51
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
52
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
53
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
54
|
Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci 2022; 23:257-274. [PMID: 35361961 PMCID: PMC11163306 DOI: 10.1038/s41583-022-00577-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
Abstract
Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
55
|
Kang C, Shrestha KL, Kwon S, Park S, Kim J, Kwon Y. Intein-Mediated Protein Engineering for Cell-Based Biosensors. BIOSENSORS 2022; 12:bios12050283. [PMID: 35624584 PMCID: PMC9138240 DOI: 10.3390/bios12050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
Cell-based sensors provide a flexible platform for screening biologically active targets and for monitoring their interactions in live cells. Their applicability extends across a vast array of biological research and clinical applications. Particularly, cell-based sensors are becoming a potent tool in drug discovery and cell-signaling studies by allowing function-based screening of targets in biologically relevant environments and enabling the in vivo visualization of cellular signals in real-time with an outstanding spatiotemporal resolution. In this review, we aim to provide a clear view of current cell-based sensor technologies, their limitations, and how the recent improvements were using intein-mediated protein engineering. We first discuss the characteristics of cell-based sensors and present several representative examples with a focus on their design strategies, which differentiate cell-based sensors from in vitro analytical biosensors. We then describe the application of intein-mediated protein engineering technology for cell-based sensor fabrication. Finally, we explain the characteristics of intein-mediated reactions and present examples of how the intein-mediated reactions are used to improve existing methods and develop new approaches in sensor cell fabrication to address the limitations of current technologies.
Collapse
|
56
|
Guo Z, Parakra RD, Xiong Y, Johnston WA, Walden P, Edwardraja S, Moradi SV, Ungerer JPJ, Ai HW, Phillips JJ, Alexandrov K. Engineering and exploiting synthetic allostery of NanoLuc luciferase. Nat Commun 2022; 13:789. [PMID: 35145068 PMCID: PMC8831504 DOI: 10.1038/s41467-022-28425-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Allostery enables proteins to interconvert different biochemical signals and form complex metabolic and signaling networks. We hypothesize that circular permutation of proteins increases the probability of functional coupling of new N- and C- termini with the protein's active center through increased local structural disorder. To test this we construct a synthetically allosteric version of circular permutated NanoLuc luciferase that can be activated through ligand-induced intramolecular non-covalent cyclisation. This switch module is tolerant of the structure of binding domains and their ligands, and can be used to create biosensors of proteins and small molecules. The developed biosensors covers a range of emission wavelengths and displays sensitivity as low as 50pM and dynamic range as high as 16-fold and could quantify their cognate ligand in human fluids. We apply hydrogen exchange kinetic mass spectroscopy to analyze time resolved structural changes in the developed biosensors and observe ligand-mediated folding of newly created termini.
Collapse
Affiliation(s)
- Zhong Guo
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Rinky D Parakra
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Ying Xiong
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Wayne A Johnston
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patricia Walden
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shayli Varasteh Moradi
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Jacobus P J Ungerer
- Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, 4001, Australia
- Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
- Alan Turing Institute, British Library 96, Euston road, London, NW1 2DB, UK.
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
57
|
Development of a Real-Time Pectic Oligosaccharide-Detecting Biosensor Using the Rapid and Flexible Computational Identification of Non-Disruptive Conjugation Sites (CINC) Biosensor Design Platform. SENSORS 2022; 22:s22030948. [PMID: 35161692 PMCID: PMC8839585 DOI: 10.3390/s22030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Fluorescently labeled, solute-binding proteins that change their fluorescent output in response to ligand binding are frequently used as biosensors for a wide range of applications. We have previously developed a "Computational Identification of Non-disruptive Conjugation sites" (CINC) approach, an in silico pipeline utilizing molecular dynamics simulations for the rapid design and construction of novel protein-fluorophore conjugate-type biosensors. Here, we report an improved in silico scoring algorithm for use in CINC and its use in the construction of an oligogalacturonide-detecting biosensor set. Using both 4,5-unsaturated and saturated oligogalacturonides, we demonstrate that signal transmission from the ligand-binding pocket of the starting protein scaffold to the CINC-selected reporter positions is effective for multiple different ligands. The utility of an oligogalacturonide-detecting biosensor is shown in Carbohydrate Active Enzyme (CAZyme) activity assays, where the biosensor is used to follow product release upon polygalacturonic acid (PGA) depolymerization in real time. The oligogalacturonide-detecting biosensor set represents a novel enabling tool integral to our rapidly expanding platform for biosensor-based carbohydrate detection, and moving forward, the CINC pipeline will continue to enable the rational design of biomolecular tools to detect additional chemically distinct oligosaccharides and other solutes.
