51
|
Iacopetta D, Fazio A, La Torre C, Barbarossa A, Ceramella J, Francomano F, Saturnino C, El-Kashef H, Alcaro S, Sinicropi MS. Annona cherimola Mill. Leaf Extracts Affect Melanoma Cells Growth and Progression. Foods 2022; 11:foods11162420. [PMID: 36010420 PMCID: PMC9407337 DOI: 10.3390/foods11162420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer represents one of the major causes of mortality worldwide; indeed, 19.3 million new cases and almost 10.0 million deaths were estimated last year. Among the different type of cancers, malignant melanoma represents the most aggressive and deadly skin cancer. Unfortunately, the long-term efficacy of melanoma treatments is limited by the lack of clinical efficacy, onset of side effects and resistance. The latter is a major obstacle for the success of the melanoma therapy; thus, the exploration of new potent and safer anticancer agents is of great importance. Recently, numerous plant species, used for therapeutic purposes and containing various non-toxic nutraceuticals have been widely studied. Herein, we investigated the antioxidant and anticancer properties on melanoma cells of the ethanolic, methanolic and aqueous Annona cherimola leaf extracts (ACE, ACM and ACW, respectively). The ethanolic extract showed higher anticancer activity, mostly against the malignant A2058 melanoma cell line (IC50 = 5.6 ± 0.8 ng/mL), together with a very low activity on the normal cells. It blocks the melanoma cells migration process, and induces a clear disorganization of cytoskeleton, triggering cell apoptosis. Finally, some bioactive compounds were identified in the studied extracts.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
- Correspondence: ; Tel.: +39-0984493200
| | - Fabrizio Francomano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Hussein El-Kashef
- Chemistry Department, Faculty of Science, Assiut University, Assiut 17516, Egypt
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Net4Science SRL, Academic Spinoff, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Belcastro, 88055 Catanzaro, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, di Rende, Italy
| |
Collapse
|
52
|
Patil SV, Mohite BV, Marathe KR, Salunkhe NS, Marathe V, Patil VS. Moringa Tree, Gift of Nature: a Review on Nutritional and Industrial Potential. CURRENT PHARMACOLOGY REPORTS 2022; 8:262-280. [PMID: 35600137 PMCID: PMC9108141 DOI: 10.1007/s40495-022-00288-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Satish V. Patil
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | - Bhavana V. Mohite
- Department of Microbiology, Bajaj College of Science, Wardha, MH India
| | - Kiran R. Marathe
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | | | | | - Vikas S. Patil
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, MH India
| |
Collapse
|
53
|
Luiza Cadorin Oldoni T, dos Santos S, Leite Mitterer-Daltoé M, Henrique Pizone L, Aparecido de Lima V. Moringa oleifera leaves from Brazil: influence of seasonality, regrowth age and, region in biochemical markers and antioxidant potential. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
54
|
Al-Ghanayem AA, Alhussaini MS, Asad M, Joseph B. Effect of Moringa oleifera Leaf Extract on Excision Wound Infections in Rats: Antioxidant, Antimicrobial, and Gene Expression Analysis. Molecules 2022; 27:molecules27144481. [PMID: 35889362 PMCID: PMC9316157 DOI: 10.3390/molecules27144481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
The present study investigated the wound healing activity of Moringa oleifera leaf extract on an infected excision wound model in rats. Infection was induced using methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa. An investigation was also done to study the effect of Moringa extract on the vascular endothelial growth factor (VEGF) and transforming growth factor-beta 1 (TGF-β1) gene expression in vitro using human keratinocytes (HaCaT). The methanol extract of M. oleifera leaves was analyzed for the presence of phytochemicals by LCMS. The antimicrobial activity of the extract was also determined. Wound contraction, days for epithelization, antioxidant enzyme activities, epidermal height, angiogenesis, and collagen deposition were studied. M. oleifera showed an antimicrobial effect and significantly improved wound contraction, reduced epithelization period, increased antioxidant enzymes activity, and reduced capillary density. Effect of the extract was less in wounds infected with P. aeruginosa when compared to MRSA. The VEGF and TGF-β1 gene expression was increased by M. oleifera.
Collapse
|
55
|
El-Kassas S, Aljahdali N, Abdo SE, Alaryani FS, Moustafa EM, Mohamed R, Abosheashaa W, Abdulraouf E, Helal MA, Shafi ME, El-Saadony MT, El-Naggar K, Conte-Junior CA. Moringa oleifera Leaf Powder Dietary Inclusion Differentially Modulates the Antioxidant, Inflammatory, and Histopathological Responses of Normal and Aeromonas hydrophila-Infected Mono-Sex Nile Tilapia ( Oreochromis niloticus). Front Vet Sci 2022; 9:918933. [PMID: 35812877 PMCID: PMC9260175 DOI: 10.3389/fvets.2022.918933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to detect the impact of Moringa oleifera leaf powder dietary inclusion on the antioxidant and innate immune responses of mono-sex Nile tilapia fingerlings. A total of 180 fingerlings were allocated in a random method into three groups with triplicate each. One group (1st group) received the control diet (basal diet (BD) free of moringa) and the other groups (2nd and 3rd) fed BD containing M. oleifera leaf powder at 5 and 10% of the diet, respectively. After 6 weeks of feeding, fish were randomly redistributed into four replicates and rested for 24 h. Then, each fish in the first two replicates was injected with 0.2 mL of PBS, while the others were injected with 0.2 mL of A. hydrophila suspension (1.8 × 106 CFU/mL). Healthy fish fed on M. oleifera leaf powder showed enhanced immune response manifested by significant increases in phagocytic and lysozyme activities with a marked H/L ratio (P < 0.05). In addition, significant alterations of the lymphocytic and heterophilic population in circulation with increasing infiltration in tissue such as the spleen were noticed. Also, M. oleifera significantly upregulated the antioxidants, CAT and GPx, proinflammatory cytokines, IL1-β, IL-8, and IFN-γ relative mRNA levels. On the other hand, following A. hydrophila challenging conditions, M. oleifera caused downregulations of IL1-β, IL-8, and IFN-γ transcription levels, and also lowered the CAT and GPx mRNA levels. In addition, a marked reduction of leukocytic infiltration plus a significant improvement of the degenerative changes in intestinal architecture has occurred. So, M. oleifera leaf powder can be included in the fish diet to enhance immune response under normal health conditions and lower the infection-associated inflammatory response.
Collapse
Affiliation(s)
- Seham El-Kassas
- 1Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt,*Correspondence: Seham El-Kassas
| | - Nesreen Aljahdali
- 2Department of Biological Science, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safaa E. Abdo
- 3Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fatima S. Alaryani
- 4Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman M. Moustafa
- 5Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Radi Mohamed
- 6Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wesam Abosheashaa
- 7Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Esraa Abdulraouf
- 7Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Atef Helal
- 7Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Manal E. Shafi
- 8Department of Biological Science, Zoology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Manal E. Shafi
| | - Mohamed T. El-Saadony
- 9Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt,Mohamed T. El-Saadony
| | - Karima El-Naggar
- 10Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Carlos Adam Conte-Junior
- 11Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
56
|
Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Moringa oleifera Lam. (Moringaceae) is one of the most essential medicinal plants primarily found in the rainforest area and forest ecosystem, but is now well-adapted in an organized cultivation system. Moringa oleifera (M. oleifera) is well-known as Drumstick tree, Moringa kai, color, Marengo, Moringe, mulangay, Sahjan, and Sajna, which are its native names commonly used. It has nourishing, beneficial, and preventive effects when taken as food and has an extensive scope of high restorative properties with huge dietary benefits. Different parts of the M. oleifera plants, such as leaves, flowers, fruits, seeds, and roots, contain a significant amount of protein, ß-carotene, amino acids, important minerals, and various phenolic compounds. Because of its multifarious health benefits for its therapeutic value, it is considered an essential plant. The plant is found to be blessed with several medicinal characteristics such as antitumor, anti-inflammatory, antiulcer, antipyretic, antiepileptic, antispasmodic, diuretic, antihypertensive, antidiabetic, cholesterol-level down, cell reinforcement, and hepatoprotective. Moreover, it is used traditionally in the local curative system against cardiac problems, and the antifungal properties are efficiently utilized for the treatment of a wide range of ailments. The present review article was designed to explore the nutritional and economic benefits, medicinal and therapeutic applications, and the future biomedical prospects of Moringa with a view towards human wellbeing.
