51
|
Calvani R, Picca A, Coelho-Júnior HJ, Tosato M, Marzetti E, Landi F. "Diet for the prevention and management of sarcopenia". Metabolism 2023:155637. [PMID: 37352971 DOI: 10.1016/j.metabol.2023.155637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Sarcopenia is a geriatric condition characterized by a progressive loss of skeletal muscle mass and strength, with an increased risk of adverse health outcomes (e.g., falls, disability, institutionalization, reduced quality of life, mortality). Pharmacological remedies are currently unavailable for preventing the development of sarcopenia, halting its progression, or impeding its negative health outcomes. The most effective strategies to contrast sarcopenia rely on the adoption of healthier lifestyle behaviors, including adherence to high-quality diets and regular physical activity. In this review, the role of nutrition in the prevention and management of sarcopenia is summarized. Special attention is given to current "blockbuster" dietary regimes and agents used to counteract age-related muscle wasting, together with their putative mechanisms of action. Issues related to the design and implementation of effective nutritional strategies are discussed, with a focus on unanswered questions on the most appropriate timing of nutritional interventions to preserve muscle health and function into old age. A brief description is also provided on new technologies that can facilitate the development and implementation of personalized nutrition plans to contrast sarcopenia.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| |
Collapse
|
52
|
Liu Y, Guo Y, Liu Z, Feng X, Zhou R, He Y, Zhou H, Peng H, Huang Y. Augmented temperature fluctuation aggravates muscular atrophy through the gut microbiota. Nat Commun 2023; 14:3494. [PMID: 37311782 DOI: 10.1038/s41467-023-39171-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
Large temperature difference is reported to be a risk factor for human health. However, little evidence has reported the effects of temperature fluctuation on sarcopenia, a senile disease characterized by loss of muscle mass and function. Here, we demonstrate that higher diurnal temperature range in humans has a positive correlation with the prevalence of sarcopenia. Fluctuated temperature exposure (10-25 °C) accelerates muscle atrophy and dampens exercise performance in mid-aged male mice. Interestingly, fluctuated temperature alters the microbiota composition with increased levels of Parabacteroides_distasonis, Duncaniella_dubosii and decreased levels of Candidatus_Amulumruptor, Roseburia, Eubacterium. Transplantation of fluctuated temperature-shaped microbiota replays the adverse effects on muscle function. Mechanically, we find that altered microbiota increases circulating aminoadipic acid, a lysine degradation product. Aminoadipic acid damages mitochondrial function through inhibiting mitophagy in vitro. And Eubacterium supplementation alleviates muscle atrophy and dysfunction induced by fluctuated temperature. Our results uncover the detrimental impact of fluctuated temperature on muscle function and provide a new clue for gut-muscle axis.
Collapse
Affiliation(s)
- Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zheyu Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yue He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
53
|
Zhao J, Liang R, Song Q, Song S, Yue J, Wu C. Investigating association between gut microbiota and sarcopenia-related traits: a Mendelian randomization study. PRECISION CLINICAL MEDICINE 2023; 6:pbad010. [PMID: 37324750 PMCID: PMC10263384 DOI: 10.1093/pcmedi/pbad010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Background Observational studies have indicated a potential link between gut microbiota and sarcopenia. However, the underlying mechanisms and a causal relationship have not been established. Thus, the objective of this study is to examine the possible causal association between gut microbiota and sarcopenia-related traits, including low hand-grip strength and appendicular lean mass (ALM), to shed light on the gut-muscle axis. Methods To investigate the potential impact of gut microbiota on low hand-grip strength and ALM, we utilized a two-sample Mendelian randomization (MR) approach. Summary statistics were obtained from genome-wide association studies of gut microbiota, low hand-grip strength, and ALM. The primary MR analysis employed the random-effects inverse-variance weighted (IVW) method. To assess the robustness, we conducted sensitivity analyses using the MR pleiotropy residual sum and outlier (MR-PRESSO) test to detect and correct for horizontal pleiotropy, as well as the MR-Egger intercept test and leave-one-out analysis. Results Alcaligenaceae, Family XIII, and Paraprevotella were positively associated with the risk of low hand-grip strength (P-values < 0.05). Streptococcaceae were negatively associated with low hand-grip strength (P-values < 0.05). Eight bacterial taxa (Actinomycetales, Actinomycetaceae, Bacteroidaceae, Porphyromonadaceae, Prevotellaceae, Bacteroides, Marvinbryantia, and Phascolarctobacterium) were associated with a higher risk of ALM (P-values < 0.05). Eubacterium fissicatena group was negatively associated with ALM (P-values < 0.05). Conclusion We found several gut microbiota components causally associated with sarcopenia-related traits. Our findings provided insights into novel strategies for the prevention and treatment of sarcopenia through the regulation of the gut microbiota, contributing to a better understanding of the gut-muscle axis.
Collapse
Affiliation(s)
- Jiaxi Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Quhong Song
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, Jiangsu, China
| | | | - Chenkai Wu
- Global Health Research Center Duke Kunshan University, Suzhou 215004, Jiangsu, China
| |
Collapse
|
54
|
Ticinesi A, Parise A, Nouvenne A, Cerundolo N, Prati B, Meschi T. The possible role of gut microbiota dysbiosis in the pathophysiology of delirium in older persons. MICROBIOME RESEARCH REPORTS 2023; 2:19. [PMID: 38046817 PMCID: PMC10688815 DOI: 10.20517/mrr.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 12/05/2023]
Abstract
Delirium is a clinical syndrome characterized by an acute change in attention, awareness and cognition with fluctuating course, frequently observed in older patients during hospitalization for acute medical illness or after surgery. Its pathogenesis is multifactorial and still not completely understood, but there is general consensus on the fact that it results from the interaction between an underlying predisposition, such as neurodegenerative diseases, and an acute stressor acting as a trigger, such as infection or anesthesia. Alterations in brain insulin sensitivity and metabolic function, increased blood-brain barrier permeability, neurotransmitter imbalances, abnormal microglial activation and neuroinflammation have all been involved in the pathophysiology of delirium. Interestingly, all these mechanisms can be regulated by the gut microbiota, as demonstrated in experimental studies investigating the microbiota-gut-brain axis in dementia. Aging is also associated with profound changes in gut microbiota composition and functions, which can influence several aspects of disease pathophysiology in the host. This review provides an overview of the emerging evidence linking age-related gut microbiota dysbiosis with delirium, opening new perspectives for the microbiota as a possible target of interventions aimed at delirium prevention and treatment.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Tiziana Meschi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| |
Collapse
|
55
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
56
|
Grahnemo L, Nethander M, Coward E, Gabrielsen ME, Sree S, Billod JM, Sjögren K, Engstrand L, Dekkers KF, Fall T, Langhammer A, Hveem K, Ohlsson C. Identification of three bacterial species associated with increased appendicular lean mass: the HUNT study. Nat Commun 2023; 14:2250. [PMID: 37080991 PMCID: PMC10119287 DOI: 10.1038/s41467-023-37978-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Appendicular lean mass (ALM) associates with mobility and bone mineral density (BMD). While associations between gut microbiota composition and ALM have been reported, previous studies rely on relatively small sample sizes. Here, we determine the associations between prevalent gut microbes and ALM in large discovery and replication cohorts with information on relevant confounders within the population-based Norwegian HUNT cohort (n = 5196, including women and men). We show that the presence of three bacterial species - Coprococcus comes, Dorea longicatena, and Eubacterium ventriosum - are reproducibly associated with higher ALM. When combined into an anabolic species count, participants with all three anabolic species have 0.80 kg higher ALM than those without any. In an exploratory analysis, the anabolic species count is positively associated with femoral neck and total hip BMD. We conclude that the anabolic species count may be used as a marker of ALM and BMD. The therapeutic potential of these anabolic species to prevent sarcopenia and osteoporosis needs to be determined.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken Elvestad Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Satya Sree