Collapse
|
58
|
Chandris P, Giannouli CC, Panayotou G. Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encoded Reporters. Front Cell Dev Biol 2022; 9:725114. [PMID: 35118062 PMCID: PMC8804523 DOI: 10.3389/fcell.2021.725114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Metabolism comprises of two axes in order to serve homeostasis: anabolism and catabolism. Both axes are interbranched with the so-called bioenergetics aspect of metabolism. There is a plethora of analytical biochemical methods to monitor metabolites and reactions in lysates, yet there is a rising need to monitor, quantify and elucidate in real time the spatiotemporal orchestration of complex biochemical reactions in living systems and furthermore to analyze the metabolic effect of chemical compounds that are destined for the clinic. The ongoing technological burst in the field of imaging creates opportunities to establish new tools that will allow investigators to monitor dynamics of biochemical reactions and kinetics of metabolites at a resolution that ranges from subcellular organelle to whole system for some key metabolites. This article provides a mini review of available toolkits to achieve this goal but also presents a perspective on the open space that can be exploited to develop novel methodologies that will merge classic biochemistry of metabolism with advanced imaging. In other words, a perspective of "watching metabolism in real time."
Collapse
Affiliation(s)
- Panagiotis Chandris
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | | | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| |
Collapse
|
59
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
60
|
McMullen E, Hertenstein H, Müller S, Schirmeier S. Genetically Encoded Sensors to Study Metabolism in Drosophila. Methods Mol Biol 2022; 2540:401-414. [PMID: 35980591 DOI: 10.1007/978-1-0716-2541-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rather recent development of genetically encoded metabolite sensors has changed the way we can study metabolism in living cells, ex vivo tissues, and in vivo immensely. In recent years, these sensors have also been adapted for use in Drosophila tissues. Here, we describe a standard protocol to image such sensors in ex vivo Drosophila larval brains using the glucose sensor FLII12Pglu-700μδ6. The protocol, however, can be adapted for the use of other sensors, tissues, and can even be used in vivo.
Collapse
Affiliation(s)
- Ellen McMullen
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Helen Hertenstein
- Department of Biology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Stephan Müller
- Department of Biology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Stefanie Schirmeier
- Department of Biology, Institute of Zoology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
61
|
Guo Z, Smutok O, Johnston WA, Ayva CE, Walden P, McWhinney B, Ungerer JPJ, Melman A, Katz E, Alexandrov K. Circular Permutated PQQ‐Glucose Dehydrogenase as an Ultrasensitive Electrochemical Biosensor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Cagla Ergun Ayva
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Brett McWhinney
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
| | - Jacobus P. J. Ungerer
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
- Faculty of Health and Behavioural Sciences University of Queensland Brisbane QLD 4072 Australia
| | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
62
|
Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nat Commun 2021; 12:7137. [PMID: 34880210 PMCID: PMC8654847 DOI: 10.1038/s41467-021-27184-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022] Open
Abstract
Natural evolution produced polypeptides that selectively recognize chemical entities and their polymers, ranging from ions to proteins and nucleic acids. Such selective interactions serve as entry points to biological signaling and metabolic pathways. The ability to engineer artificial versions of such entry points is a key goal of synthetic biology, bioengineering and bioelectronics. We set out to map the optimal strategy for developing artificial small molecule:protein complexes that function as chemically induced dimerization (CID) systems. Using several starting points, we evolved CID systems controlled by a therapeutic drug methotrexate. Biophysical and structural analysis of methotrexate-controlled CID system reveals the critical role played by drug-induced conformational change in ligand-controlled protein complex assembly. We demonstrate utility of the developed CID by constructing electrochemical biosensors of methotrexate that enable quantification of methotrexate in human serum. Furthermore, using the methotrexate and functionally related biosensor of rapamycin we developed a multiplexed bioelectronic system that can perform repeated measurements of multiple analytes. The presented results open the door for construction of genetically encoded signaling systems for use in bioelectronics and diagnostics, as well as metabolic and signaling network engineering.