Collapse
|
57
|
Optimization, identification and bioactivity of flavonoids extracted from Moringa oleifera leaves by deep eutectic solvent. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
58
|
Bhat BA, Almilaibary A, Mir RA, Aljarallah BM, Mir WR, Ahmad F, Mir MA. Natural Therapeutics in Aid of Treating Alzheimer's Disease: A Green Gateway Toward Ending Quest for Treating Neurological Disorders. Front Neurosci 2022; 16:884345. [PMID: 35651632 PMCID: PMC9149276 DOI: 10.3389/fnins.2022.884345] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The current scientific community is facing a daunting challenge to unravel reliable natural compounds with realistic potential to treat neurological disorders such as Alzheimer's disease (AD). The reported compounds/drugs mostly synthetic deemed the reliability and therapeutic potential largely due to their complexity and off-target issues. The natural products from nutraceutical compounds emerge as viable preventive therapeutics to fill the huge gap in treating neurological disorders. Considering that Alzheimer's disease is a multifactorial disease, natural compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs so far used to treat Alzheimer's disease. A wide range of plant extracts and phytochemicals reported to possess the therapeutic potential to Alzheimer's disease includes curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and other phytochemicals such as huperzine A, limonoids, and azaphilones. Reported targets of these natural compounds include inhibition of acetylcholinesterase, amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc. We tenaciously aimed to review the in-depth potential of natural products and their therapeutic applications against Alzheimer's disease, with a special focus on a diversity of medicinal plants and phytocompounds and their mechanism of action against Alzheimer's disease pathologies. We strongly believe that the medicinal plants and phytoconstituents alone or in combination with other compounds would be effective treatments against Alzheimer's disease with lesser side effects as compared to currently available treatments.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University Alaqiq, Alaqiq, Saudi Arabia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Badr M. Aljarallah
- Department of Gastroenterology and Hepatology, Qassim University, Buraydah, Saudi Arabia
| | - Wajahat R. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Fuzail Ahmad
- College of Applied Medical Science, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
59
|
Ebhohon E, Miller D. Moringa Oleifera leaf extract induced pulmonary embolism-a case report. Int J Emerg Med 2022; 15:16. [PMID: 35413819 PMCID: PMC9004112 DOI: 10.1186/s12245-022-00419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 06/04/2024] Open
Abstract
Background M. oleifera leaf extract supplement is famous for its anti-inflammatory, antioxidant, antimicrobial, antifertility, anticancer, antihepatotoxic, and antiulcer properties. However, limited data exist on the coagulation effect of M. oleifera leaf extract in human plasma, which maybe a predisposing factor to venous thromboembolism (DVT and PE); a disorder that is well known to be induced by risk factors such as surgery, trauma, cancer, or prolonged immobility. Case presentation We report a case of a 63-year-old Hispanic female with past medical history of obesity and type 2 diabetes mellitus who presented to the emergency room with a three-day history of worsening shortness of breath and chest pain. Computerized tomography-pulmonary angiogram (CT-PA) revealed bilateral pulmonary embolism (PE) and right ventricle strain. Based on CT imaging findings, the absence of a major transient risk factor for venous thromboembolism (VTE), no history suggestive of an underlying hypercoagulable disorder, and a medication history that was significant for a recent 5-month use of M. oleifera leaf extract that has been reported to induce clot formation, she was diagnosed as a rare case of sub-massive pulmonary embolism provoked by M. oleifera leaf extract supplement. She received initial anticoagulation (AC) during her hospitalization and was discharged on maintenance AC for 3 months. Discussion and conclusion We report the first case of PE likely triggered by using Moringa oleifera leaf extract herbal supplement. Cohort studies on the coagulation effect of Moringa oleifera leaf extract in humans are necessary to determine the relationship between Moringa Oleifera leaf extract and VTEs.
Collapse
|
60
|
Afzal A, Hussain T, Hameed A, Shahzad M, Mazhar MU, Yang G. Dietary Moringa oleifera Alters Periparturient Plasma and Milk Biochemical Indicators and Promotes Productive Performance in Goats. Front Vet Sci 2022; 8:787719. [PMID: 35310135 PMCID: PMC8928104 DOI: 10.3389/fvets.2021.787719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
The purpose of the current study was to explore the supplementing effects of Moringa oleifera leaf powder (MOLP) on plasma and milk biochemical indices and productive/reproductive performance of goats. A total of 30 healthy pregnant goats were randomly distributed (n = 10) into three experimental groups: control (M0) group (basal diet without MOLP), M2% group (basal diet + 2% MOLP), and M3.5% group (basal diet + 3.5% MOLP). The experiment started 2 months before parturition and continued till the first month of lactation. The plasma flavonoids were significantly increased in the M3.5% group during the entire experiment, whereas the total phenolic contents were enhanced only during the lactation period depending on the supplementation percentage. The amount of vitamin C increased significantly in M2% and M3.5% groups as compared to the M0 group. Supplementation of MOLP improved the plasma total antioxidant capacity by declining malondialdehyde concentration and total oxidant status values. The activities of superoxide dismutase and peroxidase enzymes were modified in M2% and M3.5% supplemented groups throughout the experiment, while the catalase activity was significantly influenced only during the lactation stage. The protein and lycopene contents in plasma were significantly improved in the M3.5% group, whereas the total sugars and carotenoid level was increased in both M2% and M3.5% groups. Dietary supplementation with 3.5% MOLP more effectively enhanced protease and amylase activities as compared to 2% supplementation. MOLP also improved the biochemical indices and antioxidant status of colostrum and milk. The milk yield, weight gain of the kids, and reproductive performance were high in M2% and M3.5% groups in comparison to the M0 group. These findings disclose that supplementing the diet with 3.5% MOLP improves antioxidant status, milk yield, and reproductive performance in goats.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- *Correspondence: Tarique Hussain
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Shahzad
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Usman Mazhar
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, China
| |
Collapse
|
61
|
The Aqueous Leaf Extract of M. Oleifera Inhibits PEDV Replication through Suppressing Oxidative Stress-Mediated Apoptosis. Animals (Basel) 2022; 12:ani12040458. [PMID: 35203166 PMCID: PMC8868277 DOI: 10.3390/ani12040458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The porcine epidemic diarrhea virus (PEDV), a porcine enteropathogenic coronavirus, can cause enormous economic losses in the swine industry. There is no effective commercial vaccine against PEDV infection. In this study, we found that an aqueous leaf extract of M. oleifera (MOE) exhibited antiviral activity in response to PEDV infection at the stage of PEDV replication instead of attachment or internalization. Mechanistically, MOE suppressed the oxidative stress and the expression of inflammatory cytokines induced by PEDV infection and upregulated the expression of anti-apoptotic proteins, which further led to less cell apoptosis. This study is the first report showing that MOE has antiviral potential as a new prophylactic and therapeutic strategy against PEDV infection. Abstract Porcine epidemic diarrhea (PED), one of the serious enteric diseases caused by the porcine epidemic diarrhea virus (PEDV), is responsible for enormous economic losses in the global swine industry. However, available commercial vaccines fail to protect pigs from PEDV infection due to the appearance of PEDV variants. Hence, it is necessary to find an effective and cost-efficient natural product to protect pigs from PEDV infection. In this study, we first found that an aqueous leaf extract of M. oleifera (MOE) exhibited antiviral activity in response to PEDV infection. Furthermore, time-of-addition experiments revealed that MOE inhibited PEDV replication rather than attachment and internalization. Mechanistically, MOE significantly suppressed the production of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by PEDV infection, and restored glutathione peroxidase (GSH-Px) activity. Importantly, the addition of MOE alleviated oxidative stress and the expression of inflammatory cytokines and resulted in fewer apoptotic cells during PEDV infection. These results indicated that MOE might be an effective anti-PEDV drug used to control PED disease and may be helpful in developing a new prophylactic and therapeutic strategy against PEDV.
Collapse
|
62
|
Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Evidence from a Systematic Review and Meta-Analysis Pointing to the Antidiabetic Effect of Polyphenol-Rich Plant Extracts from Gymnema montanum, Momordica charantia and Moringa oleifera. Curr Issues Mol Biol 2022; 44:699-717. [PMID: 35723334 PMCID: PMC8928996 DOI: 10.3390/cimb44020049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
In vitro and animal model studies are of great interest for selecting new phytochemicals, including polyphenols with antioxidative properties, as candidates for antidiabetic drugs. This review provides evidence from a critical literature data analysis on the effects of plant extract supplementation in diabetes mellitus management. We considered and meta-analyzed the efficacy of oral supplementation of plant extracts in animal model studies and examined physiological and oxidative stress parameters. Finally, 23 articles were included in the meta-analysis, revealing three plants with experimentally confirmed in vivo and in vitro antidiabetic properties: Gymnema montanum, Momordica charantia and Moringa oleifera. The following parameter changes resulted from an investigation of the supplementation: reduced oxidative stress, decreased insulin resistance, increased insulin release, reduced adiposity, and a modulatory effect on glycolysis and gluconeogenesis, as well as attenuation of diabetes-associated weight loss, reduced fasting blood glucose and lowered oxidative status. A comparison of Gymnema montanum versus Glybenclamide revealed the superiority of extracts over drug administration in some aspects. Although the analyzed extracts are promising candidates for antidiabetic treatment, there is much inconsistent data in the literature. Therefore, ultimate references for using these compounds in the prevention of diabetes are currently not applicable.
Collapse
Affiliation(s)
- Michal Krawczyk
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Izabela Burzynska-Pedziwiatr
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Lucyna Alicja Wozniak
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Malgorzata Bukowiecka-Matusiak
- Chair of Medical Biology, Laboratory of Metabolomic Studies, Department of Structural Biology, Faculty of Medicine, Faculty of Biomedical Sciences, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
63
|
Gao Q, Wei Z, Liu Y, Wang F, Zhang S, Serrano C, Li L, Sun B. Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030678. [PMID: 35163945 PMCID: PMC8840448 DOI: 10.3390/molecules27030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves.
Collapse
Affiliation(s)
- Qian Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Zongmin Wei
- School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang 110016, China;
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222069, China
| | - Yun Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Carmo Serrano
- Unidade de Tecnologia e Inovação, Instituto National de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal;
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| |
Collapse
|
64
|
Gupta P, Sonewane K, Chouhan S, Rajan M, Chauhan N, Rout O, Kumar A, Baghel G. Pharmacological, ethnomedicinal, and evidence-based comparative review of Moringa oleifera Lam. ( Shigru) and its potential role in the management of malnutrition in tribal regions of India, especially Chhattisgarh. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_69_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
65
|
Kamble DB, Bashir K, Singh R, Rani S. Effect of
Moringa oleífera
pod addition on the digestibility, cooking quality, and structural attributes of functional pasta. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dinkar B. Kamble
- Department of Food Technology Vignan's Foundation for Science Technology and Research Guntur India
| | - Khalid Bashir
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Rakhi Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship & Management Kundli India
| | - Savita Rani
- Department of Life Science Sharda University Greater Noida India
| |
Collapse
|
66
|
Barodia K, Cheruku SP, Kanwal A, Menon A, Rajeevan R, Rukade A, Kumar Shenoy RU, Prabhu C, Sharma V, Divya KP, Sumalatha S, Nayak Y, Kumar N. Effect of Moringa oleifera leaf extract on exercise and dexamethasone-induced functional impairment in skeletal muscles. J Ayurveda Integr Med 2021; 13:100503. [PMID: 34974956 PMCID: PMC8814402 DOI: 10.1016/j.jaim.2021.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background Chronic administration of steroids like dexamethasone produces symptoms including weight loss and skeletal muscle dysfunction. Similar events are reported in chronic or high-intensity exercises, that can lead to fatigue and muscle damage. Objective In the present study, the effect of Moringa oleifera leaf extract was evaluated against dexamethasone (Dex) and exercise (Exe)-induced muscle changes in rats. Materials and methods Six groups each containing 6 rats, namely normal, Dex control, Exe Control, Dex + M. oleifera leaf extract (300mg/kgp.o.), Dex + Exe, Dex + Exe + M. oleifera leaf extract were assessed in the study. Dex was administered at 0.6 mg/kg i.p. daily for 7 days. Exercise was given for a total of 10 days after 30 minutes of dosing using treadmill equipment for 900 seconds at speed 18 m/min. Animals were assessed for variation in body weight, muscular endurance using treadmill, locomotor activity using actophotometer, motor coordination using rotarod on day zero, and day seven. Hemidiaphragm of rats were isolated and used for evaluation of the glucose uptake. Gastrocnemius muscle was isolated and subjected to hematoxylin and eosin staining. Results Dex and Exe control animals showed a significant decrease in skeletal muscle activity when compared to normal control animals in the actophotometer test. Improvement in endurance were seen in Dex + M. oleifera leaf extract, and Dex + exercise + M. oleifera leaf extract groups compared to Dex control group. Improvement in locomotor activity was seen in Dex group subjected to exercise and was significant when treated with M. oleifera leaf extract. Histology reports were in accordance with the functional parameters. Conclusion M. oleifera leaf extract supplemented with exercise showed a reversal in the dexamethasone-induced functional impairment in skeletal muscles.