- Bio-Me, Oslo Science Park, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Jean-Marc Billod
- Bio-Me, Oslo Science Park, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Klara Sjögren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Biomedicum A8, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Koen F Dekkers
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| |
Collapse
|
57
|
Gold SL, Raman M, Sands BE, Ungaro R, Sabino J. Review article: Putting some muscle into sarcopenia-the pathogenesis, assessment and clinical impact of muscle loss in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2023; 57:1216-1230. [PMID: 37051722 DOI: 10.1111/apt.17498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Sarcopenia, a loss of skeletal muscle mass or function, affects up to 50% of patients with inflammatory bowel disease (IBD) and is associated with poor clinical outcomes including increased hospitalizations, need for surgery and post-operative complications. Despite the high prevalence and clinical significance of sarcopenia in patients with IBD, few patients undergo routine muscle evaluation. AIM The goal of this study was to review the mechanisms of sarcopenia in patients with IBD and understand novel modalities to assess and treat impaired muscle mass or function. METHODS Pubmed and Cochrane databases were searched including articles published up to February 2023 utilizing the following keywords: "inflammatory bowel disease", "IBD", "Crohn's disease", "ulcerative colitis", "sarcopenia", "myosteatosis", "muscle health", and "frailty". RESULTS The pathogenesis of sarcopenia in IBD is not well defined, however, there is evidence supporting the role of malabsorption, reduced protein intake, chronic inflammation, dysbiosis, decreased physical activity, medication effects and hormone signaling from visceral adiposity. Traditional sarcopenia assessment techniques include direct measurements on cross sectional imaging. However, given the time, cost and radiation exposure associated with cross sectional imaging, new bedside tools are now available to estimate muscle mass, including assessment of grip strength, mid upper arm circumference and body composition utilizing bioelectrical impedance analysis. In addition, novel biomarkers for assessing muscle mass and techniques utilizing point of care ultrasound have been proposed to make sarcopenia evaluation more streamlined in the IBD clinic. CONCLUSION Sarcopenia is associated with poor clinical outcomes independent of IBD activity and therefore muscle health should be assessed in all IBD patients at routine intervals. Future studies to better our understanding of the pathophysiology as well as most effective management of sarcopenia in IBD will help guide clinical care and reduce disease related complications.
Collapse
Affiliation(s)
- Stephanie L Gold
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maitreyi Raman
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Bruce E Sands
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ryan Ungaro
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - João Sabino
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
58
|
Laghi L, Román E, Lan Q, Nieto JC, Canalda-Baltrons A, Poca M, Sánchez-Rodríguez MB, Clària J, Alvarado E, Cuyàs B, Sánchez E, Vidal S, Guarner C, Escorsell À, Manichanh C, Soriano G. A multistrain probiotic increases the serum glutamine/glutamate ratio in patients with cirrhosis: a metabolomic analysis. Hepatol Commun 2023; 7:e0072. [PMID: 37026745 PMCID: PMC10079330 DOI: 10.1097/hc9.0000000000000072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/27/2022] [Indexed: 04/08/2023] Open
Abstract
To explore the potential mechanisms underlying the effects of a probiotic in cirrhotic patients, we analyzed the blood metabolome using proton nuclear magnetic resonance (1H-NMR) spectroscopy in 32 patients with cirrhosis and cognitive dysfunction or falls. Patients were randomized to receive a multistrain probiotic or placebo for 12 weeks. Among the 54 metabolites identified, the only significant changes in the probiotic group were an increase in glutamine, a decrease in glutamate, and an increase in the glutamine/glutamate ratio. In the placebo group, glutamate increased and the glutamine/glutamate ratio decreased. Our results suggest the multistrain probiotic could influence glutamine/glutamate metabolism, increasing the capacity of ammonia detoxification.
Collapse
Affiliation(s)
- Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Eva Román
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Escola Universitària d’Infermeria EUI-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Qiuyu Lan
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Juan Camilo Nieto
- Institut de Recerca IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Poca
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria B. Sánchez-Rodríguez
- Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Joan Clària
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| | - Edilmar Alvarado
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Cuyàs
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Sílvia Vidal
- Institut de Recerca IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Guarner
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Àngels Escorsell
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Chaysavanh Manichanh
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
59
|
He P, Du G, Qin X, Li Z. Reduced energy metabolism contributing to aging of skeletal muscle by serum metabolomics and gut microbiota analysis. Life Sci 2023; 323:121619. [PMID: 36965523 DOI: 10.1016/j.lfs.2023.121619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
AIMS Sarcopenia is an age-related syndrome characterized by a gradual loss of the muscle mass, strength, and function. It is associated with a high risk of adverse consequences such as poorer quality of life, falls, disability and mortality among the elderly. The aim in this study is to investigate the pathological mechanism of sarcopenia. MAIN METHODS The aging of skeletal muscle was investigated by the D-galactose induced accelerated aging model combining with constrained motion. After 10 weeks, muscle function and gastrocnemius muscle index, and morphology of muscle fibers were evaluated, and myostatin, IGF-1 and ATP in skeletal muscle were also determined. Then the mechanism of aging-related skeletal muscle dysfunctions was investigated based on untargeted serum metabolomics and 16S rRNA gene sequencing. Four key metabolites were validated by the D-galactose-induced C2C12 senescent cell model in vitro. KEY FINDINGS Results showed that gastrocnemius muscle mass was decreased significantly, morphology of muscle fibers was altered, and muscle function was damaged in the aged group. Furthermore, increased MSTN, and decreased IGF-1 and ATP were also observed in the aging skeletal muscle. Importantly, alteration of the key pathways including riboflavin biosynthesis and energy metabolism contributed to the aging of skeletal muscle. Four key metabolites, including riboflavin, α-ketoglutaric acid and two dicarboxylic acids, which were involved in these metabolic pathways, could promote the proliferation of C2C12 cells. SIGNIFICANCE These findings provide novel insights into pathological mechanism of sarcopenia, and will facilitate the development of therapeutic and preventive strategies for sarcopenia.
Collapse
Affiliation(s)
- Pan He
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China; Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| |
Collapse
|
60
|
D'Amico F, Barone M, Brigidi P, Turroni S. Gut microbiota in relation to frailty and clinical outcomes. Curr Opin Clin Nutr Metab Care 2023; 26:219-225. [PMID: 36942920 DOI: 10.1097/mco.0000000000000926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW The gut microbiota is involved in several aspects of host health and disease, but its role is far from fully understood. This review aims to unveil the role of our microbial community in relation to frailty and clinical outcomes. RECENT FINDINGS Ageing, that is the continuous process of physiological changes that begin in early adulthood, is mainly driven by interactions between biotic and environmental factors, also involving the gut microbiota. Indeed, our gut microbial counterpart undergoes considerable compositional and functional changes across the lifespan, and ageing-related processes may be responsible for - and due to - its alterations during elderhood. In particular, a dysbiotic gut microbiota in the elderly population has been associated with the development and progression of several age-related disorders. SUMMARY Here, we first provide an overview of the lifespan trajectory of the gut microbiota in both health and disease. Then, we specifically focus on the relationship between gut microbiota and frailty syndrome, that is one of the major age-related burdens. Finally, examples of microbiome-based precision interventions, mainly dietary, prebiotic and probiotic ones, are discussed as tools to ameliorate the symptoms of frailty and its overlapping conditions (e.g. sarcopenia), with the ultimate goal of actually contributing to healthy ageing and hopefully promoting longevity.
