulating tobacco stigma exsertion induced by corolla shortening.
Collapse
Affiliation(s)
- Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China
| | - Juxu Li
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China
| | - Xuexia Xing
- Henan Provincial Branch of China National Tobacco Corporation, 450018, Zhengzhou, China
| | - Hongchen Li
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, 472000, Sanmenxia, China
| | - Songtao Zhang
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jianbo Chang
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, 472000, Sanmenxia, China
| | - Fengjie Wei
- Henan Provincial Branch of China National Tobacco Corporation, 450018, Zhengzhou, China
| | - Yongfeng Zhang
- Shangluo Branch of Shanxi provincial Tobacco Company, 726000, Shangluo, China
| | - Jinhui Huang
- Shangluo Branch of Shanxi provincial Tobacco Company, 726000, Shangluo, China.
| | - Xuelin Zhang
- College of Agronomy, Henan Agricultural University, 450046, Zhengzhou, China.
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, 450046, Zhengzhou, China.
| |
Collapse
|
57
|
Castro-Camba R, Vielba JM, Rico S, Covelo P, Cernadas MJ, Vidal N, Sánchez C. Wounding-Related Signaling Is Integrated within the Auxin-Response Framework to Induce Adventitious Rooting in Chestnut. Genes (Basel) 2024; 15:388. [PMID: 38540447 PMCID: PMC10970416 DOI: 10.3390/genes15030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 06/14/2024] Open
Abstract
Wounding and exogenous auxin are needed to induce adventitious roots in chestnut microshoots. However, the specific inductive role of wounding has not been characterized in this species. In the present work, two main goals were established: First, we prompted to optimize exogenous auxin treatments to improve the overall health status of the shoots at the end of the rooting cycle. Second, we developed a time-series transcriptomic analysis to compare gene expression in response to wounding alone and wounding plus auxin, focusing on the early events within the first days after treatments. Results suggest that the expression of many genes involved in the rooting process is under direct or indirect control of both stimuli. However, specific levels of expression of relevant genes are only attained when both treatments are applied simultaneously, leading to the successful development of roots. In this sense, we have identified four transcription factors upregulated by auxin (CsLBD16, CsERF113, Cs22D and CsIAA6), with some of them also being induced by wounding. The highest expression levels of these genes occurred when wounding and auxin treatments were applied simultaneously, correlating with the rooting response of the shoots. The results of this work clarify the genetic nature of the wounding response in chestnut, its relation to adventitious rooting, and might be helpful in the development of more specific protocols for the vegetative propagation of this species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Conchi Sánchez
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Avda de Vigo s/n, 15705 Santiago de Compostela, Spain; (R.C.-C.); (J.M.V.); (S.R.); (P.C.); (M.J.C.); (N.V.)
| |
Collapse
|
58
|
Wang Y, Xu W, Liu Y, Yang J, Guo X, Zhang J, Pu J, Chen N, Zhang W. Identification and Transcriptome Analysis of a Novel Allelic Mutant of NAL1 in Rice. Genes (Basel) 2024; 15:325. [PMID: 38540384 PMCID: PMC10970654 DOI: 10.3390/genes15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Leaf morphology is a crucial aspect of plant architecture, yet the molecular mechanisms underlying leaf development remain incompletely understood. In this study, a narrow leaf mutant, m625, was identified in rice (Oryza sativa L.), exhibiting pleiotropic developmental defects. Pigment measurement revealed reduced levels of photochromic pigments in m625. Cytological analysis demonstrated that the m625 gene affected vascular patterns and cell division. Specifically, the narrowing of the leaf was attributed to a decrease in small vein number, shorter vein spacing, and an abnormal V-shaped arrangement of bulliform cells, while the thickening was caused by longer leaf veins, thicker mesophyll cells, and an increased number of parenchyma cell layers. The dwarf stature and thickened internode were primarily due to shortened internodes and an increase in cell layers, respectively. Positional cloning and complementation assays indicated that the m625 gene is a novel allele of NAL1. In the m625 mutant, a nucleotide deletion at position 1103 in the coding sequence of NAL1 led to premature termination of protein translation. Further RNA-Seq and qRT-PCR analyses revealed that the m625 gene significantly impacted regulatory pathways related to IAA and ABA signal transduction, photosynthesis, and lignin biosynthesis. Moreover, the m625 mutant displayed thinner sclerenchyma and cell walls in both the leaf and stem, particularly showing reduced lignified cell walls in the midrib of the leaf. In conclusion, our study suggests that NAL1, in addition to its known roles in IAA transport and leaf photosynthesis, may also participate in ABA signal transduction, as well as regulate secondary cell wall formation and sclerenchyma thickness through lignification.
Collapse
Affiliation(s)
- Yang Wang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanxin Xu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Yan Liu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jie Yang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Xin Guo
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jiaruo Zhang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jisong Pu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Nenggang Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Wenfeng Zhang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
59
|
Hao J, Tan J, Zhang Y, Gu X, Zhu G, Wang S, Li J. Sewage sludge-derived nutrients and biostimulants stimulate rice leaf photosynthesis and root metabolism to enhance carbohydrate, nitrogen and antioxidants accumulation. CHEMOSPHERE 2024; 352:141335. [PMID: 38301837 DOI: 10.1016/j.chemosphere.2024.141335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The production of high quality liquid nitrogen fertilizer with both nutrient comprehensive and biostimulant properties by alkaline thermal hydrolysis of sewage sludge has shown great potential in agricultural production. However, little is known about the effects of sewage sludge-derived nutrients, and biostimulants (SS-NB) on leaf photosynthesis and root growth in rice. Phenotypic, metabolic and microbial analyses were used to reveal the mechanism of SS-NB on rice. Compared to NF treatment, phenotypic parameters (fresh/dry weight, soluble sugar, amino acid, protein) were increased by SS-NB in rice. SS-NB can enhance the photosynthesis of rice leaves by improving the photoconversion efficiency, chlorophyll content, ATP synthase activity, Rubisco and NADPH production. Meanwhile, SS-NB also increased antioxidant capacity (SOD, POD, CAT and proline) in rice leaf and root tissues. Metabolomics revealed that SS-NB application increased the expression levels of metabolites in root and leaf tissues, including carbohydrate, nitrogen and sulfur metabolism, amino acid metabolism, antioxidants, and phytohormone. Most importantly, the regulation of metabolites in rice root tissues is more sensitive than in leaf tissues, especially to the higher levels of antioxidants and phytohormones (IAA and GA) in rice root tissues. Furthermore, SS-NB increased the abundance of photosynthetic autotrophic, organic acids-degrading and denitrifying functional bacteria in rice roots and recruited plant growth-promoting bacteria (Azospirillum and norank_f_JG30-KF-CM45), while the NF treatment group resulted in an imbalance of the microbial community, leading to the dominance of pathogenic bacteria. The results showed that SS-NB had great application potential in crop growth and stress resistance improvement.
Collapse
Affiliation(s)
- Jiahou Hao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiayi Tan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing, 100082, China
| | - Xuejia Gu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Ge Zhu
- Wuxi Huilian Green Ecological Technology Co., LTD, Wuxi, 214100, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
60
|
Bai X, Han Y, Han L. Transcriptional alterations of peanut root during interaction with growth-promoting Tsukamurella tyrosinosolvens strain P9. PLoS One 2024; 19:e0298303. [PMID: 38358983 PMCID: PMC10868839 DOI: 10.1371/journal.pone.0298303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The plant growth-promoting rhizobacterium Tsukamurella tyrosinosolvens P9 can improve peanut growth. In this study, a co-culture system of strain P9 and peanut was established to analyze the transcriptome of peanut roots interacting with P9 for 24 and 72 h. During the early stage of co-culturing, genes related to mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction, ethylene synthesis, and cell wall pectin degradation were induced, and the up-regulation of phenylpropanoid derivative, flavonoid, and isoflavone synthesis enhanced the defense response of peanut. The enhanced expression of genes associated with photosynthesis and carbon fixation, circadian rhythm regulation, indoleacetic acid (IAA) synthesis, and cytokinin decomposition promoted root growth and development. At the late stage of co-culturing, ethylene synthesis was reduced, whereas Ca2+ signal transduction, isoquinoline alkaloid synthesis, and ascorbate and aldarate metabolism were up-regulated, thereby maintaining root ROS homeostasis. Sugar decomposition and oxidative phosphorylation and nitrogen and fatty acid metabolism were induced, and peanut growth was significantly promoted. Finally, the gene expression of seedlings inoculated with strain P9 exhibited temporal differences. The results of our study, which explored transcriptional alterations of peanut root during interacting with P9, provide a basis for elucidating the growth-promoting mechanism of this bacterial strain in peanut.