Collapse
Affiliation(s)
- Kalgi Barodia
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Abhinav Kanwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Department of Pharmacology, All India, Institute of Medical Sciences, Bhatinda, 151001, Punjab, India
| | - Aayush Menon
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rutu Rajeevan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Aniket Rukade
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Udaya Kumar Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chaitali Prabhu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vaibhav Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - K P Divya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Suhani Sumalatha
- Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPER-H), Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
67
|
Gómez-Martínez S, Díaz-Prieto LE, Castro IV, Jurado C, Iturmendi N, Martín-Ridaura MC, Calle N, Dueñas M, Picón MJ, Marcos A, Nova E. Moringa oleifera Leaf Supplementation as a Glycemic Control Strategy in Subjects with Prediabetes. Nutrients 2021; 14:nu14010057. [PMID: 35010932 PMCID: PMC8746299 DOI: 10.3390/nu14010057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Moringa oleifera (MO) is a multipurpose plant with a high polyphenol content, which is being increasingly consumed to lessen the risk of chronic metabolic diseases such as Type 2 diabetes; however, scientific evidence from clinical trials is scarce. A double-blind, randomized, placebo-controlled, parallel group intervention study with MO leaves as a food supplement was conducted in subjects with prediabetes. They consumed six daily capsules of MO dry leaf powder (2400 mg/day) (MO, n = 31) or placebo (PLC, n = 34) over 12 weeks. Glycemia, appetite-controlling hormones and gut microbiota composition were studied. ANCOVA with the fixed factor “treatment” and the basal value as covariate was used to compare the change score between the groups. The results showed significant differences between groups in the rate of change of fasting blood glucose (FBG) and glycated hemoglobin (HbA1c), which showed opposite directions during the intervention, decreasing in MO and increasing in PLC. No different change scores were found between the groups in microbiota, hepatic and renal function markers or the appetite-controlling hormones measured. In conclusion, MO supplementation resulted in favorable changes in glycaemia markers compared to placebo in the subjects with prediabetes studied, suggesting that MO might act as a natural antihyperglycemic agent.
Collapse
Affiliation(s)
- Sonia Gómez-Martínez
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - Ligia E. Díaz-Prieto
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - Iván Vicente Castro
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - César Jurado
- Cea Bermúdez Primary Health Care Centre, Madrid Health Service, C/Cea Bermúdez 10, 28003 Madrid, Spain; (C.J.); (N.I.)
| | - Nerea Iturmendi
- Cea Bermúdez Primary Health Care Centre, Madrid Health Service, C/Cea Bermúdez 10, 28003 Madrid, Spain; (C.J.); (N.I.)
| | | | - Nuria Calle
- Madrid-Health, Madrid City Hall, 28007 Madrid, Spain; (M.C.M.-R.); (N.C.)
| | - María Dueñas
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - María J. Picón
- Hospital Virgen de la Victoria de Málaga, Campus de Teatinos, S/N, 29010 Malaga, Spain;
| | - Ascensión Marcos
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - Esther Nova
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
- Correspondence: ; Tel.: +34-915-492-300 (ext. 231209)
| |
Collapse
|
68
|
Akter T, Rahman MA, Moni A, Apu MAI, Fariha A, Hannan MA, Uddin MJ. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122818. [PMID: 34961289 PMCID: PMC8706354 DOI: 10.3390/plants10122818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md Atikur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Aminul Islam Apu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Atqiya Fariha
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
69
|
Ghimire S, Subedi L, Acharya N, Gaire BP. Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14358-14371. [PMID: 34843254 DOI: 10.1021/acs.jafc.1c04581] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Moringa oleifera, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of M. oleifera indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, M. oleifera is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties. Recently, a few experimental studies reported the neuroprotective effects of M. oleifera against Alzheimer's disease, dementia, Parkinson's disease, stroke, and neurotoxicity-related symptoms. In addition, several neuroprotective phytochemicals have been isolated from M. oleifera, which signifies that it can have promising neuroprotective effects. Therefore, this review aimed to explore the current updates and future prospective of neuroprotective efficacies of M. oleifera.
Collapse
Affiliation(s)
- Saurav Ghimire
- Department of Neuroscience, Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, 33076 Bordeaux, France
| | - Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Namrata Acharya
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
70
|
Hassan MA, Xu T, Tian Y, Zhong Y, Ali FAZ, Yang X, Lu B. Health benefits and phenolic compounds of Moringa oleifera leaves: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153771. [PMID: 34700271 DOI: 10.1016/j.phymed.2021.153771] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Moringa oleifera Lam (MO) is native to India and is a cash crop widely cultivated in tropical and sub-tropical areas. The health improving properties of MO has been studied from a long time ago for the numerous phenolic compounds, including vitamins, flavonoids, phenolic acids, isothiocyanates, tannins and saponins, which are present in considerable amounts in the plant. A growing spectrum of therapeutic characteristics of MO leaves has been found and used in the remission or treatment of oxidative stress, liver disease, neurological disease, hyperglycemia and cancer. HYPOTHESIS This review focused on researches applying MO or MO leaf extract as a functional food or cure against various disease and cellular injuries. We believed it would help the discovery of therapeutic application of MO and understanding of MO phytochemistry. METHODS The data collected in this review were extracted from researches indexed in Web of Science, google scholar, PubMed, Science Direct and Scopus to find out health benefits and biological activities of MO leaves polyphenols. The studies reporting mechanistic route of phenolic compounds of MO leaves were also considered in the present study. RESULTS It has been reported that polyphenols of MO leaf have protective characteristics against neurodegenerative disorders through reducing DNA damage, activation of AchE activity and inhibition of caspase-3 activity. It has been reported that, they protected the kidney from damage caused by melamine through suppressed the pro-inflammatory cytokine, metallopeptidase inhibitor 1 (TIMP-1), and kidney injury molecule 1 (KIM-1). Similarly, methanol extract of MO leaves has low hypoglycemic attributes and attenuate the risk of diabetes caused by alloxan by enhancing lipid metabolism and stimulating insulin release, glucose uptake, and glycogen synthesis. In addition, MO leaves are becoming the best phytomedicine to reduce hypertension, which are naturally known as angiotensin-1converting enzyme (ACE), acetylcholinesterase, arginase and phosphodiesterase 5 (PDE5) inhibitors. CONCLUSION MO leaves extract as a health promoting food additives for human and animals due to its great protective effect against many diseases and the widely persistent environmental toxins which disrupted cellular metabolic function. More studies are required to use the phenolic compounds of MO leaves to develop and produce drugs for controlling and treatment of various diseases.
Collapse
Affiliation(s)
- Mohamed Ahmed Hassan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt
| | - Tao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yongheng Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fatma Abo Zakaib Ali
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
71
|
Abdelsayed EM, Medhat D, Mandour YM, Hanafi RS, Motaal AA. Niazimicin: A thiocarbamate glycoside from Moringa oleifera Lam. seeds with a novel neuroprotective activity. J Food Biochem 2021; 45:e13992. [PMID: 34747026 DOI: 10.1111/jfbc.13992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Moringa oleifera (MO) known as the miracle tree is a famous nutritional source in many countries. In this study, the neuroprotective activity of MO seeds was investigated. Fractions of the 70% ethanol seed extract of MO were injected at a dose of 250 mg kg-1 day-1 to albino rats for 15 days, after-which induction of dementia was done using 100 mg/kg AlCl3 over 30 days. Results revealed that all fractions ameliorated the effects of AlCl3 where methylene chloride and ethyl acetate fractions, containing the major bioactive compound niazimicin (NZ), showed the best activities. Biological investigations proved NZ to be a highly potent neuroprotective drug lead as a first report, by causing a decrease in the levels of malondialdehyde, cholinesterase, nitric oxide (NO) and amyloid β by 47%, 34%, 53% and 59%, respectively, and increasing glutathione levels by 54%. Molecular docking studies suggested NZ neuroprotective effects to be mediated by inhibition of caspase-3 and inducible nitric oxide synthase enzymes. PRACTICAL APPLICATIONS: The current findings present the neuroprotective effect of Moringa oleifera seeds consumed as a food supplement and in daily diet. In addition, niazimicin is a promising lead for the development of novel agents against Alzheimer's disease as seen by the reported results.
