51
|
Ramesh C, Anwesh M, Vinithkumar NV, Kirubagaran R, Dufossé L. Complete Genome Analysis of Undecylprodigiosin Pigment Biosynthesizing Marine Streptomyces Species Displaying Potential Bioactive Applications. Microorganisms 2021; 9:microorganisms9112249. [PMID: 34835376 PMCID: PMC8618203 DOI: 10.3390/microorganisms9112249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023] Open
Abstract
Marine Streptomyces species are underexplored for their pigment molecules and genes. In this study, we report the genome of the undecylprodigiosin biosynthesizing gene cluster carrying Streptomyces sp. strain BSE6.1, displaying antioxidant, antimicrobial, and staining properties. This Gram-positive obligate aerobic bacterium was isolated from the coastal sediment of the Andaman and Nicobar Islands, India. Pink to reddish pigmented colonies with whitish powdery spores on both agar and broth media are the important morphological characteristics of this bacterium. Growth tolerance to NaCl concentrations was 2 to 7%. The assembled genome of Streptomyces sp. BSE6.1 contains one linear chromosome 8.02 Mb in length with 7157 protein-coding genes, 82 tRNAs, 3 rRNAs and at least 11 gene clusters related to the synthesis of various secondary metabolites, including undecylprodigiosin. This strain carries type I, type II, and type III polyketide synthases (PKS) genes. Type I PKS gene cluster is involved in the biosynthesis of red pigment undecylprodigiosin of BSE6.1, similar to the one found in the S. coelicolor A3(2). This red pigment was reported to have various applications in the food and pharmaceutical industries. The genome of Streptomyces sp. BSE6.1 was submitted to NCBI with a BioProject ID of PRJNA514840 (Sequence Read Archive ID: SRR10849367 and Genome accession ID: CP085300).
Collapse
Affiliation(s)
- Chatragadda Ramesh
- National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MOES), Government of India (GOI), Dollygunj, Port Blair 744103, Andaman and Nicobar Islands, India;
- Correspondence: (C.R.); (M.A.); (L.D.)
| | - Maile Anwesh
- Model Rural Health Research Unit (ICMR-MRHRU), Dahanu 401601, Maharashtra, India
- Correspondence: (C.R.); (M.A.); (L.D.)
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MOES), Government of India (GOI), Dollygunj, Port Blair 744103, Andaman and Nicobar Islands, India;
| | - Ramalingam Kirubagaran
- Marine Biotechnology Group, National Institute of Ocean Technology, MOES, GOI, Chennai 600100, Tamil Nadu, India;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
- Correspondence: (C.R.); (M.A.); (L.D.)
| |
Collapse
|
52
|
Rajput A, Singh DP, Khattar JS, Swatch GK, Singh Y. Evaluation of growth and carotenoid production by a green microalga Scenedesmus quadricauda PUMCC 4.1.40. under optimized culture conditions. J Basic Microbiol 2021; 62:1156-1166. [PMID: 34491598 DOI: 10.1002/jobm.202100285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Microalgae are a potential source of a wide range of food and novel value-added products. The versatility of microalgae to produce different kind of pigments is gaining interest as a sustainable source of natural carotenoids. Currently, commercial production of carotenoids from selected microalgae requires special culture conditions which are difficult to maintain. The present study has been undertaken to optimize culture conditions for growth and carotenoid production by a new isolate Scenedesmus quadricauda PUMCC 4.1.40. The results revealed that test organism produced 1.54 mg dry biomass/ml with a content of 40 μg carotenoids/mg dry biomass during stationary phase. The growth and carotenoid production was increased by 2.4-fold under combined optimized culture conditions. The optimized conditions were growth medium, Chu-10; pH 8.5; temperature, 30°C; nitrogen, 20 mM nitrate; phosphate, 0.22 mM; NaCl, 0.42 mM and blue light. Separation and identification of four important carotenoids through high-performance thin-layer chromatography (HPTLC) followed by purification using flash chromatography and quantification by HPLC revealed 23.8, 19.0, 6.5, and 4.0 μg astaxanthin, β-carotene, lutein, and canthaxanthin /mg dry biomass, respectively. The amount of total carotenoids (98 μg/mg dry biomass) containing 40% valuable astaxanthin and β-carotene produced under optimized conditions was significantly higher than control cultures. This justifies that S. quadricauda is a promising candidate for scale-up production of carotenoid.