Collapse
Affiliation(s)
- Xue Bai
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yujie Han
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Lizhen Han
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
61
|
Fan J, Deng M, Li B, Fan G. Genome-Wide Identification of the Paulownia fortunei Aux/IAA Gene Family and Its Response to Witches' Broom Caused by Phytoplasma. Int J Mol Sci 2024; 25:2260. [PMID: 38396939 PMCID: PMC10889751 DOI: 10.3390/ijms25042260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The typical symptom of Paulownia witches' broom (PaWB), caused by phytoplasma infection, is excessive branching, which is mainly triggered by auxin metabolism disorder. Aux/IAA is the early auxin-responsive gene that participates in regulating plant morphogenesis such as apical dominance, stem elongation, lateral branch development, and lateral root formation. However, no studies have investigated the response of the Aux/IAA gene family to phytoplasma infection in Paulownia fortunei. In this study, a total of 62 Aux/IAA genes were found in the genome. Phylogenetic analysis showed that PfAux/IAA genes could be divided into eight subgroups, which were formed by tandem duplication and fragment replication. Most of them had a simple gene structure, and several members lacked one or two conserved domains. By combining the expression of PfAux/IAA genes under phytoplasma stress and SA-treated phytoplasma-infected seedlings, we found that PfAux/IAA13/33/45 may play a vital role in the occurrence of PaWB. Functional analysis based on homologous relationships showed a strong correlation between PfAux/IAA45 and branching. Protein-protein interaction prediction showed that PfARF might be the binding partner of PfAux/IAA, and the yeast two-hybrid assay and bimolecular fluorescent complementary assay confirmed the interaction of PfAux/IAA45 and PfARF13. This study provides a theoretical basis for further understanding the function of the PfAux/IAA gene family and exploring the regulatory mechanism of branching symptoms caused by PaWB.
Collapse
Affiliation(s)
- Jiaming Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingbing Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (J.F.); (M.D.); (B.L.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
62
|
Xu L, Liu Y, Zhang J, Wu W, Hao Z, He S, Li Y, Shi J, Chen J. Genomic survey and expression analysis of LcARFs reveal multiple functions to somatic embryogenesis in Liriodendron. BMC PLANT BIOLOGY 2024; 24:94. [PMID: 38326748 PMCID: PMC10848544 DOI: 10.1186/s12870-024-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Ye Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Shichan He
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Yiran Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
63
|
Reddy VA, Saju JM, Nadimuthu K, Sarojam R. A non-canonical Aux/IAA gene MsIAA32 regulates peltate glandular trichome development in spearmint. FRONTIERS IN PLANT SCIENCE 2024; 15:1284125. [PMID: 38375083 PMCID: PMC10875047 DOI: 10.3389/fpls.2024.1284125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Phytohormone auxin controls various aspects of plant growth and development. The typical auxin signalling involves the degradation of canonical Aux/IAA proteins upon auxin perception releasing the auxin response factors (ARF) to activate auxin-regulated gene expression. Extensive research has been pursued in deciphering the role of canonical Aux/IAAs, however, the function of non-canonical Aux/IAA genes remains elusive. Here we identified a non-canonical Aux/IAA gene, MsIAA32 from spearmint (Mentha spicata), which lacks the TIR1-binding domain and shows its involvement in the development of peltate glandular trichomes (PGT), which are the sites for production and storage of commercially important essential oils. Using yeast two-hybrid studies, two canonical Aux/IAAs, MsIAA3, MsIAA4 and an ARF, MsARF3 were identified as the preferred binding partners of MsIAA32. Expression of a R2R3-MYB gene MsMYB36 and a cyclin gene MsCycB2-4 was altered in MsIAA32 suppressed plants indicating that these genes are possible downstream targets of MsIAA32 mediated signalling. Ectopic expression of MsIAA32 in Arabidopsis affected non-glandular trichome formation along with other auxin related developmental traits. Our findings establish the role of non-canonical Aux/IAA mediated auxin signalling in PGT development and reveal species-specific functionalization of Aux/IAAs.
Collapse
Affiliation(s)
| | | | | | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
64
|
Wang X, Jia C, An L, Zeng J, Ren A, Han X, Wang Y, Wu S. Genome-wide identification and expression characterization of the GH3 gene family of tea plant (Camellia sinensis). BMC Genomics 2024; 25:120. [PMID: 38280985 PMCID: PMC10822178 DOI: 10.1186/s12864-024-10004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
To comprehensively understand the characteristics of the GH3 gene family in tea plants (Camellia sinensis), we identified 17 CsGH3 genes and analyzed their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues. The study showed that the 17 CsGH3 genes are distributed on 9 chromosomes, and based on evolutionary analysis, the CsGH3 members were divided into three subgroups. Gene duplication analysis revealed that segmental duplications have a significant impact on the amplification of CsGH3 genes. In addition, we identified and classified cis-elements in the CsGH3 gene promoters and detected elements related to plant hormone responses and non-biotic stress responses. Through expression pattern analysis, we observed tissue-specific expression of CsGH3.3 and CsGH3.10 in flower buds and roots. Moreover, based on predictive analysis of upstream regulatory transcription factors of CsGH3, we identified the potential transcriptional regulatory role of gibberellin response factor CsDELLA in CsGH3.14 and CsGH3.15. In this study, we found that CsGH3 genes are involved in a wide range of activities, such as growth and development, stress response, and transcription. This is the first report on CsGH3 genes and their potential roles in tea plants. In conclusion, these results provide a theoretical basis for elucidating the role of GH3 genes in the development of perennial woody plants and offer new insights into the synergistic effects of multiple hormones on plant growth and development in tea plants.
Collapse
Affiliation(s)
- Xinge Wang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Chunyu Jia
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Lishuang An
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Jiangyan Zeng
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Aixia Ren
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xin Han
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Yiqing Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Shuang Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
65
|
Tian Y, Yang W, Wan S, Fang S. Insights into the Hormone-Regulating Mechanism of Adventitious Root Formation in Softwood Cuttings of Cyclocarya paliurus and Optimization of the Hormone-Based Formula for Promoting Rooting. Int J Mol Sci 2024; 25:1343. [PMID: 38279343 PMCID: PMC10816064 DOI: 10.3390/ijms25021343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Adventitious root (AR) formation is vital for successful cutting propagation in plants, while the dynamic regulation of phytohormones is viewed as one of the most important factors affecting AR formation. Cyclocarya paliurus, a hard-to-root plant, is faced with the bottleneck of cloning its superior varieties in practice. In this study, ten treatments were designed to figure out the best hormone-based formula for promoting AR formation in softwood cuttings and explore their hormone-regulating mechanisms. Both the rooting process and the rooting parameters of the softwood cuttings were significantly affected by different hormone-based formulas (p < 0.05), while the greatest rooting rate (93%) and root quality index were achieved in the H3 formula (SR3:IR3 = 1:1). Significant differences in the measured phytohormone concentrations, as well as in their ratios, were detected among the cuttings sampled at various AR formation stages (p < 0.05), whereas the dynamics for each phytohormone varied greatly during AR formation. The transcriptome analysis showed 12,028 differentially expressed genes (DEGs) identified during the rooting process of C. paliurus cuttings, while the KEGG enrichment analysis indicated that a total of 20 KEGG terms were significantly enriched in all the comparison samples, with 253 DEGs detected in signal transduction. Furthermore, 19 genes with vital functions in regulating the hormone signaling pathway were identified by means of a WGCNA analysis. Our results not only optimize a hormone-based formula for improving the rooting of C. paliurus cuttings but also provide an insight into the hormonal regulatory network during AR formation in softwood C. paliurus cuttings.
Collapse
Affiliation(s)
- Yuan Tian
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
| | - Wanxia Yang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shiying Wan
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
66
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
67
|
Liu Z, Li XY, Yang L, Cheng YS, Nie XS, Wu T. Comparative physiological, metabolomic and transcriptomic analyses reveal the mechanisms of differences in pear fruit quality between distinct training systems. BMC PLANT BIOLOGY 2024; 24:28. [PMID: 38172675 PMCID: PMC10765702 DOI: 10.1186/s12870-023-04716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Canopy architecture is critical in determining the fruit-zone microclimate and, ultimately, in determining an orchard's success in terms of the quality and quantity of the fruit produced. However, few studies have addressed how the canopy environment leads to metabolomic and transcriptomic alterations in fruits. Designing strategies for improving the quality of pear nutritional components relies on uncovering the related regulatory mechanisms. RESULTS We performed an in-depth investigation of the impact of canopy architecture from physiological, metabolomic and transcriptomic perspectives by comparing pear fruits grown in a traditional freestanding system (SP) or a flat-type trellis system (DP). Physiological studies revealed relatively greater fruit sizes, soluble solid contents and titratable acidities in pear fruits from DP systems with open canopies. Nontargeted metabolite profiling was used to characterize fruits at the initial ripening stage. Significant differences in fruit metabolites, including carbohydrates, nucleic acids, alkaloids, glycerophospholipids, sterol lipids, and prenol lipids, were observed between the two groups. Transcriptomic analysis indicated that a series of organic substance catabolic processes (e.g., the glycerol-3-phosphate catabolic process, pectin catabolic process and glucan catabolic process) were overrepresented in fruits of the DP system. Moreover, integrative analysis of the metabolome and transcriptome at the pathway level showed that DP pear fruits may respond to the canopy microenvironment by upregulating phenylpropanoid biosynthesis pathway genes such as PpPOD. Transient assays revealed that the contents of malic acid and citric acid were lower in the pear flesh of PpPOD RNAi plants, which was associated with regulating the expression of organic acid metabolism-related genes. CONCLUSIONS Our results provide fundamental evidence that at the physiological and molecular levels, open-canopy architecture contributes to improving pear fruit quality and is correlated with increased levels of carbohydrates and lipid-like molecules. This study may lead to the development of rational culture practices for enhancing the nutritional traits of pear fruits.