Collapse
Affiliation(s)
- Eman M Abdelsayed
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
72
|
Fontana R, Caproni A, Buzzi R, Sicurella M, Buratto M, Salvatori F, Pappadà M, Manfredini S, Baldisserotto A, Marconi P. Effects of Moringa oleifera Leaf Extracts on Xanthomonas campestris pv. campestris. Microorganisms 2021; 9:microorganisms9112244. [PMID: 34835370 PMCID: PMC8625942 DOI: 10.3390/microorganisms9112244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/05/2022] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a Gram-negative bacterium belonging to the Xanthomonodaceae family, causing black rot in crucifers. To control this pathogen, the study investigated the effect of different leaves extracts of Moringa oleifera Lam., a tropical plant, well known for its food properties and with countless applications in many different fields, from nutraceutical (hypoglycemic) to the cosmetic (sunscreen) properties. Nevertheless, several studies pointed to its antibacterial action against both Gram-negative and Gram-positive bacteria. Many bioactive compounds, including flavonoids, phenolic acids, alkaloids, isothiocyanates, tannins and saponins, contained in these extracts, are responsible for its countless activities. The analyses carried out in this study show that the methanolic, hydroalcoholic and hydroalcoholic maltodextrin extracts have both bacteriostatic and bactericidal effects at concentrations of 0.5, 0.5 and 0.1 mg/mL respectively. In particular, the study shows how all extracts can alter membrane permeability, to adversely affect swarming motility, and to alter biofilm formation in Xcc. The in planta experiments showed a reduction of the necrosis area in the infected radishes, although the ability of the extracts to be absorbed by root systems is yet to be understood, in order to reach the target point.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.S.); (M.B.); (F.S.); (M.P.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (R.B.); (A.B.)
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.S.); (M.B.); (F.S.); (M.P.)
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (R.B.); (A.B.)
| | - Mariaconcetta Sicurella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.S.); (M.B.); (F.S.); (M.P.)
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.S.); (M.B.); (F.S.); (M.P.)
| | - Francesca Salvatori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.S.); (M.B.); (F.S.); (M.P.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.S.); (M.B.); (F.S.); (M.P.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (R.B.); (A.B.)
- Correspondence: (S.M.); (P.M.); Tel.: +39-053-245-5294 (S.M.); +39-053-245-5381 (P.M.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (R.B.); (A.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.S.); (M.B.); (F.S.); (M.P.)
- Correspondence: (S.M.); (P.M.); Tel.: +39-053-245-5294 (S.M.); +39-053-245-5381 (P.M.)
| |
Collapse
|
73
|
Wang F, Long S, Zhang J. Moringa oleifera Lam. leaf extract safely inhibits periodontitis by regulating the expression of p38α/MAPK14-OPG/RANKL. Arch Oral Biol 2021; 132:105280. [PMID: 34678605 DOI: 10.1016/j.archoralbio.2021.105280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
Periodontitis is a chronic disease clinically defined by loss of alveolar bone and connective tissue degeneration. Although Moringa oleifera Lam. (MO), a tree belonging to the Moringacea family, is widely used as an anti-inflammatory agent, its effect on periodontitis is still unclear. In this work, the phenol compounds in MO leaf extract (MOL) were identified by UPLC-ESI-MS/MS, and the anti-periodontitis effects and mechanism of MOL were predicted using network pharmacology and molecular docking. Moreover, the cytotoxic, antioxidant, and anti-periodontitis properties of MOL were confirmed in vivo and in vitro. In total, 88 phenolic compounds and 234 potential MOL periodontitis targets were screened, involving 2916 biological processes (BP). The p38α MAPK (MAPK14) pathway and OPG/RANKL complex were predicted to be involved in the process of molecular docking. Furthermore, experimental validation suggested that MOL significantly ameliorated inflammation and reduced alveolar bone resorption. The OPG/RANKL ratio was regulated through the inhibition of MAPK14, and the anti-periodontitis effect was realized by the antioxidant properties of MOL. Hematoxylin and eosin (H&E) staining of rat vital organs and the survival rate of RAW 264.7 cells confirmed the safety of MOL. The present study provides valuable insights into how MOL reduces inflammation and alveolar bone resorption associated with periodontitis. In conclusion, MOL safely inhibits chronic periodontitis highly likely by regulating the expression of p38α/MAPK14-OPG/RANKL. Network pharmacology coupled with experimental validation is an effective way to find new drugs in the future. DATA AVAILABILITY STATEMENT: The original data presented in the study are included in the article. Further inquiries can be directed to the corresponding authors.
Collapse
Affiliation(s)
- Fang Wang
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Sang Long
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jie Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
74
|
Gebrai Y, Ghebremichael K, Mihelcic JR. A systems approach to analyzing food, energy, and water uses of a multifunctional crop: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148254. [PMID: 34412387 DOI: 10.1016/j.scitotenv.2021.148254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Multifunctional crops can simultaneously contribute to multiple societal objectives. As a result, they represent an attractive means for improving rural livelihoods. Moringa oleifera is an example of a multifunctional crop that produces nutritious leaves with uses as food, fodder, and a biostimulant to enhance crop growth. It yields seeds containing a water purifying coagulant and oil with cosmetic uses and possible biofuel feedstock. Despite Moringa oleifera's (and other multifunctional crops') various Food-Energy-Water uses, optimizing the benefits of its multiple uses and livelihood improvements remains challenging. There is a need for holistic approaches capable of assessing the multifunctionality of agriculture and livelihood impacts. Therefore, this paper critically evaluates Moringa oleifera's Food-Energy-Water-Livelihood nexus applications to gain insight into the tradeoffs and synergies among its various applications using a systems thinking approach. A systems approach is proposed as a holistic thinking framework that can help navigate the complexity of a crop's multifunctionality. The "Success to the Successful" systems archetype was adopted to capture the competition between the need for leaf yields and seed yields. In areas where there is energy and water insecurity, Moringa oleifera seed production is recommended for its potential to coproduce oil, the water purifying coagulant, and a residue that can be applied as a fertilizer. In areas where food insecurity is an issue, focusing on leaf production would be beneficial due to its significance in augmenting food for human consumption, animal feed, and its use as a biostimulant to increase crop yields. A causal loop diagram was found to effectively map the interconnections among the various uses of Moringa oleifera and associated livelihood improvements. This framework provides stakeholders with a conceptual decision-making tool that can help maximize positive livelihood outcomes. This approach can also be applied for improved management of other multifunctional crops.
Collapse
Affiliation(s)
- Yoel Gebrai
- Department of Civil and Environmental Engineering, College of Engineering, University of South Florida, 4202 E Fowler Avenue, ENG 030, Tampa, FL 33620, United States of America
| | - Kebreab Ghebremichael
- Patel College of Global Sustainability, University of South Florida, 4202 E Fowler Avenue, CGS 238, Tampa, FL 33612, United States of America.
| | - James R Mihelcic
- Department of Civil and Environmental Engineering, College of Engineering, University of South Florida, 4202 E Fowler Avenue, ENG 030, Tampa, FL 33620, United States of America
| |
Collapse
|
75
|
Integrative Network Pharmacology of Moringa oleifera Combined with Gemcitabine against Pancreatic Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gemcitabine (GEM) is the first-line chemotherapy drug for patients with advanced pancreatic cancer. Moringa oleifera (MO) exhibited various biological activities, including anticancer effects. Nevertheless, the effectiveness of their combination against pancreatic cancer has not yet been explored. This study evaluates the effect of MO and GEM against pancreatic cancer through network pharmacology. TCMSP, TCMID, and PubMed were used to identify and screen MO bioactive compounds. MO and GEM genes were predicted through DGIdb, CTD, and DrugBank. Pancreatic cancer genes were retrieved from OMIM and MalaCards. Protein–protein interaction (PPI) and compound-target-pathway network were established via STRING and Cytoscape. Gene ontology (GO) and pathway enrichment analysis were conducted using DAVID Bioinformatic Tools. Catechin, kaempferol, quercetin, and epicatechin that met the drug screening requirements, and three additional compounds, glucomoringin, glucoraphanin, and moringinine, were identified as bioactive compounds in MO. Catechin was found to be the main hub compound in MO. TP53, AKT1, VEGFA, and CCND1 from PPI network were discovered as hub genes to have biological importance in pancreatic cancer. GO and pathway analysis revealed that MO and GEM combination was mainly associated with cancer, including pancreatic cancer, through regulation of apoptosis. Combination therapy between MO and GEM might provide insight in pancreatic cancer treatment.
