51
|
Jeyaraj EJ, Nathan S, Lim YY, Choo WS. Antibiofilm properties of Clitoria ternatea flower anthocyanin-rich fraction towards Pseudomonas aeruginosa. Access Microbiol 2022; 4:000343. [PMID: 35812712 PMCID: PMC9260092 DOI: 10.1099/acmi.0.000343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
In Asia, Clitoria ternatea flowers are commonly used as a traditional medicinal herb and as a food colourant. Their bioactive compounds have anti-inflammatory, anti-microbial and anti-biofilm activities.
Pseudomonas aeruginosa
is one of the major pathogens that cause biofilm-associated infections resulting in an increase in antimicrobial resistance. Hence, the aim of this study was to investigate if the anti-biofilm properties of the anthocyanin-rich fraction of C. ternatea flowers were effective against
P. aeruginosa
. The effect of the anthocyanin-rich fraction of C. ternatea flowers on
P. aeruginosa
biofilms formed on a polystyrene surface was determined using the crystal violet assay and scanning electron microscopy (SEM). The anthocyanin-rich fraction reduced biofilm formation by four
P. aeruginosa
strains with a minimum biofilm inhibitory concentration value ranging between 0.625 and 5.0 mg ml−1. We further show that the biofilm-inhibiting activity of C. ternatea flowers is not due to the flavonols but is instead attributed to the anthocyanins, which had significant biofilm inhibitory activity (64.0±1.1 %) at 24 h in a time–response study. The anthocyanin-rich fraction also significantly reduced bacterial attachment on the polystyrene by 1.1 log c.f.u. cm−2 surface based on SEM analysis. Hence, anthocyanins from C. ternatea flowers have potential as an agent to decrease the risk of biofilm-associated infections.
Collapse
Affiliation(s)
- Ethel Jeyaseela Jeyaraj
- Tropical Medicine and Biology Platform, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- School of Science, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Yau Yan Lim
- School of Science, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
52
|
Ran M, Gounani Z, Yan J, Rosenholm JM, Zhang H. Ca
2+
enhanced photosensitizer/DNase I nanocomposite mediated bacterial eradication through biofilm disruption and photothermal therapy. NANO SELECT 2022. [DOI: 10.1002/nano.202200026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Meixin Ran
- Pharmaceutical Sciences Laboratory Åbo Akademi University Turku 20520 Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku 20520 Finland
| | - Zahra Gounani
- Physics Faculty of Science and Engineering Åbo Akademi Turku 20500 Finland
| | - Jiaqi Yan
- Pharmaceutical Sciences Laboratory Åbo Akademi University Turku 20520 Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku 20520 Finland
| | | | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory Åbo Akademi University Turku 20520 Finland
- Turku Bioscience Centre University of Turku and Åbo Akademi University Turku 20520 Finland
| |
Collapse
|
53
|
Li J, Meng Z, Zhuang Z, Wang B, Dai J, Feng G, Lou X, Xia F, Zhao Z, Tang BZ. Effective Therapy of Drug-Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200743. [PMID: 35347841 DOI: 10.1002/smll.202200743] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Developing effective therapies to fight against biofilm-associated infection is extremely urgent. The complex environment of biofilm forces the bacteria to evade the elimination of antibiotics, resulting in recalcitrant chronic infections. To address this issue, a cationic antibacterial agent based on phosphindole oxide (β-PM-PIO) is designed and prepared. The unique molecular structure endows β-PM-PIO with aggregation-induced emission feature and efficient singlet oxygen generation ability. β-PM-PIO shows excellent visual diagnostic function to planktonic bacteria and biofilm. In addition, owing to the synergistic effect of phototoxicity and dark toxicity, β-PM-PIO can achieve superb antibacterial and antibiofilm performance against Gram-positive bacteria with less potential of developing drug resistance. Notably, β-PM-PIO also holds excellent anti-infection capacity against drug-resistant bacteria in vivo with negligible side effects. This work offers a promising platform to develop advanced antibacterial agents against multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zijuan Meng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
54
|
Hamdi Abdulkareem M, Abbas Abood I, Munis Dakheel M. Antimicrobial Resistance of Tannin Extract against E. coli Isolates from Sheep. ARCHIVES OF RAZI INSTITUTE 2022; 77:697-701. [PMID: 36284977 PMCID: PMC9548284 DOI: 10.22092/ari.2022.356982.1955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 12/06/2021] [Accepted: 01/16/2022] [Indexed: 06/16/2023]
Abstract
Plants have been long valuable sources of natural materials that have served to preserve human and animal health; as a result, pharmacological purposes have arisen from the use of plant compounds in most countries, according to a World Health Organization report. The present study aimed to assess the antimicrobial resistance of tannin extract against Escherichia coli (E. coli) isolates in sheep. A total of 100 samples from sheep were used to isolate E. coli and treated with tannin extract (90% purity) to investigate the in vitro effect, as compared to some antibiotics (Clindamycin, Cephalexin, Kanamycin, Tetracycline, and Vancomycin). The bacterial samples were cultured in a selective and differential medium, and Gram staining was used to examine them. The biochemical assays were performed to purify and expose these cultures; moreover, the API 20E system and RapidTM ONE kits were utilized to confirm the bacterial strain. Based on the findings, 50% of the samples showed a positive result for the presence of E. coli. The well diffusion technique was used to investigate the antibacterial activity to confirm the antibacterial action of tannin extract (from pomegranate peel) in different concentrations against E. coli. The highest zone of inhibition for the bacteria ranged from 12±0.5 to 30.3±0.2 at 50% concentrations, proving that tannins extract was significantly effective against E. coli. The presence of E. coli was detected in 50 % of the samples. The well-diffusion technique was used to evaluate the antimicrobial property of tannin extract through various concentrations with the highest zone of inhibition for the bacteria ranging from 12.5 to 30.30.2 at 50%, demonstrating that tannin extract was significantly effective on E. coli.
Collapse
Affiliation(s)
- M Hamdi Abdulkareem
- Microbiology Department, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - I Abbas Abood
- Microbiology Department, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - M Munis Dakheel
- Zoonosis Research Unit, Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
55
|
Noori F, Megoura M, Labelle MA, Mateescu MA, Azzouz A. Synthesis of Metal-Loaded Carboxylated Biopolymers with Antibacterial Activity through Metal Subnanoparticle Incorporation. Antibiotics (Basel) 2022; 11:antibiotics11040439. [PMID: 35453191 PMCID: PMC9031093 DOI: 10.3390/antibiotics11040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Carboxymethyl starch (CMS) and carboxymethyl cellulose (CMC) loaded by highly dispersed metal subnanoparticles (MSNPs) showed antibacterial activity against E. coli and B. subtilis strains. Copper and silver were found to act in both cationic and zero-valence forms. The antibacterial activity depends on the metal species content but only up to a certain level. Silver cation (Ag+) showed higher antibacterial activity as compared to Ag0, which was, however, more effective than Cu0, due to weaker retention. The number of carboxyl groups of the biopolymers was found to govern the material dispersion in aqueous media, the metal retention strength and dispersion in the host-matrices. Cation and metal retention in both biopolymers was found to involve interactions with the oxygen atoms of both hydroxyl and carboxyl groups. There exists a ternary interdependence between the Zeta potential (ZP), pH induced by the biocidal agent and its particle size (PS). This interdependence is a key factor in the exchange processes with the surrounding species, including bacteria. Clay mineral incorporation was found to mitigate material dispersion, due to detrimental competitive clay:polymer interaction. This knowledge advancement opens promising prospects for manufacturing metal-loaded materials for biomedical applications.
Collapse
Affiliation(s)
- Farzaneh Noori
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
| | - Meriem Megoura
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
| | - Marc-André Labelle
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
| | - Mircea Alexandru Mateescu
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
- Correspondence: (M.A.M.); (A.A.); Tel.: +1-514-987-4319 (M.A.M.); +1-514-987-3000 (ext. 4119) (A.A.); Fax: +1-514-987-4054 (M.A.M. & A.A.)
| | - Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (F.N.); (M.M.); (M.-A.L.)