Collapse
Affiliation(s)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences
| | | | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
61
|
Chew W, Lim YP, Lim WS, Chambers ES, Frost G, Wong SH, Ali Y. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med (Lausanne) 2023; 9:1065365. [PMID: 36698827 PMCID: PMC9868714 DOI: 10.3389/fmed.2022.1065365] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.
Collapse
Affiliation(s)
- Weixuan Chew
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yen Peng Lim
- Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore,Department of Nutrition and Dietetics, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Wee Shiong Lim
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore
| | - Edward S. Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sunny Hei Wong
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Singapore General Hospital, Singapore Eye Research Institute (SERI), Singapore, Singapore,Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Singapore,*Correspondence: Yusuf Ali ✉
| |
Collapse
|
62
|
Picca A, Calvani R, Coelho-Júnior HJ, Landi F, Marzetti E. Anorexia of Aging: Metabolic Changes and Biomarker Discovery. Clin Interv Aging 2022; 17:1761-1767. [PMID: 36483084 PMCID: PMC9726216 DOI: 10.2147/cia.s325008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/24/2022] [Indexed: 08/04/2023] Open
Abstract
The age-associated decrease in appetite and food intake is referred to as "anorexia of aging". Older adults with anorexia show changes in the quantity/quality of energy supplied to the organism which eventually may cause a mismatch between ingested calories and physiological energy demands. Therefore, a state of malnutrition and impaired metabolism may ensue which renders older people more vulnerable to stressors and more prone to incur negative health outcomes. These latter cover a wide range of conditions including sarcopenia, low engagement in physical activity, and more severe consequences such as disability, loss of independence, hospitalization, nursing home placement, and mortality. Malnutrition has been recognized by the European Society of Clinical Nutrition (ESPEN) among the chief risk factors for the development of frailty. Frailty refers to a state of increased vulnerability to stressors stemming from reduced physiologic reserve, and according to ESPEN, is also nutrition-based. Alike frailty, anorexia is highly prevalent among older adults, and its multifactorial nature includes metabolic changes that develop in older age and possibly underly the condition. Circulating factors, including hormones (eg, cholecystokinin, ghrelin, leptin, and inflammatory and microbial mediators of gut dysbiosis), have been proposed as biomarkers for this condition to support early identification and develop personalized nutritional interventions. Additional studies are needed to untangle the interrelationship between gut microbiota and appetite regulation in older adults operating through brain-gut crosstalk. Furthermore, the contribution of the genetic background to appetite regulation and specific nutritional needs warrants investigation. Here, we provide an overview on anorexia of aging in the context of age-related metabolic changes. A special focus is placed on candidate biomarkers that may be used to assist in the early identification of anorexia of aging and in the development of personalized nutritional counseling.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
63
|
Differential gut microbiota and intestinal permeability between frail and healthy older adults: A systematic review. Ageing Res Rev 2022; 82:101744. [PMID: 36202312 DOI: 10.1016/j.arr.2022.101744] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/19/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
This systematic review appraised previous findings on differential gut microbiota composition and intestinal permeability markers between frail and healthy older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on inclusion and exclusion criteria as well as assessed for risk of bias. The primary outcome was the differential composition of gut microbiota and/ or intestinal permeability markers between frail and healthy older adults. A total of 10 case-control studies and one cohort study were shortlisted. Based on consistent findings reported by more than one shortlisted study, the microbiota of frail older adults was characterised by decreased phylum Firmicutes, with Dialister, Lactobacillus and Ruminococcus being the prominent genera. Healthy controls, on the other hand, exhibited higher Eubacterium at the genera level. In terms of intestinal permeability, frail older adults were presented with increased serum zonulin, pro-inflammatory cytokines (TNF-α, HMGB-1, IL-6, IL1-ra, MIP-1β) and amino acids (aspartic acid and phosphoethanolamine) when compared to healthy controls. Altogether, frail elderlies had lower gut microbiota diversity and lower abundance of SCFA producers, which may have led to leaky guts, upregulated pro-inflammatory cytokines, frailty and sarcopenia.
Collapse
|
64
|
Picca A, Calvani R, Coelho-Júnior HJ, Marini F, Landi F, Marzetti E. Circulating Inflammatory, Mitochondrial Dysfunction, and Senescence-Related Markers in Older Adults with Physical Frailty and Sarcopenia: A BIOSPHERE Exploratory Study. Int J Mol Sci 2022; 23:14006. [PMID: 36430485 PMCID: PMC9692456 DOI: 10.3390/ijms232214006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisystem derangements encompassing musculoskeletal, stress, and metabolic response have been described in older adults with physical frailty and sarcopenia (PF&S). Whether PF&S is also associated with markers of cellular senescence has yet to be explored. To address this research question, we quantified the serum levels of selected inflammatory, mitochondrial, and senescence-associated secretory phenotype (SASP)-related factors in 22 older adults with PF&S (mean age 75.5 ± 4.7 years; 81.8% women) and 27 nonPF&S controls (mean age 75.0 ± 4.4 years; 62.9% women) and evaluated their association with PF&S. Markers of inflammation (interleukin (IL)1-β, IL6, and tumor necrosis factor α (TNF-α)), matrix remodeling (Serpin E1, intercellular adhesion molecule 1 (ICAM-1), and tissue inhibitor of metalloproteinases 1 (TIMP-1)), mitochondrial dysfunction (growth/differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21)), Activin A, and glial fibrillary acidic protein (GFAP) were assayed. Serum levels of TNF-α and those of the SASP-related factors ICAM-1 and TIMP-1 were found to be higher, while IL1-β and IL6 were lower in PF&S participants compared with controls. Partial least squares discriminant analysis allowed discrimination of PF&S from nonPF&S participants with 74.0 ± 3.4% accuracy. Markers that significantly contributed to the classification were ICAM-1, TIMP-1, TNF-α, GFAP, and IL6. Future studies are warranted to establish whether inflammatory and SASP-related pathways are causally linked to the development and progression of PF&S, and may represent new targets for interventions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
65
|
Zhang T, Cheng JK, Hu YM. Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev 2022; 81:101739. [PMID: 36182084 DOI: 10.1016/j.arr.2022.101739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 01/31/2023]
Abstract
Sarcopenia is characterized by a progressive loss of skeletal muscle mass and function with aging. Recently, sarcopenia has been shown to be closely related with gut microbiota. Strategies such as probiotics and fecal microbiota transplantation have shown potential to ameliorate the muscle loss. This review will focus on the age-related sarcopenia, in particular on the relationship between gut microbiota and age-related sarcopenia, how gut microbiota is engaged in sarcopenia, and the potential role of gut microbiota in the treatment of age-related sarcopenia.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jin-Ke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
66
|