Collapse
Affiliation(s)
- Alka Rajput
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Davinder P Singh
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | | | - Gurdeep K Swatch
- Department of Botany, Punjabi University, Patiala, Punjab, India
| | - Yadvinder Singh
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
53
|
Dhankhar D, Nagpal A, Li R, Chen J, Cesario TC, Rentzepis PM. Resonance Raman Spectra for the In Situ Identification of Bacteria Strains and Their Inactivation Mechanism. APPLIED SPECTROSCOPY 2021; 75:1146-1154. [PMID: 33605151 DOI: 10.1177/0003702821992834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The resonance Raman spectra of bacterial carotenoids have been employed to identify bacterial strains and their intensity changes as a function of ultraviolet (UV) radiation dose have been used to differentiate between live and dead bacteria. In addition, the resonance-enhanced Raman spectra enabled us to detect bacteria in water at much lower concentrations (∼108 cells/mL) than normally detected spectroscopically. A handheld spectrometer capable of recording resonance Raman spectra in situ was designed, constructed, and was used to record the spectra. In addition to bacteria, the method presented in this paper may also be used to identify fungi, viruses, and plants, in situ, and detect infections within a very short period of time.
Collapse
Affiliation(s)
- Dinesh Dhankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, USA
| | - Anushka Nagpal
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, USA
| | - Runze Li
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jie Chen
- Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), 12474Shanghai Jiao Tong University, Shanghai, China
| | - Thomas C Cesario
- School of Medicine, University of California at Irvine, Irvine, USA
| | - Peter M Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, USA
| |
Collapse
|
54
|
Bioproduction of Prodigiosin from Fishery Processing Waste Shrimp Heads and Evaluation of Its Potential Bioactivities. FISHES 2021. [DOI: 10.3390/fishes6030030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this work was to reuse a fish processing waste, shrimp head powder (SHP), for the production of prodigiosin (PG) via microbial technology and to assess its potential bioactivities. PG was produced in a 12 L-bioreactor system, and the highest PG productivity of 6310 mg L−1 was achieved when Serratia marcescens CC17 was used for fermentation in a novel designed medium (6.75 L) containing 1.5% C/N source (SHP/casein = 9/1), 0.02% K2SO4, ans 0.025% Ca3(PO4)2, with initial pH 7.0, and fermentation was performed at 28 °C for 8 h. The purified PG showed moderate antioxidants, efficient anti-NO (anti-nitric oxide), and acetylcholinesterase (AChE) inhibitory activities. In a docking study, PG showed better binding energy scores (−12.3 kcal/mol) and more interactions (6 linkages) with several prominent amino acids in the biding sites on AChE that were superior to those of Berberine chloride (−10.8 kcal/mol and one linkage). Notably, this is the first investigation using shrimp heads for the mass bioproduction of PG with high productivity, and Ca3(PO4)2 salt was also newly found to significantly enhance PG production by S. marcescens. This study also provided available data on the anti-NO and anti-AChE effects of PG, especially from the docking simulation PG towards AChE that was described for the first time in this study. The above results suggest that SHP is a good material for the cost-effective bioproduction of PG, which is a potential candidate for anti-NO and anti-Alzheimer drugs.
Collapse
|
55
|
Cassarini M, Besaury L, Rémond C. Valorisation of wheat bran to produce natural pigments using selected microorganisms. J Biotechnol 2021; 339:81-92. [PMID: 34364925 DOI: 10.1016/j.jbiotec.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Pigments are compounds with highly diverse structures and wide uses, which production is increasing worldwide. An eco-friendly method of bioproduction is to use the ability of some microorganisms to ferment on renewable carbon sources. Wheat bran (WB) is a cheap and abundant lignocellulosic co-product of low recalcitrance to biological conversion. Microbial candidates with theoretical ability to degrade WB were first preselected using specific databases. The microorganisms were Ashbya gossypii (producing riboflavin), Chitinophaga pinensis (producing flexirubin), Chromobacterium vaccinii (violacein) and Gordonia alkanivorans (carotenoids). Growth was shown for each on minimal salt medium supplemented with WB at 5 g.L-1. Activities of the main enzymes consuming WB were measured, showing leucine amino-peptidase (up to 8.45 IU. mL-1) and β-glucosidase activities (none to 6.44 IU. mL-1). This was coupled to a FTIR (Fourier Transform Infra-Red) study of the WB residues that showed main degradation of the WB protein fraction for C. pinensis, C. vaccinii and G. alkanivorans. Production of the pigments on WB was assessed for all the strains except Ashbya, with values of production reaching up to 1.47 mg.L-1. The polyphasic approach used in this study led to a proof of concept of pigment production from WB as a cheap carbon source.