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
- Correspondence: (M.A.M.); (A.A.); Tel.: +1-514-987-4319 (M.A.M.); +1-514-987-3000 (ext. 4119) (A.A.); Fax: +1-514-987-4054 (M.A.M. & A.A.)
| |
Collapse
|
56
|
Raffaelli S, Abreo E, Altier N, Vázquez Á, Alborés S. Bioprospecting the Antibiofilm and Antimicrobial Activity of Soil and Insect Gut Bacteria. Molecules 2022; 27:molecules27062002. [PMID: 35335364 PMCID: PMC8951591 DOI: 10.3390/molecules27062002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance is a growing concern in public health and current research shows an important role for bacterial biofilms in recurrent or chronic infections. New strategies, therefore, are necessary to overcome antimicrobial resistance, through the development of new therapies that could alter or inhibit biofilm formation. In this sense, antibiofilm natural products are very promising. In this work, a bioprospection of antimicrobial and antibiofilm extracts from Uruguayan soil bacteria and insect gut bacteria was carried out. Extracts from extracellular broths were tested for their ability to inhibit planktonic cell growth and biofilm formation. Genomic analysis of Bacillus cereus ILBB55 was carried out. All extracts were able to inhibit the growth of, at least, one microorganism and several extracts showed MICs lower than 500 µg mL−1 against microorganisms of clinical relevance (Staphylococcus aureus, Pseudomonas aeruginosa, and Enterobacter cloacae). Among the extracts evaluated for biofilm inhibition only ILBB55, from B. cereus, was able to inhibit, S. aureus (99%) and P. aeruginosa (62%) biofilms. Genomic analysis of this strain showed gene clusters similar to other clusters that code for known antimicrobial compounds. Our study revealed that extracts from soil bacteria and insect gut bacteria, especially from B. cereus ILBB55, could be potential candidates for drug discovery to treat infectious diseases and inhibit S. aureus and P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Sofía Raffaelli
- Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo CP 11800, Uruguay;
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo CP 11800, Uruguay
- Posgrado en Química, Facultad de Química, Universidad de la República, Montevideo CP 11800, Uruguay
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Estación Experimental INIA Las Brujas, Instituto Nacional de Investigación Agropecuaria, Canelones CP 90200, Uruguay; (E.A.); (N.A.)
| | - Nora Altier
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Estación Experimental INIA Las Brujas, Instituto Nacional de Investigación Agropecuaria, Canelones CP 90200, Uruguay; (E.A.); (N.A.)
| | - Álvaro Vázquez
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo CP 11800, Uruguay
- Correspondence: (Á.V.); (S.A.)
| | - Silvana Alborés
- Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo CP 11800, Uruguay;
- Correspondence: (Á.V.); (S.A.)
| |
Collapse
|
57
|
Choi H, Zaki FR, Monroy GL, Won J, Boppart SA. Imaging and characterization of transitions in biofilm morphology via anomalous diffusion following environmental perturbation. BIOMEDICAL OPTICS EXPRESS 2022; 13:1654-1670. [PMID: 35414993 PMCID: PMC8973182 DOI: 10.1364/boe.449131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms form macroscopic structures for the purpose of environmental adaptation. Sudden environmental perturbations induce dynamics that cause bacterial biofilm morphology to transit to another equilibrium state, thought to be related to anomalous diffusion processes. Here, detecting the super-diffusion characteristics would offer a long-sought goal for a rapid detection method of biofilm phenotypes based on their dynamics, such as growth or dispersal. In this paper, phase-sensitive Doppler optical coherence tomography (OCT) and dynamic light scattering (DLS) are combined to demonstrate wide field-of-view and label-free internal dynamic imaging of biofilms. The probability density functions (PDFs) of phase displacement of the backscattered light and the dynamic characteristics of the PDFs are estimated by a simplified mixed Cauchy and Gaussian model. This model can quantify the super-diffusion state and estimate the dynamic characteristics and macroscopic responses in biofilms that may further describe dispersion and growth in biofilm models.
Collapse
Affiliation(s)
- Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
58
|
Ren X, Hu Y, Chang L, Xu S, Mei X, Chen Z. Electrospinning of antibacterial and anti-inflammatory Ag@hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing. Regen Biomater 2022; 9:rbac012. [PMID: 35592139 PMCID: PMC9113224 DOI: 10.1093/rb/rbac012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Bacterial infection and excessive inflammation are still the main obstacles to wound repair. Thus, antibacterial and anti-inflammation nanomaterials are always attracting for infected wound healing. In this work, ultra-uniform (∼20 nm) and colloidally stable Ag nanoparticles (Ag-Hes NPs) with core-shell structure were prepared by using hesperidin as reducing and caping agent. The obtained Ag-Hes NPs present effective antibacterial properties on both S. aureus and E. coli. Ag-Hes NPs also got high DPPH (1,1-Diphenyl-1-picrylhydrazyl) scavenging capability of 69%. Under the package of polyvinyl alcohol and sodium alginate, Ag-Hes NPs were encapsulated into electro spun nanofibers to form hydrogel (Ag-Hes@H). This strategy provides a moisture environment which could enrich and release Ag-Hes NPs gradually. Cell experiments and animal wound healing investigation proved that Ag-Hes@H could promote the proliferation and migration of HUVECS cells and accelerate infected wound healing. Meanwhile, Ag-Hes@H significantly reduced the expression of inflammatory cytokines, including IL-6, MMP9, and TNF-α. Immunohistochemistry data further suggested that Ag-Hes@H accelerated wound closure by promoting collagen deposition and skin cell proliferation. The designed antibacterial and anti-inflammatory Ag-Hes@H has great potential for promoting infected wound healing.
Collapse
Affiliation(s)
- Xiuli Ren
- Jinzhou Medical University, Jinzhou 121001, China
| | - Yanan Hu
- Jinzhou Medical University, Jinzhou 121001, China
| | - Linna Chang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Shibo Xu
- Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou 121001, China
- Correspondence address. E-mail: (X.M.); (Z.C.)
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou 121001, China
- Correspondence address. E-mail: (X.M.); (Z.C.)
| |
Collapse
|
59
|
Xu W, Qing X, Liu S, Chen Z, Zhang Y. Manganese oxide nanomaterials for bacterial infection detection and therapy. J Mater Chem B 2022; 10:1343-1358. [PMID: 35129557 DOI: 10.1039/d1tb02646a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection has received substantial attention and poses a serious threat to human health. Although antibiotics can effectively fight against bacterial infection, the occurrence of antibiotic resistance has become increasingly serious in recent years, which tremendously hinders its clinical application. Consequently, it is urgent to explore novel strategies to achieve efficacious treatment of bacterial diagnosis and detection. Manganese dioxide (MnO2) nanomaterial has been extensively reported in tumor therapy. Nevertheless, there are few antibacterial reviews of MnO2. Herein, we will discuss the applications of MnO2 in the detection and treatment of bacterial infection, including photodynamic therapy, immunotherapy, improvement of hypoxia, dual-modal combination therapy, reactive oxygen species scavenging, magnetic resonance imaging, optical application of acoustic imaging, and so forth. This review is expected to provide meaningful guidance on further research of MnO2 nanomaterial for antibacterial applications.
Collapse
Affiliation(s)
- Wenjing Xu
- Medical School, Southeast University, Nanjing 210009, China.
| | - Xin Qing
- Medical School, Southeast University, Nanjing 210009, China.
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing 210009, China. .,Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
60
|
Matinpur A, Khorshidi A, Zadeh N, Khaledi A, Moosavi G, Shakerimoghaddam A. Investigation of class 1 integrons and biofilm formation in multi-drug resistance uropathogenic Escherichia coli isolated from patients with urinary tract infection in shohadaye qom hospital, Iran. INTERNATIONAL ARCHIVES OF HEALTH SCIENCES 2022. [DOI: 10.4103/iahs.iahs_163_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022] Open
|
61
|
Bacteriophage Therapy as a Treatment Option for Complex Cardiovascular Implant Infection: The German Heart Center Berlin experience. J Heart Lung Transplant 2022; 41:551-555. [DOI: 10.1016/j.healun.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
|
62
|
Pandey P, Sahoo R, Singh K, Pati S, Mathew J, Pandey AC, Kant R, Han I, Choi EH, Dwivedi GR, Yadav DK. Drug Resistance Reversal Potential of Nanoparticles/Nanocomposites via Antibiotic's Potentiation in Multi Drug Resistant P. aeruginosa. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:117. [PMID: 35010068 PMCID: PMC8746836 DOI: 10.3390/nano12010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023]
Abstract
Bacteria employ numerous resistance mechanisms against structurally distinct drugs by the process of multidrug resistance. A study was planned to discover the antibacterial potential of a graphene oxide nanosheet (GO), a graphene oxide-zinc oxide nanocomposite (GO/ZnO), a graphene oxide-chitosan nanocomposite (GO-CS), a zinc oxide decorated graphene oxide-chitosan nanocomposite (GO-CS/ZnO), and zinc oxide nanoparticles (ZnO) alone and in a blend with antibiotics against a PS-2 isolate of Pseudomonas aeruginosa. These nanocomposites reduced the MIC of tetracycline (TET) from 16 folds to 64 folds against a multidrug-resistant clinical isolate. Efflux pumps were interfered, as evident by an ethidium bromide synergy study with nanocomposites, as well as inhibiting biofilm synthesis. These nanoparticles/nanocomposites also decreased the mutant prevention concentration (MPC) of TET. To the best of our knowledge, this is the first report on nanomaterials as a synergistic agent via inhibition of efflux and biofilm synthesis.