Collapse
Affiliation(s)
- Zheng Liu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Xie-Yu Li
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Li Yang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Yin-Sheng Cheng
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Xian-Shuang Nie
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Tao Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
| |
Collapse
|
68
|
Zhang Z, Qu J, Lu M, Zhao X, Xu Y, Wang L, Liu Z, Shi Y, Liu C, Li Y, Wang C, Xu M, Nan Z, Cao Q, Pan J, Liu W, Li X, Sun Q, Wang W. The maize transcription factor CCT regulates drought tolerance by interacting with Fra a 1, E3 ligase WIPF2, and auxin response factor Aux/IAA8. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:103-122. [PMID: 37725963 DOI: 10.1093/jxb/erad372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Plants are commonly exposed to abiotic stressors, which can affect their growth, productivity, and quality. Previously, the maize transcription factor ZmCCT was shown to be involved in the photoperiod response, delayed flowering, and quantitative resistance to Gibberella stalk rot. In this study, we demonstrate that ZmCCT can regulate plant responses to drought. ZmCCT physically interacted with ZmFra a 1, ZmWIPF2, and ZmAux/IAA8, which localized to the cell membrane, cytoplasm, and nucleus, respectively, both in vitro and in vivo in a yeast two-hybrid screen in response to abiotic stress. Notably, ZmCCT recruits ZmWIPF2 to the nucleus, which has strong E3 self-ubiquitination activity dependent on its RING-H2 finger domain in vitro. When treated with higher indole-3-acetic acid/abscisic acid ratios, the height and root length of Y331-ΔTE maize plants increased. Y331-ΔTE plants exhibited increased responses to exogenously applied auxin or ABA compared to Y331 plants, indicating that ZmCCT may be a negative regulator of ABA signalling in maize. In vivo, ZmCCT promoted indole-3-acetic acid biosynthesis in ZmCCT-overexpressing Arabidopsis. RNA-sequencing and DNA affinity purification-sequencing analyses showed that ZmCCT can regulate the expression of ZmRD17, ZmAFP3, ZmPP2C, and ZmARR16 under drought. Our findings provide a detailed overview of the molecular mechanism controlling ZmCCT functions and highlight that ZmCCT has multiple roles in promoting abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhaoheng Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiayue Qu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Min Lu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xinyu Zhao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yang Xu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Li Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhongjia Liu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yingying Shi
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Chaotian Liu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yipu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Zhangjie Nan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qingqin Cao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jinbao Pan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinrui Li
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qingpeng Sun
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
69
|
Li S, Wang HY, Zhang Y, Huang J, Chen Z, Shen RF, Zhu XF. Auxin is involved in cadmium accumulation in rice through controlling nitric oxide production and the ability of cell walls to bind cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166644. [PMID: 37659569 DOI: 10.1016/j.scitotenv.2023.166644] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Although auxin has been linked to plants' responses to cadmium (Cd) stress, the exact mechanism is yet elusive. The objective of the current investigation was to determine the role and the mechanism of auxin in controlling rice's Cd accumulation. Rice roots with Cd stress have higher endogenous auxin levels, and exogenous auxin combined Cd treatment could reduce root cell wall's hemicellulose content when compared with Cd treatment alone, which in turn reduced its fixation of Cd, as well as decreased the expression of OsCd1 (a major facilitator superfamily gene), OsNRAMP1/5 (Natural Resistance-Associated Macrophage Protein 1/5), OsZIP5/9 (Zinc Transporter 5/9), and OsHMA2 (Heavy Metal ATPase 2) that participated in Cd uptake and root to shoot translocation. Furthermore, less Cd accumulated in the shoots as a result of auxin's impact in increasing the expression of OsCAL1 (Cadmium accumulation in Leaf 1), OsABCG36/OsPDR9 (G-type ATP-binding cassette transporter/Pleiotropic drug resistance 9), and OsHMA3, which were in charge of Cd efflux and sequestering into vacuoles, respectively. Additionally, auxin decreased endogenous nitric oxide (NO) levels and antioxidant enzyme activity, while treatment of a NO scavenger-cPTIO-reduced auxin's alleviatory effects. In conclusion, the rice's ability to tolerate Cd toxicity was likely increased by the auxin-accelerated cell wall Cd exclusion mechanism, a pathway that controlled by the buildup of NO.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Yue Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
70
|
Zhu C, Jiang R, Wen S, Xia T, Zhu S, Hou X. Foliar spraying of indoleacetic acid (IAA) enhances the phytostabilization of Pb in naturally tolerant ryegrass by limiting the root-to-shoot transfer of Pb and improving plant growth. PeerJ 2023; 11:e16560. [PMID: 38111653 PMCID: PMC10726742 DOI: 10.7717/peerj.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Exogenous addition of IAA has the potential to improve the metal tolerance and phytostabilization of plants, but these effects have not been systematically investigated in naturally tolerant plants. Ryegrass (Lolium perenne L.) is a typical indigenous plant in the Lanping Pb/Zn mining area with high adaptability. This study investigated the phytostabilization ability and Pb tolerance mechanism of ryegrass in response to Pb, with or without foliar spraying of 0.1 mmol L-1 IAA. The results indicated that appropriate IAA treatment could be used to enhance the phytostabilization efficiency of naturally tolerant plants. Foliar spraying of IAA increased the aboveground and belowground biomass of ryegrass and improved root Pb phytostabilization. Compared to Pb-treated plants without exogenous IAA addition, Pb concentration in the shoots of ryegrass significantly decreased, then increased in the roots after the foliar spraying of IAA. In the 1,000 mg kg-1 Pb-treated plants, Pb concentration in the shoots decreased by 69.9% and increased by 79.1% in the roots after IAA treatment. IAA improved plant growth, especially in soils with higher Pb concentration. Foliar spraying of IAA increased shoot biomass by 35.9% and root biomass by 109.4% in 1,000 mg kg-1 Pb-treated plants, and increased shoot biomass by 196.5% and root biomass by 71.5% in 2,000 mg kg-1 Pb-treated plants. In addition, Pb stress significantly decreased the content of photosynthetic pigments and anti-oxidase activities in ryegrass, while foliar spraying of IAA remedied these negative impacts. In summary, foliar spraying of IAA could increase the biomass and improve the Pb tolerance of ryegrass.
Collapse
Affiliation(s)
| | | | | | | | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Huzhou, China
- College of Environmental & Resource Sciences of Zhejiang University, Hangzhou, China
| | | |
Collapse
|
71
|
Zhao Y, Ji X, Liu X, Qin L, Tan D, Wu D, Bai C, Yang J, Xie J, He Y. Age-dependent dendrobine biosynthesis in Dendrobium nobile: insights into endophytic fungal interactions. Front Microbiol 2023; 14:1294402. [PMID: 38149273 PMCID: PMC10749937 DOI: 10.3389/fmicb.2023.1294402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Dendrobium nobile (D. nobile), a valued Chinese herb known for its diverse pharmacological effects, owes much of its potency to the bioactive compound dendrobine. However, dendrobine content varies significantly with plant age, and the mechanisms governing this variation remain unclear. This study delves into the potential role of endophytic fungi in shaping host-microbe interactions and influencing plant metabolism. Methods Using RNA-seq, we examined the transcriptomes of 1-year-old, 2-year-old, and 3-year-old D. nobile samples and through a comprehensive analysis of endophytic fungal communities and host gene expression in D. nobile stems of varying ages, we aim to identify associations between specific fungal taxa and host genes. Results The results revealing 192 differentially expressed host genes. These genes exhibited a gradual decrease in expression levels as the plants aged, mirroring dendrobine content changes. They were enriched in 32 biological pathways, including phagosome, fatty acid degradation, alpha-linolenic acid metabolism, and plant hormone signal transduction. Furthermore, a significant shift in the composition of the fungal community within D. nobile stems was observed along the age gradient. Olipidium, Hannaella, and Plectospherella dominated in 1-year-old plants, while Strelitziana and Trichomerium prevailed in 2-year-old plants. Conversely, 3-year-old plants exhibited additional enrichment of endophytic fungi, including the genus Rhizopus. Two gene expression modules (mediumpurple3 and darkorange) correlated significantly with dominant endophytic fungi abundance and dendrobine accumulation. Key genes involved in dendrobine synthesis were found associated with plant hormone synthesis. Discussion This study suggests that the interplay between different endophytic fungi and the hormone signaling system in D. nobile likely regulates dendrobine biosynthesis, with specific endophytes potentially triggering hormone signaling cascades that ultimately influence dendrobine synthesis.
Collapse
Affiliation(s)
- Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiaolong Ji
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiaoqi Liu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Chaojun Bai
- Guangxi Shenli Pharmaceutical Co., Ltd., Yulin, China
| | - Jiyong Yang
- Chishui Xintian Chinese Medicine Industry Development Co., Ltd., Zunyi, China
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
72
|
Zhang X, Yu F, Lyu X, Chen J, Zeng H, Xu N, Wu Y, Zhu Q. Transcriptome profiling of Bergenia purpurascens under cold stress. BMC Genomics 2023; 24:754. [PMID: 38062379 PMCID: PMC10702111 DOI: 10.1186/s12864-023-09850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Bergenia purpurascens is an important medicinal, edible and ornamental plant. It generally grows in high-altitude areas with complex climates. There have been no reports about how B. purpurascens survives under cold stress. Here, the B. purpurascens under low temperature were subjected to transcriptomics analysis to explore the candidate genes and pathways that involved in the cold tolerance of B. purpurascens. Compared with the control treatment, we found 9,600 up-regulated differentially expressed genes (DEGs) and 7,055 down-regulated DEGs. A significant number of DEGs were involved in the Ca2+ signaling pathway, mitogen-activated protein kinase (MAPK) cascade, plant hormone signaling pathway, and lipid metabolism. A total of 400 transcription factors were found to respond to cold stress, most of which belonged to the MYB and AP2/ERF families. Five novel genes were found to be potential candidate genes involved in the cold tolerance of B. purpurascens. The study provide insights into further investigation of the molecular mechanism of how B. purpurascens survives under cold stress.