Wang Y, Zhang Y, Lane NE, Wu J, Yang T, Li J, He H, Wei J, Zeng C, Lei G. Population-based metagenomics analysis reveals altered gut microbiome in sarcopenia: data from the Xiangya Sarcopenia Study. J Cachexia Sarcopenia Muscle 2022; 13:2340-2351. [PMID: 35851765 PMCID: PMC9530518 DOI: 10.1002/jcsm.13037] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Several studies have examined gut microbiota and sarcopenia using 16S ribosomal RNA amplicon sequencing; however, this technique may not be able to identify altered specific species and functional capacities of the microbes. We performed shotgun metagenomic sequencing to compare the gut microbiome composition and function between individuals with and without sarcopenia. METHODS Participants were from a community-based observational study conducted among the residents of rural areas in China. Appendicular skeletal muscle mass was assessed using direct segmental multi-frequency bioelectrical impedance and grip strength using a Jamar Hydraulic Hand dynamometer. Physical performance was evaluated using the Short Physical Performance Battery, 5-time chair stand test and gait speed with the 6 m walk test. Sarcopenia and its severity were diagnosed according to the Asian Working Group for Sarcopenia 2019 algorithm. The gut microbiome was profiled by shotgun metagenomic sequencing to determine the microbial composition and function. A gut microbiota-based model for classification of sarcopenia was constructed using the random forest model, and its performance was assessed using the area under receiver-operating characteristic curve (AUC). RESULTS The study sample included 1417 participants (women: 58.9%; mean age: 63.3 years; sarcopenia prevalence: 10.0%). β-diversity indicated by Bray-Curtis distance (genetic level: P = 0.004; taxonomic level of species: P = 0.020), but not α-diversity indicated by Shannon index (genetic level: P = 0.962; taxonomic level of species: P = 0.922), was significantly associated with prevalent sarcopenia. After adjusting for potential confounders, participants with sarcopenia had higher relative abundance of Desulfovibrio piger (P = 0.003, Q = 0.090), Clostridium symbiosum (P < 0.001, Q = 0.035), Hungatella effluvii (P = 0.003, Q = 0.090), Bacteroides fluxus (P = 0.002, Q = 0.089), Absiella innocuum (P = 0.002, Q = 0.072), Coprobacter secundus (P = 0.002, Q = 0.085) and Clostridium citroniae (P = 0.001, Q = 0.060) than those without sarcopenia. The relative abundance of six species (Desulfovibrio piger, Clostridium symbiosum, Hungatella effluvii, Bacteroides fluxus, Absiella innocuum, and Clostridium citroniae) was also positively associated with sarcopenia severity. A differential species-based model was constructed to separate participants with sarcopenia from controls. The value of the AUC was 0.852, suggesting that model has a decent discriminative performance. Desulfovibrio piger ranked the highest in this model. Functional annotation analysis revealed that the phenylalanine, tyrosine, and tryptophan biosynthesis were depleted (P = 0.006, Q = 0.071), while alpha-Linolenic acid metabolism (P = 0.008, Q = 0.094), furfural degradation (P = 0.001, Q = 0.029) and staurosporine biosynthesis (P = 0.006, Q = 0.072) were enriched in participants with sarcopenia. Desulfovibrio piger was significantly associated with staurosporine biosynthesis (P < 0.001). CONCLUSIONS This large population-based observational study provided empirical evidence that alterations in the gut microbiome composition and function were observed among individuals with sarcopenia.
Collapse
Affiliation(s)
- Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy E Lane
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, University of California, Davis, CA, USA
| | - Jing Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
| | - Tuo Yang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyi He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China.,Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
67
|
Reid N, Young A, Shafiee Hanjani L, Hubbard RE, Gordon EH. Sex-specific interventions to prevent and manage frailty. Maturitas 2022; 164:23-30. [PMID: 35780633 DOI: 10.1016/j.maturitas.2022.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022]
Abstract
There is growing interest in interventions that delay, slow, and even reverse frailty. In this narrative review, we explore the evidence on exercise, nutrition, medication optimisation and social support interventions for frailty and consider how these relate to underlying frailty pathophysiology. We also consider pathophysiological mechanisms underpinning sex differences in frailty before evaluating the limited evidence for sex-specific frailty interventions that is currently available. Through this review of the literature, we generate a list of potential sex-specific interventions for frailty. While individual-level recommendations are certainly important, future work should turn the focus towards population-level interventions that take into account sex differences in frailty, including changes to healthcare and socioeconomic systems, as well as changes to the built environment to promote healthy behaviours.
Collapse
Affiliation(s)
- Natasha Reid
- Faculty of Medicine, The University of Queensland, Queensland, Australia.
| | - Adrienne Young
- Faculty of Medicine, The University of Queensland, Queensland, Australia; Royal Brisbane and Women's Hospital, Metro North Health, Queensland, Australia
| | | | - Ruth E Hubbard
- Faculty of Medicine, The University of Queensland, Queensland, Australia; Princess Alexandra Hospital, Metro South Health, Queensland, Australia
| | - Emily H Gordon
- Faculty of Medicine, The University of Queensland, Queensland, Australia; Princess Alexandra Hospital, Metro South Health, Queensland, Australia
| |
Collapse
|
68
|
Abstract
The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
69
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
70
|
Sarcopenia in community-dwelling older adults is associated with the diversity and composition of the gut microbiota. Exp Gerontol 2022; 167:111927. [PMID: 35981616 DOI: 10.1016/j.exger.2022.111927] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Sarcopenia is a prognostic indicator of negative consequences in older adults, including physical disability, frailty, and mortality. Few studies have investigated the associations between sarcopenia and the gut microbiota. We sought such associations in community-dwelling older adults aged ≥60 years. Sarcopenia was defined as low muscle mass, plus reduced physical performance, and/or low skeletal muscle strength. 16S rRNA next-generation sequencing was used to identify the components of the gut microbiota in fecal samples from 27 older adults with sarcopenia and 33 without sarcopenia. Relationships between sarcopenia and the diversity and composition of the gut microbiota were analyzed. Diversities at the species level were detected between the sarcopenia and control groups (P = 0.049). The abundance of Prevotella and Prevotella copri was significantly lower (P = 0.021 and P = 0.018 respectively) and that of Parabacteroides sp. higher in the sarcopenia than the control group (P = 0.010). Linear discriminant analysis of effect size revealed differences in the microbiota composition between the two groups. Sarcopenia was related with the presence of Anaerotruncus and Phascolarctobacterium sp. and the absence of Prevotella sp. and Prevotella copri. Further research is warranted to clarify whether changes in the gut microbiota cause sarcopenia onset or development.
Collapse
|
71
|
Ratto D, Roda E, Romeo M, Venuti MT, Desiderio A, Lupo G, Capelli E, Sandionigi A, Rossi P. The Many Ages of Microbiome–Gut–Brain Axis. Nutrients 2022; 14:nu14142937. [PMID: 35889894 PMCID: PMC9319041 DOI: 10.3390/nu14142937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/10/2023] Open
Abstract
Frailty during aging is an increasing problem associated with locomotor and cognitive decline, implicated in poor quality of life and adverse health consequences. Considering the microbiome–gut–brain axis, we investigated, in a longitudinal study, whether and how physiological aging affects gut microbiome composition in wild-type male mice, and if and how cognitive frailty is related to gut microbiome composition. To assess these points, we monitored mice during aging at five selected experimental time points, from adulthood to senescence. At all selected experimental times, we monitored cognitive performance using novel object recognition and emergence tests and measured the corresponding Cognitive Frailty Index. Parallelly, murine fecal samples were collected and analyzed to determine the respective alpha and beta diversities, as well as the relative abundance of different bacterial taxa. We demonstrated that physiological aging significantly affected the overall gut microbiome composition, as well as the relative abundance of specific bacterial taxa, including Deferribacterota, Akkermansia, Muribaculaceae, Alistipes, and Clostridia VadinBB60. We also revealed that 218 amplicon sequence variants were significantly associated to the Cognitive Frailty Index. We speculated that some of them may guide the microbiome toward maladaptive and dysbiotic conditions, while others may compensate with changes toward adaptive and eubiotic conditions.
Collapse
Affiliation(s)
- Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (D.R.); (M.R.); (M.T.V.)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Marcello Romeo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (D.R.); (M.R.); (M.T.V.)
| | - Maria Teresa Venuti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (D.R.); (M.R.); (M.T.V.)
| | - Anthea Desiderio
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (A.D.); (G.L.); (E.C.)
| | - Giuseppe Lupo
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (A.D.); (G.L.); (E.C.)
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (A.D.); (G.L.); (E.C.)
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
- Quantia Consulting S.r.l., Via Petrarca 20, 22066 Mariano Comense, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (D.R.); (M.R.); (M.T.V.)