Collapse
|
63
|
Mantovanelli L, Gaastra BF, Poolman B. Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. CURRENT TOPICS IN MEMBRANES 2021; 88:1-54. [PMID: 34862023 DOI: 10.1016/bs.ctm.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
64
|
ZnT1 is a neuronal Zn 2+/Ca 2+ exchanger. Cell Calcium 2021; 101:102505. [PMID: 34871934 DOI: 10.1016/j.ceca.2021.102505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Zinc transporter 1 (ZnT1; SLC30A1) is present in the neuronal plasma membrane, critically modulating NMDA receptor function and Zn2+ neurotoxicity. The mechanism mediating Zn2+ transport by ZnT1, however, has remained elusive. Here, we investigated ZnT1-dependent Zn2+ transport by measuring intracellular changes of this ion using the fluorescent indicator FluoZin-3. In primary mouse cortical neurons, which express ZnT1, transient addition of extracellular Zn2+ triggered a rise in cytosolic Zn2+, followed by its removal. Knockdown of ZnT1 by adeno associated viral (AAV)-short hairpin RNA (shZnT1) markedly increased rates of Zn2+ rise, and decreased rates of its removal, suggesting that ZnT1 is a primary route for Zn2+ efflux in neurons. Although Zn2+ transport by other members of the SLC30A family is dependent on pH gradients across cellular membranes, altered H+ gradients were not coupled to ZnT1-dependent transport. Removal of cytoplasmic Zn2+, against a large inward gradient during the initial loading phase, suggests that Zn2+ efflux requires a large driving force. We therefore asked if Ca2+ gradients across the membrane can facilitate Zn2+ efflux. Elimination of extracellular Ca2+ abolished Zn2+ efflux, while increased extracellular Ca2+ levels enhanced Zn2+ efflux. Intracellular Ca2+ rises, measured in GCaMP6 expressing neurons, closely paralleled cytoplasmic Zn2+ removal. Taken together, these results strongly suggest that ZnT1 functions as a Zn2+/Ca2+ exchanger, thereby regulating the transport of two ions of fundamental importance in neuronal signaling.