Collapse
Affiliation(s)
- Pratima Pandey
- Department of Biotechnology, Bundelkhand University, Jhansi 284128, India
- Nanotechnology Application Centre, University of Allahabad, Allahabad 211002, India
| | - Rajashree Sahoo
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, India
| | - Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, India
| | - Jose Mathew
- Department of Biotechnology, Bundelkhand University, Jhansi 284128, India
| | | | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Bio-logical Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Bio-logical Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, India
| | - Dharmendra K Yadav
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon City 406-799, Korea
| |
Collapse
|
63
|
Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
64
|
Haseena, Khan A, Ghaffar I, Baty RS, Abdel-Daim MM, Habib SM, Kanwal T, Shah MR. Synthesis of Ribose-Coated Copper-Based Metal-Organic Framework for Enhanced Antibacterial Potential of Chloramphenicol against Multi-Drug Resistant Bacteria. Antibiotics (Basel) 2021; 10:1469. [PMID: 34943681 PMCID: PMC8698127 DOI: 10.3390/antibiotics10121469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 01/21/2023] Open
Abstract
The rise in bacterial resistance to currently used antibiotics is the main focus of medical researchers. Bacterial multidrug resistance (MDR) is a major threat to humans, as it is linked to greater rates of chronic disease and mortality. Hence, there is an urgent need for developing effective strategies to overcome the bacterial MDR. Metal-organic frameworks (MOFs) are a new class of porous crystalline materials made up of metal ions and organic ligands that can vary their pore size and structure to better encapsulate drug candidates. This study reports the synthesis of ribose-coated Cu-MOFs for enhanced bactericidal activity of chloramphenicol (CHL) against Escherichia coli (resistant and sensitive) and MDR Pseudomonas aeruginosa. The synthesized Cu-MOFs were characterized with DLS, FT-IR, powder X-ray diffraction, scanning electron microscope, and atomic force microscope. They were further investigated for their efficacy against selected bacterial strains. The synthesized ribose-coated Cu-MOFs were observed as spherical shape structure with the particle size of 562.84 ± 13.42 nm. CHL caused the increased inhibition of E. coli and MDR P. aeruginosa with significantly reduced MIC and MBIC values after being encapsulated in ribose-coated Cu-MOFs. The morphological analysis of the bacterial strains treated with ribose-coated CHL-Cu-MOFs showed the complete morphological distortion of both E. coli and MDR P. aeruginosa. Based on the results of the study, it can be suggested that ribose-coated Cu-MOFs may be an effective alternate candidate to overcome the MDR and provide new perspective for the treatment of MDR bacterial infections.
Collapse
Affiliation(s)
- Haseena
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (H.); (A.K.)
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (H.); (A.K.)
| | - Iqra Ghaffar
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Shahida M. Habib
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| | - Tasmina Kanwal
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, Research Institute of Chemistry, University of Karachi, Karachi 74200, Pakistan; (I.G.); (S.M.H.); (T.K.)
| |
Collapse
|
65
|
Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13111913. [PMID: 34834328 PMCID: PMC8618949 DOI: 10.3390/pharmaceutics13111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.
Collapse
|
66
|
Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes 2021; 7:80. [PMID: 34759294 PMCID: PMC8581019 DOI: 10.1038/s41522-021-00251-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilms are organised heterogeneous assemblages of microbial cells that are encased within a self-produced matrix. Current estimates suggest that up to 80% of bacterial and archaeal cells reside in biofilms. Since biofilms are the main mode of microbial life, understanding their biology and functions is critical, especially as controlling biofilm growth is essential in industrial, infrastructure and medical contexts. Here we discuss biofilms both as collections of individual cells, and as multicellular biological individuals, and introduce the concept of biofilms as unique incubators of diversity for the microbial world.
Collapse
Affiliation(s)
- Anahit Penesyan
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael R Gillings
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
67
|
Zhang Y, Zhang Y, Liu L, Zhou L, Zhao Z. Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117736. [PMID: 34256291 DOI: 10.1016/j.envpol.2021.117736] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/25/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water.
Collapse
Affiliation(s)
- Yongji Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yingyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lina Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lingling Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiling Zhao
- College of Civil Engineering, Huaqiao University, Jimei District, Xiamen, 361021, China
| |
Collapse
|
68
|
Gomes Von Borowski R, Chat S, Schneider R, Nonin-Lecomte S, Bouaziz S, Giudice E, Rigon Zimmer A, Baggio Gnoatto SC, Macedo AJ, Gillet R. Capsicumicine, a New Bioinspired Peptide from Red Peppers Prevents Staphylococcal Biofilm In Vitro and In Vivo via a Matrix Anti-Assembly Mechanism of Action. Microbiol Spectr 2021; 9:e0047121. [PMID: 34704807 PMCID: PMC8549733 DOI: 10.1128/spectrum.00471-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococci are pathogenic biofilm-forming bacteria and a source of multidrug resistance and/or tolerance causing a broad spectrum of infections. These bacteria are enclosed in a matrix that allows them to colonize medical devices, such as catheters and tissues, and that protects against antibiotics and immune systems. Advances in antibiofilm strategies for targeting this matrix are therefore extremely relevant. Here, we describe the development of the Capsicum pepper bioinspired peptide "capsicumicine." By using microbiological, microscopic, and nuclear magnetic resonance (NMR) approaches, we demonstrate that capsicumicine strongly prevents methicillin-resistant Staphylococcus epidermidis biofilm via an extracellular "matrix anti-assembly" mechanism of action. The results were confirmed in vivo in a translational preclinical model that mimics medical device-related infection. Since capsicumicine is not cytotoxic, it is a promising candidate for complementary treatment of infectious diseases. IMPORTANCE Pathogenic biofilms are a global health care concern, as they can cause extensive antibiotic resistance, morbidity, mortality, and thereby substantial economic loss. So far, no effective treatments targeting the bacteria in biofilms have been developed. Plants are constantly attacked by a wide range of pathogens and have protective factors, such as peptides, to defend themselves. These peptides are common components in Capsicum baccatum (red pepper). Here, we provide insights into an antibiofilm strategy based on the development of capsicumicine, a natural peptide that strongly controls biofilm formation by Staphylococcus epidermidis, the most prevalent pathogen in device-related infections.
Collapse
Affiliation(s)
- Rafael Gomes Von Borowski
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sophie Chat
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
| | - Rafael Schneider
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sylvie Nonin-Lecomte
- Université de Paris, CNRS, CiTCoM (Cibles Thérapeutiques et Conception de Médicaments) UMR 8038, Faculté de Pharmacie, Paris, France
| | - Serge Bouaziz
- Université de Paris, CNRS, CiTCoM (Cibles Thérapeutiques et Conception de Médicaments) UMR 8038, Faculté de Pharmacie, Paris, France
| | - Emmanuel Giudice
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
| | - Aline Rigon Zimmer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Cristina Baggio Gnoatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Reynald Gillet
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
| |
Collapse
|
69
|
Sheppard RJ, Barraclough TG, Jansen VAA. The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. Am Nat 2021; 198:473-488. [PMID: 34559608 DOI: 10.1086/716063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.
Collapse
|
70
|
Muraca GS, Soler-Arango J, Castro GR, Islan GA, Brelles-Mariño G. Improving ciprofloxacin antimicrobial activity through lipid nanoencapsulation or non-thermal plasma on Pseudomonas aeruginosa biofilms. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
71
|
Pathak K, Misra SK, Sehgal A, Singh S, Bungau S, Najda A, Gruszecki R, Behl T. Biomedical Applications of Quaternized Chitosan. Polymers (Basel) 2021; 13:polym13152514. [PMID: 34372116 PMCID: PMC8347635 DOI: 10.3390/polym13152514] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
The natural polymer chitosan is the second most abundant biopolymer on earth after chitin and has been extensively explored for preparation of versatile drug delivery systems. The presence of two distinct reactive functional groups (an amino group at C2, and a primary and secondary hydroxyl group at C3 and C6) of chitosan are involved in the transformation of expedient derivatives such as acylated, alkylated, carboxylated, quaternized and esterified chitosan. Amongst these, quaternized chitosan is preferred in pharmaceutical industries owing to its prominent features including superior water solubility, augmented antimicrobial actions, modified wound healing, pH-sensitive targeting, biocompatibility, and biodegradability. It has been explored in a large realm of pharmaceuticals, cosmeceuticals, and the biomedical arena. Immense classy drug delivery systems containing quaternized chitosan have been intended for tissue engineering, wound healing, gene, and vaccine delivery. This review article outlines synthetic techniques, basic characteristics, inherent properties, biomedical applications, and ubiquitous challenges associated to quaternized chitosan.
Collapse
Affiliation(s)
- Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206130, India;
| | - Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Sahuji Maharaj University, Kanpur 208026, India;
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (A.N.); (T.B.)