Collapse
Affiliation(s)
- Mathieu Cassarini
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| | - Ludovic Besaury
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
| |
Collapse
|
56
|
Patkar S, Shinde Y, Chindarkar P, Chakraborty P. Evaluation of antioxidant potential of pigments extracted from Bacillus spp. and Halomonas spp. isolated from mangrove rhizosphere. BIOTECHNOLOGIA 2021; 102:157-169. [PMID: 36606025 PMCID: PMC9642923 DOI: 10.5114/bta.2021.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to isolate different pigment-producing bacteria from the mangrove rhizosphere habitat and to extract their pigments for evaluating their antioxidant and sun-protective properties. Three pigment-producing bacterial cultures were isolated from soil samples and were identified by morphological analysis and 16S rDNA sequencing. The pigments were isolated by the solvent extraction method and named as MZ (Pink), Orange, and Yellow. They were characterized by Fourier Transform Infrared (FTIR) and UV-Vis spectroscopy. The sun protection factor (SPF) values of these pigments were then determined using the Mansur equation. The total polyphenol content was estimated by the Folin-Ciocâlteu method, and the antioxidant activity of the pigments was determined using DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power), and ABTS (2,2-azinobis-3-ethyl-enzothiazoline-6-sulfonic acid) assays. The in vitro antioxidant potential of the pigments in the presence of oxidative stress (H2O2) was confirmed in the mouse macrophage cell line RAW264.7 by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The pigment-producing bacterial isolates were identified as Bacillus infantis (MZ), Halomonas spp. (Orange), and Bacillus spp. (Yellow). The pigments were found to be carotenoid in nature, and the SPF values were in the range of 3.99 to 5.22. All three pigments had high polyphenol content (22 to 48 μg tannic acid equivalent) and showed significant antioxidant properties in both chemical and cell line-based studies. The results of this study indicate that these pigments have the potential to be used as an antioxidant agent and can be further developed as a pharmaceutical compound.
Collapse
|
57
|
Isolation and Identification of Natural Colorant Producing Soil-Borne Aspergillus niger from Bangladesh and Extraction of the Pigment. Foods 2021; 10:foods10061280. [PMID: 34205202 PMCID: PMC8227025 DOI: 10.3390/foods10061280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Natural colorants have been used in several ways throughout human history, such as in food, dyes, pharmaceuticals, cosmetics, and many other products. The study aimed to isolate the natural colorant-producing filamentous fungi Aspergillus niger from soil and extract pigments for its potential use specially for food production. Fourteen soil samples were collected from Madhupur National Park at Madhupur Upazila in the Mymensingh district, Bangladesh. The Aspergillus niger was isolated and identified from the soil samples by following conventional mycological methods (cultural and morphological characteristics), followed by confirmatory identification by a polymerase chain reaction (PCR) of conserved sequences of ITS1 ribosomal DNA using specific oligonucleotide primers. This was followed by genus- and species-specific primers targeting Aspergillus niger with an amplicon size of 521 and 310 bp, respectively. For pigment production, a mass culture of Aspergillus niger was conducted in Sabouraud dextrose broth in shaking conditions for seven days. The biomass was subjected to extraction of the pigments following an ethanol-based extraction method and concentrated using a rotary evaporator. Aspergillus niger could be isolated from three samples. The yield of extracted brown pigment from Aspergillus niger was 0.75% (w/v). Spectroscopic analysis of the pigments was carried out using a UV-VIS spectrophotometer. An in vivo experiment was conducted with mice to assess the toxicity of the pigments. From the colorimetric and sensory evaluations, pigment-supplemented products (cookies and lemon juice) were found to be more acceptable than the control products. This could be the first attempt to use Aspergillus niger extracted pigment from soil samples in food products in Bangladesh, but for successful food production, the food colorants must be approved by a responsible authority, e.g., the FDA or the BSTI. Moreover, fungal pigments could be used in the emerging fields of the food and textile industries in Bangladesh.
Collapse
|
58
|
Dos Santos RA, Rodríguez DM, da Silva LAR, de Almeida SM, de Campos-Takaki GM, de Lima MAB. Enhanced production of prodigiosin by Serratia marcescens UCP 1549 using agrosubstrates in solid-state fermentation. Arch Microbiol 2021; 203:4091-4100. [PMID: 34052891 DOI: 10.1007/s00203-021-02399-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
This work aimed to investigate the production of prodigiosin by S. marcescens UCP 1549 in solid-state fermentation (SSF), as a sustainable alternative for reducing the production costs and environmental impact. Thus, different agro-industrial substrates were used in the formulation of the prodigiosin production medium, obtaining the maximum yield of pigment (119.8 g/kg dry substrate) in medium consisting of 5 g wheat bran, 5% waste soybean oil and saline solution. The pigment was confirmed as prodigiosin by the maximum absorbance peak at 535 nm, Rf 0.9 in TLC, and the functional groups by infrared spectrum (FTIR). Prodigiosin demonstrated stability at different values of temperature, pH and NaCl concentrations and antimicrobial properties, as well as not show any toxicity. These results confirm the applicability of SSF as a sustainable and promising technology and wheat bran as potential agrosubstrate to produce prodigiosin, making the bioprocess economic and competitive for industrial purposes.