- Correspondence: ; Tel.: +39-0382-986076
| |
Collapse
|
72
|
Abstract
Sarcopenia is common in aging and in patients with heart failure (HF) who may experience worse outcomes. Patients with muscle wasting are more likely to experience falls and can have serious complications when undergoing cardiac procedures. While intensive nutritional support and exercise rehabilitation can help reverse some of these changes, they are often under-prescribed in a timely manner, and we have limited insights into who would benefit. Mechanistic links between gut microbial metabolites (GMM) have been identified and may contribute to adverse clinical outcomes in patients with cardio-renal diseases and aging. This review will examine the emerging evidence for the influence of the gut microbiome-derived metabolites and notable signaling pathways involved in both sarcopenia and HF, especially those linked to dietary intake and mitochondrial metabolism. This provides a unique opportunity to gain mechanistic and clinical insights into developing novel therapeutic strategies that target these GMM pathways or through tailored nutritional modulation to prevent progressive muscle wasting in elderly patients with heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
73
|
Maslennikov R, Ivashkin V, Alieva A, Poluektova E, Kudryavtseva A, Krasnov G, Zharkova M, Zharikov Y. Gut dysbiosis and body composition in cirrhosis. World J Hepatol 2022; 14:1210-1225. [PMID: 35978666 PMCID: PMC9258262 DOI: 10.4254/wjh.v14.i6.1210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut dysbiosis and changes in body composition (i.e., a decrease in the proportion of muscle mass and an increase in extracellular fluid) are common in cirrhosis.
AIM To study the relationship between the gut microbiota and body composition in cirrhosis.
METHODS This observational study included 46 patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. Multifrequency bioelectrical impedance analysis was performed to assess body composition in these patients.
RESULTS An increase in fat mass and a decrease in body cell mass were noted in 23/46 (50.0%) and 15/46 (32.6%) patients, respectively. Changes in the gut microbiome were not independently associated with the fat mass percentage in cirrhosis. The abundance of Bacteroidaceae (P = 0.041) and Eggerthella (P = 0.001) increased, whereas that of Erysipelatoclostridiaceae (P = 0.006), Catenibacterium (P = 0.021), Coprococcus (P = 0.033), Desulfovibrio (P = 0.043), Intestinimonas (P = 0.028), and Senegalimassilia (P = 0.015) decreased in the gut microbiome of patients with body cell mass deficiency. The amount of extracellular fluid increased in 22/46 (47.6%) patients. Proteobacteria abundance (P < 0.001) increased, whereas Firmicutes (P = 0.023), Actinobacteria (P = 0.026), Bacilli (P = 0.008), Anaerovoraceceae (P = 0.027), Christensenellaceae (P = 0.038), Eggerthellaceae (P = 0.047), Erysipelatoclostridiaceae (P = 0.015), Erysipelotrichaceae (P = 0.003), Oscillospiraceae (P = 0.024), Rikenellaceae (P = 0.002), Collinsella (P = 0.030), Hungatella (P = 0.040), Peptococcaceae (P = 0.023), Slackia (P = 0.008), and Senegalimassilia (P = 0.024) abundance decreased in these patients. Patients with clinically significant ascites (n = 9) had a higher abundance of Proteobacteria (P = 0.031) and a lower abundance of Actinobacteria (P = 0.019) and Bacteroidetes (P = 0.046) than patients without clinically significant ascites (n = 37).
CONCLUSION Changes in the amount of body cell mass and extracellular fluid are associated with changes in the gut microbiome in cirrhosis patients.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Department of Internal Medicine, Сonsultative and Diagnostic Center No. 2, Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Anna Kudryavtseva
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Yuri Zharikov
- Department of Anatomy, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
74
|
Li G, Jin B, Fan Z. Mechanisms Involved in Gut Microbiota Regulation of Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2151191. [PMID: 35633886 PMCID: PMC9132697 DOI: 10.1155/2022/2151191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a variety of processes that affect host physiology, including inflammatory immunity, protein anabolism, energy, lipids, neuromuscular connectivity, oxidative stress, mitochondrial function, and endocrine and insulin resistance. It is proposed that the gut microbiota plays a role in the direction of skeletal muscle mass and work. Even though the notion of the gut microbiota-muscle axis (gut-muscle axis) has been postulated, its causal link is still unknown. The impact of the gut microbiota on skeletal muscle function and quality is described in detail in this review.
Collapse
Affiliation(s)
- Guangyao Li
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
75
|
Guo Y, Zhu G, Wang F, Zhang H, Chen X, Mao Y, Lv Y, Xia F, Jin Y, Ding G, Yu J. Distinct Serum and Fecal Metabolite Profiles Linking With Gut Microbiome in Older Adults With Frailty. Front Med (Lausanne) 2022; 9:827174. [PMID: 35479954 PMCID: PMC9035822 DOI: 10.3389/fmed.2022.827174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022] Open
Abstract
Frailty is a critical aging-related syndrome but the underlying metabolic mechanism remains poorly understood. The aim of this study was to identify novel biomarkers and reveal potential mechanisms of frailty based on the integrated analysis of metabolome and gut microbiome. In this study, twenty subjects consisted of five middle-aged adults and fifteen older adults, of which fifteen older subjects were divided into three groups: non-frail, pre-frail, and frail, with five subjects in each group. The presence of frailty, pre-frailty, or non-frailty was established according to the physical frailty phenotype (PFP). We applied non-targeted metabolomics to serum and feces samples and used 16S rDNA gene sequencing to detect the fecal microbiome. The associations between metabolites and gut microbiota were analyzed by the Spearman’s correlation analysis. Serum metabolic shifts in frailty mainly included fatty acids and derivatives, carbohydrates, and monosaccharides. Most of the metabolites belonging to these classes increased in the serum of frail older adults. Propylparaben was found to gradually decrease in non-frail, pre-frail, and frail older adults. Distinct changes in fecal metabolite profiles and gut microbiota were also found among middle-aged adults, non-frail and frail older subjects. The relative abundance of Faecalibacteriu, Roseburia, and Fusicatenibacter decreased while the abundance of Parabacteroides and Bacteroides increased in frailty. The above altered microbes were associated with the changed serum metabolites in frailty, which included dodecanedioic acid, D-ribose, D-(-)-mannitol, creatine and indole, and their related fecal metabolites. The changed microbiome and related metabolites may be used as the biomarkers of frailty and is worthy of further mechanistic studies.