Collapse
|
65
|
Bollella P, Edwardraja S, Guo Z, Vickers CE, Whitfield J, Walden P, Melman A, Alexandrov K, Katz E. Connecting Artificial Proteolytic and Electrochemical Signaling Systems with Caged Messenger Peptides. ACS Sens 2021; 6:3596-3603. [PMID: 34637274 DOI: 10.1021/acssensors.1c00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatic polypeptide proteolysis is a widespread and powerful biological control mechanism. Over the last few years, substantial progress has been made in creating artificial proteolytic systems where an input of choice modulates the protease activity and thereby the activity of its substrates. However, all proteolytic systems developed so far have relied on the direct proteolytic cleavage of their effectors. Here, we propose a new concept where protease biosensors with a tunable input uncage a signaling peptide, which can then transmit a signal to an allosteric protein reporter. We demonstrate that both the cage and the regulatory domain of the reporter can be constructed from the same peptide-binding domain, such as calmodulin. To demonstrate this concept, we constructed a proteolytic rapamycin biosensor and demonstrated its quantitative actuation on fluorescent, luminescent, and electrochemical reporters. Using the latter, we constructed sensitive bioelectrodes that detect the messenger peptide release and quantitatively convert the recognition event into electric current. We discuss the application of such systems for the construction of in vitro sensory arrays and in vivo signaling circuits.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, Bari 70125, Italy
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, GP.O. Box 2583, Brisbane, Queensland 4001, Australia
| | - Jason Whitfield
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
66
|
Alexandrov K, Guo Z, Smutok O, Wayne A Johnston WAJ, Ergun Ayva C, Walden PM, McWhinney B, Ungerer J, Melman A, Katz E. Circular permutated PQQ-glucose dehydrogenase as an ultrasensitive electrochemical biosensor. Angew Chem Int Ed Engl 2021; 61:e202109005. [PMID: 34633119 DOI: 10.1002/anie.202109005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/08/2022]
Abstract
Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10 fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain:ligand complexes. The developed biosensors demonstrated sub-nanomolar affinities for small molecules and proteins in colorimetric and electrochemical assays. For instance, the concentration of Cyclosporine A could be measured in 1 ml of undiluted blood with the same accuracy as the leading diagnostic technique that uses 50 times more sample. We further used this biosensor to construct highly porous gold bioelectrodes capable of robustly detecting concentrations of Cyclosporine A as low as 20 pM and retained functionality in samples containing at least 60% human serum. These experiments suggest that the developed biosensor platform is generalizable and may be suitable for Point-of-Care diagnostics.
Collapse
Affiliation(s)
- Kirill Alexandrov
- Queensland University of Technology, Centre for Tropical Crops and Biocommodities, 2 george st, 4100, Brisbane, AUSTRALIA
| | - Zhong Guo
- Queensland University of Technology Institute of Health and Biomedical Innovation Research Methods Group: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Oleh Smutok
- Clarkson University, electrochemistry, UNITED STATES
| | - Wayne A Johnston Wayne A Johnston
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Cagla Ergun Ayva
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT Synthetic Biology Alliance, AUSTRALIA
| | - Patricia M Walden
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic biology alliance, AUSTRALIA
| | - Brett McWhinney
- Central Laboratory: Health Support Queensland Pathology Queensland, chemical pathology, AUSTRALIA
| | - Jacobus Ungerer
- Health Support Queensland Pathology Queensland, Chemical Pathology, AUSTRALIA
| | | | - Evgeny Katz
- Clarkson University, electrochemistry, AUSTRALIA
| |
Collapse
|
67
|
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. PLANT PHYSIOLOGY 2021; 187:590-602. [PMID: 35237816 PMCID: PMC8491072 DOI: 10.1093/plphys/kiab278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.
Collapse
Affiliation(s)
| | | | - Alexander M. Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Author for communication:
| |
Collapse
|
68
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
69
|
Denn ER, Schober JM. A single-wavelength flow cytometric approach using redox-sensitive green fluorescent protein probes for measuring redox stress in live cells. Biotechniques 2021; 70:278-284. [PMID: 33969703 DOI: 10.2144/btn-2020-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cellular redox changes are common in apoptosis, immune function, signaling pathways and cancer. The authors aimed to develop a single-wavelength method using the superior fluorescence sensitivity of a flow cytometer for measuring redox-sensitive green fluorescent protein signal during oxidative stress in cell lines. The single-wavelength method was able to discern small differences in oxidative stress between cell lines and between the cytoplasmic and mitochondrial compartments within the same cell line. In Chinese hamster ovary cells, the mitochondrial matrix compartment was more sensitive to oxidative stress compared with MDA-MB-231 cells, and the rapid changes in redox state were followed by a slow recovery phase. The authors conclude that this simplified method is useful and preferred for studies where alterations in overall redox-sensitive green fluorescent protein expression are controlled.