Collapse
Affiliation(s)
- Renata Andreia Dos Santos
- Post-Graduation Program in Development of Environmental Processes, Catholic University of Pernambuco, Recife-PE, 50050-900, Brazil.,Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife-PE, 50050-590, Brazil
| | - Dayana Montero Rodríguez
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife-PE, 50050-590, Brazil.,Post-Graduation Program in Development of Environmental Processes, National Post-Doctorate Program (PNPD-CAPES), Catholic University of Pernambuco, Recife-PE, 50050-900, Brazil
| | - Lucas Albuquerque Rosendo da Silva
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife-PE, 50050-590, Brazil.,Graduate Program in Chemical Engineering, Catholic University of Pernambuco, Recife-PE, 50050-900, Brazil
| | - Sérgio Mendonça de Almeida
- Post-Graduation Program in Development of Environmental Processes, Catholic University of Pernambuco, Recife-PE, 50050-900, Brazil.,Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife-PE, 50050-590, Brazil.,Department of Biology, Catholic University of Pernambuco, Recife-PE, 50050-900, Brazil
| | - Galba Maria de Campos-Takaki
- Post-Graduation Program in Development of Environmental Processes, Catholic University of Pernambuco, Recife-PE, 50050-900, Brazil.,Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife-PE, 50050-590, Brazil
| | - Marcos Antônio Barbosa de Lima
- Post-Graduation Program in Development of Environmental Processes, Catholic University of Pernambuco, Recife-PE, 50050-900, Brazil. .,Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife-PE, 50050-590, Brazil. .,Laboratory of Agricultural and Environmental Microbiology, Department of Biology, Federal Rural University of Pernambuco, Recife-PE, 52171-900, Brazil.
| |
Collapse
|
59
|
Choi O, Lee Y, Park J, Kang B, Chun HJ, Kim MC, Kim J. A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. Microb Biotechnol 2021; 14:1657-1670. [PMID: 34009736 PMCID: PMC8313270 DOI: 10.1111/1751-7915.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022] Open
Abstract
The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn‐degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn‐quenching regulation of bacteria, demonstrating that the LysR‐type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn‐degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdRTxn‐quenching regulatory system mimics the ToxRTxn‐mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn‐quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn.
Collapse
Affiliation(s)
- Okhee Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yeyeong Lee
- Department of Plant Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jiyeong Park
- Department of Plant Medicine, Gyeongsang National University, Jinju, South Korea
| | - Byeongsam Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju, South Korea
| | - Hyun Jin Chun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Min Chul Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea.,Division of Applied Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinwoo Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea.,Department of Plant Medicine, Gyeongsang National University, Jinju, South Korea.,Division of Applied Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
60
|
Rapid Genome Modification in Serratia marcescens Through Red Homologous Recombination. Appl Biochem Biotechnol 2021; 193:2916-2931. [PMID: 33970425 DOI: 10.1007/s12010-021-03576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Despite the great potential of Serratia marcescens in industrial applications, lack of powerful genetic modification tools limits understanding of the regulatory networks of the useful metabolites and therefore restricts their mass production. To meet the urgent demand, we established a genome-editing strategy for S. marcescens based on Red recombineering in this study. Without host modification in advance, nucA and pigA were substituted by PCR-amplified resistance genes. No long homologous arms were required at the two sides of resistance genes. Using this procedure, the fragment at the S. marcescens as large as 20 kb was easily deleted. Then we constructed a counter-selection gene kil constructed under the control of inducible PBAD operon, which demonstrates obvious lethality to S. marcescens. Subsequently, GmR-kil double selection cassette was inserted into the CDS of pigA gene. Using single-stranded DNA-mediated recombination, this insertion mutation was efficiently repaired through kil counter-selection. A powerful genetic modification platform based on Red recombineering system was successfully established for S. marcescens. Multiple types of modification and multiple recombination strategies can all be performed easily in this species. We hope this study will be useful for the theoretical research and the research of metabolic engineering in S. marcescens.
Collapse
|
61
|
Rana B, Bhattacharyya M, Patni B, Arya M, Joshi GK. The Realm of Microbial Pigments in the Food Color Market. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.603892] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colors are added to food items to make them more attractive and appealing. Food colorants therefore, have an impressive market due to the requirements of food industries. A variety of synthetic coloring agents approved as food additives are available and being used in different types of food prepared or manufactured worldwide. However, there is a growing concern that the use of synthetic colors may exert a negative impact on human health and environment in the long run. The natural pigments obtained from animals, plants, and microorganisms are a promising alternative to synthetic food colorants. Compared to animal and plant sources, microorganisms offer many advantages such as no seasonal impact on the quality and quantity of the pigment, ease of handling and genetic manipulation, amenability to large scale production with little or no impact on biodiversity etc. Among the microorganisms algae, fungi and bacteria are being used to produce pigments as food colorants. This review describes the types of microbial food pigments in use, their benefits, production strategies, and associated challenges.