Collapse
Affiliation(s)
- Yan Guo
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Yancheng City No. 1 People’s Hospital, Yancheng, China
| | - Guoqin Zhu
- Division of Geriatric Gastroenterology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengliang Wang
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyu Zhang
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Human Biology Undergraduate, University of Toronto, Toronto, ON, Canada
| | - Xin Chen
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Mao
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Lv
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xia
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jin
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Guoxian Ding,
| | - Jing Yu
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Yu,
| |
Collapse
|
76
|
Burtscher J, Ticinesi A, Millet GP, Burtscher M, Strasser B. Exercise-microbiota interactions in aging-related sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:775-780. [PMID: 35142446 PMCID: PMC8978000 DOI: 10.1002/jcsm.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub (MRH), University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Parma University-Hospital, Parma, Italy
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
- JPI-HDHL Knowledge Platform on Food, Diet, Intestinal Microbiomics and Human Health, The Netherlands Organisation for Health Research and Development, Amsterdam, The Netherlands
| |
Collapse
|
77
|
Li CW, Yu K, Shyh-Chang N, Jiang Z, Liu T, Ma S, Luo L, Guang L, Liang K, Ma W, Miao H, Cao W, Liu R, Jiang LJ, Yu SL, Li C, Liu HJ, Xu LY, Liu RJ, Zhang XY, Liu GS. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022; 13:781-794. [PMID: 35106971 PMCID: PMC8977978 DOI: 10.1002/jcsm.12901] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Age-associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra-abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing β-oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro-inflammatory cytokines. In turn, these muscle-secreted cytokines may exacerbate adipose tissue atrophy, support chronic low-grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full-blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the 'obesity paradox', could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full-blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taoyan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwu Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruirui Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Juan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Lin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Li
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, China (Tianjin Union Medical Center, Tianjin, China
| | - Hui-Jun Liu
- Department of nursing & Clinical Nutrition, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Long-Yu Xu
- Department of Sport Physiatry, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong-Ji Liu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Zhang
- Department of stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gao-Shan Liu
- Department of Health Education, Shijingshan Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
78
|
Multi-omics research in sarcopenia: Current progress and future prospects. Ageing Res Rev 2022; 76:101576. [PMID: 35104630 DOI: 10.1016/j.arr.2022.101576] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a systemic disease with progressive and generalized skeletal muscle dysfunction defined by age-related low muscle mass, high content of muscle slow fibers, and low muscle function. Muscle phenotypes and sarcopenia risk are heritable; however, the genetic architecture and molecular mechanisms underlying sarcopenia remain largely unclear. In recent years, significant progress has been made in determining susceptibility loci using genome-wide association studies. In addition, recent advances in omics techniques, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, offer new opportunities to identify novel targets to help us understand the pathophysiology of sarcopenia. However, each individual technology cannot capture the entire view of the biological complexity of this disorder, while integrative multi-omics analyses may be able to reveal new insights. Here, we review the latest findings of multi-omics studies for sarcopenia and provide an in-depth summary of our current understanding of sarcopenia pathogenesis. Leveraging multi-omics data could give us a holistic understanding of sarcopenia etiology that may lead to new clinical applications. This review offers guidance and recommendations for fundamental research, innovative perspectives, and preventative and therapeutic interventions for sarcopenia.
Collapse
|
79
|
Meng L, Shi H, Wang DG, Shi J, Wu WB, Dang YM, Fan GQ, Shen J, Yu PL, Dong J, Yang RY, Xi H. Specific Metabolites Involved in Antioxidation and Mitochondrial Function Are Correlated With Frailty in Elderly Men. Front Med (Lausanne) 2022; 9:816045. [PMID: 35155500 PMCID: PMC8833032 DOI: 10.3389/fmed.2022.816045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
BackgroundAs an age-related syndrome, frailty may play a central role in poor health among older adults. Sarcopenia overlaps with the physical domain of frailty, and most existing studies have analyzed the associated factors of frailty and sarcopenia as an isolated state. Perturbations in metabolism may play an important role in the presence of frailty or sarcopenia; however, the metabolites associated with frailty, especially overlapping with sarcopenia remain unclear. In this study, we aimed to explore whether amino acids, carnitines, acylcarnitines and lysophosphatidylcholines, as specific panels, are significantly correlated with frailty, especially overlapping with sarcopenia, to gain insight into potential biomarkers and possible biological mechanisms and to facilitate their management.MethodsWe applied a targeted high-performance liquid chromatography-tandem mass spectrometry approach in serum samples from 246 Chinese older men (age 79.2 ± 7.8 years) with frailty (n = 150), non-frailty (n = 96), frailty and sarcopenia (n = 52), non-frail and non-sarcopenic control (n = 85). Frailty was evaluated using Freid phenotype criteria, sarcopenia was defined by diagnostic algorithm of Asian Working Group on Sarcopenia, and the participants were diagnosed as frailty and sarcopenia when they met the evaluation criteria of both frailty and sarcopenia. A panel of 29 metabolomic profiles was assayed and included different classes of amino acids, carnitines, acylcarnitines, and lysophosphatidylcholines (LPCs). Multivariate logistic regression was used to screen the metabolic factors contributing to frailty status, and orthogonal partial least squares discriminant analysis was used to explore important factors and distinguish different groups.ResultsIn older men demonstrating the frail phenotype, amino acid perturbations included lower tryptophan and higher glycine levels. With regard to lipid metabolism, the frailty phenotype was characterized by lower concentrations of isovalerylcarnitine (C5), LPC16:0 and LPC18:2, while higher levels of octanoyl-L-carnitine (C8), decanoyl-L-carnitine (C10), dodecanoyl-L-carnitine (C12) and tetradecanoyl-L-carnitine (C14). After adjusting for several clinical confounders, tryptophan, LPC18:2, LPC 16:0 and C5 were negatively correlated with frailty, and C8 and C12 were positively related to frailty. We preliminarily identified metabolic profiles (LPC16:0, LPC18:2, glycine and tryptophan) that may distinguish older men with frailty from those without frailty. Importantly, a set of serum amino acids and LPCs (LPC16:0, LPC18:2, and tryptophan) was characterized in the metabotype of older adults with an overlap of frailty and sarcopenia. The metabolites that were most discriminating of frailty status implied that the underlying mechanism might be involved in antioxidation and mitochondrial dysfunction.ConclusionsThese present metabolic analyses may provide valuable information on the potential biomarkers and possible biological mechanisms of frailty, and overlapping sarcopenia. The findings obtained may offer insight into their management in older adults.
Collapse
Affiliation(s)
- Li Meng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Shi
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Da-guang Wang
- Department of Laboratory Medicine, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Shi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen-bin Wu
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ya-min Dang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Guo-qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Shen
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Pu-lin Yu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui-yue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Rui-yue Yang
| | - Huan Xi
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Huan Xi
| |
Collapse
|
80
|
Ishida Y, Maeda K, Inoue T, Satake S, Mori N. Decreased Diversity of Gut Microbiota Is Associated with Decreased Muscle Mass and Function in Older Adults Residing in a Nursing Home. J Nutr Health Aging 2022; 26:537-538. [PMID: 35587768 DOI: 10.1007/s12603-022-1792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Y Ishida
- Keisuke Maeda, MD, PhD, Department of Geriatric Medicine, Hospital, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan, Phone: +81-562-46-2311; Fax: +81-562-44-8518, E-mail:
| | | | | | | | | |
Collapse
|
81
|