Collapse
|
76
|
Alam MA, Quamri MA, Haider N. Efficacy and safety of Barg-e-Sahajna ( Moringa oleifera Lam.) in primary hypothyroidism. Drug Metab Pers Ther 2021; 37:21-26. [PMID: 34449175 DOI: 10.1515/dmpt-2021-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hypothyroidism is the most common disorder arising from hormone deficiency. It frequently affects women than men. The prevalence of overall hypothyroidism has been reported to be 4.8-11%. Levothyroxine is the treatment of choice for all types of hypothyroidism. The purpose of this pilot study was to evaluate the efficacy and safety of Barg-e-Sahajna (Leaves of Moringa oleifera Lam.) among diagnosed patients of primary hypothyroidism. METHODS This study was an open observational study. A total of 22 patients were screened, out of which 10 were excluded (did not meet inclusion criteria) and 2 refused to consent to be part of the study, rest 10 participants were enrolled after obtaining written informed consent finally 8 subjects completed the study and 2 are dropout in last follow up. The drug was given in the form of decoction at the dose of 5 g fresh leaves twice a day after meal for 45 days. RESULTS The study effects on objective parameter thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) were found extremely significant when compared before (16.62 ± 11.49, 132 ± 19.32, 9.28 ± 1.46) and after (4.75 ± 3.12, 150.37 ± 20.68, 11.84 ± 3.81) treatment with a significant decrease in serum TSH level (p<0.0246) and an increase in serum T3 (p<0.0005) and T4 (p<0.0438) levels. The results were analyzed using paired "t" test. CONCLUSIONS The improvements in thyroid profiles (TSH, T3 and T4) after consuming 'Barg-e-Sahajna' show that the test drug is effective in primary hypothyroidism and the relief was considerable. No significant effect on safety parameters (serum-glutamic-oxaloacetic-transaminase [SGOT], serum glutamic-pyruvic transaminase [SGPT], blood urea, and serum creatinine) was observed. Therefore, it may be concluded that the Barg-e-Sahajna is preliminarily safe and effective in the management of primary hypothyroidism.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat (Medicine), National Institute of Unani Medicine (Under Ministry of AYUSH), Bangalore, India
| | - Mohd Aleemuddin Quamri
- Department of Moalajat (Medicine), National Institute of Unani Medicine (Under Ministry of AYUSH), Bangalore, India
| | - Nafis Haider
- Department of Basic Medical Sciences Unit, Prince Sultan Military College of Health Sciences, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
77
|
Alam MA, Quamri MA, Haider N. Efficacy and safety of Barg-e-Sahajna ( Moringa olifera Lam.) in primary hypothyroidism. Drug Metab Pers Ther 2021; 0:dmdi-2021-0136. [PMID: 34390640 DOI: 10.1515/dmdi-2021-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hypothyroidism is the most common disorder arising from hormone deficiency. It frequently affects women than men. The prevalence of overall hypothyroidism has been reported to be 4.8-11%. Levothyroxine is the treatment of choice for all types of hypothyroidism. The purpose of this pilot study was to evaluate the efficacy and safety of Barg-e-Sahajna (Leaves of Moringa olifera Lam.) among diagnosed patients of primary hypothyroidism. METHODS This study was an open observational study. A total of 22 patients were screened, out of which 10 were excluded (did not meet inclusion criteria) and 2 refused to consent to be part of the study, rest 10 participants were enrolled after obtaining written informed consent finally 8 subjects completed the study and 2 are dropout in last follow up. The drug was given in the form of decoction at the dose of 5 g fresh leaves twice a day after meal for 45 days. RESULTS The study effects on objective parameter thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) were found extremely significant when compared before (16.62 ± 11.49, 132 ± 19.32, 9.28 ± 1.46) and after (4.75 ± 3.12, 150.37 ± 20.68, 11.84 ± 3.81) treatment with a significant decrease in serum TSH level (p<0.0246) and an increase in serum T3 (p<0.0005) and T4 (p<0.0438) levels. The results were analyzed using paired "t" test. CONCLUSIONS The improvements in thyroid profiles (TSH, T3 and T4) after consuming 'Barg-e-Sahajna' show that the test drug is effective in primary hypothyroidism and the relief was considerable. No significant effect on safety parameters (serum-glutamic-oxaloacetic-transaminase [SGOT], serum glutamic-pyruvic transaminase [SGPT], blood urea, and serum creatinine) was observed. Therefore, it may be concluded that the Barg-e-Sahajna is preliminarily safe and effective in the management of primary hypothyroidism.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat (Medicine), National Institute of Unani Medicine (Under Ministry of AYUSH), Bangalore, India
| | - Mohd Aleemuddin Quamri
- Department of Moalajat (Medicine), National Institute of Unani Medicine (Under Ministry of AYUSH), Bangalore, India
| | - Nafis Haider
- Department of Basic Medical Sciences Unit, Prince Sultan Military College of Health Sciences, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
78
|
Ferreira RDS, Mendonça LABM, dos Santos C, Hiane PA, Matias R, Franco OL, de Oliveira AKM, do Nascimento VA, Pott A, Carvalho CME, Guimarães RDCA. Do Bioactive Food Compound with Avena sativa L., Linum usitatissimum L. and Glycine max L. Supplementation with Moringa oleifera Lam. Have a Role against Nutritional Disorders? An Overview of the In Vitro and In Vivo Evidence. Nutrients 2021; 13:2294. [PMID: 34371804 PMCID: PMC8308451 DOI: 10.3390/nu13072294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Functional clinical nutrition is an integrative science; it uses dietary strategies, functional foods and medicinal plants, as well as combinations thereof. Both functional foods and medicinal plants, whether associated or not, form nutraceuticals, which can bring benefits to health, in addition to being included in the prevention and treatment of diseases. Some functional food effects from Avena sativa L. (oats), Linum usitatissimum L. (brown flaxseed), Glycine max L. (soya) and Moringa oleifera have been proposed for nutritional disorders through in vitro and in vivo tests. A formulation called a bioactive food compound (BFC) showed efficiency in the association of oats, flaxseed and soy for dyslipidemia and obesity. In this review, we discuss the effects of BFC in other nutritional disorders, as well as the beneficial effects of M. oleifera in obesity, cardiovascular disease, diabetes mellitus type 2, metabolic syndrome, intestinal inflammatory diseases/colorectal carcinogenesis and malnutrition. In addition, we hypothesized that a BFC enriched with M. oleifera could present a synergistic effect and play a potential benefit in nutritional disorders. The traditional consumption of M. oleifera preparations can allow associations with other formulations, such as BFC. These nutraceutical formulations can be easily accepted and can be used in sweet preparations (fruit and/or vegetable juices, fruit and/or vegetable vitamins, porridges, yogurt, cream, mousses or fruit salads, cakes and cookies) or savory (vegetable purees, soups, broths and various sauces), cooked or not. These formulations can be low-cost and easy-to-use. The association of bioactive food substances in dietary formulations can facilitate adherence to consumption and, thus, contribute to the planning of future nutritional interventions for the prevention and adjuvant treatment of the clinical conditions presented in this study. This can be extended to the general population. However, an investigation through clinical studies is needed to prove applicability in humans.
Collapse
Affiliation(s)
- Rosângela dos Santos Ferreira
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Lígia Aurélio Bezerra Maranhão Mendonça
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Cristiane dos Santos
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Rosemary Matias
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Octávio Luiz Franco
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
- Graduate Program in Genomic Sciences and Biotechnology, Center of Proteomic and Biochemical Analysis, Catholic University of Brazilia, Brasília 70790-160, DF, Brazil
| | - Ademir Kleber Morbeck de Oliveira
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| |
Collapse
|
79
|
Luetragoon T, Sranujit RP, Noysang C, Thongsri Y, Potup P, Somboonjun J, Maichandi N, Suphrom N, Sangouam S, Usuwanthim K. Evaluation of Anti-Inflammatory Effect of Moringa oleifera Lam. and Cyanthillium cinereum (Less) H. Rob. Lozenges in Volunteer Smokers. PLANTS 2021; 10:plants10071336. [PMID: 34208842 PMCID: PMC8309071 DOI: 10.3390/plants10071336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Smokers have high plaque accumulation that initiates gingival inflammation and progresses to periodontitis. Thus, oral hygiene to control microbial plaque formation is an effective method of preventing gingivitis. Medicinal plants such as Moringa oleifera Lam. (MO) and Cyanthillium cinereum (Less.) H. Rob. (CC) have an anti-inflammatory effect that might improve oral health in smokers. This study evaluated the effect of MO leaf and CC extracts using MO lozenges and a combination of MO + CC lozenges on oral inflammation and gingivitis in volunteer smokers. Lozenges consisting of MO and CC extracts were developed and studied in vivo. The results showed that lozenges significantly reduced oral inflammation and gingivitis in volunteers. The gingival index (GI) of group III (MO + CC lozenges) significantly decreased, while the percentage decrease of oral inflammation in group II (MO lozenges) was significantly higher than the other groups. The percentage decrease of GI values in group II (MO lozenges) and group III (MO + CC lozenges) were significantly higher than the placebo group I. Our findings indicated that MO and MO + CC lozenges reduced oral inflammation and gingivitis and showed potential to improve oral health in smokers.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Rungnapa Pankla Sranujit
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Chanai Noysang
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | | | | | - Nungruthai Suphrom
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Supaporn Sangouam
- Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Correspondence: ; Tel.: +66-55-966-411; Fax: +66-55-966-234
| |
Collapse
|
80
|
Chiu BC, Olson ME, Fahey JW. Exploring the use of
Moringa oleifera
as a vegetable in Agua Caliente Nueva, Jalisco, Mexico: A qualitative study. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Belinda C. Chiu
- Johns Hopkins University Bloomberg School of Public Health Department of International Health Baltimore Maryland USA
| | - Mark E. Olson
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 Mexico
| | - Jed W. Fahey
- Johns Hopkins University School of Medicine Department of Medicine Division of Clinical Pharmacology Department of Pharmacology and Molecular Sciences Lewis B. & Dorothy Cullman Chemoprotection Center, Bloomberg School of Public Health Department of International Health Center for Human Nutrition Baltimore Maryland USA
| |
Collapse
|
81
|
Amina M, Bhat RS, Al-Dbass AM, Musayeib NM, Fahmy R, Alhadlaq L, El-Ansary A. The protective effect of Moringa oleifera plant extract against glutamate-induced DNA damage and reduced cell viability in a primary retinal ganglion cell line. PeerJ 2021; 9:e11569. [PMID: 34221717 PMCID: PMC8231317 DOI: 10.7717/peerj.11569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Glutamate excitotoxicity can cause DNA damage and is linked to many retinal and neurological disorders. In mammals, the visual signal from the eyes to the brain is conducted only by retinal ganglion cells (RGCs), which can be damaged by overstimulation of glutamate receptors. Methodology We examined the protective effects of Moringa oleifera seed extract against glutamate-induced DNA damage in RGCs. RGCs cells were treated with 5, 10, 50, or 100 µg/ml of M. oleifera seed extract and glutamate separately and then assessed for DNA damage using the comet assay. We also evaluated the viability of the RGCs after both treatments using the MTT test. Additionally, RGCs were pretreated with M. oleifera seed extract (50 or 100 µg/ml) for 2 h before glutamate treatment (100 µg/ml) to determine the potential protective effects of M. oleifera. We performed a phytochemical analysis of the M. oleifera seed extract using standard reactions. Results The M. oleifera seed extract was found to be rich in many phytochemicals. We observed a significant dose-dependent elevation in all comet assay variables in glutamate-treated RGCs, whereas M. oleifera seed extract treatments did not show any significant change in DNA integrity. Conclusion M. oleifera seed extract demonstrates neuroprotective effects, which suggests it may help to prevent the development of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M Al-Dbass
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nawal M Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rania Fahmy
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, r, Saudi Arabia.,Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Leen Alhadlaq
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
82
|
Watanabe S, Okoshi H, Yamabe S, Shimada M. Moringa oleifera Lam. in Diabetes Mellitus: A Systematic Review and Meta-Analysis. Molecules 2021; 26:molecules26123513. [PMID: 34207664 PMCID: PMC8229498 DOI: 10.3390/molecules26123513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Plant-derived phytochemicals have been interested in as nutraceuticals for preventing the onset and progress of diabetes mellitus and its serious complications in recent years. Moringa oleifera Lam. is used in vegetables and in herbal medicine for its health-promoting properties against various diseases including diabetes mellitus. This study aimed to examine an effect of Moringa oleifera on diabetic hyperglycemia and dyslipidemia by meta-analyzing the current evidence of diabetic rodent models. Peer-reviewed studies written in English from two databases, PubMed and Embase, were searched to 30 April 2021. Studies reporting blood glucose or lipid levels in diabetic rodents with and without receiving extracts of Moringa oleifera were included. Forty-four studies enrolling 349 diabetic rodents treated with extracts of Moringa oleifera and 350 diabetic controls reported blood glucose levels. The pooled effect size was -3.92 (95% CI: -4.65 to -3.19) with a substantial heterogeneity. This effect was likely to be, at least in part, modified by the type of diabetic models. Moreover, diabetic hypertriglyceridemia and hypercholesterolemia were also significantly improved in diabetic rodent models treated with Moringa oleifera.