Collapse
Affiliation(s)
- Xuebin Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Fang Yu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xin Lyu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingyu Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hongyan Zeng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nuomei Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yufeng Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiankun Zhu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
73
|
Mathura SR, Sutton F, Bowrin V. Genome-wide identification, characterization, and expression analysis of the sweet potato (Ipomoea batatas [L.] Lam.) ARF, Aux/IAA, GH3, and SAUR gene families. BMC PLANT BIOLOGY 2023; 23:622. [PMID: 38057702 DOI: 10.1186/s12870-023-04598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Auxins are known to have roles in the tuberization process in sweet potato (Ipomoea batatas [L.] Lam.) and these effects are mediated by various auxin signalling gene families. In this study, an analysis of the sweet potato genome was performed to identify the ARF, Aux/IAA, GH3, and SAUR auxin signalling gene family members in this crop. RESULTS A total of 29 ARF, 39 Aux/IAA, 13 GH3, and 200 SAUR sequences were obtained, and their biochemical properties and gene expression profiles were analysed. The sequences were relatively conserved based on exon-intron structure, motif analysis, and phylogenetic tree construction. In silico expression analyses of the genes in fibrous and storage roots indicated that many sequences were not differentially expressed in tuberizing and non-tuberizing roots. However, some ARF, Aux/IAA, and SAUR genes were up-regulated in tuberizing storage roots compared to non-tuberizing fibrous roots while many GH3 genes were down-regulated. Additionally, these genes were expressed in a variety of plant parts, with some genes being highly expressed in shoots, leaves, and stems while others had higher expression in the roots. Some of these genes are up-regulated during the plant's response to various hormone treatments and abiotic stresses. Quantitative RT-PCR confirmation of gene expression was also conducted, and the results were concordant with the in silico analyses. A protein-protein interaction network was predicted for the differentially expressed genes, suggesting that these genes likely form part of a complex regulatory network that controls tuberization. These results confirm those of existing studies that show that auxin signalling genes have numerous roles in sweet potato growth and development. CONCLUSION This study provides useful information on the auxin signalling gene families in Ipomoea batatas and suggests putative candidates for further studies on the role of auxin signalling in tuberization and plant development.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago.
| | | | - Valerie Bowrin
- The Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| |
Collapse
|
74
|
de Oliveira AJ, Ono MA, Suguiura IMDS, Zucareli C, Garcia EB, Olchanheski LR, Ono EYS. Potential of yeasts as biocontrol agents against Fusarium graminearum in vitro and on corn. J Appl Microbiol 2023; 134:lxad296. [PMID: 38049375 DOI: 10.1093/jambio/lxad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/06/2023]
Abstract
AIMS The antifungal effect of the yeast species Kluyveromyces marxianus, Meyerozyma caribbica, and Wickerhamomyces anomalus was evaluated against two Fusarium graminearum strains (FRS 26 and FSP 27) in vitro and on corn seeds. METHODS AND RESULTS The antifungal effect of the yeasts against F. graminearum was evaluated using scanning electron microscopy and extracellular chitinase and glucanase production to further elucidate the biocontrol mode of action. In addition, the germination percentage and vigor test were investigated after applying yeast on corn seeds. All the yeast strains inhibited fungal growth in vitro (57.4%-100.0%) and on corn seeds (18.9%-87.2%). In co-culture with antagonistic yeasts, F. graminearum showed collapsed hyphae and turgidity loss, which could be related to the ability of yeasts to produce chitinases and glucanases. The three yeasts did not affect the seed corn germination, and W. anomalus and M. caribbica increased corn seed growth parameters (germination percentage, shoot and root length, and shoot dry weight). CONCLUSION Meyerozyma caribbica and W. anomalus showed satisfactory F. graminearum growth inhibition rates and did not affect seed growth parameters. Further studies are required to evaluate the application of these yeasts to the crop in the field.
Collapse
Affiliation(s)
- Andressa Jacqueline de Oliveira
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Mario Augusto Ono
- Department of Pathological Sciences, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | | | - Claudemir Zucareli
- Department of Agronomy, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Emanueli Bastos Garcia
- Department of Agronomy, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Luiz Ricardo Olchanheski
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, 84030-900 Ponta Grossa, Paraná, Brazil
| | - Elisabete Yurie Sataque Ono
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
75
|
Cai X, Chen Y, Wang Y, Shen Y, Yang J, Jia B, Sun X, Sun M. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. PLANT CELL REPORTS 2023; 42:2011-2022. [PMID: 37812280 DOI: 10.1007/s00299-023-03079-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE OsERF096 negatively regulates rice cold tolerance and mediates IAA biosynthesis and signaling under cold stress. The APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors play important roles in regulating plant tolerance to abiotic stress. OsERF096 was previously identified as a direct target of miR1320, and was suggested to negatively regulate rice cold tolerance. In this study, we performed RNA-sequencing and targeted metabolomics assays to reveal the regulatory roles of OsERF096 in cold stress response. GO and KEGG analysis of differentially expressed genes showed that the starch and sucrose metabolism, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly enriched. Quantification analysis confirmed a significant difference in sugar contents among WT and OsERF096 transgenic lines under cold treatment. Targeted metabolomics analysis uncovered that IAA accumulation and signaling were modified by OsERF096 in response to cold stress. Expectedly, qRT-PCR assays confirmed significant OsIAAs and OsARFs expression changes in OsERF096 transgenic lines. Finally, we identified three targets of OsERF096 based on RNA-seq, qRT-PCR, and dual-LUC assays. In summary, these results revealed the multiple regulatory roles of OsERF096 in cold stress response.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
76
|
Shu H, Altaf MA, Mushtaq N, Fu H, Lu X, Zhu G, Cheng S, Wang Z. Physiological and Transcriptome Analysis of the Effects of Exogenous Strigolactones on Drought Responses of Pepper Seedlings. Antioxidants (Basel) 2023; 12:2019. [PMID: 38136139 PMCID: PMC10740728 DOI: 10.3390/antiox12122019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Drought stress significantly restricts the growth, yield, and quality of peppers. Strigolactone (SL), a relatively new plant hormone, has shown promise in alleviating drought-related symptoms in pepper plants. However, there is limited knowledge on how SL affects the gene expression in peppers when exposed to drought stress (DS) after the foliar application of SL. To explore this, we conducted a thorough physiological and transcriptome analysis investigation to uncover the mechanisms through which SL mitigates the effects of DS on pepper seedlings. DS inhibited the growth of pepper seedlings, altered antioxidant enzyme activity, reduced relative water content (RWC), and caused oxidative damage. On the contrary, the application of SL significantly enhanced RWC, promoted root morphology, and increased leaf pigment content. SL also protected pepper seedlings from drought-induced oxidative damage by reducing MDA and H2O2 levels and maintaining POD, CAT, and SOD activity. Moreover, transcriptomic analysis revealed that differentially expressed genes were enriched in ribosomes, ABC transporters, phenylpropanoid biosynthesis, and Auxin/MAPK signaling pathways in DS and DS + SL treatment. Furthermore, the results of qRT-PCR showed the up-regulation of AGR7, ABI5, BRI1, and PDR4 and down-regulation of SAPK6, NTF4, PYL6, and GPX4 in SL treatment compared with drought-only treatment. In particular, the key gene for SL signal transduction, SMXL6, was down-regulated under drought. These results elucidate the molecular aspects underlying SL-mediated plant DS tolerance, and provide pivotal strategies for effectively achieving pepper drought resilience.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Naveed Mushtaq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China; (H.S.); (M.A.A.); (N.M.); (H.F.); (X.L.); (G.Z.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
77
|
Wang M, Feng G, Yang Z, Wu J, Liu B, Xu X, Nie G, Huang L, Zhang X. Genome-Wide Characterization of the Aux/IAA Gene Family in Orchardgrass and a Functional Analysis of DgIAA21 in Responding to Drought Stress. Int J Mol Sci 2023; 24:16184. [PMID: 38003372 PMCID: PMC10671735 DOI: 10.3390/ijms242216184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Drought stress is an important factor that reduces plant biomass production and quality. As one of the most important economic forage grasses, orchardgrass (Dactylis glomerata) has high drought tolerance. Auxin/indole-3-acetic acid (Aux/IAA) is one of the early responsive gene families of auxin and plays a key role in the response to drought stress. However, the characteristics of the Aux/IAA gene family in orchardgrass and their potential function in responding to drought stress remain unclear. Here, 30 Aux/IAA members were identified in orchardgrass. Segmental duplication may be an important driving force in the evolution of the Aux/IAA gene family in orchardgrass. Some Aux/IAA genes were induced by IAA, drought, salt, and temperature stresses, implying that these genes may play important roles in responding to abiotic stresses. Heterologous expression in yeast revealed that DgIAA21 can reduce drought tolerance. Similarly, the overexpression of DgIAA21 also reduced drought tolerance in transgenic Arabidopsis, which was supported by lower total chlorophyll content and relative water content as well as higher relative electrolyte leakage and malondialdehyde content (MDA) than Col-0 plants under drought conditions. The results of this study provided valuable insight into the function of DgIAAs in response to drought stress, which can be further used to improve forage grass breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (G.F.); (Z.Y.)