Collapse
Affiliation(s)
- Elizabeth R Denn
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, IL 62025, USA
| | - Joseph M Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, IL 62025, USA
| |
Collapse
|
70
|
Heinrich R, Hussein W, Berlin S. Photo-transformable genetically-encoded optical probes for functional highlighting in vivo. J Neurosci Methods 2021; 355:109129. [PMID: 33711357 DOI: 10.1016/j.jneumeth.2021.109129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Studying the brain requires knowledge about both structure (i.e., connectome) and function of its constituents (neurons and glia alike). This need has prompted the development of novel tools and techniques, in particular optical techniques to examine cells remotely. Early works (1900's) led to the development of novel cell-staining techniques that, when combined with the use of a very simple light microscope, visualized individual neurons and their subcellular compartments in fixed tissues. Today, highlighting of structure and function can be performed on live cells, notably in vivo, owing to discovery of GFP and subsequent development of genetically encoded fluorescent optical tools. In this review, we focus our attention on a subset of optical biosensors, namely probes whose emission can be modified by light. We designate them photo-transformable genetically encoded probes. The family of photo-transformable probes embraces current probes that undergo photoactivation (PA), photoconversion (PC) or photoswitching (PS). We argue that these are particularly suited for studying multiple features of neurons, such as structure, connectivity and function concomitantly, for functional highlighting of neurons in vivo.
Collapse
Affiliation(s)
- Ronit Heinrich
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wessal Hussein
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
71
|
Kim HS, Kim JE, Hwangbo A, Akerboom J, Looger LL, Duncan R, Son H, Czymmek KJ, Kang S. Evaluation of multi-color genetically encoded Ca 2+ indicators in filamentous fungi. Fungal Genet Biol 2021; 149:103540. [PMID: 33607281 DOI: 10.1016/j.fgb.2021.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Genetically encoded Ca2+ indicators (GECIs) enable long-term monitoring of cellular and subcellular dynamics of this second messenger in response to environmental and developmental cues without relying on exogenous dyes. Continued development and optimization in GECIs, combined with advances in gene manipulation, offer new opportunities for investigating the mechanism of Ca2+ signaling in fungi, ranging from documenting Ca2+ signatures under diverse conditions and genetic backgrounds to evaluating how changes in Ca2+ signature impact calcium-binding proteins and subsequent cellular changes. Here, we attempted to express multi-color (green, yellow, blue, cyan, and red) circularly permuted fluorescent protein (FP)-based Ca2+ indicators driven by multiple fungal promoters in Fusarium oxysporum, F. graminearum, and Neurospora crassa. Several variants were successfully expressed, with GCaMP5G driven by the Magnaporthe oryzae ribosomal protein 27 and F. verticillioides elongation factor-1α gene promoters being optimal for F. graminearum and F. oxysporum, respectively. Transformants expressing GCaMP5G were compared with those expressing YC3.60, a ratiometric Cameleon Ca2+ indicator. Wild-type and three Ca2+ signaling mutants of F. graminearum expressing GCaMP5G exhibited improved signal-to-noise and increased temporal and spatial resolution and are also more amenable to studies involving multiple FPs compared to strains expressing YC3.60.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Aram Hwangbo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jasper Akerboom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States; Donald Danforth Plant Science Center, Saint Louis, MO 63132, United States.