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
- Correspondence: (A.N.); (T.B.)
| |
Collapse
|
72
|
Biofilm Formation of Multidrug-Resistant MRSA Strains Isolated from Different Types of Human Infections. Pathogens 2021; 10:pathogens10080970. [PMID: 34451434 PMCID: PMC8400568 DOI: 10.3390/pathogens10080970] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main pathogens causing chronic infections, mainly due to its capacity to form biofilms. However, the mechanisms underlying the biofilm formation of MRSA strains from different types of human infections are not fully understood. MRSA strains isolated from distinct human infections were characterized aiming to determine their biofilm-forming capacity, the biofilm resistance to conventional antibiotics and the prevalence of biofilm-related genes, including, icaA, icaB, icaC, icaD, fnbA, fnbB, clfA, clfB, cna, eno, ebpS, fib and bbp. Eighty-three clinical MRSA strains recovered from bacteremia episodes, osteomyelitis and diabetic foot ulcers were used. The biofilm-forming capacity was evaluated by the microtiter biofilm assay and the biofilm structure was analyzed via confocal scanning laser microscopy. The antimicrobial susceptibility of 24-h-old biofilms was assessed against three antibiotics and the biomass reduction was measured. The metabolic activity of biofilms was evaluated by the XTT assay. The presence of biofilm-related genes was investigated by whole-genome sequencing and by PCR. Despite different intensities, all strains showed the capacity to form biofilms. Most strains had also a large number of biofilm-related genes. However, strains isolated from osteomyelitis showed a lower capacity to form biofilms and also a lower prevalence of biofilm-associated genes. There was a significant reduction in the biofilm biomass of some strains tested against antibiotics. Our results provide important information on the biofilm-forming capacity of clinical MRSA strains, which may be essential to understand the influence of different types of infections on biofilm production and chronic infections.
Collapse
|
73
|
Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules 2021; 26:molecules26144378. [PMID: 34299652 PMCID: PMC8306285 DOI: 10.3390/molecules26144378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Implantable medical devices (IMDs) are susceptible to microbial adhesion and biofilm formation, which lead to several clinical complications, including the occurrence of implant-associated infections. Polylactic acid (PLA) and its composites are currently used for the construction of IMDs. In addition, chitosan (CS) is a natural polymer that has been widely used in the medical field due to its antimicrobial and antibiofilm properties, which can be dependent on molecular weight (Mw). The present study aims to evaluate the performance of CS-based surfaces of different Mw to inhibit bacterial biofilm formation. For this purpose, CS-based surfaces were produced by dip-coating and the presence of CS and its derivatives onto PLA films, as well surface homogeneity were confirmed by contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antimicrobial activity of the functionalized surfaces was evaluated against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan-based surfaces were able to inhibit the development of single- and dual-species biofilms by reducing the number of total, viable, culturable, and viable but nonculturable cells up to 79%, 90%, 81%, and 96%, respectively, being their activity dependent on chitosan Mw. The effect of CS-based surfaces on the inhibition of biofilm formation was corroborated by biofilm structure analysis using confocal laser scanning microscopy (CLSM), which revealed a decrease in the biovolume and thickness of the biofilm formed on CS-based surfaces compared to PLA. Overall, these results support the potential of low Mw CS for coating polymeric devices such as IMDs where the two bacteria tested are common colonizers and reduce their biofilm formation.
Collapse
|
74
|
Castillo RR, Vallet-Regí M. Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int J Nanomedicine 2021; 16:4409-4430. [PMID: 34234434 PMCID: PMC8256096 DOI: 10.2147/ijn.s273064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
It is a fact that the use of antibiotics is inducing a growing resistance on bacteria. This situation is not only the consequence of a drugs’ misuse, but a direct consequence of a widespread and continuous use. Current studies suggest that this effect could be reversed by using abandoned antibiotics to which bacteria have lost their resistance, but this is only a temporary solution that in near future would lead to new resistance problems. Fortunately, current nanotechnology offers a new life for old and new antibiotics, which could have significantly different pharmacokinetics when properly delivered; enabling new routes able to bypass acquired resistances. In this contribution, we will focus on the use of porous silica nanoparticles as functional carriers for the delivery of antibiotics and biocides in combination with additional features like membrane sensitizing and heavy metal-driven metabolic-disrupting therapies as two of the most interesting combination therapies.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Centro de Investigación Biomédica en Red-CIBER, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, Madrid, 28041, Spain
| |
Collapse
|
75
|
Özyazici T, Şahin F, Köksal M. Synthesis, spectral characterization, and biological studies of 3,5-disubstituted-1,3,4-oxadiazole-2(3H)-thione derivatives. Turk J Chem 2021; 45:749-760. [PMID: 34385865 PMCID: PMC8326474 DOI: 10.3906/kim-2008-44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2020] [Accepted: 03/17/2021] [Indexed: 11/03/2022] Open
Abstract
The reaction of 3,4-dichlorophenyl-1,3,4-oxadiazole-2( 3H )-thione with piperidine derivatives via Mannich reaction was used to generate eleven novel compounds in moderate to good yields. Synthesized molecules were characterized according to their structure with 1H NMR, 13C NMR and FT-IR spectral foundations, which were compatible with literature informations. Antimicrobial activity and cytotoxicity studies were done by disc diffusion and NCI-60 sulphordamine B assay methods. The antimicrobial test results revealed that synthesized compounds have better activity against gram-positive species than gram-negative ones. A total analysis of the antibacterial, antifungal, and antiyeast activity revealed that newly synthesized compounds were really active against Bacillus cereus , Bacillus ehimensis, and Bacillus thuringiensis species . For cytotoxicity, among three different cancer cell lines (HCT116, MCF7, HUH7) compounds 5c, 5d, 5e, 5f, 5g, 5i, 5j and 5k were seemed especially effective on HUH7 cancer cell line via moderate to good activity. More significantly, against liver carcinoma cell line (HUH7) most of the compounds of the series ( 5c-5g and 5i-5j ) have better IC50 values (IC50= 18.78 µM) than 5-Florouracil (5-FU) and also compound 5d possessed 10.1 µM value, which represents good druggable cytotoxic activity. Further, the molecules were also screened for in silico chemoinformatic and toxicity data to gather the predicted bioavailibity and safety measurements.
Collapse
Affiliation(s)
- Tuğçe Özyazici
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, İstanbul Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sağlık Bilimleri University, İstanbul Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey
| | - Meriç Köksal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, İstanbul Turkey
| |
Collapse
|
76
|
Silva V, Antão HS, Guimarães J, Prada J, Pires I, Martins Â, Maltez L, Pereira JE, Capelo JL, Igrejas G, Poeta P. Efficacy of dalbavancin against MRSA biofilms in a rat model of orthopaedic implant-associated infection. J Antimicrob Chemother 2021; 75:2182-2187. [PMID: 32417903 DOI: 10.1093/jac/dkaa163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the efficacy of dalbavancin against MRSA biofilm-related infection in orthopaedic implants in vivo. METHODS One MRSA strain isolated from human osteomyelitis was used to promote biofilm formation on the surface of screws. The implants were inserted in the proximal tibia under general anaesthesia. Thirty-nine Wistar rats were divided into three groups [control group (no treatment), Group 1 (7 days of treatment) and Group 2 (14 days of treatment)]; both treatment groups were administered dalbavancin intraperitoneally and euthanized after treatment. cfu of bacteria present in both the tibia and the implant were quantified. The infection severity was assessed by histopathology and scored from 0 (no infection) to 4 (severe infection). RESULTS The high number of cfu/g and cfu/mL present in the control group indicated a well-established infection. There was a significant reduction in cfu in rats treated with dalbavancin both in the tibia (2.8 × 105 cfu/g) and the implant (1.1 × 106 cfu/mL) in Group 1 (1.8 × 103 cfu/g and 2.4 × 105 cfu/mL, respectively) and in Group 2 (8.2 cfu/g and 8.2 × 103 cfu/mL, respectively). Most animals from the control group presented an infection scored as 3 (severe). At the end of the experiment, most rats from Groups 1 and 2 presented an infection scored as 2 (moderate) and 0 (no infection), respectively. CONCLUSIONS Although there was a marked decrease in cfu number, signs of biofilm-induced infection prevailed after 14 days of treatment. Further studies should be carried out to evaluate the potential of dalbavancin in the treatment of bone and orthopaedic implant-associated MRSA infections.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, Caparica, Portugal
| | - H Sofia Antão
- Angelini, Medical Department, C. Quebrada-Dafundo, Portugal
| | - João Guimarães
- Angelini, Medical Department, C. Quebrada-Dafundo, Portugal
| | - Justina Prada
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- CECAV, Vila Real, Portugal
| | - Isabel Pires
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ângela Martins
- Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- CECAV, Vila Real, Portugal
| | - José E Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- CECAV, Vila Real, Portugal
| | - José L Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University of Lisbon, Almada, Portugal
- Proteomass Scientific Society, Costa de Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, Caparica, Portugal
| |
Collapse
|
77
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
78
|
Yeni F, Samut H, Soyer Y. Effect of Non-LAB Probiotics on Foodborne Enteric Pathogens: A Systematic Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Affiliation(s)
- Filiz Yeni
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Hilal Samut
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - Yeşim Soyer
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
79
|
Rout UK, Sanket AS, Sisodia BS, Mohapatra PK, Pati S, Kant R, Dwivedi GR. A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria. Curr Drug Targets 2021; 21:736-775. [PMID: 31995004 DOI: 10.2174/1389450121666200129103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Long before the discovery of drugs like 'antibiotic and anti-parasitic drugs', the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. "Pseudomonas aeruginosa" and "Plasmodium falciparum". In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.