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (G.F.); (Z.Y.)
| |
Collapse
|
78
|
Ohba Y, Yoshihara S, Sato R, Matsuoka K, Asahina M, Satoh S, Iwai H. Plasmodesmata callose binding protein 2 contributes to the regulation of cambium/phloem formation and auxin response during the tissue reunion process in incised Arabidopsis stem. JOURNAL OF PLANT RESEARCH 2023; 136:865-877. [PMID: 37707645 DOI: 10.1007/s10265-023-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Plants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion. In decapitated stems, auxin transport from the shoot apex is reduced and tissue reunion does not occur but is restored by application of indole-3-acetic acid (IAA). In this study, we found that plasmodesmata callose binding protein 2 (PDCB2) affects the expansion of the cambium/phloem region via changes in auxin response during the process of tissue reunion. PDCB2 was expressed in the cortex and endodermis on the incised side of stems 1-3 days after incision. PDCB2-knockout plants showed reduced callose deposition at plasmodesmata and DR5::GUS activity in the endodermis/cortex in the upper region of the incision accompanied by an increase in size of the cambium/phloem region during tissue reunion. In addition, PIN(PIN-FORMED)3, which is involved in lateral auxin transport, was induced by auxin in the cambium/phloem and endodermis/cortex in the upper part of the incision in wild type, but its expression of PIN3 was decreased in pdcb2 mutant. Our results suggest that PDCB2 contributes to the regulation of cambium/phloem development via auxin response.
Collapse
Affiliation(s)
- Yusuke Ohba
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Sakura Yoshihara
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryosuke Sato
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Keita Matsuoka
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Shinobu Satoh
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroaki Iwai
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
79
|
Jiang J, Wang Z, Chen Z, Wu Y, Mu M, Nie W, Zhao S, Cui G, Yin X. Identification and Evolutionary Analysis of the Auxin Response Factor (ARF) Family Based on Transcriptome Data from Caucasian Clover and Analysis of Expression Responses to Hormones. Int J Mol Sci 2023; 24:15357. [PMID: 37895037 PMCID: PMC10607010 DOI: 10.3390/ijms242015357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Caucasian clover (Trifolium ambiguum M. Bieb.) is an excellent perennial plant in the legume family Fabaceae, with a well-developed rhizome and strong clonal growth. Auxin is one of the most important phytohormones in plants and plays an important role in plant growth and development. Auxin response factor (ARF) can regulate the expression of auxin-responsive genes, thus participating in multiple pathways of auxin transduction signaling in a synergistic manner. No genomic database has been established for Caucasian clover. In this study, 71 TaARF genes were identified through a transcriptomic database of Caucasian clover rhizome development. Phylogenetic analysis grouped the TaARFs into six (1-6) clades. Thirty TaARFs contained a complete ARF structure, including three relatively conserved regions. Physical and chemical property analysis revealed that TaARFs are unstable and hydrophilic proteins. We also analyzed the expression pattern of TaARFs in different tissues (taproot, horizontal rhizome, swelling of taproot, rhizome bud and rhizome bud tip). Quantitative real-time RT-PCR revealed that all TaARFs were responsive to phytohormones (indole-3-acetic acid, gibberellic acid, abscisic acid and methyl jasmonate) in roots, stems and leaves. These results helped elucidate the role of ARFs in responses to different hormone treatments in Caucasian clover.
Collapse
Affiliation(s)
- Jingwen Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zirui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuchen Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Meiqi Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanting Nie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Siwen Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
80
|
Avdovic M, Garcia-Navarrete M, Ruiz-Sanchis D, Wabnik K. Dynamic context-dependent regulation of auxin feedback signaling in synthetic gene circuits. Proc Natl Acad Sci U S A 2023; 120:e2309007120. [PMID: 37812708 PMCID: PMC10589675 DOI: 10.1073/pnas.2309007120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
Phytohormone auxin plays a key role in regulating plant organogenesis. However, understanding the complex feedback signaling network that involves at least 29 proteins in Arabidopsis in the dynamic context remains a significant challenge. To address this, we transplanted an auxin-responsive feedback circuit responsible for plant organogenesis into yeast. By generating dynamic microfluidic conditions controlling gene expression, protein degradation, and binding affinity of auxin response factors to DNA, we illuminate feedback signal processing principles in hormone-driven gene expression. In particular, we recorded the regulatory mode shift between stimuli counting and rapid signal integration that is context-dependent. Overall, our study offers mechanistic insights into dynamic auxin response interplay trackable by synthetic gene circuits, thereby offering instructions for engineering plant architecture.
Collapse
Affiliation(s)
- Merisa Avdovic
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), 28223Madrid, Spain
| | - Mario Garcia-Navarrete
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), 28223Madrid, Spain
| | - Diego Ruiz-Sanchis
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), 28223Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), 28223Madrid, Spain
| |
Collapse
|
81
|
Li L, Li Y, Quan W, Ding G. Effects of PmaIAA27 and PmaARF15 genes on drought stress tolerance in pinus massoniana. BMC PLANT BIOLOGY 2023; 23:478. [PMID: 37807055 PMCID: PMC10561430 DOI: 10.1186/s12870-023-04498-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Auxin plays an important role in plant resistance to abiotic stress. The modulation of gene expression by Auxin response factors (ARFs) and the inhibition of auxin/indole-3-acetic acid (Aux/IAA) proteins play crucial regulatory roles in plant auxin signal transduction. However, whether the stress resistance of Masson pine (Pinus massoniana), as a representative pioneer species, is related to Aux/IAA and ARF genes has not been thoroughly studied and explored. RESULTS The present study provides preliminary evidence for the regulatory role of the PmaIAA27 gene in abiotic stress response in Masson pine. We investigated the effects of drought and hormone treatments on Masson pine by examining the expression patterns of PmaIAA27 and PmaARF15 genes. Subsequently, we conducted gene cloning, functional testing using transgenic tobacco, and explored gene interactions. Exogenous auxin irrigation significantly downregulated the expression of PmaIAA27 while upregulating PmaARF15 in Masson pine seedlings. Moreover, transgenic tobacco with the PmaIAA27 gene exhibited a significant decrease in auxin content compared to control plants, accompanied by an increase in proline content - a known indicator of plant drought resistance. These findings suggest that overexpression of the PmaIAA27 gene may enhance drought resistance in Masson pine. To further investigate the interaction between PmaIAA27 and PmaARF15 genes, we performed bioinformatics analysis and yeast two-hybrid experiments which revealed interactions between PB1 structural region of PmaARF15 and PmaIAA27. CONCLUSION The present study provides new insights into the regulatory functions of Aux/IAA and ARF genes in Masson pine. Overexpression of PmaIAA gene may have negative effects on the growth of Masson pine, but may improve the drought resistance. Therefore, this study has great application prospects.
Collapse
Affiliation(s)
- Liangliang Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China
- Institute of Mountain Resources of Guizhou Province, Guiyang, 550001, China
| | - Yan Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China
| | - Wenxuan Quan
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China
| | - Guijie Ding
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550001, China.
| |
Collapse
|
82
|
Xie T, Shen S, Hu R, Li W, Wang J. Screening, Identification, and Growth Promotion of Antagonistic Endophytes Associated with Chenopodium quinoa Against Quinoa Pathogens. PHYTOPATHOLOGY 2023; 113:1839-1852. [PMID: 37948615 DOI: 10.1094/phyto-11-22-0419-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Fungal disease is one of the important reasons for crop yield reduction. Isolation of important endophytes with biocontrol and growth-promoting effects is of great significance for the exploitation of beneficial microbial resources and the biological control of crop fungal diseases. In this study, endophytes from roots, stems, and leaves of quinoa at different growth and development stages were isolated and purified; then the antagonistic activity and growth-promoting characteristics of antagonistic endophytes were determined. Finally, the antagonistic endophytes were identified by morphological characteristics and ITS/16S rRNA sequence analysis. Our results showed that 122 endophytic fungi and 371 endophytic bacteria were isolated from quinoa, of which three endophytic fungi and seven endophytic bacteria were screened that had inhibitory activity against quinoa pathogenic fungi. Most of the antagonistic strains could produce indole-3 acetic acid and had the ability to dissolve organic phosphorus. In addition, the bacterial suspension of endophytic bacteria had the ability to promote the seed germination and plant growth of quinoa. The endophytic fungi with antagonistic activity were identified as Penicillium raperi and P. pulvillorum; the endophytic bacteria were identified as Bacillus paralicheniformis, B. tequilensis, and B. velezensis, respectively. The strains of quinoa endophytes in this study can provide rich microbial resources and a theoretical basis for biological control of plant fungal diseases and agricultural production.