Collapse
|
62
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
63
|
Park H, Park S, Yang YH, Choi KY. Microbial synthesis of violacein pigment and its potential applications. Crit Rev Biotechnol 2021; 41:879-901. [PMID: 33730942 DOI: 10.1080/07388551.2021.1892579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Violacein is a pigment synthesized by Gram-negative bacteria such as Chromobacterium violaceum. It has garnered significant interest owing to its unique physiological and biological activities along with its synergistic effects with various antibiotics. In addition to C. violaceum, several microorganisms, including: Duganella sp., Pseudoalteromonas sp., Iodobacter sp., and Massilia sp., are known to produce violacein. Along with the identification of violacein-producing strains, the genetic regulation, quorum sensing mechanism, and sequence of the vio-operon involved in the biosynthesis of violacein have been elucidated. From an engineering perspective, the heterologous production of violacein using the genetically engineered Escherichia coli or Citrobacter freundii host has also been attempted. Genetic engineering of host cells involves the heterologous expression of genes involved in the vio operon and the optimization of metabolic pathways and gene regulation. Further, the crystallography of VioD and VioE was revealed, and mass production by enzyme engineering has been accelerated. In this review, we highlight the biologically assisted end-use applications of violacein (such as functional fabric development, nanoparticles, functional polymer composites, and sunscreen ingredients) and violacein activation mechanisms, production strains, and the results of mass production with engineered methods. The prospects for violacein research and engineering applications have also been discussed.
Collapse
Affiliation(s)
- HyunA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
64
|
Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM. Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021; 11:92. [PMID: 33561985 PMCID: PMC7915786 DOI: 10.3390/metabo11020092] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids' demand at the global market is now essential. At the moment, the production of natural carotenoids is more expensive than obtaining their synthetic forms, but several new approaches/directions on how to decrease this difference were developed during the last decades. This review briefly describes the information accumulated until now about the beneficial effects of carotenoids on human health protection, their possible application in the treatments of various diseases, and their use in the food and feed industry. This review also describes some issues that are linked with biotechnological production of fungal and yeasts carotenoids, as well as new approaches/directions to make their biotechnological production more efficient.
Collapse
Affiliation(s)
- Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str. 1-537, LV-1004 Riga, Latvia
| | - Irina Guzhova
- Laboratory of Cell Protective Mechanisms, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint Petersburg, Russia;
| | - Lorenzo Bernetti
- Department of Agricultural, Food and Environmental Sciences and Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (L.B.); (P.B.)
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences and Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (L.B.); (P.B.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Anna Maria Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| |
Collapse
|
65
|
Athmika, Ghate SD, Arun AB, Rao SS, Kumar STA, Kandiyil MK, Saptami K, Rekha PD. Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29 T reveals its exopolysaccharide and pigment producing capabilities. Sci Rep 2021; 11:1749. [PMID: 33462335 PMCID: PMC7814019 DOI: 10.1038/s41598-021-81395-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
Halomonas malpeensis strain YU-PRIM-29T is a yellow pigmented, exopolysaccharide (EPS) producing halophilic bacterium isolated from the coastal region. To understand the biosynthesis pathways involved in the EPS and pigment production, whole genome analysis was performed. The complete genome sequencing and the de novo assembly were carried out using Illumina sequencing and SPAdes genome assembler (ver 3.11.1) respectively followed by detailed genome annotation. The genome consists of 3,607,821 bp distributed in 18 contigs with 3337 protein coding genes and 53% of the annotated CDS are having putative functions. Gene annotation disclosed the presence of genes involved in ABC transporter-dependent pathway of EPS biosynthesis. As the ABC transporter-dependent pathway is also implicated in the capsular polysaccharide (CPS) biosynthesis, we employed extraction protocols for both EPS (from the culture supernatants) and CPS (from the cells) and found that the secreted polysaccharide i.e., EPS was predominant. The EPS showed good emulsifying activities against the petroleum hydrocarbons and its production was dependent on the carbon source supplied. The genome analysis also revealed genes involved in industrially important metabolites such as zeaxanthin pigment, ectoine and polyhydroxyalkanoate (PHA) biosynthesis. To confirm the genome data, we extracted these metabolites from the cultures and successfully identified them. The pigment extracted from the cells showed the distinct UV-Vis spectra having characteristic absorption peak of zeaxanthin (λmax 448 nm) with potent antioxidant activities. The ability of H. malpeensis strain YU-PRIM-29T to produce important biomolecules makes it an industrially important bacterium.
Collapse
Affiliation(s)
- Athmika
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Sudeep D Ghate
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Sneha S Rao
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - S T Arun Kumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Mrudula Kinarulla Kandiyil
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Kanekar Saptami
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
66
|
Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergola, Museum of King John III’s Palace at Wilanow, Poland. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of the presented investigation was to describe seasonal changes of microbial community composition in situ in different biocenoses on historical sandstone of the Northern Pergola in the Museum of King John III’s Palace at Wilanow (Poland). The microbial biodiversity was analyzed by the application of Illumina-based next-generation sequencing methods. The metabarcoding analysis allowed for detecting lichenized fungi taxa with the clear domination of two genera: Lecania and Rhinocladiella. It was also observed that, during winter, the richness of fungal communities increased in the biocenoses dominated by lichens and mosses. The metabarcoding analysis showed 34 bacterial genera, with a clear domination of Sphingomonas spp. across almost all biocenoses. Acidophilic bacteria from Acidobacteriaceae and Acetobacteraceae families were also identified, and the results showed that a significant number of bacterial strains isolated during the summer displayed the ability to acidification in contrast to strains isolated in winter, when a large number of isolates displayed alkalizing activity. Other bacteria capable of nitrogen fixation and hydrocarbon utilization (including aromatic hydrocarbons) as well as halophilic microorganisms were also found. The diversity of organisms in the biofilm ensures its stability throughout the year despite the differences recorded between winter and summer.