Picca A, Coelho-Junior HJ, Calvani R, Marzetti E, Vetrano DL. Biomarkers shared by frailty and sarcopenia in older adults: A systematic review and meta-analysis. Ageing Res Rev 2022; 73:101530. [PMID: 34839041 DOI: 10.1016/j.arr.2021.101530] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Physical frailty and sarcopenia show extensive clinical similarities. Whether biomarkers exist that are shared by the two conditions is presently unclear. METHODS We conducted a systematic review and meta-analysis of cross-sectional and longitudinal studies that investigated the association of frailty and/or sarcopenia with biomarkers as a primary or secondary outcome in adults aged 60 years and older. Only studies published in English that defined frailty using a validated scale and/or questionnaire and diagnosed sarcopenia according to the presence of muscle atrophy plus dynapenia or low physical function were included. Studies were identified from a systematic search of MEDLINE and SCOPUS databases from inception through August 2020. The quality of reporting of each study was assessed by using the Quality Assessment Tool for Observational Cohort, Cross-Sectional and Case-Control studies of the National Institute of Health. A meta-analysis was conducted when at least three studies investigated the same biomarker in both frailty and sarcopenia. Pooled effect size was calculated based on standard mean differences and random-effect models. Sensitivity analysis was performed based on age and the setting where the study was conducted. RESULTS Eighty studies (58 on frailty and 22 on sarcopenia) met the inclusion criteria and were included in the qualitative analysis. Studies on frailty included 33,160 community-dwellers, hospitalized, or institutionalized older adults (60-88 years) from 21 countries. Studies on sarcopenia involved 4904 community-living and institutionalized older adults (68-87.6 years) from 9 countries. Several metabolic, inflammatory, and hematologic markers were found to be shared between the two conditions. Albumin and hemoglobin were negatively associated with both frailty and sarcopenia. Interleukin 6 was associated with frailty and sarcopenia only in people aged < 75. Community-dwelling older adults with frailty and sarcopenia had higher levels of tumor necrosis factor alpha compared with their robust and non-sarcopenic counterparts. CONCLUSIONS A set of metabolic, hematologic, and inflammatory biomarkers was found to be shared by frailty and sarcopenia. These findings fill a knowledge gap in the quest of biomarkers for these conditions and provide a rationale for biomarker selection in studies on frailty and sarcopenia.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | | | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Department of Geriatrics and Orthopedics, Rome, Italy
| | - Davide Liborio Vetrano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
82
|
A Multifactorial Approach for Sarcopenia Assessment: A Literature Review. BIOLOGY 2021; 10:biology10121354. [PMID: 34943268 PMCID: PMC8698408 DOI: 10.3390/biology10121354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Sarcopenia is characterized by an accelerated decline in skeletal muscle mass and strength, which results in poor quality of life, disability, and death. In the literature, sarcopenia is defined as the progressive breakdown of muscle tissue. The prevalence ranges from 5% to 13% in people 60–70 years old and from 11% to 50% in people older than 80 years. The comparison of risk factors associated with sarcopenia based on the European Working Group on Sarcopenia (1 and 2) in Older People, the Asian Working Group for Sarcopenia (1 and 2), the International Working Group on Sarcopenia, and the Foundation for the National Institutes of Health revealed no consistent patterns. Accordingly, the identification of a single risk factor for sarcopenia is unpredictable. Due to its “multifactorial” pathogenesis related to the involvement of a multitude of factors. In this review, we summarize 13 relevant risk factors associated with this disease that are important to consider prior to embarking on any related sarcopenia research. We suggest that researchers should concentrate on the biology of sarcopenia to develop a uniform consensus for screening this condition. In this review, we identify 50 biochemical markers across six pathways that have previously been investigated in subjects with sarcopenia. We suggest that these summarized biomarkers can be considered in future diagnosis to determine the biology of this disorder, thereby contributing to further research findings. As a result, a uniform consensus may also need to be established for screening and defining the disease. Sarcopenia is associated with a number of adverse economic and social outcomes, including disability, hospitalization, and death. In relation to this, we propose that we need to develop strategies including exercise interventions in the COVID-19 era to delay the onset and effects of sarcopenia. This suggestion should impact on sarcopenia’s primary and secondary outcomes, including physical, medical, social, and financial interactions. Abstract Sarcopenia refers to a progressive and generalized weakness of skeletal muscle as individuals age. Sarcopenia usually occurs after the age of 60 years and is associated with a persistent decline in muscle strength, function, and quality. A comparison of the risk factors associated with sarcopenia based on the European Working Group on Sarcopenia (1 and 2) in Older People, the Asian Working Group for Sarcopenia (1 and 2), the International Working Group on Sarcopenia, and the Foundation for the National Institutes of Health revealed no consistent patterns. Accordingly, the identification of a single risk factor for sarcopenia is unpredictable due to its “multifactorial” pathogenesis, with the involvement of a multitude of factors. Therefore, the first aim of this review was to outline and propose that the multiple factors associated with sarcopenia need to be considered in combination in the design of new experimentation in this area. A secondary aim was to highlight the biochemical risk factors that are already identified in subjects with sarcopenia to assist scientists in understanding the biology of the pathophysiological mechanisms affecting the old people with sarcopenia. We also briefly discuss primary outcomes (physical) and secondary outcomes (social and financial) of sarcopenia. For future investigative purposes, this comprehensive review may be useful in considering important risk factors in the utilization of a panel of biomarkers emanating from all pathways involved in the pathogenesis of this disease. This may help to establish a uniform consensus for screening and defining this disease. Considering the COVID-19 pandemic, its impact may be exacerbated in older populations, which requires immediate attention. Here, we briefly suggest strategies for advancing the development of smart technologies to deliver exercise in the COVID-19 era in an attempt regress the onset of sarcopenia. These strategies may also have an impact on sarcopenia’s primary and secondary outcomes.
Collapse
|
83
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
84
|
Ma S, Wang N, Zhang P, Wu W, Fu L. Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ 2021; 9:e12293. [PMID: 34721980 PMCID: PMC8542369 DOI: 10.7717/peerj.12293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Gut microbiota (GM) dysbiosis is closely related to bone loss and the occurrence of osteoporosis in animals and human. However, little is known about the effect and the mechanisms of fecal microbiota transplantation (FMT) on bone in the treatment of senile osteoporosis. Methods Aged female rats were randomly divided into the FMT group and the control group. 3-month-old female rats were used as fecal donors. The rats were sacrificed at 12 and 24 weeks following transplantation and the serum, intestine, bone, and feces were collected for subsequent analyses. Results The bone turnover markers of osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), and carboxy-terminal peptide (CTX) decreased significantly at 12 and 24 weeks following FMT (P < 0.05). At 12 weeks following transplantation, histomorphometric parameters including the bone volume (BV), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) of the FMT group were comparable to the control group. However, at 24 weeks following transplantation, these parameters of the FMT group were significantly higher than those of the control group (P < 0.05). Besides, the GM aggregated at 12 and 24 weeks following FMT, and the ecological distance was close between the rats in the FMT group and the donor rats. Alpha diversity, shown by the Shannon index and Simpson index, and the Firmicutes/Bacteroidetes ratio decreased significantly after FMT at 24 weeks. Furthermore, FMT restored the GM composition in aged rats at the phylum and family level, and the intestinal microbiota of the aged rats was similar to that of the donor rats. Correlation network analysis indirectly suggested the causality of FMT on alleviating osteoporosis. FMT improved the intestinal structure and up-regulated the expression of tight junction proteins of occludin, claudin, and ZO-1, which might be associated with the protective effects of FMT on bone. Conclusions GM transplanted from young rats alleviated bone loss in aged rats with senile osteoporosis by improving gut microbiome composition and intestinal barrier function. These data might provide a scientific basis for future clinical treatment of osteoporosis through FMT.