Collapse
Affiliation(s)
- Usha K Rout
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | | | - Brijesh S Sisodia
- Regional Ayurveda Research Institute for Drug Development, Gwalior-474 009, India
| | | | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| |
Collapse
|
80
|
Neto I, Domínguez-Martín EM, Ntungwe E, Reis CP, Pesic M, Faustino C, Rijo P. Dehydroabietic Acid Microencapsulation Potential as Biofilm-Mediated Infections Treatment. Pharmaceutics 2021; 13:825. [PMID: 34199531 PMCID: PMC8229915 DOI: 10.3390/pharmaceutics13060825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
The antimicrobial activity of dehydroabietic acid (DHA) for its use as an antibiofilm agent was tested in this work. DHA was assayed against a collection of Gram-positive, Gram-negative sensitive and resistant bacteria and yeasts through the minimum inhibitory concentration (MIC), MIC with Bioburden challenge, minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), MBIC with Bioburden challenge and growth curve studies. Toxicological studies (Artemia salina, sulforhodamine B (SRB) assay) were done to assess if the compound had antimicrobial and not cytotoxic properties. Furthermore, microencapsulation and stability studies were carried out to evaluate the chemical behavior and stability of DHA. On MIC results, Gram-positive bacteria Staphylococcus aureus ATCC 1228 and Mycobacterium smegmatis ATCC 607 presented a high efficiency (7.81 µg/mL), while on Gram-negative bacteria the highest MIC value of 125 µg/mL was obtained by all Klebsiella pneumoniae strains and Escherichia coli isolate strain HSM 303. Bioburden challenge showed that MIC, MBIC and percentage biofilm inhibition (BI) values suffered alterations, therefore, having higher concentrations. MBIC values demonstrated that DHA has a higher efficiency against S. aureus ATCC 43866 with a percentage of BI of 75.13 ± 0.82% at 0.49 µg/mL. Growth curve kinetic profiles of DHA against S. aureus ATCC 25923 were observed to be bacteriostatic. DHA-alginate beads had a average size of 2.37 ± 0.20 and 2.31 ± 0.17 × 103 µm2 with an encapsulation efficiency (EE%) around 99.49 ± 0.05%, a protection percentage (PP%) of 60.00 ± 0.05% in the gastric environment and a protection efficiency (PE%) around 88.12 ± 0.05% against UV light. In toxicological studies DHA has shown IC50 of 19.59 ± 7.40 µg/mL and a LC50 of 21.71 ± 2.18%. The obtained results indicate that DHA is a promising antimicrobial candidate against a wide range of bacteria and biofilm formation that must be further explored.
Collapse
Affiliation(s)
- Iris Neto
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Eva María Domínguez-Martín
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group. Ctra. A2, Department of Biomedical Sciences, Faculty of Pharmacy, Km 33.100—Campus Universitario, University of Alcalá de Henares, Alcalá de Henares, 28805 Madrid, Spain
| | - Epole Ntungwe
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group. Ctra. A2, Department of Biomedical Sciences, Faculty of Pharmacy, Km 33.100—Campus Universitario, University of Alcalá de Henares, Alcalá de Henares, 28805 Madrid, Spain
| | - Catarina P. Reis
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Milica Pesic
- Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade 142, 11060 Belgrade, Serbia;
| | - Célia Faustino
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Patrícia Rijo
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
81
|
Vidallon MLP, Teo BM. Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chem Commun (Camb) 2021; 56:13907-13917. [PMID: 33146161 DOI: 10.1039/d0cc05880g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Biomolecules are very attractive nanomaterial components, generally, due to their biocompatibility, biodegradability, abundance, renewability, and sustainability, as compared to other resources for nanoparticle-based delivery systems. Biomolecule-based nanoencapsulation and nanodelivery systems can be designed and engineered for antimicrobial cargos in order to surmount classical and current challenges, including the emergence of multi-drug resistant strains of microorganisms, the low effectiveness and limitations in the applicability of the present antimicrobials, and biofilm formation. This feature article highlights the recent applications and capabilities of biomacromolecule-based nanomaterials for the delivery and activity enhancement of antimicrobials, and disruption of biofilms. Unique properties of some nanomaterials, arising from specific biomacromolecules, were also emphasized. We expect that this review will be helpful to researchers in engineering new types of antimicrobial nanocarriers, hybrid particles and colloidal systems with tailored properties.
Collapse
Affiliation(s)
- Mark Louis P Vidallon
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
82
|
Molina-Santiago C, de Vicente A, Romero D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput Struct Biotechnol J 2021; 19:2796-2805. [PMID: 34093994 PMCID: PMC8138678 DOI: 10.1016/j.csbj.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architecturally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical composition. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chemical heterogeneity and specific functionalities of ECM components has attracted attention because of their potential biotechnological applications, from agriculture to the water and food industries. This review compiles information on the most relevant bacterial ECM components, the biophysical and chemical features responsible for their biological roles, and their potential to be further translated into biotechnological applications.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| |
Collapse
|
83
|
Cracking the Challenge of Antimicrobial Drug Resistance with CRISPR/Cas9, Nanotechnology and Other Strategies in ESKAPE Pathogens. Microorganisms 2021; 9:microorganisms9050954. [PMID: 33946643 PMCID: PMC8145940 DOI: 10.3390/microorganisms9050954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is mushrooming as a silent pandemic. It is considered among the most common priority areas identified by both national and international agencies. The global development of multidrug-resistant strains now threatens public health care improvement by introducing antibiotics against infectious agents. These strains are the product of both continuous evolution and unchecked antimicrobial usage (AMU). The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are now multidrug-resistant, which pose significant challenges in clinical practice. Understanding these bacteria’s resistance mechanisms is crucial for developing novel antimicrobial agents or other alternative tools to fight against these pathogens. A mechanistic understanding of resistance in these pathogens would also help predict underlying or even unknown mechanisms of resistance of other emerging multidrug-resistant pathogens. Research and development to find better antibacterial drugs and research on tools like CRISPER-Cas9, vaccines, and nanoparticles for treatment of infections that can be further explored in the clinical practice health sector have recognized these alternatives as essential and highly effective tools to mitigate antimicrobial resistance. This review summarizes the known antimicrobial resistance mechanisms of ESKAPE pathogens and strategies for overcoming this resistance with an extensive overview of efforts made in this research area.
Collapse
|
84
|
Sahin C, Mutlu D, Nasirli F, Mahmoudi G, Zubkov FI, Arslan S, Dogan NM. New iridium bis-terpyridine complexes: synthesis, characterization, antibiofilm and anticancer potentials. Biometals 2021; 34:701-713. [PMID: 33900533 DOI: 10.1007/s10534-021-00307-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
This study represents synthesis, characterization, screening of antibiofilm efficacy, and cytotoxicity of iridium bis-terpyridine complexes. The complexes were characterized by NMR, MS, FTIR, UV/Visible, and fluorescence spectroscopies. The efficacy of biofilm inhibition and eradication of iridium complexes was evaluated using a crystal violet assay test and verified by fluorescence microscopy. Cytotoxicity and apoptosis analysis of iridium complexes were determined in this study. The results of our study revealed that three iridium complexes had the potential to inhibit biofilm formation and moderate the ability to destroy pre-formed biofilm of S. aureus ATCC 29,213. 250 µM concentration of synthesized complexes showed the highest antibiofilm activity (75% for Ir1, 90% for Ir2, and 71% for Ir3). The significant inhibition obtained at 6.25 µM concentration of Ir2 and Ir3 revealed the potential of our samples. Also, Ir1 and Ir2 complexes had a good capacity to destroy pre-formed biofilm. The results clearly showed that iridium complexes have cytotoxic activity towards colon cancer (Caco-2) and liver cancer (HepG2) cell lines without affecting non-cancerous cells (HEK293) at applied doses. Moreover, tested compounds induced apoptosis in these cancer cells. All of these results showed that iridium complexes had possessed the ability to inhibit or destroy pre-formed biofilm and could be developed as an effective agent against bacterial biofilms. Moreover, these pure substances may have valuable anti-cancer activity and it should be confirmed with further studies for therapeutic effects.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Chemistry, Art & Science Faculty, Pamukkale University, 20160, Denizli, Turkey.