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
72
|
Baek K, Ji K, Peng W, Liyanaarachchi SM, Dodani SC. The design and evolution of fluorescent protein-based sensors for monoatomic ions in biology. Protein Eng Des Sel 2021; 34:gzab023. [PMID: 34581820 PMCID: PMC8477612 DOI: 10.1093/protein/gzab023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Living cells rely on a finely tuned symphony of inorganic ion gradients composed of both cations and anions. This delicate balance is maintained by biological receptors all acting in concert to selectively recognize and position ions for homeostasis. These dynamic processes can be intercepted and visualized with optical microscopy at the organismal, tissue, cellular and subcellular levels using fluorescent protein-based biosensors. Since the first report of such tool for calcium (Ca2+) in 1997, outstanding biological questions and innovations in protein engineering along with associated fields have driven the development of new biosensors for Ca2+ and beyond. In this Review, we summarize a workflow that can be used to generate fluorescent protein-based biosensors to study monoatomic ions in biology. To showcase the scope of this approach, we highlight recent advances reported for Ca2+ biosensors and in detail discuss representative case studies of biosensors reported in the last four years for potassium (K+), magnesium (Mg2+), copper (Cu2+/+), lanthanide (Ln3+) and chloride (Cl-) ions.
Collapse
Affiliation(s)
- Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Sureshee M Liyanaarachchi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
73
|
Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat Chem Biol 2021; 17:509-518. [PMID: 33558715 DOI: 10.1038/s41589-020-00718-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Intensiometric genetically encoded biosensors, based on allosteric modulation of the fluorescence of a single fluorescent protein, are powerful tools for enabling imaging of neural activities and other cellular biochemical events. The archetypical example of such biosensors is the GCaMP series of Ca2+ biosensors, which have been steadily improved over the past two decades and are now indispensable tools for neuroscience. However, no other biosensors have reached levels of performance, or had revolutionary impacts within specific disciplines, comparable to that of the Ca2+ biosensors. Of the many reasons why this has been the case, a critical one has been a general black-box view of biosensor structure and mechanism. With this Perspective, we aim to summarize what is known about biosensor structure and mechanisms and, based on this foundation, provide guidelines to accelerate the development of a broader range of biosensors with performance comparable to that of the GCaMP series.
Collapse
|
74
|
Camarca A, Varriale A, Capo A, Pennacchio A, Calabrese A, Giannattasio C, Murillo Almuzara C, D’Auria S, Staiano M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. SENSORS (BASEL, SWITZERLAND) 2021; 21:906. [PMID: 33572812 PMCID: PMC7866296 DOI: 10.3390/s21030906] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this work is to provide an exhaustive overview of the emerging biosensor technologies for the detection of analytes of interest for food, environment, security, and health. Over the years, biosensors have acquired increasing importance in a wide range of applications due to synergistic studies of various scientific disciplines, determining their great commercial potential and revealing how nanotechnology and biotechnology can be strictly connected. In the present scenario, biosensors have increased their detection limit and sensitivity unthinkable until a few years ago. The most widely used biosensors are optical-based devices such as surface plasmon resonance (SPR)-based biosensors and fluorescence-based biosensors. Here, we will review them by highlighting how the progress in their design and development could impact our daily life.
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Antonio Varriale
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
- URT-ISA at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessandro Capo
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Angela Pennacchio
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Alessia Calabrese
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Cristina Giannattasio
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Carlos Murillo Almuzara
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Sabato D’Auria
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| | - Maria Staiano
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy; (A.C.); (A.V.); (A.C.); (A.P.); (A.C.); (C.G.); (C.M.A.); (M.S.)
| |
Collapse
|
75
|
Kim H, Ju J, Lee HN, Chun H, Seong J. Genetically Encoded Biosensors Based on Fluorescent Proteins. SENSORS (BASEL, SWITZERLAND) 2021; 21:795. [PMID: 33504068 PMCID: PMC7865379 DOI: 10.3390/s21030795] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| |
Collapse
|
76
|
Goto Y, Kondo Y, Aoki K. Visualization and Manipulation of Intracellular Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:225-234. [PMID: 33398816 DOI: 10.1007/978-981-15-8763-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein-protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels. Much effort has been devoted to developing genetically encoded fluorescent biosensors based on fluorescent proteins, which enable us to visualize the spatiotemporal dynamics of cell signaling. In addition, optogenetic techniques for controlling intracellular signal transduction systems have been developed and applied in recent years by regulating intracellular signaling in a light-dependent manner. Here, we outline the principles of biosensors for probing intracellular signaling and the optogenetic tools for manipulating them.