Collapse
Affiliation(s)
- Shihori Watanabe
- Graduate School of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (S.W.); (S.Y.)
| | - Hiyori Okoshi
- Department of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan;
| | - Shizuko Yamabe
- Graduate School of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (S.W.); (S.Y.)
| | - Masako Shimada
- Graduate School of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (S.W.); (S.Y.)
- Department of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan;
- Correspondence: ; Tel.: +81-42-742-1927
| |
Collapse
|
83
|
Alkafafy ME, Sayed SM, El-Shehawi AM, El-Shazly S, Farouk S, Alotaibi SS, Madkour DA, Orabi SH, Elbaz HT, Ahmed MM. Moringa oleifera ethanolic extract ameliorates the testicular dysfunction resulted from HFD-induced obesity rat model. Andrologia 2021; 53:e14126. [PMID: 34101882 DOI: 10.1111/and.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, we estimated the protective role of Moringa oleifera leaf ethanolic extract (MOLE) against obesity-associated testicular dysfunction. Fifty male albino rats were randomly assigned to five groups (n = 10): Group I (basal diet), group II (basal diet plus MOLE orally), group III (high-fat diet-HFD), group IV (HFD plus oral MOLE) and group V (HFD for 8 weeks followed by a basal diet plus oral MOLE for 6 weeks). The study duration extended for 14 weeks. Serum collected to investigate testosterone, FSH and LH levels. Testicular tissues were used to determine levels of SOD, glutathione, catalase and malondialdehyde. Semen was collected to estimate its quality (morphology, motility and concentration). Morphological changes in the testis were investigated by histopathological and immunohistochemical techniques. Compared with both control treatment and MOLE treatment, serum testosterone, FSH, LH, testicular enzymatic catalase, SOD, GSH, survivin immunoreactivity, sperm quality and testicular weight were all significantly decreased in rats treated with HFD, while there were significant increases in testicular malondialdehyde and caspase-3 immunoreactivity. MOLE improved all harmful effects of HFD. Improvements were more pronounced in the protected (G 4) than the treated (G 5) group. MOLE could be a potential solution for obesity-associated fertility problem.
Collapse
Affiliation(s)
- Mohamed E Alkafafy
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Samy M Sayed
- Department of Science and Technology, University College of Ranyah, Taif University, Taif, Saudi Arabia
| | - Ahmed M El-Shehawi
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Samir El-Shazly
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samy Farouk
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Doaa A Madkour
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hamed T Elbaz
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed M Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
84
|
Allemailem KS. Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites. J Pharm Bioallied Sci 2021; 13:155-162. [PMID: 34349474 PMCID: PMC8291113 DOI: 10.4103/jpbs.jpbs_753_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/04/2022] Open
Abstract
The use of traditional medicines of natural origin has been prevalent since ancient times globally as the plants produce a great diversity in their secondary metabolites. The naturally occurring bioactive constituents in food and other plant materials have shown widespread attention for their use as alternative medicine to prevent and cure microbial growth with the least toxic manifestations. The inclusion of these contents revealed their crucial role to improve the therapeutic efficacy of the classical drugs against various pathogenic microorganisms. Furthermore, several metabolites have also been explored in combination with antimicrobial agents to overcome the problems associated with drug resistance. This current review discusses the antimicrobial activities of secondary metabolites as well as their role in drug sensitivity against multiple-drug resistant pathogenic microbes.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
85
|
Adefegha SA, Assmann CE, Schetinger MRC, de Andrade CM, Emanuelli T. Moringa oleifera modulates cholinergic and purinergic enzymes activity in BV-2 microglial cells. Metab Brain Dis 2021; 36:627-638. [PMID: 33394288 DOI: 10.1007/s11011-020-00659-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023]
Abstract
Microglia are immune cells that are resident in central nervous system. Activation of microglial cells are detrimental to the survival of neurons. Thus, prevention of microglia activation and/or protection against microglia activation could be potential therapeutic strategy towards the management of inflammation-mediated neurodegenerative diseases. Moringa oleifera is widely consumed as food and used in folklore medicine for treating several diseases. This study was convened to investigate the effect of aqueous extract of Moringa oleifera on cell viability, cholinergic and purinergic enzymes in BV-2 microglial cultured cell. Aqueous extract of Moringa oleifera was prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with Moringa oleifera extracts (0.1-100 μg/mL) and assessed for cell viability and nitric oxide production. Furthermore, the effect of Moringa oleifera on enzymes of cholinergic (acetylcholinesterase) and purinergic (nucleoside triphosphate diphosphohydrolase; NTPDase, 5' nucleotidase and adenosine deaminase; ADA) systems in BV-2 microglial cells were determined. Incubation of BV-2 microglia cell with M. oleifera extract maintained cell viability, modulated cholinergic and purinergic enzymes activity. The phenolic compounds found in M. oleifera extracts, include chlorogenic acid, rutin; quercetin pentoside, kaempferol derivative and quercetin derivative. Thus, this study suggest that the potential therapeutic effect of the phenolic compounds found in M. oleifera may have been responsible for the maintenance of cell viability in BV-2 microglia cells and modulation of cholinergic as well as purinergic enzymes activity.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Veterinary Medicine, Department of Small Animals, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Department of Food Science and Technology, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cinthia Melazzo de Andrade
- Graduate Program in Veterinary Medicine, Department of Small Animals, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
86
|
Adebayo OG, Wopara I, Aduema W, Ebo OT, Umoren EB. Long-term consumption of Moringa oleifera-supplemented diet enhanced neurocognition, suppressed oxidative stress, acetylcholinesterase activity and neuronal degeneration in rat's hippocampus. Drug Metab Pers Ther 2021; 0:dmdi-2020-0189. [PMID: 33770830 DOI: 10.1515/dmdi-2020-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study investigates protection against oxidative stress and memory enhancing potential of long-term consumption of Moringa oleifera leaves. METHODS Male Wistar rat were fed with mixture of M. oleifera-supplemented diets (MOSD) partitioned in 1, 5, 10, and 20% continuously for 12 weeks. Object recognition test (ORT) and Morris water maze (MWM) was used for assessing neurocognition. Changes in body weight, Lipid peroxidation (MDA), Glutathione (GSH), Catalase (CAT) and Acetylcholinesterase (AChE) activity was assayed in the brain tissue. Histomorphometric of the hippocampus was also examined. RESULTS The diets progressively increase the body weigh after the 12 weeks, improved spatial (MWM) and non-spatial (ORT) memory performance, protect against oxidative stress, inhibit AChE activity and suppresses neuronal degeneration in the hippocampus when stained with Cresyl violent stain. CONCLUSIONS Conclusively, long-term consumption of MOSD shows strong protection against oxidative stress and hippocampal degeneration and improves neurocognition with dose dependent effect.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| |
Collapse
|
87
|
Abd Hadi HM, Tan CP, Mohamad Shah NK, Tan TB, Niranjan K, Mat Yusoff M. Establishment of an Effective Refining Process for Moringa oleifera Kernel Oil. Processes (Basel) 2021; 9:579. [DOI: 10.3390/pr9040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This study systematically established the most effective refining process for Moringa oleifera (MO) kernel oil. Acid degumming (20.33 ± 1.37 ppm) removed significantly greater phosphorus than water degumming (31.18 ± 0.90 ppm). Neutralization was more effective than deodorization in decreasing the acid (0.06 mg KOH/g) and p-Anisidine (p-AV, 0.36 ± 0.03) values of the oil. Besides improving its color properties, acid-activated bleaching earth Type B was better than Types A and C in decreasing the oil’s p-AV (0.43 ± 0.02), acid value (3.96 ± 0.02 mg KOH/g), and moisture content (0.01 ± 0.00% w/w). The selected refining stages successfully produced MO kernel oil with acceptable peroxide value (PV, 1.66–3.33 meq/kg), p-AV (1.05–1.49), total oxidation value (TOTOX, 4.38–8.15), acid value (0.03 mg KOH/g), moisture content (0.01% w/w), phosphorus content (1.28–1.94 ppm), iodine value (80.79–81.03), oleic acid (79.52–79.65%), and tocopherol content (65.26–87.00 mg/kg).