Collapse
Affiliation(s)
- Tianyan Xie
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, Qinghai, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, Qinghai, China
- Qinghai Qaidam Vocational and Technical College, Delingha 817099, Qinghai, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, Qinghai, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, Qinghai, China
| | - Rong Hu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, Qinghai, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, Qinghai, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, Qinghai, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, Qinghai, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, Qinghai, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, Qinghai, China
| |
Collapse
|
83
|
Teng C, Zhang C, Guo F, Song L, Fang Y. Advances in the Study of the Transcriptional Regulation Mechanism of Plant miRNAs. Life (Basel) 2023; 13:1917. [PMID: 37763320 PMCID: PMC10533097 DOI: 10.3390/life13091917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
MicroRNAs (miRNA) are a class of endogenous, non-coding, small RNAs with about 22 nucleotides (nt), that are widespread in plants and are involved in various biological processes, such as development, flowering phase transition, hormone signal transduction, and stress response. The transcriptional regulation of miRNAs is an important process of miRNA gene regulation, and it is essential for miRNA biosynthesis and function. Like mRNAs, miRNAs are transcribed by RNA polymerase II, and these transcription processes are regulated by various transcription factors and other proteins. Consequently, the upstream genes regulating miRNA transcription, their specific expression, and the regulating mechanism were reviewed to provide more information for further research on the miRNA regulatory mechanism and help to further understand the regulatory networks of plant miRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Yanni Fang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (C.T.); (C.Z.); (F.G.)
| |
Collapse
|
84
|
Saile J, Wießner-Kroh T, Erbstein K, Obermüller DM, Pfeiffer A, Janocha D, Lohmann J, Wachter A. SNF1-RELATED KINASE 1 and TARGET OF RAPAMYCIN control light-responsive splicing events and developmental characteristics in etiolated Arabidopsis seedlings. THE PLANT CELL 2023; 35:3413-3428. [PMID: 37338062 PMCID: PMC10473197 DOI: 10.1093/plcell/koad168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.
Collapse
Affiliation(s)
- Jennifer Saile
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Theresa Wießner-Kroh
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Katarina Erbstein
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Dominik M Obermüller
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Anne Pfeiffer
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Denis Janocha
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Jan Lohmann
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
85
|
Chen H, Song Z, Wang L, Lai X, Chen W, Li X, Zhu X. Auxin-responsive protein MaIAA17-like modulates fruit ripening and ripening disorders induced by cold stress in 'Fenjiao' banana. Int J Biol Macromol 2023; 247:125750. [PMID: 37453644 DOI: 10.1016/j.ijbiomac.2023.125750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Cold stress severely affects the banana fruit softening and de-greening, significantly inhibiting the ripening processes. However, the mechanism of ripening disorder caused by chilling injury (CI) in banana fruit remains largely unknown. Herein, MaIAA17-like, an Auxin/Indole-3-Acetic Acid (Aux/IAA) family member, was found to be highly related to the softening and de-greening in 'Fenjiao' banana. Its expression was rapidly increased with fruit ripening and then gradually decreased under normal ripening conditions (22 °C). Notably, cold storage severely repressed MaIAA17-like expression but was rapidly increased following ethephon treatment for ripening in fruits without CI. However, the expression repression was not reverted in fruits with serious CI symptoms after 12 days of storage at 7 °C. AtMaIAA17-like bound and regulated the activities of promoters of chlorophyll (MaNOL and MaSGR1), starch (MaBAM6 and MaBAM8), and cell wall (MaSUR14 and MaPL8) degradation-related genes. MaIAA17-like also interacted with ethylene-insensitive 3-binding F-box protein (MaEBF1), further activating the expression of MaNOL, MaBAM8, MaPL8, and MaSUR14. Generally, the transient overexpression of MaIAA17-like promoted fruit ripening by inducing the expression of softening and de-greening related genes. However, silencing MaIAA17-like inhibited fruit ripening by reducing the expression of softening and de-greening related genes. These results imply that MaIAA17-like modulates fruit ripening by transcriptionally upregulating the key genes related to fruit softening and de-greening.
Collapse
Affiliation(s)
- Hangcong Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lihua Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiuhua Lai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
86
|
Bai Y, Xie Y, Cai M, Jiang J, Wu C, Zheng H, Gao J. GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2023; 12:2842. [PMID: 37570996 PMCID: PMC10421110 DOI: 10.3390/plants12152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribution and collinearity analysis identified 10 GA20ox genes evenly distributed on chromosomes, and the family genes were relatively conservative in evolution. The genetic relationship of GA20ox genes had been confirmed to be closest in different genera of plants in a phylogenetic and selective pressure analysis between Moso bamboo and rice. About 1/3 GA20ox genes experienced positive selective pressure with segmental duplication being the main driver of gene family expansion. Analysis of expression patterns revealed that only six PheGA20ox genes were expressed in different organs of shoot development and flowers, that there was redundancy in gene function. Underground organs were not the main site of GA synthesis in Moso bamboo, and floral organs are involved in the GA biosynthesis process. The auxin signaling factor PheARF47 was located upstream of PheGA20ox3 and PheGA20ox6 genes, where PheARF47 regulated PheGA20ox3 through cis-P box elements and cis-AuxRR elements, based on the result that promoter analysis combined with yeast one-hybrid and dual luciferase detection analysis identified. Overall, we identified the evolutionary pattern of PheGA20ox genes in Moso bamboo and the possible major synthesis sites of GA, screened for key genes in the crosstalk between auxin and GA, and laid the foundation for further exploration of the synergistic regulation of growth by GA and auxin in Moso bamboo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (Y.B.); (Y.X.); (M.C.); (J.J.); (C.W.); (H.Z.)
| |
Collapse
|
87
|
Djemal R, Bradai M, Amor F, Hanin M, Ebel C. Wheat type one protein phosphatase promotes salt and osmotic stress tolerance in arabidopsis via auxin-mediated remodelling of the root system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107832. [PMID: 37327648 DOI: 10.1016/j.plaphy.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
The control of optimal root growth and plant stress responses depends largely on a variety of phytohormones among which auxin and brassinosteroids (BRs) are the most influential. We have previously reported that the durum wheat type 1 protein phosphatase TdPP1 participates in the control of root growth by modulating BR signaling. In this study, we pursue our understanding of how TdPP1 fulfills this regulatory function on root growth by evaluating the physiological and molecular responses of Arabidopsis TdPP1 over-expressing lines to abiotic stresses. Our results showed that when exposed to 300 mM Mannitol or 100 mM NaCl, the seedlings of TdPP1 over-expressors exhibit modified root architecture with higher lateral root density, and longer root hairs concomitant with a lower inhibition of the primary root growth. These lines also exhibit faster gravitropic response and a decrease in primary root growth inhibition when exposed to high concentrations of exogenous IAA. On another hand, a cross between TdPP1 overexpressors and DR5:GUS marker line was performed to monitor auxin accumulation in roots. Remarkably, the TdPP1 overexpression resulted in an enhanced auxin gradient under salt stress with a higher accumulation in primary and lateral root tips. Moreover, TdPP1 transgenics exhibit a significant induction of a subset of auxin-responsive genes under salt stress conditions. Therefore, our results reveal a role of PP1 in enhancing auxin signaling to help shape greater root plasticity thus improving plant stress resilience.
Collapse
Affiliation(s)
- Rania Djemal
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Mariem Bradai
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Fatma Amor
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
88
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Zahl B, Niño de Rivera A, Muchero W, Fuxin L, Strauss SH. GWAS identifies candidate genes controlling adventitious rooting in Populus trichocarpa. HORTICULTURE RESEARCH 2023; 10:uhad125. [PMID: 37560019 PMCID: PMC10407606 DOI: 10.1093/hr/uhad125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
Adventitious rooting (AR) is critical to the propagation, breeding, and genetic engineering of trees. The capacity for plants to undergo this process is highly heritable and of a polygenic nature; however, the basis of its genetic variation is largely uncharacterized. To identify genetic regulators of AR, we performed a genome-wide association study (GWAS) using 1148 genotypes of Populus trichocarpa. GWASs are often limited by the abilities of researchers to collect precise phenotype data on a high-throughput scale; to help overcome this limitation, we developed a computer vision system to measure an array of traits related to adventitious root development in poplar, including temporal measures of lateral and basal root length and area. GWAS was performed using multiple methods and significance thresholds to handle non-normal phenotype statistics and to gain statistical power. These analyses yielded a total of 277 unique associations, suggesting that genes that control rooting include regulators of hormone signaling, cell division and structure, reactive oxygen species signaling, and other processes with known roles in root development. Numerous genes with uncharacterized functions and/or cryptic roles were also identified. These candidates provide targets for functional analysis, including physiological and epistatic analyses, to better characterize the complex polygenic regulation of AR.
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Jialin Yuan
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Damanpreet Kaur
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Yuan Jiang
- Statistics Department, Oregon State University, 103 SW Memorial Place, Corvallis, OR, 97331, United States
| | - Bahiya Zahl
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, 821 Volunteer Blvd., Knoxville, TN, 37996, United States
| | - Li Fuxin
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| |
Collapse
|
89
|
Lomin SN, Kolachevskaya OO, Arkhipov DV, Romanov GA. Canonical and Alternative Auxin Signaling Systems in Mono-, Di-, and Tetraploid Potatoes. Int J Mol Sci 2023; 24:11408. [PMID: 37511169 PMCID: PMC10380454 DOI: 10.3390/ijms241411408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.