Collapse
Affiliation(s)
- Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
77
|
Frolova AY, Pakhomov AA, Martynov VI. Physicochemical Properties of Photoconvertible Fluorescent Protein from Montastraea cavernosa. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Sabatini BL, Tian L. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators. Neuron 2020; 108:17-32. [PMID: 33058762 DOI: 10.1016/j.neuron.2020.09.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
The actions of neuromodulation are thought to mediate the ability of the mammalian brain to dynamically adjust its functional state in response to changes in the environment. Altered neurotransmitter (NT) and neuromodulator (NM) signaling is central to the pathogenesis or treatment of many human neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, depression, and addiction. To reveal the precise mechanisms by which these neurochemicals regulate healthy and diseased neural circuitry, one needs to measure their spatiotemporal dynamics in the living brain with great precision. Here, we discuss recent development, optimization, and applications of optical approaches to measure the spatial and temporal profiles of NT and NM release in the brain using genetically encoded sensors for in vivo studies.
Collapse
Affiliation(s)
- Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
79
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
80
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
81
|
Breus O, Dickmeis T. Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration. Biol Chem 2020; 402:363-378. [PMID: 33021959 DOI: 10.1515/hsz-2020-0269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Important roles for reactive oxygen species (ROS) and redox signaling in embryonic development and regenerative processes are increasingly recognized. However, it is difficult to obtain information on spatiotemporal dynamics of ROS production and signaling in vivo. The zebrafish is an excellent model for in vivo bioimaging and possesses a remarkable regenerative capacity upon tissue injury. Here, we review data obtained in this model system with genetically encoded redox-sensors targeting H2O2 and glutathione redox potential. We describe how such observations have prompted insight into regulation and downstream effects of redox alterations during tissue differentiation, morphogenesis and regeneration. We also discuss the properties of the different sensors and their consequences for the interpretation of in vivo imaging results. Finally, we highlight open questions and additional research fields that may benefit from further application of such sensor systems in zebrafish models of development, regeneration and disease.
Collapse
Affiliation(s)
- Oksana Breus
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
82
|
Sangroula S, Baez Vasquez AY, Raut P, Obeng B, Shim JK, Bagley GD, West BE, Burnell JE, Kinney MS, Potts CM, Weller SR, Kelley JB, Hess ST, Gosse JA. Triclosan disrupts immune cell function by depressing Ca 2+ influx following acidification of the cytoplasm. Toxicol Appl Pharmacol 2020; 405:115205. [PMID: 32835763 PMCID: PMC7566221 DOI: 10.1016/j.taap.2020.115205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/29/2022]
Abstract
Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits Ca2+ mobilization in human Jurkat T cells. However, the biochemical mechanism behind the Ca2+ dampening has yet to be elucidated. Three-dimensional super-resolution microscopy reveals that TCS induces mitochondrial swelling, in line with and extending the previous finding of TCS inhibition of mitochondrial membrane potential via its proton ionophoric activity. Inhibition of plasma membrane potential (PMP) by the canonical depolarizer gramicidin can inhibit mast cell function. However, use of the genetically encoded voltage indicators (GEVIs) ArcLight (pH-sensitive) and ASAP2 (pH-insensitive), indicates that TCS does not disrupt PMP. In conjunction with data from a plasma membrane-localized, pH-sensitive reporter, these results indicate that TCS, instead, induces cytosolic acidification in mast cells and T cells. Acidification of the cytosol likely inhibits Ca2+ influx by uncoupling the STIM1/ORAI1 interaction that is required for opening of plasma membrane Ca2+ channels. These results provide a mechanistic explanation of TCS disruption of Ca2+ influx and, thus, of immune cell function.