Collapse
|
88
|
Adebayo OG, Wopara I, Aduema W, Ebo OT, Umoren EB. Long-term consumption of Moringa oleifera-supplemented diet enhanced neurocognition, suppressed oxidative stress, acetylcholinesterase activity and neuronal degeneration in rat's hippocampus. Drug Metab Pers Ther 2021; 36:223-231. [PMID: 34412171 DOI: 10.1515/dmpt-2020-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study investigates protection against oxidative stress and memory enhancing potential of long-term consumption of Moringa oleifera leaves. METHODS Male Wistar rat were fed with mixture of M. oleifera-supplemented diets (MOSD) partitioned in 1, 5, 10, and 20% continuously for 12 weeks. Object recognition test (ORT) and Morris water maze (MWM) was used for assessing neurocognition. Changes in body weight, Lipid peroxidation (MDA), Glutathione (GSH), Catalase (CAT) and Acetylcholinesterase (AChE) activity was assayed in the brain tissue. Histomorphometric of the hippocampus was also examined. RESULTS The diets progressively increase the body weigh after the 12 weeks, improved spatial (MWM) and non-spatial (ORT) memory performance, protect against oxidative stress, inhibit AChE activity and suppresses neuronal degeneration in the hippocampus when stained with Cresyl violent stain. CONCLUSIONS Conclusively, long-term consumption of MOSD shows strong protection against oxidative stress and hippocampal degeneration and improves neurocognition with dose dependent effect.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| |
Collapse
|
89
|
Yang F, Yang J, Ruan Z, Wang Z. Fermentation of dietary fibers modified by an enzymatic‐ultrasonic treatment and evaluation of their impact on gut microbiota in mice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Fan Yang
- School of Food Science & Engineering South China University of Technology Guangzhou P.R. China
| | - Jian Yang
- College of Pharmacy and Nutrition University of Saskatchewan Saskatoon SK Canada
| | - Zhiyang Ruan
- School of Food Science & Engineering South China University of Technology Guangzhou P.R. China
| | - Zhaomei Wang
- School of Food Science & Engineering South China University of Technology Guangzhou P.R. China
| |
Collapse
|
90
|
Minutolo A, Potestà M, Roglia V, Cirilli M, Iacovelli F, Cerva C, Fokam J, Desideri A, Andreoni M, Grelli S, Colizzi V, Muleo R, Montesano C. Plant microRNAs from Moringa oleifera Regulate Immune Response and HIV Infection. Front Pharmacol 2021; 11:620038. [PMID: 33643043 PMCID: PMC7905167 DOI: 10.3389/fphar.2020.620038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
Traditional medicine is often chosen due to its affordability, its familiarity with patient’s cultural practices, and its wider access to the local community. Plants play an important role in providing indispensable nutrients, while specific small RNAs can regulate human gene expression in a cross-kingdom manner. The aim of the study was to evaluate the effects of plant-enriched purified extract microRNAs from Moringa oleifera seeds (MO) on the immune response and on HIV infection. Bioinformatic analysis shows that plant microRNAs (p-miRs) from MO belonging to 18 conserved families, including p-miR160h, p-miR166, p-miR482b, p-miR159c, p-miR395d, p-miR2118a, p-miR393a, p-miR167f-3p, and p-miR858b are predicted to target with high affinity BCL2, IL2RA, TNF, and VAV1, all these being involved in the cell cycle, apoptosis, immune response and also in the regulation of HIV pathogenesis. The effects of MO p-miRs transfected into HIV+ PBMCs were analyzed and revealed a decrease in viability associated with an increase of apoptosis; an increase of T helper cells expressing Fas and a decrease of intracellular Bcl2 protein expression. Meanwhile no effects were detected in PBMCs from healthy donors. In CD4+ T cells, transfection significantly reduced cell activation and modified the T cell differentiation, thereby decreasing both central and effector memory cells while increasing terminal effector memory cells. Interestingly, the p-miRs transfection induces a reduction of intracellular HIV p24 protein and a reduction of viral DNA integration. Finally, we evaluated the effect of synthetic (mimic) p-miR858b whose sequence is present in the MO p-miR pool and predicted to target VAV1, a protein involved in HIV-Nef binding. This protein plays a pivotal role in T cell antigen receptor (TCR) signaling, so triggering the activation of various pathways. The transfection of HIV+ PBMCs with the synthetic p-miR858b showed a reduced expression of VAV1 and HIV p24 proteins. Overall, our evidence defines putative mechanisms underlying a supplementary benefit of traditional medicine, alongside current antiretroviral therapy, in managing HIV infection in resource-limited settings where MO remains widely available.
Collapse
Affiliation(s)
| | - Marina Potestà
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina Roglia
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Cirilli
- Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy.,Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | | | - Carlotta Cerva
- Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Joseph Fokam
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | | | - Massimo Andreoni
- Department of System Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Faculty of Sciences and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
| | - Rosario Muleo
- Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
91
|
Karray A, Krayem N, Saad HB, Sayari A. Spirulina platensis, Punica granatum peel, and moringa leaves extracts in cosmetic formulations: an integrated approach of in vitro biological activities and acceptability studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8802-8811. [PMID: 33068245 DOI: 10.1007/s11356-020-11156-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The selection of suitable natural raw materials in the cosmetic research and development is a key point, in order not only to obtain the expected results but also to avoid undesirable side effects. In this study, spirulina platensis, pomegranate (Punica granatum) peel, and moringa leaves alone were evaluated for anti-oxidant and antimicrobial properties. The chemical composition (moisture, dry matter, protein, lipid, and ash) and total polyphenols, flavonoids, and carotenoids content were evaluated in the three extracts. Total antioxidant capacity and ferric reducing activity power of extracts were also studied. Using agar diffusion method, the anti-Micrococcus luteus, Staphylococcus aureus, E. coli, Listeria monocytogenes, Salmonella typhimurium, and Enterococus faecalis activities were measured. Interestingly, after combinations, pomegranate peel/spirulina (A), and moringa/spirulina (B): 25%/75% and 50%/50%, we have found that pomegranate peel can be incorporated into cosmetic formulations as an excellent preservative due to its exceptionally amount of phenolic compounds, powerful antioxidant activity, and its antibacterial activity against pathogenic strains.
Collapse
Affiliation(s)
- Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, université de Sfax-Tunisia, Sfax, Tunisia.
| | - Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, université de Sfax-Tunisia, Sfax, Tunisia
| | - Hajer Ben Saad
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, université de Sfax-Tunisia, Sfax, Tunisia
| | - Adel Sayari
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, université de Sfax-Tunisia, Sfax, Tunisia
| |
Collapse
|
92
|
Lopez-Rodriguez NA, Gaytán-Martínez M, de la Luz Reyes-Vega M, Loarca-Piña G. Glucosinolates and Isothiocyanates from Moringa oleifera: Chemical and Biological Approaches. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:447-457. [PMID: 32909179 DOI: 10.1007/s11130-020-00851-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Alternative therapies, such as phytotherapy, are considered to improve the health status of people with chronic non-communicable diseases (CNCDs). In this regard, Moringa oleifera is currently being studied for its nutritional value and its total phenolic content. Besides phenolic compounds, the phytochemical composition is also of great interest. This composition is characterized by the presence of glucosinolates and isothiocyanates. Isothiocyanates formed by the biotransformation of Moringa glucosinolates contain an additional sugar in their chemical structure, which provides stability to these bioactive compounds over other isothiocyanates found in other crops. Both glucosinolates and isothiocyanates have been described as beneficial for the prevention and improvement of some chronic diseases. The content of glucosinolates in Moringa tissues can be enhanced by certain harvesting methods which in turn alters their final yield after extraction. This review aims to highlight certain features of glucosinolates and isothiocyanates from M. oleifera, such as their chemical structure, functionality, and main extraction and harvesting methods. Some of their health-promoting effects will also be addressed.
Collapse
Affiliation(s)
- Norma A Lopez-Rodriguez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - María de la Luz Reyes-Vega
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República, Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, S/N, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|
93
|
Xiong Y, Riaz Rajoka MS, Zhang M, He Z. Isolation and identification of two new compounds from the seeds of Moringa oleifera and their antiviral and anti-inflammatory activities. Nat Prod Res 2020; 36:974-983. [DOI: 10.1080/14786419.2020.1851218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yongai Xiong
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Department of Pharmacy, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, School of Medicine, Health Science Center, Shenzhen University, Shenzhen, China
| | - Muhammad Shahid Riaz Rajoka
- Department of Pharmacy, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, School of Medicine, Health Science Center, Shenzhen University, Shenzhen, China
| | - MengXun Zhang
- Department of Pharmacy, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, School of Medicine, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhendan He
- Department of Pharmacy, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, School of Medicine, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
94
|
Polyphenol Extract of Moringa Oleifera Leaves Alleviates Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6295402. [PMID: 33299453 PMCID: PMC7710425 DOI: 10.1155/2020/6295402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023]
Abstract
Moringa oleifera Lam. is an essential herb used for the treatment of inflammation, diabetes, high blood pressure, and other diseases. In this study, phenolic extracts of M. oleifera leaves were obtained and analyzed. The results showed that the main identifiable phenols were astragalin, chlorogenic acid, isoquercitrin, kaempferitrin, luteolin, quercetin, and rutin. The effects of M. oleifera polyphenol extract (MOPE) on experimental colitis induced by 3% dextran sulfate sodium (DSS) were investigated. The results showed that oral administration of MOPE significantly alleviated the symptoms of DSS-induced colitis. MOPE significantly reduced weight loss, the disease activity index, colon shortening, and mucosal damage. In addition, MOPE attenuated the infiltration of CD3+ T cells, CD177+ neutrophils, and F4/80+ macrophages and significantly inhibited the secretion of IL-6 and TNF-α. After the MOPE administration, the expression of proteins associated with the NF-κB signaling pathway changed. Specifically, compared with that of the DSS group, the protein expression of NF-κB p65 and p-IκBα was downregulated, and the expression of IκBα was upregulated. This study revealed the anti-inflammatory effects and mechanisms of MOPE in the colon, indicating its potential use in preventing inflammation-driven diseases.