| | - Dogukan Mutlu
- Department of Biology, Art & Science Faculty, Pamukkale University, 20160, Denizli, Turkey
| | - Farid Nasirli
- Department of Biology, Art & Science Faculty, Pamukkale University, 20160, Denizli, Turkey
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.
| | - Fedor I Zubkov
- Organic Chemistry Department, Faculty of Science, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198, Moscow, Russian Federation
| | - Sevki Arslan
- Department of Biology, Art & Science Faculty, Pamukkale University, 20160, Denizli, Turkey.
| | - Nazime Mercan Dogan
- Department of Biology, Art & Science Faculty, Pamukkale University, 20160, Denizli, Turkey
| |
Collapse
|
85
|
Atif M, Ihsan B, Malik I, Ahmad N, Saleem Z, Sehar A, Babar ZUD. Antibiotic stewardship program in Pakistan: a multicenter qualitative study exploring medical doctors' knowledge, perception and practices. BMC Infect Dis 2021; 21:374. [PMID: 33882843 PMCID: PMC8059254 DOI: 10.1186/s12879-021-06043-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The emerging threat of antibiotic resistance is growing exponentially and antibiotic stewardship programs are cornerstone to fight against this global threat. The study aimed to explore the knowledge, perspectives and practices of physicians regarding various aspects of antibiotic stewardship program including antibiotic stewardship activities, rational use of antibiotics, antibiotic resistance, prescribing practices and factors associated with these practices. METHODS In this qualitative study, a total of 17 semi-structured, in-depth interviews with doctors of three tertiary care public sector hospitals in Bahawalpur and Rahim Yar Khan were conducted. The convenient sampling method was adopted to collect the data and the saturation point criterion was applied to determine the sample size. Thematic analysis approach was used to draw conclusions from the data. RESULTS The analysis of data yielded five themes, 12 subthemes and 26 categories. The themes included, (i) perception about antibiotic use and antibiotic stewardship, (ii) antibiotic prescription practices, (iii) antibiotic resistance, (iv) limited strategies adopted by hospital administration to ensure quality and safe distribution of antibiotics, (v) implementation of antibiotic stewardship program: barriers, suggestion and future benefits. Doctors had misconceptions about the rational use of antibiotics. The perception regarding antibiotic stewardship programs was poor. Moreover, very few activities related to ASP existed. The participants gave many suggestions for successful implementation of ASP in order to reduce the burden of antibiotic resistance, including development of guidelines for the use of antibiotics, strict legislation regarding use of antibiotics, active participation of healthcare professionals and awareness program among general public about the use of antibiotics. CONCLUSION This study concluded that poor knowledge of doctors regarding ASP, non-existence of antibiogram of hospital and lack of rules for the safe use of antibiotics were the main driving factors associated with irrational antibiotic prescription practices and development of AR.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Beenish Ihsan
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Iram Malik
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nafees Ahmad
- Department of Pharmacy Practice, Faculty of Pharmacy and Health Sciences, University of Balochistan, Quetta, Pakistan
| | - Zikria Saleem
- Department of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Azka Sehar
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
86
|
Host defense peptides identified in human apolipoprotein B as novel food biopreservatives and active coating components. Food Microbiol 2021; 99:103804. [PMID: 34119097 DOI: 10.1016/j.fm.2021.103804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
The effectiveness of three novel "host defence peptides" identified in human Apolipoprotein B (ApoB) as novel antimicrobial and antibiofilm agents to be employed in food industry is reported. ApoB-derived peptides have been found to exert significant antimicrobial effects towards Salmonella typhimurium ATCC® 14028 and Salmonella enteritidis 706 RIVM strains. Furthermore, they have been found to retain antimicrobial activity under experimental conditions selected to simulate those occurring during food storage, transportation and heat treatment, and have been found to be endowed with antibiofilm properties. Based on these findings, to evaluate the applicability of ApoB-derived peptides as food biopreservatives, coating solutions composed by chitosan (CH) and an ApoB-derived peptide have been prepared and found to be able to prevent Salmonella cells attachment to different kinds of surfaces employed in food industry. Finally, obtained coating solution has been demonstrated to hinder microbial proliferation in chicken meat samples. Altogether, obtained findings indicate that ApoB-derived peptides are promising candidates as novel biopreservatives for food packaging.
Collapse
|
87
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
88
|
Jiang L, Zheng R, Sun Q, Li C. Isolation, characterization, and application of Salmonella paratyphi phage KM16 against Salmonella paratyphi biofilm. BIOFOULING 2021; 37:276-288. [PMID: 33947280 DOI: 10.1080/08927014.2021.1900130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/15/2020] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Salmonella biofilm prevention and control is of great importance. This study, investigated the use of the isolated phage KM16 belonging to the family Myoviridae in the order Caudovirales. The phage genome size was 170,126 bp. Almost all phages were adsorbed to the host within 20 min. KM16 had a latent period of 70 min followed by a rise period of 40 min. Phage KM16 had the ability to lytically infect 10 out of the 12 clinical strains of S. paratyphi tested. Phylogenetic analysis indicated that the S. paratyphi 16S rRNA, crispr 1 and fimA genes correlated with the lytic spectrum of phage KM16. The lytic spectrum of phage KM16 correlated with Salmonella pili (fimA), and Salmonella pili were the recognition site for phage adsorption to the host. Phage KM16 (MOI = 0.1) had a better anti-biofilm effect than kanamycin sulfate (10 ug ml-1) in high-concentration Salmonella cultures.
Collapse
Affiliation(s)
- Liming Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, PR China
| | - Rui Zheng
- Department of Clinical laboratory, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
89
|
Bedair A, Mansour FR. Insights into the FDA 2018 New Drug Approvals. Curr Drug Discov Technol 2021; 18:293-306. [PMID: 31793428 DOI: 10.2174/1570163816666191202104315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The Center of Drug Evaluation and Research (CDER) in the food and drug administration (FDA) approves new drugs every year. This review discusses the novel drugs of the FDA in 2018, with emphasis on the breakthrough drugs, the milestones in the approved list, and drugs with the highest expected sales in 2024. METHODS The following scientific search engines were surveyed for the clinical trials of the drugs approved by the FDA in 2018: Pubmed, Springer link, ScienceDirect, Scopus, Wiley online library, Taylor and Francis, and Google Scholar. The total forecast sales were compared based on information from the Cortellis database, EvaluatePharma, and Nature Biobusiness Briefs. RESULTS The 2018 year was full of good news for the drug market in the USA, with 59 new drug approvals by the FDA, which is the highest number of approvals in the last twenty years. The oncology and the antimicrobial drugs represent almost 50% of the new list, which gives hope to cancer patients and subjects with infectious diseases. In the 2018 FDA list, a number of drugs are expected to exceed 1$ billion dollars of sales by 2024. CONCLUSION The new drugs approved by the FDA in 2018 have been reviewed. This year showed the highest number of new drug approvals in the last two decades. Among the 59 drugs approved in 2018, 14 drugs are considered breakthroughs, which revive hope for many poorly managed diseases. The list also contains 19 drugs that are first in class and 43 that were given priority reviews.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, 32958, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, 31111, Egypt
| |
Collapse
|
90
|
Arif M, Sharaf M, Samreen, Khan S, Chi Z, Liu CG. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:813-832. [PMID: 33428545 DOI: 10.1080/09205063.2020.1870323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
Driven by the need to find alternatives to control H. pylori infections, this work describes the development of chitosan-PMLA nanoparticulate systems as carriers for antimicrobial glycolipid. By using a simple ionic gelation method stable nanoparticle was obtained showing an encapsulation efficiency of 73.1 ± 1.3% and an average size of 217.0 ± 15.6 nm for rhamnolipids chitosan-PMLA nanoparticles (RL-CS-NPs). Glycolipid incorporation and particle size were correspondingly corroborated by FT-IR and TEM analysis. Rhamnolipids chitosan nanoparticles (RL-CS-NPs) presented the highest antimicrobial effect towards H. pylori (ATCC 26695) exhibiting a minimal inhibitory concentration of 132 µg/mL and a biofilm inhibition ability of 99%. Additionally, RL-CS-NPs did not interfere with human fibroblasts viability and proliferation under the tested conditions. The results revealed that the RL-CS-NPs were able to inhibit bacterial growth showing adequate cytocompatibility and might become, after additional studies, a valuable approach to fight H. pylori biofilm related-infections.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Mohamed Sharaf
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China.,Department of Biochemistry Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Samreen
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Sohaib Khan
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Zhe Chi
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Chen-Guang Liu
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| |
Collapse
|
91
|
Grynyuk II, Vasyliuk OM, Prylutska SV, Strutynska NY, Livitska OV, Slobodyanik MS. Influence of nanoscale-modified apatite-type calcium phosphates on the biofilm formation by pathogenic microorganisms. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Nanoparticles (25–50 nm) of chemically modified calcium phosphates Ca10−x−y
M
ii
x
Na
y
(PO4)6−z
(CO3)
z
(OH)2 (M
ii
– Cu2+, Zn2+) were synthesized via a wet precipitation method at room temperature. The Fourier-transform infrared spectroscopy data confirmed the partial substitution of
PO
4
3
−
{\text{PO}}_{4}^{3-}
→
CO
3
2
−
{\text{CO}}_{3}^{2-}
(B-type) in apatite-type structure. The influence of prepared phosphates on biofilm formation by pathogenic microorganisms was investigated. It was found that the samples Na+,
CO
3
2
−
{\text{CO}}_{3}^{2-}
-hydroxyapatite (HAP) and Na+, Zn2+,
CO
3
2
−
{\text{CO}}_{3}^{2-}
-HAP (5–20 mM) had the highest inhibitory effect on biofilm formation by Staphylococcus aureus strains. The sample Na+,
CO
3
2
−
{\text{CO}}_{3}^{2-}
-HAP had the slight influence on the formation of the biofilm by Pseudomonas aeruginosa, while for the samples Na+, Cu2+,
CO
3
2
−
{\text{CO}}_{3}^{2-}
-HAP and Na+, Zn2+,
CO
3
2
−
{\text{CO}}_{3}^{2-}
-HAP such an effect was not detected. According to transmission electron microscopy data, a correlation between the activity of synthesized apatite-related modified calcium phosphates in the processes of biofilm formation and their ability to adhere to the surface of bacterial cells was established. The prepared samples can be used for the design of effective materials with antibacterial activity for medicine.