Collapse
Affiliation(s)
- Suraj Sangroula
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Alan Y Baez Vasquez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Juyoung K Shim
- Department of Biology, University of Maine at Augusta, Augusta, ME, USA
| | - Grace D Bagley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Bailey E West
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - John E Burnell
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Marissa S Kinney
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Christian M Potts
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Sasha R Weller
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
83
|
Chesterfield RJ, Whitfield JH, Pouvreau B, Cao D, Alexandrov K, Beveridge CA, Vickers CE. Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones. ACS Synth Biol 2020; 9:2107-2118. [PMID: 32786922 DOI: 10.1021/acssynbio.0c00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants.
Collapse
Affiliation(s)
- Rebecca J. Chesterfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Jason H. Whitfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| | - Benjamin Pouvreau
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Kirill Alexandrov
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Christine A. Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| |
Collapse
|
84
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
85
|
Lee YT, He L, Zhou Y. Expanding the Chemogenetic Toolbox by Circular Permutation. J Mol Biol 2020; 432:3127-3136. [PMID: 32277990 DOI: 10.1016/j.jmb.2020.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
To expand the repertoire of chemogenetic tools tailored for molecular and cellular engineering, we describe herein the design of cpRAPID as a circularly permuted rapamycin-inducible dimerization system composed of the canonical FK506-binding protein (FKBP) and circular permutants of FKBP12-rapamycin binding domain (cpFRB). By permuting the topology of the four helices within FRB, we have created cpFRB-FKBP pairs that respond to ligand with varying activation kinetics and dynamics. The cpRAPID system enables chemical-controllable subcellular redistribution of proteins, as well as inducible transcriptional activation when coupled with the CRISPR activation (CRISPRa) technology to induce a GFP reporter and endogenous gene expression. We have further demonstrated the use of cpRAPID to generate chemically switchable split nanobody (designated Chessbody) for ligand-gated antigen recognition in living cells. Collectively, the circular permutation approach offers a powerful means for diversifying the chemogenetics toolbox to benefit the burgeoning synthetic biology field.
Collapse
Affiliation(s)
- Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
86
|
Ravotto L, Duffet L, Zhou X, Weber B, Patriarchi T. A Bright and Colorful Future for G-Protein Coupled Receptor Sensors. Front Cell Neurosci 2020; 14:67. [PMID: 32265667 PMCID: PMC7098945 DOI: 10.3389/fncel.2020.00067] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
Neurochemicals have a large impact on brain states and animal behavior but are notoriously hard to detect accurately in the living brain. Recently developed genetically encoded sensors obtained from engineering a circularly permuted green fluorescent protein into G-protein coupled receptors (GPCR) provided a vital boost to neuroscience, by innovating the way we monitor neural communication. These new probes are becoming widely successful due to their flexible combination with state of the art optogenetic tools and in vivo imaging techniques, mainly fiber photometry and 2-photon microscopy, to dissect dynamic changes in brain chemicals with unprecedented spatial and temporal resolution. Here, we highlight current approaches and challenges as well as novel insights in the process of GPCR sensor development, and discuss possible future directions of the field.
Collapse
Affiliation(s)
- Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
87
|
O'Banion CP, Yasuda R. Fluorescent sensors for neuronal signaling. Curr Opin Neurobiol 2020; 63:31-41. [PMID: 32203701 DOI: 10.1016/j.conb.2020.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Dissecting neuronal structure and function in relation to behavior is an immense undertaking. Researchers require imaging tools to study neuronal activity and biochemical signaling in situ in order to study the roles of neuronal and biochemical activity in information processing. A large number of genetically encoded fluorescent biosensors have been reported in the literature over the past few years as there is a push to develop new technology in neuroscience. Here, we review the classes and characteristics of fluorescent biosensors and highlight some considerations that investigators should keep in mind when choosing their tool. In addition, we discuss recent advances in biosensor development.
Collapse
Affiliation(s)
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, United States.
| |
Collapse
|