Collapse
|
95
|
García-Beltrán JM, Mansour AT, Alsaqufi AS, Ali HM, Esteban MÁ. Effects of aqueous and ethanolic leaf extracts from drumstick tree (Moringa oleifera) on gilthead seabream (Sparus aurata L.) leucocytes, and their cytotoxic, antitumor, bactericidal and antioxidant activities. FISH & SHELLFISH IMMUNOLOGY 2020; 106:44-55. [PMID: 32739532 DOI: 10.1016/j.fsi.2020.06.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Aqueous and ethanolic extracts of drumstick, Moringa oleifera, leaves were evaluated in vitro to ascertain their principal active components and determine their immunostimulant, cytotoxic, antitumoral, bactericidal and antioxidant activities. Phytochemical screening of M. oleifera leaf extracts showed a greater abundance of phenolic and cyanogenic glycosides in aqueous than in ethanolic extracts, characterized by several flavonoids, condensed tannins and saponins. No significant effects on gilthead seabream (Sparus aurata) head-kidney leucocyte activities (phagocytic ability and capacity, respiratory burst and peroxidase) were detected after incubation for 24 h with different concentrations (0.001/1 mg mL-1) of either extract. In addition, the aqueous extract showed a marked cytotoxic effect on both SAF-1 (at doses above 0.01 mg mL-1) and PLHC-1 (at doses above 0.25 mg mL-1) cell lines. The ethanolic extract improved the viability of SAF-1 cells and decreased the viability of PLHC-1 cells when used at higher concentrations. Both the ethanolic and, particularly, the aqueous extracts showed significant bactericidal activity on pathogenic Vibrio anguillarum and Photobacterium damselae strains. The antiradical activity of M. oleifera, as determined by the ABTS assay, increased in a linear dose-response with increasing extract concentrations. The results as a whole for the cytotoxic, bactericidal and antioxidant activities of M. oleifera leaf extracts point to their possible use as additives in functional diets for farmed fish.
Collapse
Affiliation(s)
- José María García-Beltrán
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Abdallah Tageldein Mansour
- Department of Aquaculture and Animal Production, College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Saud Alsaqufi
- Department of Aquaculture and Animal Production, College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Hayssam M Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
96
|
Sachdeva V, Roy A, Bharadvaja N. Current Prospects of Nutraceuticals: A Review. Curr Pharm Biotechnol 2020; 21:884-896. [PMID: 32000642 DOI: 10.2174/1389201021666200130113441] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are dietary supplements, utilized to ameliorate health, delay senescence, prevent diseases, and support the proper functioning of the human body. Currently, nutraceuticals are gaining substantial attention due to nutrition and therapeutic potentials. Based on their sources, they are categorized as dietary supplements and herbal bioactive compounds. The global market for nutraceutical is huge i.e. approximately USD 117 billion. Herbal nutraceutical helps in maintaining health and promoting optimal health, longevity, and quality of life. Studies have shown promising results of nutraceuticals to treat several diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, etc. In the present review, an overview of various bioactive ingredients that act as nutraceuticals (carbohydrates, lipids, edible flowers, alkaloids, medicinal plants, etc.) and their role in health benefits, has been discussed. Further application of nutraceuticals in the prevention of various diseases has also been discussed.
Collapse
Affiliation(s)
- Vedant Sachdeva
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Arpita Roy
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
97
|
Mehwish HM, Riaz Rajoka MS, Xiong Y, Zheng K, Xiao H, Anjin T, Liu Z, Zhu Q, He Z. Moringa oleifera – A Functional Food and Its Potential Immunomodulatory Effects. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1825479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hafiza Mahreen Mehwish
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yongai Xiong
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Tao Anjin
- Department of Pharmacy, Hybio Pharmaceutical Co., Ltd., Shenzhen, 518057, PR China
| | - Zhigang Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen Technology University., Shenzhen, 518060, PR China
| |
Collapse
|
98
|
Lim WF, Mohamad Yusof MI, Teh LK, Salleh MZ. Significant Decreased Expressions of CaN, VEGF, SLC39A6 and SFRP1 in MDA-MB-231 Xenograft Breast Tumor Mice Treated with Moringa oleifera Leaves and Seed Residue (MOLSr) Extracts. Nutrients 2020; 12:nu12102993. [PMID: 33007803 PMCID: PMC7601446 DOI: 10.3390/nu12102993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022] Open
Abstract
Moringa oleifera is a miracle plant with many nutritional and medicinal properties. Chemopreventive values of the combined mixture of moringa leaves and seed residue (MOLSr) at different ratios (M1S9, M1S1 and M9S1) were investigated. MOLSr extracts were subjected to phytochemical screening, antioxidant assays, metabolite profiling and cytotoxic activity on the primary mammary epithelial cells (PMECs), non-malignant Chang’s liver cells and various human cancer cell lines (including breast, cervical, colon and liver cancer cell lines). The MOLSr ratio with the most potent cytotoxic activity was used in xenograft mice injected with MDA-MB-231 cells for in vivo tumorigenicity study as well as further protein and gene expression studies. M1S9, specifically composed of saponin and amino acid, retained the lowest antioxidant activity but the highest glucosinolate content as compared to other ratios. Cell viability decreased significantly in MCF-7 breast cancer cells and PMECs after treatment with M1S9. Solid tumor from MDA-MB-231 xenograft mice was inhibited by up to 64.5% at third week after treatment with high-dose M1S9. High-dose M1S9 significantly decreased the expression of calcineurin (CaN) and vascular endothelial cell growth factor (VEGF) proteins as well as the secreted frizzled-related protein 1 (SFRP1) and solute carrier family 39 member 6 (SLC39A6) genes. This study provides new scientific evidence for the chemoprevention potential of MOLSr extracts in a breast cancer model; however, the precise mechanism warrants further investigation.
Collapse
Affiliation(s)
- Wai Feng Lim
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia; (W.F.L.); (M.I.M.Y.)
| | - Mohd Izwan Mohamad Yusof
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia; (W.F.L.); (M.I.M.Y.)
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia; (W.F.L.); (M.I.M.Y.)
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
- Correspondence: ; (L.K.T.); (M.Z.S.); Tel.: +60-3-3258-4658 (L.K.T. & M.Z.S.)
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia; (W.F.L.); (M.I.M.Y.)
- Correspondence: ; (L.K.T.); (M.Z.S.); Tel.: +60-3-3258-4658 (L.K.T. & M.Z.S.)
| |
Collapse
|
99
|
Nayak G, Rao A, Mullick P, Mutalik S, Kalthur SG, Adiga SK, Kalthur G. Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112922. [PMID: 32422360 DOI: 10.1016/j.jep.2020.112922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. is known for its nutritional and ethno medicinal values due to the presence of wide array of phytochemicals with multiple biological activities. We have previously reported that ethanolic extract of Moringa oleifera leaves (MOE) ameliorated cyclophosphamide (CP)-induced testicular toxicity and improved functional integrity of spermatozoa as well as spermatogenic cells. AIM OF THE STUDY The present study was planned to investigate whether the mitigation of CP-induced testicular toxicity by MOE is mediated via modulation of endocrine profile, genes associated with function of different cell types and enhancement of DNA repair response in spermatogonial cells. MATERIALS AND METHODS Adult Swiss albino mice (8 week) were injected with CP (100 mg/kg, one dose in a week for 3 weeks) and MOE (100 mg/kg, 5 doses in a week for 4 weeks) either alone or in combination intraperitoneally. At 35 day post CP injection (first dose), the functional characteristics such as count, motility, head morphology and DNA integrity were assessed in epididymal spermatozoa. Key reproductive hormones like testosterone, follicle stimulating hormone (FSH) and Inhibin B concentration were analyzed in serum and testis. In addition, mRNA expression of genes pertaining to the function of Leydig, Sertoli and spermatogonial cells as well as antioxidant enzymes were evaluated in the testis. To understand the DNA damage and repair process in germ cells, prepubertal (2 week) mice were administered with single dose of CP (200 mg/kg) and/or MOE (100 mg/kg) and analyzed for expression of DNA damage (γ-H2AX, P53 and Caspase3) and repair genes (Rad51 and Ku80) in isolated spermatogonial cells at various time points after treatment. RESULTS CP administration resulted in decrease in count, motility and increase in morphological defects and DNA damage in spermatozoa. Testosterone level was marginally decreased while there was a significant increase in FSH (p < 0.001) and decrease in inhibin B (p < 0.05) observed in CP treated mice. Administration of MOE prior to CP, improved sperm functional characteristics, decreased FSH and increased inhibin B levels. Expression of Abp was down-regulated while Transferrin, Fshr and Gata4 (Sertoli cell specific genes) were up-regulated in testis treated with CP. Administration of CP down-regulated the expression of Oct4 and Ddx4 (Spermatogonia specific genes). MOE administration was shown to ameliorate CP-induced damage by modulating the expression of genes specific to Sertoli and spermatogenic cells. Furthermore, MOE treatment reduced CP-induced DNA damage as evident from lower percentage of γ-H2AX positive spermatogonial cells. CONCLUSION Administration of MOE mitigated CP-induced testicular damage by improving blood and, intra-testicular hormonal milieu as well as modulating the expression of genes pertaining to Sertoli and spermatogonial cells.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Prashansha Mullick
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
100
|
Patriota LLDS, Ramos DDBM, Dos Santos ACLA, Silva YA, Gama E Silva M, Torres DJL, Procópio TF, de Oliveira AM, Coelho LCBB, Pontual EV, da Silva DCN, Paiva PMG, de Lorena VMB, Mendes RL, Napoleão TH. Antitumor activity of Moringa oleifera (drumstick tree) flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Food Chem Toxicol 2020; 145:111691. [PMID: 32810586 DOI: 10.1016/j.fct.2020.111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
The plant Moringa oleifera is used as food and medicine. M. oleifera flowers are source of protein, fiber, and antioxidants, and are used to treat inflammation and tumors. This work evaluated the antitumor activity of the M. oleifera flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Swiss female mice were inoculated with sarcoma 180 cells. Seven days later, the animals were treated intraperitoneally for 1 week with daily doses of PBS (control) or MoFTI (15 or 30 mg/kg). For toxicity assessment, water and food consumption, body and organ weights, histological alterations, and blood hematological and biochemical parameters were measured. Treatment with MoFTI caused pronounced reduction (90.1%-97.9%) in tumor weight. The tumors of treated animals had a reduced number of secondary vessels and lower gauge of the primary vessels compared to the control. No significant changes were observed in water and food consumption or in body and organ weights. Histopathological analysis did not indicate damage to the liver, kidneys, and spleen. In conclusion, MoFTI showed antitumor potential, with no clear evidence of toxicity.
Collapse
Affiliation(s)
| | | | | | - Yasmym Araújo Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Mariana Gama E Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Diego José Lira Torres
- Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Thamara Figueiredo Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Rosemairy Luciane Mendes
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|