Collapse
Affiliation(s)
- Iryna I. Grynyuk
- Department Chemistry, Taras Shevchenko National University of Kyiv , 64/13, Volodymyrska Str., 01601 , Kyiv , Ukraine
| | - Olga M. Vasyliuk
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Science of Ukraine , 154, Zabolotnogo str, 03143 , Kyiv , Ukraine
| | - Svitlana V. Prylutska
- Department Chemistry, Taras Shevchenko National University of Kyiv , 64/13, Volodymyrska Str., 01601 , Kyiv , Ukraine
| | - Nataliia Yu. Strutynska
- Department Chemistry, Taras Shevchenko National University of Kyiv , 64/13, Volodymyrska Str., 01601 , Kyiv , Ukraine
| | - Oksana V. Livitska
- Department Chemistry, Taras Shevchenko National University of Kyiv , 64/13, Volodymyrska Str., 01601 , Kyiv , Ukraine
| | - Mykola S. Slobodyanik
- Department Chemistry, Taras Shevchenko National University of Kyiv , 64/13, Volodymyrska Str., 01601 , Kyiv , Ukraine
| |
Collapse
|
92
|
Todhanakasem T, Triwattana K, Pom J, Havanapan P, Koombhongse P, Thitisak P. Physiological studies of the Pediococcus pentosaceus biofilm. Lett Appl Microbiol 2021; 72:178-186. [PMID: 33059384 DOI: 10.1111/lam.13351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022]
Abstract
Pediococcus pentosaceus, a bacterium recently used in human and animal probiotics, was used in combination with supports made from polylactic acid composite soybean meal was used to study biofilm formation, and it was found that dense biofilms developed by Day 1. Proteomic comparison between planktonic and biofilm cultures of P. pentosaceus showed distinct expression patterns of intracellular and extracellular proteins. Type I glyceraldehyde-3-phosphate dehydrogenase was upregulated in biofilm cultures and mediated cell adhesion and encouraged biofilm production. GMP synthase, which regulates GMP synthesis and acts as an intracellular signal molecule to control cell mechanisms and has been exploited in the development of new therapeutic agents, was also upregulated in the biofilm mode of growth. The present work serves as a basis for future studies examining the complex network of systems that regulate lactic acid bacterial (LAB) biofilm formation and can serve as a framework for studies of production of therapeutic agents from LAB.
Collapse
Affiliation(s)
- T Todhanakasem
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Bangkapi, Bangkok, Thailand
| | - K Triwattana
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Bangkapi, Bangkok, Thailand
| | - J Pom
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Bangkapi, Bangkok, Thailand
| | - P Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - P Koombhongse
- National Metal and Materials Technology Center (MTEC), Klong Luang, Thailand
| | - P Thitisak
- K.M.P. Biotech Co. Ltd, Chon Buri, Thailand
| |
Collapse
|
93
|
Takahashi H, Caputo GA, Kuroda K. Amphiphilic polymer therapeutics: an alternative platform in the fight against antibiotic resistant bacteria. Biomater Sci 2021; 9:2758-2767. [DOI: 10.1039/d0bm01865a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Amphiphilic antimicrobial polymers show promising potential as polymer therapeutics to fight drug resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life
- Hiroshima University
- Hiroshima 739-8526
- Japan
| | | | - Kenichi Kuroda
- Department of Biologic and Materials Sciences
- School of Dentistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
94
|
Jee SC, Kim M, Sung JS, Kadam AA. Efficient Biofilms Eradication by Enzymatic-Cocktail of Pancreatic Protease Type-I and Bacterial α-Amylase. Polymers (Basel) 2020; 12:polym12123032. [PMID: 33348879 PMCID: PMC7766206 DOI: 10.3390/polym12123032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Removal of biofilms is extremely pivotal in environmental and medicinal fields. Therefore, reporting the new-enzymes and their combinations for dispersal of infectious biofilms can be extremely critical. Herein, for the first time, we accessed the enzyme "protease from bovine pancreas type-I (PtI)" for anti-biofilm properties. We further investigated the anti-biofilm potential of PtI in combination with α-amylase from Bacillus sp. (αA). PtI showed a very significant biofilm inhibition effect (86.5%, 88.4%, and 67%) and biofilm prevention effect (66%, 64%, and 70%), against the E. coli, S. aureus, and MRSA, respectively. However, the new enzyme combination (Ec-PtI+αA) exhibited biofilm inhibition effect (78%, 90%, and 93%) and a biofilm prevention effect (44%, 51%, and 77%) against E. coli, S. aureus, and MRSA, respectively. The studied enzymes were found not to be anti-bacterial against the E. coli, S. aureus, and MRSA. In summary, the PtI exhibited significant anti-biofilm effects against S. aureus, MRSA, and E. coli. Ec-PtI+αA exhibited enhancement of the anti-biofilm effects against S. aureus and MRSA biofilms. Therefore, this study revealed that this Ec-PtI+αA enzymatic system can be extremely vital for the treatment of biofilm complications resulting from E. coli, S. aureus, and MRSA.
Collapse
Affiliation(s)
- Seung-Cheol Jee
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (S.-C.J.); (M.K.); (J.-S.S.)
| | - Min Kim
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (S.-C.J.); (M.K.); (J.-S.S.)
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (S.-C.J.); (M.K.); (J.-S.S.)
| | - Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
- Correspondence: or ; Tel.: +82-31-961-5616; Fax: +82-31-961-5108
| |
Collapse
|
95
|
Velic A, Hasan J, Li Z, Yarlagadda PKDV. Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces. Biophys J 2020; 120:217-231. [PMID: 33333030 DOI: 10.1016/j.bpj.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nanopatterned surfaces are believed to kill bacteria through physical deformation, a mechanism that has immense potential against biochemical resistance. Because of its elusive nature, this mechanism is mostly understood through biophysical modeling. Problematically, accurate descriptions of the contact mechanics and various boundary conditions involved in the bacteria-nanopattern interaction remain to be seen. This may underpin conflicting predictions, found throughout the literature, regarding two important aspects of the mechanism-that is, its critical action site and relationship with geometry. Herein, a robust computational analysis of bacteria-nanopattern interaction is performed using a three-dimensional finite element modeling that incorporates relevant continuum mechanical properties, multilayered envelope structure, and adhesion interaction conditions. The model is applied to more accurately study the elusory mechanism and its enhancement via nanopattern geometry. Additionally, micrographs of bacteria adhered on a nanopatterned cicada wing are examined to further inform and verify the major modeling predictions. Together, the results indicate that nanopatterned surfaces do not kill bacteria predominantly by rupture in between protruding pillars as previously thought. Instead, nondevelopable deformation about pillar tips is more likely to create a critical site at the pillar apex, which delivers significant in-plane strains and may locally rupture and penetrate the cell. The computational analysis also demonstrates that envelope deformation is increased by adhesion to nanopatterns with smaller pillar radii and spacing. These results further progress understanding of the mechanism of nanopatterned surfaces and help guide their design for enhanced bactericidal efficiency.