Collapse
Affiliation(s)
- Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Oksana O Kolachevskaya
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
90
|
Ma S, Hu H, Zhang H, Ma F, Gao Z, Li X. Physiological response and transcriptome analyses of leguminous Indigofera bungeana Walp. to drought stress. PeerJ 2023; 11:e15440. [PMID: 37334133 PMCID: PMC10276564 DOI: 10.7717/peerj.15440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 06/20/2023] Open
Abstract
Objective Indigofera bungeana is a shrub with high quality protein that has been widely utilized for forage grass in the semi-arid regions of China. This study aimed to enrich the currently available knowledge and clarify the detailed drought stress regulatory mechanisms in I. bungeana, and provide a theoretical foundation for the cultivation and resistance breeding of forage crops. Methods This study evaluates the response mechanism to drought stress by exploiting multiple parameters and transcriptomic analyses of a 1-year-old seedlings of I. bungeana in a pot experiment. Results Drought stress significantly caused physiological changes in I. bungeana. The antioxidant enzyme activities and osmoregulation substance content of I. bungeana showed an increase under drought. Moreover, 3,978 and 6,923 differentially expressed genes were approved by transcriptome in leaves and roots. The transcription factors, hormone signal transduction, carbohydrate metabolism of regulatory network were observed to have increased. In both tissues, genes related to plant hormone signaling transduction pathway might play a more pivotal role in drought tolerance. Transcription factors families like basic helix-loop-helix (bHLH), vian myeloblastosis viral oncogene homolog (MYB), basic leucine zipper (bZIP) and the metabolic pathway related-genes like serine/threonine-phosphatase 2C (PP2C), SNF1-related protein kinase 2 (SnRK2), indole-3-acetic acid (IAA), auxin (AUX28), small auxin up-regulated rna (SAUR), sucrose synthase (SUS), sucrosecarriers (SUC) were highlighted for future research about drought stress resistance in Indigofera bungeana. Conclusion Our study posited I. bungeana mainly participate in various physiological and metabolic activities to response severe drought stress, by regulating the expression of the related genes in hormone signal transduction. These findings, which may be valuable for drought resistance breeding, and to clarify the drought stress regulatory mechanisms of I. bungeana and other plants.
Collapse
Affiliation(s)
- Shuang Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Haiying Hu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Hao Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Fenghua Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Zhihao Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueying Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
91
|
Li L, Liu Q, Ge S, Tang M, He L, Zou Y, Yu J, Zhou Y. SlIAA23-SlARF6 module controls arbuscular mycorrhizal symbiosis by regulating strigolactone biosynthesis in tomato. PLANT, CELL & ENVIRONMENT 2023; 46:1921-1934. [PMID: 36891914 DOI: 10.1111/pce.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Auxins are a class of phytohormones with roles involved in the establishment and maintenance of the arbuscular mycorrhizal symbiosis (AMS). Auxin response factors (ARFs) and Auxin/Indole-acetic acids (AUX/IAAs), as two transcription factors of the auxin signaling pathway, coregulate the transcription of auxin response genes. However, the interrelation and regulatory mechanism of ARFs and AUX/IAAs in regulating AMS are still unclear. In this study, we found that the content of auxin in tomato roots increased sharply and revealed the importance of the auxin signaling pathway in the early stage of AMS. Notably, SlARF6 was found to play a negative role in AMF colonization. Silencing SlARF6 significantly increased the expression of AM-marker genes, as well as AMF-induced phosphorus uptake. SlIAA23 could interact with SlARF6 in vivo and in vitro, and promoted the AMS and phosphorus uptake. Interestingly, SlARF6 and SlIAA23 played a contrary role in strigolactone (SL) synthesis and accumulation in AMF-colonized roots of tomato plants. SlARF6 could directly bind to the AuxRE motif of the SlCCD8 promoter and inhibited its transcription, however, this effect was attenuated by SlIAA23 through interaction with SlARF6. Our results suggest that SlIAA23-SlARF6 coregulated tomato-AMS via an SL-dependent pathway, thus affecting phosphorus uptake in tomato plants.
Collapse
Affiliation(s)
- Lan Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Qianying Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shibei Ge
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Liqun He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yuwen Zou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
92
|
Zhu H, Li H, Yu J, Zhao H, Zhang K, Ge W. Regulatory Mechanisms of ArAux/ IAA13 and ArAux/ IAA16 in the Rooting Process of Acer rubrum. Genes (Basel) 2023; 14:1206. [PMID: 37372386 DOI: 10.3390/genes14061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Acer rubrum is difficult to root during cutting propagation. Auxin/indole-acetic acids (Aux/IAA) proteins, which are encoded by the early response genes of auxin, are transcriptional repressors that play important roles in auxin-mediated root growth and development. In this study, ArAux/IAA13 and ArAux/IAA16, which were significantly differentially expressed after 300 mg/L indole butyric acid treatment, were cloned. Heatmap analysis revealed that they might be associated with the process of adventitious root (AR) growth and development mediated by auxin. Subcellular localization analysis showed that they performed their function in the nucleus. Bimolecular fluorescence complementation assays revealed the interactions between them and two auxin response factor (ARF) proteins, ArARF10 and ArARF18, confirming their relevance to AR growth and development. Overexpression of transgenic plants confirmed that the overexpression of ArAux/IAA13 and ArAux/IAA16 inhibited AR development. These results help elucidate the mechanisms of auxin-mediated AR growth and development during the propagation of A. rubrum and provide a molecular basis for the rooting of cuttings.
Collapse
Affiliation(s)
- Huiyu Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Huiju Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Jiayu Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Hewen Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Kezhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
93
|
Liu X, Du Y, Na X, Wang M, Qu Y, Ge L, Wang Y, Gao L, Bai W, Bi Y, Zhou L. Integrative transcriptome and metabolome revealed the molecular mechanism of Bacillus megaterium BT22-mediated growth promotion in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153995. [PMID: 37163868 DOI: 10.1016/j.jplph.2023.153995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and protect plants from pathogens, which contributes to sustainable agricultural development. Several studies have reported their beneficial characteristics in facilitating plant growth and development and enhancing plant stress resistance through different mechanisms. However, there is still a challenge to study the molecular mechanism of plant response to PGPR. We integrated the transcriptome and metabolome of Arabidopsis thaliana (Arabidopsis) to understand its responses to the inoculation with an isolated PGPR strain (BT22) of Bacillus megaterium. Fresh shoot weight, dry shoot weight and leaf number of Arabidopsis were increased by BT22 treatment, showing a positive growth-promoting effect. According multi-omics analysis, 878 differentially expressed genes (296 up-regulated, 582 down-regulated) and 139 differentially expressed metabolites (66 up-regulated, 73 down-regulated) response to BT22 inoculation. GO enrichment results indicate that the up-regulated genes mainly enriched in the regulation of growth and auxin response pathways. In contrast, the down-regulated genes mainly enriched in wounding response, jasmonic acid and ethylene pathways. BT22 inoculation regulated plant hormone signal transduction of Arabidopsis, including auxin and cytokinin response genes AUX/IAA, SAUR, and A-ARR related to cell enlargement and cell division. The contents of nine flavonoids and seven phenylpropanoid metabolites were increased, which help to induce systemic resistance in plants. These results suggest that BT22 promoted Arabidopsis growth by regulating plant hormone homeostasis and inducing metabolome reprogramming.
Collapse
Affiliation(s)
- Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofan Na
- College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Man Wang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, China
| | - Linghui Ge
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yuanmeng Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Linqi Gao
- Lueyang County Jinxiu Agricultural Development Co., Ltd, Lueyang, Hanzhong, 724300, China
| | - Wenke Bai
- Lueyang County Jinxiu Agricultural Development Co., Ltd, Lueyang, Hanzhong, 724300, China
| | - Yurong Bi
- College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, 730900, China.
| |
Collapse
|
94
|
He S, Zhi F, Min Y, Ma R, Ge A, Wang S, Wang J, Liu Z, Guo Y, Chen M. The MYB59 transcription factor negatively regulates salicylic acid- and jasmonic acid-mediated leaf senescence. PLANT PHYSIOLOGY 2023; 192:488-503. [PMID: 36542529 PMCID: PMC10152657 DOI: 10.1093/plphys/kiac589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 05/03/2023]
Abstract
Leaf senescence is the final stage of leaf development and is affected by various exogenous and endogenous factors. Transcriptional regulation is essential for leaf senescence, however, the underlying molecular mechanisms remain largely unclear. In this study, we report that the transcription factor MYB59, which was predominantly expressed in early senescent rosette leaves, negatively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). RNA sequencing revealed a large number of differentially expressed genes involved in several senescence-related biological processes in myb59-1 rosette leaves. Chromatin immunoprecipitation and transient dual-luciferase reporter assays demonstrated that MYB59 directly repressed the expression of SENESCENCE ASSOCIATED GENE 18 and indirectly inhibited the expression of several other senescence-associated genes to delay leaf senescence. Moreover, MYB59 was induced by salicylic acid (SA) and jasmonic acid (JA). MYB59 inhibited SA production by directly repressing the expression of ISOCHORISMATE SYNTHASE 1 and PHENYLALANINE AMMONIA-LYASE 2 and restrained JA biosynthesis by directly suppressing the expression of LIPOXYGENASE 2, thus forming two negative feedback regulatory loops with SA and JA and ultimately delaying leaf senescence. These results help us understand the novel function of MYB59 and provide insights into the regulatory network controlling leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Shuangcheng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanchang Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rong Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ankang Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianjun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
95
|
Bai Y, Ma Y, Chang Y, Zhang W, Deng Y, Zhang N, Zhang X, Fan K, Hu X, Wang S, Jiang Z, Hu T. Identification and transcriptome data analysis of ARF family genes in five Orchidaceae species. PLANT MOLECULAR BIOLOGY 2023; 112:85-98. [PMID: 37103774 DOI: 10.1007/s11103-023-01354-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
The Orchidaceae is a large family of perennial herbs especially noted for the exceptional diversity of specialized flowers. Elucidating the genetic regulation of flowering and seed development of orchids is an important research goal with potential utility in orchid breeding programs. Auxin Response Factor (ARF) genes encode auxin-responsive transcription factors, which are involved in the regulation of diverse morphogenetic processes, including flowering and seed development. However, limited information on the ARF gene family in the Orchidaceae is available. In this study, 112 ARF genes were identified in the genomes of 5 orchid species (Apostasia shenzhenica, Dendrobium catenatum, Phalaenopsis aphrodite, Phalaenopsis equestris and Vanilla planifolia,). These genes were grouped into 7 subfamilies based on their phylogenetic relationships. Compared with the ARF family in model plants, such as Arabidopsis thaliana and Oryza sativa, one group of ARF genes involved in pollen wall synthesis has been lost during evolution of the Orchidaceae. This loss corresponds with absence of the exine in the pollinia. Through mining of the published genomic and transcriptomic data for the 5 orchid species: the ARF genes of subfamily 4 may play an important role in flower formation and plant growth, whereas those of subfamily 3 are potentially involved in pollen wall development. the study results provide novel insights into the genetic regulation of unique morphogenetic phenomena of orchids, which lay a foundation for further analysis of the regulatory mechanisms and functions of sexual reproduction-related genes in orchids.