Collapse
|
67
|
Ashok G, Mohan U, Boominathan M, Ravichandiran V, Viswanathan C, Senthilkumar V. Natural Pigments from Filamentous Fungi: Production and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Transforming traditional nutrition paradigms with synthetic biology driven microbial production platforms. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
69
|
Fungal Secondary Metabolites: Current Research, Commercial Aspects, and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
70
|
Tran T, Dawrs SN, Norton GJ, Virdi R, Honda JR. Brought to you courtesy of the red, white, and blue-pigments of nontuberculous mycobacteria. AIMS Microbiol 2020; 6:434-450. [PMID: 33364537 PMCID: PMC7755587 DOI: 10.3934/microbiol.2020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Pigments are chromophores naturally synthesized by animals, plants, and microorganisms, as well as produced synthetically for a wide variety of industries such as food, pharmaceuticals, and textiles. Bacteria produce various pigments including melanin, pyocyanin, bacteriochlorophyll, violacein, prodigiosin, and carotenoids that exert diverse biological activities as antioxidants and demonstrate anti-inflammatory, anti-cancer, and antimicrobial properties. Nontuberculous mycobacteria (NTM) include over 200 environmental and acid-fast species; some of which can cause opportunistic disease in humans. Early in the study of mycobacteriology, the vast majority of mycobacteria were not known to synthesize pigments, particularly NTM isolates of clinical significance such as the Mycobacterium avium complex (MAC) species. This paper reviews the overall understanding of microbial pigments, their applications, as well as highlights what is currently known about pigments produced by NTM, the circumstances that trigger their production, and their potential roles in NTM survival and virulence.
Collapse
Affiliation(s)
- Tru Tran
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Stephanie N Dawrs
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Grant J Norton
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Ravleen Virdi
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Honda
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
71
|
Sakai-Kawada FE, Ip CG, Hagiwara KA, Nguyen HYX, Yakym CJAV, Helmkampf M, Armstrong EE, Awaya JD. Characterization of Prodiginine Pathway in Marine Sponge-Associated Pseudoalteromonas sp. PPB1 in Hilo, Hawai‘i. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.600201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interest in bioactive pigments stems from their ecological role in adaptation, as well as their applications in various consumer products. The production of these bioactive pigments can be from a variety of biological sources, including simple microorganisms that may or may not be associated with a host. This study is particularly interested in the marine sponges, which have been known to harbor microorganisms that produce secondary metabolites like bioactive pigments. In this study, marine sponge tissue samples were collected from Puhi Bay off the Eastern shore of Hilo, Hawai‘i and subsequently were identified as Petrosia sp. with red pigmentation. Using surface sterilization and aseptic plating of sponge tissue samples, sponge-associated microorganisms were isolated. One isolate (PPB1) produced a colony with red pigmentation like that of Petrosia sp., suggesting an integral relationship between this particular isolate and the sponge of interest. 16S characterization and sequencing of PPB1 revealed that it belonged to the Pseudoalteromonas genus. Using various biological assays, both antimicrobial and antioxidant bioactivity was shown in Pseudoalteromonas sp. PPB1 crude extract. To further investigate the genetics of pigment production, a draft genome of PPB1 was sequenced, assembled, and annotated. This revealed a prodiginine biosynthetic pathway and the first cited-incidence of a prodiginine-producing Pseudoalteromonas species isolated from a marine sponge host. Further understanding into the bioactivity and biosynthesis of secondary metabolites like pigmented prodiginine may uncover the complex ecological interactions between host sponge and microorganism.
Collapse
|
72
|
Pailliè-Jiménez ME, Stincone P, Brandelli A. Natural Pigments of Microbial Origin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.590439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
73
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
74
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
75
|
Wang SL, Nguyen VB, Doan CT, Tran TN, Nguyen MT, Nguyen AD. Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules 2020; 25:E2744. [PMID: 32545769 PMCID: PMC7356639 DOI: 10.3390/molecules25122744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
The technology of microbial conversion provides a potential way to exploit compounds of biotechnological potential. The red pigment prodigiosin (PG) and other PG-like pigments from bacteria, majorly from Serratia marcescens, have been reported as bioactive secondary metabolites that can be used in the broad fields of agriculture, fine chemicals, and pharmacy. Increasing PG productivity by investigating the culture conditions especially the inexpensive carbon and nitrogen (C/N) sources has become an important factor for large-scale production. Investigations into the bioactivities and applications of PG and its related compounds have also been given increased attention. To save production cost, chitin and protein-containing fishery byproducts have recently been investigated as the sole C/N source for the production of PG and chitinolytic/proteolytic enzymes. This strategy provides an environmentally-friendly selection using inexpensive C/N sources to produce a high yield of PG together with chitinolytic and proteolytic enzymes by S. marcescens. The review article will provide effective references for production, bioactivity, and application of S. marcescens PG in various fields such as biocontrol agents and potential pharmaceutical drugs.