Collapse
Affiliation(s)
- Amar Velic
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jafar Hasan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Prasad K D V Yarlagadda
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
96
|
Li J, Sun W, Yang Z, Gao G, Ran HH, Xu KF, Duan QY, Liu X, Wu FG. Rational Design of Self-Assembled Cationic Porphyrin-Based Nanoparticles for Efficient Photodynamic Inactivation of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54378-54386. [PMID: 33226224 DOI: 10.1021/acsami.0c15244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
Bacterial infection has become an urgent health problem in the world. Especially, the evolving resistance of bacteria to antibiotics makes the issue more challenging, and thus new treatments to fight these infections are needed. Antibacterial photodynamic therapy (aPDT) is recognized as a novel and promising method to inactivate a wide range of bacteria with few possibilities to develop drug resistance. However, the photosensitizers (PSs) are not effective against Gram-negative bacteria in many cases. Herein, we use conjugated meso-tetra(4-carboxyphenyl)porphine (TCPP) and triaminoguanidinium chloride (TG) to construct self-assembled cationic TCPP-TG nanoparticles (NPs) for efficient bacterial inactivation under visible light illumination. The TCPP-TG NPs can rapidly adhere to both Gram-negative and Gram-positive bacteria and display promoted singlet oxygen (1O2) generation compared with TCPP under light irradiation. The high local positive charge density of TCPP-TG NPs facilitates the interaction between the NPs and bacteria. Consequently, the TCPP-TG NPs produce an elevated concentration of local 1O2 under light irradiation, resulting in an extraordinarily high antibacterial efficiency (99.9999% inactivation of the representative bacteria within 4 min). Furthermore, the TCPP-TG NPs show excellent water dispersity and stability during 4 months of storage. Therefore, the rationally designed TCPP-TG NPs are a promising antibacterial agent for effective aPDT.
Collapse
Affiliation(s)
- Junying Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Zihuayuan Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
97
|
Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:1171-1180. [PMID: 33253080 PMCID: PMC7819359 DOI: 10.1099/mic.0.000995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
In vivo biofilms cause recalcitrant infections with extensive and unpredictable antibiotic tolerance. Here, we demonstrate increased tolerance of colistin by Pseudomonas aeruginosa when grown in medium that mimics cystic fibrosis (CF) sputum versus standard medium in in vitro biofilm assays, and drastically increased tolerance when grown in an ex vivo CF model versus the in vitro assay. We used colistin conjugated to the fluorescent dye BODIPY to assess the penetration of the antibiotic into ex vivo biofilms and showed that poor penetration partly explains the high doses of drug necessary to kill bacteria in these biofilms. The ability of antibiotics to penetrate the biofilm matrix is key to their clinical success, but hard to measure. Our results demonstrate both the importance of reduced entry into the matrix in in vivo-like biofilm, and the tractability of using a fluorescent tag and benchtop fluorimeter to assess antibiotic entry into biofilms. This method could be a relatively quick, cheap and useful addition to diagnostic and drug development pipelines, allowing the assessment of drug entry into biofilms, in in vivo-like conditions, prior to more detailed tests of biofilm killing.
Collapse
Affiliation(s)
- Esther Sweeney
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
98
|
Salmani A, Shakerimoghaddam A, Pirouzi A, Delkhosh Y, Eshraghi M. Correlation between biofilm formation and antibiotic susceptibility pattern in Acinetobacter baumannii MDR isolates retrieved from burn patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
99
|
Hallan SS, Marchetti P, Bortolotti D, Sguizzato M, Esposito E, Mariani P, Trapella C, Rizzo R, Cortesi R. Design of Nanosystems for the Delivery of Quorum Sensing Inhibitors: A Preliminary Study. Molecules 2020; 25:molecules25235655. [PMID: 33266241 PMCID: PMC7730761 DOI: 10.3390/molecules25235655] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Biofilm production is regulated by the Quorum Sensing system. Nowadays, Quorum Sensing represents an appealing target to design new compounds to increase antibiotics effects and avoid development of antibiotics multiresistance. In this research the use of liposomes to target two novel synthetic biofilm inhibitors is presented, focusing on a preformulation study to select a liposome composition for in vitro test. Five different liposome (LP) formulations, composed of phosphatidyl choline, cholesterol and charged surfactant (2:1:1, molar ratio) have been prepared by direct hydration and extrusion. As charged surfactants dicetyl phosphate didecyldimethylammonium chloride, di isobutyl phenoxy ethyl dimethyl benzyl ammonium chloride and stearylamine (SA) and have been used. Liposome charge, size and morphology were investigated by zeta potential, photon correlation spectroscopy, small angle x-ray spectroscopy and electron microscopy. LP-SA was selected for the loading of biofilm inhibitors and subjected to high performance liquid chromatography for entrapment capacity evaluation. LP-SA loaded inhibitors showed a higher diameter (223.6 nm) as compared to unloaded ones (205.7 nm) and a dose-dependent anti-biofilm effect mainly after 48 h of treatment, while free biofilm inhibitors loose activity. In conclusion, our data supported the use of liposomes as a strategy to enhance biofilm inhibitors effect.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biofilms—Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Daria Bortolotti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.E.); (R.C.)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy;
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (P.M.); (D.B.); (M.S.); (C.T.); (R.R.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.E.); (R.C.)
| |
Collapse
|
100
|
Di Domenico EG, De Angelis B, Cavallo I, Sivori F, Orlandi F, Fernandes Lopes Morais D’Autilio M, Di Segni C, Gentile P, Scioli MG, Orlandi A, D’Agosto G, Trento E, Kovacs D, Cardinali G, Stefanile A, Koudriavtseva T, Prignano G, Pimpinelli F, Lesnoni La Parola I, Toma L, Cervelli V, Ensoli F. Silver Sulfadiazine Eradicates Antibiotic-Tolerant Staphylococcus aureus and Pseudomonas aeruginosa Biofilms in Patients with Infected Diabetic Foot Ulcers. J Clin Med 2020; 9:jcm9123807. [PMID: 33255545 PMCID: PMC7760944 DOI: 10.3390/jcm9123807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Infections are among the most frequent and challenging events in diabetic foot ulcers (DFUs). Pathogenic bacteria growing in biofilms within host tissue are highly tolerant to environmental and chemical agents, including antibiotics. The present study was aimed at assessing the use of silver sulfadiazine (SSD) for wound healing and infection control in 16 patients with DFUs harboring biofilm-growing Staphylococcus aureus and Pseudomonas aeruginosa. All patients received a treatment based on a dressing protocol including disinfection, cleansing, application of SSD, and application of nonadherent gauze, followed by sterile gauze and tibio-breech bandage, in preparation for toilet surgery after 30 days of treatment. Clinical parameters were analyzed by the T.I.M.E. classification system. In addition, the activity of SSD against biofilm-growing S. aureus and P. aeruginosa isolates was assessed in vitro. A total of 16 patients with S. aureus and P. aeruginosa infected DFUs were included in the study. Clinical data showed a statistically significant (p < 0.002) improvement of patients’ DFUs after 30 days of treatment with SSD with significant amelioration of all the parameters analyzed. Notably, after 30 days of treatment, resolution of infection was observed in all DFUs. In vitro analysis showed that both S. aureus and P. aeruginosa isolates developed complex and highly structured biofilms. Antibiotic susceptibility profiles indicated that biofilm cultures were significantly (p ≤ 0.002) more tolerant to all tested antimicrobials than their planktonic counterparts. However, SSD was found to be effective against fully developed biofilms of both S. aureus and P. aeruginosa at concentrations below those normally used in clinical preparations (10 mg/mL). These results strongly suggest that the topical administration of SSD may represent an effective alternative to conventional antibiotics for the successful treatment of DFUs infected by biofilm-growing S. aureus and P. aeruginosa.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
- Correspondence: ; Tel.: +39-06-5266-5564
| | - Barbara De Angelis
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Fabrizio Orlandi
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | | | - Chiara Di Segni
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Pietro Gentile
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Maria Giovanna Scioli
- Department of Anatomic Pathology, University of Rome Tor Vergata, 00144 Rome, Italy; (M.G.S.); (A.O.)
| | - Augusto Orlandi
- Department of Anatomic Pathology, University of Rome Tor Vergata, 00144 Rome, Italy; (M.G.S.); (A.O.)
| | - Giovanna D’Agosto
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Elisabetta Trento
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (G.C.)
| | - Giorgia Cardinali
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (G.C.)
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.S.); (T.K.)
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.S.); (T.K.)
| | - Grazia Prignano
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| | - Ilaria Lesnoni La Parola
- Lichen Sclerosus Unit, Department of Dermatology, STI, Environmental Health, Tropical and Immigration, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Valerio Cervelli
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, 00144 Rome, Italy; (B.D.A.); (F.O.); (M.F.L.M.D.); (C.D.S.); (P.G.); (V.C.)
| | - Fabrizio Ensoli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (I.C.); (F.S.); (G.D.); (E.T.); (G.P.); (F.P.); (F.E.)
| |
Collapse
|