Collapse
Affiliation(s)
- Yiwei Bai
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Yanjun Ma
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
- Pingxiang Bamboo Forest Ecosystem Research Station, Pingxiang, Guangxi, China
| | - Yanting Chang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Wenbo Zhang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
- Pingxiang Bamboo Forest Ecosystem Research Station, Pingxiang, Guangxi, China
| | - Yayun Deng
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Na Zhang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Xue Zhang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Keke Fan
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Xiaomeng Hu
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Shuhua Wang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Zehui Jiang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Tao Hu
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China.
- Pingxiang Bamboo Forest Ecosystem Research Station, Pingxiang, Guangxi, China.
| |
Collapse
|
96
|
Wang J, Li C, Mao X, Wang J, Li L, Li J, Fan Z, Zhu Z, He L, Jing R. The wheat basic helix-loop-helix gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2542-2555. [PMID: 36749713 DOI: 10.1093/jxb/erad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
Crown roots are the main components of the fibrous root system in cereal crops and play critical roles in plant adaptation; however, the molecular mechanisms underlying their formation in wheat (Triticum aestivum) have not been fully elucidated. In this study, we identified a wheat basic helix-loop-helix (bHLH) protein, TabHLH123, that interacts with the essential regulator of crown root initiation, MORE ROOT in wheat (TaMOR). TabHLH123 is expressed highly in shoot bases and roots. Ectopic expression of TabHLH123 in rice resulted in more roots compared with the wild type. TabHLH123 regulates the expression of genes controlling crown-root development and auxin metabolism, responses, and transport. In addition, we analysed the nucleotide sequence polymorphisms of TabHLH123s in the wheat genome and identified a superior haplotype, TabHLH123-6B, that is associated with high root dry weight and 1000-grain weight, and short plant height. Our study reveals the role of TabHLH123 in controlling the formation of crown roots and provides beneficial insights for molecular marker-assisted breeding in wheat.
Collapse
Affiliation(s)
- Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zipei Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liheng He
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
97
|
Huang B, Qi Y, Huang X, Yang P. Genome-wide identification and co-expression network analysis of Aux/IAA gene family in Salvia miltiorrhiza. PeerJ 2023; 11:e15212. [PMID: 37090108 PMCID: PMC10117383 DOI: 10.7717/peerj.15212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) gene family serves as a principal group of genes responsible for modulating plant growth and development through the auxin signaling pathway. Despite the significance of this gene family, the identification and characterization of members within the well-known Chinese medicinal herb Salvia miltiorrhiza (S. miltiorrhiza) have not been thoroughly investigated. In this study, we employed bioinformatics methods to identify 23 Aux/IAA genes within the genome of S. miltiorrhiza. These genes were classified into typical IAA and atypical IAA based on their domain structure. Our analysis of the promoter regions revealed that the expression of these genes is regulated not only by auxins, but also by other hormones and environmental factors. Furthermore, we found that the expression patterns of these genes varied across various tissues of S. miltiorrhiza. While our initial hypothesis suggested that the primary function of these genes was the interaction between SmIAA and ARF, gene co-expression network analysis revealed that they are also influenced by various other transcription factors, such as WRKY and ERF. The findings establish a sturdy basis for future investigations into the function of the Aux/IAA gene family and exhibit promising prospects for enhancing the genetics of this medicinal flora and its associated species.
Collapse
Affiliation(s)
- Bin Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
98
|
Bai Y, Dou Y, Xie Y, Zheng H, Gao J. Phylogeny, transcriptional profile, and auxin-induced phosphorylation modification characteristics of conserved PIN proteins in Moso bamboo (Phyllostachys edulis). Int J Biol Macromol 2023; 234:123671. [PMID: 36801226 DOI: 10.1016/j.ijbiomac.2023.123671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Auxin polar transport is an important way for auxin to exercise its function, and auxin plays an irreplaceable role in the rapid growth of Moso bamboo. We identified and performed the structural analysis of PIN-FORMED auxin efflux carriers in Moso bamboo and obtained a total of 23 PhePIN genes from five gene subfamilies. We also performed chromosome localization and intra- and inter-species synthesis analysis. Phylogenetic analyses of 216 PIN genes showed that PIN genes are relatively conserved in the evolution of the Bambusoideae and have undergone intra-family segment replication in Moso bamboo. The PIN genes' transcriptional patterns showed that the PIN1 subfamily plays a major regulatory role. PIN genes and auxin biosynthesis maintain a high degree of consistency in spatial and temporal distribution. Phosphoproteomics analysis identified many phosphorylated protein kinases that respond to auxin regulation through autophosphorylation and phosphorylation of PIN proteins. The protein interaction network showed that there is a plant hormone interaction regulatory network with PIN protein as the core. We provide a comprehensive PIN protein analysis that complements the auxin regulatory pathway in Moso bamboo and paves the way for further auxin regulatory studies in bamboo.
Collapse
Affiliation(s)
- Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing, China
| | - Yali Xie
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing, China
| | - Huifang Zheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing, China.
| |
Collapse
|
99
|
Si C, Zeng D, da Silva JAT, Qiu S, Duan J, Bai S, He C. Genome-wide identification of Aux/IAA and ARF gene families reveal their potential roles in flower opening of Dendrobium officinale. BMC Genomics 2023; 24:199. [PMID: 37055721 PMCID: PMC10099678 DOI: 10.1186/s12864-023-09263-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND The auxin indole-3-acetic acid (IAA) is a vital phytohormone that influences plant growth and development. Our previous work showed that IAA content decreased during flower development in the medicinally important orchid Dendrobium officinale, while Aux/IAA genes were downregulated. However, little information about auxin-responsive genes and their roles in D. officinale flower development exists. RESULTS This study validated 14 DoIAA and 26 DoARF early auxin-responsive genes in the D. officinale genome. A phylogenetic analysis classified the DoIAA genes into two subgroups. An analysis of cis-regulatory elements indicated that they were related by phytohormones and abiotic stresses. Gene expression profiles were tissue-specific. Most DoIAA genes (except for DoIAA7) were sensitive to IAA (10 μmol/L) and were downregulated during flower development. Four DoIAA proteins (DoIAA1, DoIAA6, DoIAA10 and DoIAA13) were mainly localized in the nucleus. A yeast two-hybrid assay showed that these four DoIAA proteins interacted with three DoARF proteins (DoARF2, DoARF17, DoARF23). CONCLUSIONS The structure and molecular functions of early auxin-responsive genes in D. officinale were investigated. The DoIAA-DoARF interaction may play an important role in flower development via the auxin signaling pathway.
Collapse
Affiliation(s)
- Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Shengxiang Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Song Bai
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
100
|
Caumon H, Vernoux T. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad132. [PMID: 37042516 DOI: 10.1093/jxb/erad132] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/19/2023]
Abstract
As auxin is a major regulator of plant development, studying the signaling mechanisms by which auxin influences cellular activities is of primary importance. In this review, we describe the current knowledge on the different modalities of signaling, from the well-characterized canonical nuclear auxin pathway, to the more recently discovered or re-discovered non-canonical modes of auxin signaling. In particular, we discuss how both the modularity of the nuclear auxin pathway and the dynamic regulation of its core components allow to trigger specific transcriptomic responses. We highlight the fact that the diversity of modes of auxin signaling allows for a wide range of timescales of auxin responses, from second-scale cytoplasmic responses to minute/hour-scale modifications of gene expression. Finally, we question the extent to which the temporality of auxin signaling and responses contributes to development in both the shoot and the root meristems. We conclude by stressing the fact that future investigations should allow to build an integrative view not only of the spatial control, but also of the temporality of auxin-mediated regulation of plant development, from the cell to the whole organism.
Collapse
Affiliation(s)
- Hugo Caumon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|