Collapse
Affiliation(s)
- San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| |
Collapse
|
76
|
Marine Biocompounds for Neuroprotection-A Review. Mar Drugs 2020; 18:md18060290. [PMID: 32486409 PMCID: PMC7344849 DOI: 10.3390/md18060290] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
While terrestrial organisms are the primary source of natural products, recent years have witnessed a considerable shift towards marine-sourced biocompounds. They have achieved a great scientific interest due to the plethora of compounds with structural and chemical properties generally not found in terrestrial products, exhibiting significant bioactivity ten times higher than terrestrial-sourced molecules. In addition to the antioxidant, anti-thrombotic, anti-coagulant, anti-inflammatory, anti-proliferative, anti-hypertensive, anti-diabetic, and cardio-protection properties, marine-sourced biocompounds have been investigated for their neuroprotective potential. Thus, this review aims to describe the recent findings regarding the neuroprotective effects of the significant marine-sourced biocompounds.
Collapse
|
77
|
Venil CK, Velmurugan P, Dufossé L, Renuka Devi P, Veera Ravi A. Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. J Fungi (Basel) 2020; 6:E68. [PMID: 32443916 PMCID: PMC7344934 DOI: 10.3390/jof6020068] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. Such explorations have created a fervent interest among textile stakeholders to undertake the dyeing of textile fabrics, especially with fungal pigments. The biodegradable and sustainable production of natural colorants from fungal sources stand as being comparatively advantageous to synthetic dyes. The prospective scope of fungal pigments has emerged in the opening of many new avenues in textile colorants for wide ranging applications. Applying the biotechnological processes, fungal pigments like carotenoids, melanins, flavins, phenazines, quinones, monascins, violacein, indigo, etc. could be extracted on an industrial scale. This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is furthermore shedding light on the importance of toxicity testing, genetic manipulations of fungal pigments, and their future perspectives under biotechnological approaches.
Collapse
Affiliation(s)
| | - Palanivel Velmurugan
- Department of Biotechnology, Alagappa University – Science Campus, Karaikudi 630003, Tamil Nadu, India; (P.V.); (A.V.R.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, Indian Ocean, France
| | - Ponnuswamy Renuka Devi
- Department of Biotechnology, Anna University, Regional Campus – Coimbatore, Coimbatore 641046, Tamil Nadu, India;
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University – Science Campus, Karaikudi 630003, Tamil Nadu, India; (P.V.); (A.V.R.)
| |
Collapse
|
78
|
Applications of Prodigiosin Extracted from Marine Red Pigmented Bacteria Zooshikella sp. and Actinomycete Streptomyces sp. Microorganisms 2020; 8:microorganisms8040556. [PMID: 32295096 PMCID: PMC7232315 DOI: 10.3390/microorganisms8040556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023] Open
Abstract
This study is aimed to determine the distribution, diversity and bioprospecting aspects of marine pigmented bacteria (MPB) isolated from pristine Andaman Islands, India. A total of 180 samples including seawater, sediment, marine plants, invertebrates, and vertebrates were collected and investigated for isolating pigmented bacteria. Results revealed that sediment, invertebrates, and seawater samples were colonized with a greater number of pigmented bacteria pertains to 27.9 × 103 CFU/mL, 24.1 × 103 CFU/mL and 6.7 × 103 CFU/mL respectively. Orange (21.6 × 103 CFU/mL) and red (8.0 × 103 CFU/mL) MPB were predominant than other pigmented bacteria. Fourteen potential MPB were selected based on their intense pigmentation and tested for bioactive nature and food colorant applications. Out of 14, two red pigmented strains BSE6.1 & S2.1 displayed potential multifaceted applications, such as antibacterial, antioxidant, food colorant, and staining properties. Brown pigmented strains CO8 and yellow pigmented strain SQ2.3 have displayed staining properties. Chemical characterization of red pigment using TLC, HP-LC, GC-MS, FT-IR and 1H-NMR analysis revealed prodigiosin as a main chemical constituent. Pure form of prodigiosin compound fractions obtained from both the strains displayed effective antibacterial activity against different human pathogens. MIC and MBC assays revealed that S2.1 requires 300 µg and 150 µg, respectively, and BSE6.1 require 400 µg concentrations of pigment compound for complete inhibition of S. aureus subsp. aureus. On the basis of 16S rRNA sequence analysis, strains S2.1 and BSE6.1 were identified as Zooshikella sp. and Streptomyces sp. and assigned under the GenBank accession numbers: MK680108 and MK951781 respectively.
Collapse
|
79
|
Setiyono E, Adhiwibawa MA, Indrawati R, Prihastyanti MNU, Shioi Y, Brotosudarmo THP. An Indonesian Marine Bacterium, Pseudoalteromonas rubra, Produces Antimicrobial Prodiginine Pigments. ACS OMEGA 2020; 5:4626-4635. [PMID: 32175509 PMCID: PMC7066656 DOI: 10.1021/acsomega.9b04322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
Red pigmented marine bacteria, Pseudoalteromonas rubra strains PS1 and SB14, were isolated from two sampling locations in different ecosystems on Alor Island, Indonesia, and cultured in the laboratory. We analyzed the 16S rRNA gene sequences and examined the pigment composition and found that both strains produced cycloprodigiosin (3), prodigiosin (4), and 2-methyl-3-hexyl-prodiginine (5) as major compounds. In addition, we detected three minor compounds: prodigiosin derivatives 2-methyl-3-propyl prodiginine (1), 2-methyl-3-butyl prodiginine (2), and 2-methyl-3-heptyl-prodiginine (6). To our knowledge, this is the first report that P. rubra synthesizes not only prodigiosin and cycloprodigiosin but also four prodigiosin derivatives that differ in the length of the alkyl chain. The antimicrobial activity of cycloprodigiosin, prodigiosin, and 2-methyl-3-hexyl-prodiginine was examined by a disk-diffusion test against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Candida albicans. We found that, at a concentration of 20 μg/mL, cycloprodigiosin showed the greatest inhibition (25.1 ± 0.55 mm) against S. aureus.
Collapse
Affiliation(s)
- Edi Setiyono
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Marcelinus Alfasisurya
Setya Adhiwibawa
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Renny Indrawati
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Monika Nur Utami Prihastyanti
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Yuzo Shioi
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Tatas Hardo Panintingjati Brotosudarmo
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| |
Collapse
|
80
|
Lagashetti AC, Dufossé L, Singh SK, Singh PN. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 2019; 7:E604. [PMID: 31766735 PMCID: PMC6955906 DOI: 10.3390/microorganisms7120604] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
The public's demand for natural, eco-friendly, and safe pigments is significantly increasing in the current era. Natural pigments, especially fungal pigments, are receiving more attention and seem to be in high demand worldwide. The immense advantages of fungal pigments over other natural or synthetic pigments have opened new avenues in the market for a wide range of applications in different industries. In addition to coloring properties, other beneficial attributes of fungal pigments, such as antimicrobial, anticancer, antioxidant, and cytotoxic activity, have expanded their use in different sectors. This review deals with the study of fungal pigments and their applications and sheds light on future prospects and challenges in the field of fungal pigments. Furthermore, the possible application of fungal pigments in the textile industry is also addressed.
Collapse
Affiliation(s)
- Ajay C. Lagashetti
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX, France
| | - Sanjay K. Singh
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| | - Paras N. Singh
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| |
Collapse
|
81
|
Lebeau J, Petit T, Dufossé L, Caro Y. Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express 2019; 9:186. [PMID: 31748828 PMCID: PMC6868082 DOI: 10.1186/s13568-019-0912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Fungal naphthoquinones, like red bikaverin, are of interest due to their growing applications in designing pharmaceutical products. Though considerable work has been done on the elucidation of bikaverin biosynthesis pathway in Fusarium fujikuroi, very few reports are available regarding its bioproduction in F. oxysporum. We are hereby proposing a putative metabolic pathway for bikaverin bioproduction in a wild F. oxysporum strain by cross-linking the pigment profiles we obtained under two different fermentation conditions with literature. Naphthoquinone pigments were extracted with a pressurized liquid extraction method, and characterized by HPLC–DAD and UHPLC-HRMS. The results led to the conclusions that the F. oxysporum LCP531 strain was able to produce bikaverin and its various intermediates, e.g., pre-bikaverin, oxo-pre-bikaverin, dinor-bikaverin, me-oxo-pre-bikaverin, and nor-bikaverin, in submerged cultures in various proportions. To our knowledge, this is the first report of the isolation of these five bikaverin intermediates from F. oxysporum cultures, providing us with steady clues for confirming a bikaverin metabolic pathway as well as some of its regulatory patterns in the F. oxysporum LCP531 strain, based on the previously reported model in F. fujikuroi. Interestingly, norbikaverin accumulated along with bikaverin in mycelial cells when the strain grew on simple carbon and nitrogen sources and additional cofactors. Along bikaverin production, we were able to describe the excretion of the toxin beauvericin as main extrolite exclusively in liquid medium containing complex nitrogen and carbon sources, as well as the isolation of ergosterol derivate in mycelial extracts, which have potential for pharmaceutical uses. Therefore, culture conditions were also concluded to trigger some specific biosynthetic route favoring various metabolites of interest. Such observation is of great significance for selective production of pigments and/or prevention of occurrence of others (aka mycotoxins).
Collapse
|