Collapse
Affiliation(s)
- Sicong Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
85
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
86
|
Haran JP, Zeamer A, Ward DV, Dutta P, Bucci V, McCormick BA. The Nursing Home Older Adult Gut Microbiome Composition Shows Time-dependent Dysbiosis and Is Influenced by Medication Exposures, Age, Environment, and Frailty. J Gerontol A Biol Sci Med Sci 2021; 76:1930-1938. [PMID: 34125200 PMCID: PMC8514073 DOI: 10.1093/gerona/glab167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Older adults in nursing homes (NHs) have increased frailty, medication, and antimicrobial exposures, all factors that are known to affect the composition of gut microbiota. Our objective was to define which factors have the greatest association with the NH resident gut microbiota, explore patterns of dysbiosis and compositional changes in gut microbiota over time in this environment. We collected serial stool samples from NH residents. Residents were assessed using the Mini Nutritional Assessment tool and Clinical Frailty Scale. Bacterial composition of resident stool samples was determined by metagenomic sequencing. We used mixed-effect random forest modeling to identify clinical covariates that associate with microbiota. We enrolled and followed 166 residents from 5 NHs collecting 512 stool samples and following 15 residents for > 1 year. Medications, particularly psychoactive and antihypertensive medications, had the greatest effect on the microbiota. Age and frailty also contributed, and were associated with increased and decreased diversity, respectively. The microbiota of residents who had lived in the NH for > 1 year were enriched in inflammatory and pathogenic species and reduced in anti-inflammatory and symbiotic species. We observed intraindividual stability of the microbiome among older adults who had lived in the NH already for >1 year followed with sample collections 1 year apart. Older adult NH gut microbiome is heavily influenced by medications, age, and frailty. This microbiome is influenced by the length of NH residency with dysbiosis becoming evident at 12 months, however, after this point there is demonstrated relative stability over time.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, USA
| | - Abigail Zeamer
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, USA
| | - Doyle V Ward
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, USA
| | - Protiva Dutta
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Vanni Bucci
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, USA
| | - Beth A McCormick
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, USA
| |
Collapse
|
87
|
Kochar B, Orkaby AR, Ananthakrishnan AN, Ritchie CS. Frailty in inflammatory bowel diseases: an emerging concept. Therap Adv Gastroenterol 2021; 14:17562848211025474. [PMID: 34594400 PMCID: PMC8477705 DOI: 10.1177/17562848211025474] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel diseases (IBD), consisting of Crohn's disease and ulcerative colitis, are chronic remitting, relapsing inflammatory conditions of the gastrointestinal tract. While traditionally a disease of younger ages, the number of older adults with IBD is rising rapidly. Patients with IBD often experience geriatric syndromes at earlier ages. Older adults with IBD have poorer disease and treatment-related outcomes compared with younger adults with IBD. Applying the principles of geriatrics to understanding a chronic disease in older adults may improve health span. Better tools are needed to stratify IBD patients who are at high risk for adverse events. Frailty is a geriatric construct that may approximate biologic age. Frailty is a complex, multi-dimensional syndrome that leads to increased vulnerability to stress and decline of reserve across multiple physiologic systems. In this review, we present the leading conceptual models of frailty and discuss the applications of frailty in immune-mediated diseases. We also review chronic conditions where frailty has been applied successfully as a tool for risk stratification. Finally, we discuss in the detail the growing body of literature highlighting the relationship between frailty and IBD, the epidemiology of frailty in IBD, and ramifications of frailty in IBD.
Collapse
Affiliation(s)
- Bharati Kochar
- Division of Gastroenterology, Massachusetts General Hospital, Crohn’s and Colitis Center, 165 Cambridge Street, 9th Floor, Boston, MA 02114, USA
- The Mongan Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ariela R. Orkaby
- Harvard Medical School, Boston, MA, USA
- New England Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Bedford, MA, USA
- Division of Aging, Brigham & Women’s Hospital, Boston, MA, USA
| | - Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- The Mongan Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christine S. Ritchie
- The Mongan Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Palliative Care and Geriatric Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
88
|
Xu Y, Wang Y, Li H, Dai Y, Chen D, Wang M, Jiang X, Huang Z, Yu H, Huang J, Xiong Z. Altered Fecal Microbiota Composition in Older Adults With Frailty. Front Cell Infect Microbiol 2021; 11:696186. [PMID: 34485176 PMCID: PMC8415883 DOI: 10.3389/fcimb.2021.696186] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Frailty is a common geriatric syndrome that is diagnosed and staged based mainly on symptoms. We aimed to evaluate frailty-related alterations of the intestinal permeability and profile fecal microbiota of healthy and frail older adults to identify microbial biomarkers of this syndrome. Methods We collected serum and fecal samples from 94 community-dwelling older adults, along with anthropometric, medical, mental health, and lifestyle data. Serum inflammatory cytokines IL-6 and HGMB1 and the intestinal permeability biomarker zonulin were measured using enzyme-linked immunosorbent assays. The 16S rRNA amplicon sequencing method was performed to determine the fecal composition of fecal microbiota. We analyzed the diversity and composition differences of the gut microbiota in the two groups and assessed the relationship between the changes in microbiota structure and clinical biomarkers. Results Older adults with frailty showed higher concentrations of IL-6, HGMB1, and zonulin. Although there were no statistically significant differences in the diversity index and evenness indices or species richness of fecal microbiota between the two groups, we found significant microbiota structure differences. Compared with the control group, fecal samples from the frail group had higher levels of Akkermansia, Parabacteroides, and Klebsiella and lower levels of the commensal genera Faecalibacterium, Prevotella, Roseburia, Megamonas, and Blautia. Spearman’s correlation analysis showed that the intergenus interactions were more common in healthy controls than older adults with frailty. Escherichia/Shigella, Pyramidobacter, Alistipes, and Akkermansia were positively correlated with IL-6, while Faecalibacterium, Prevotella, and Roseburia were negatively correlated with IL-6. Alistipes were found to be positively correlated with HGMB1. Akkermansia and Alistipes were linked to the increased serum level of inflammatory factors and intestinal permeability. Conclusions Frailty is associated with differences in the composition of fecal microbiota. These findings might aid in the development of probiotics or microbial-based therapies for frailty.
Collapse
Affiliation(s)
- YuShuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YiHua Wang
- School of Mathematics, Shandong University, Jinan, China
| | - HeWei Li
- Yangchunhu Community Hospital, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Dai
- Liyuan Community Health Service Center of HongShan District, Wuhan, China
| | - Di Chen
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - MengMeng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ZaoZao Huang
- Yangchunhu Community Hospital, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - HongLu Yu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JuanJuan Huang
- Yangchunhu Community Hospital, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ZhiFan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
89
|
Biancolillo A, Battistoni S, Presutto R, Marini F. Green Multi-Platform Solution for the Quantification of Levodopa Enantiomeric Excess in Solid-State Mixtures for Pharmacological Formulations. Molecules 2021; 26:molecules26164944. [PMID: 34443532 PMCID: PMC8398775 DOI: 10.3390/molecules26164944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of the present work was to develop a green multi-platform methodology for the quantification of l-DOPA in solid-state mixtures by means of MIR and NIR spectroscopy. In order to achieve this goal, 33 mixtures of racemic and pure l-DOPA were prepared and analyzed. Once spectra were collected, partial least squares (PLS) was exploited to individually model the two different data blocks. Additionally, three different multi-block approaches (mid-level data fusion, sequential and orthogonalized partial least squares, and sequential and orthogonalized covariance selection) were used in order to simultaneously handle data from the different platforms. The outcome of the chemometric analysis highlighted the quantification of the enantiomeric excess of l-DOPA in enantiomeric mixtures in the solid state, which was possible by coupling NIR and PLS, and, to a lesser extent, by using MIR. The multi-platform approach provided a higher accuracy than the individual block analysis, indicating that the association of MIR and NIR spectral data, especially by means of SO-PLS, represents a valid solution for the quantification of the l-DOPA excess in enantiomeric mixtures.
Collapse
Affiliation(s)
- Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
- Correspondence: (A.B.); (F.M.)
| | - Stefano Battistoni
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.B.); (R.P.)
| | - Regina Presutto
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.B.); (R.P.)
| | - Federico Marini
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.B.); (R.P.)
- Correspondence: (A.B.); (F.M.)
| |
Collapse
|
90
|
Nardone OM, de Sire R, Petito V, Testa A, Villani G, Scaldaferri F, Castiglione F. Inflammatory Bowel Diseases and Sarcopenia: The Role of Inflammation and Gut Microbiota in the Development of Muscle Failure. Front Immunol 2021; 12:694217. [PMID: 34326845 PMCID: PMC8313891 DOI: 10.3389/fimmu.2021.694217] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia represents a major health burden in industrialized country by reducing substantially the quality of life. Indeed, it is characterized by a progressive and generalized loss of muscle mass and function, leading to an increased risk of adverse outcomes and hospitalizations. Several factors are involved in the pathogenesis of sarcopenia, such as aging, inflammation, mitochondrial dysfunction, and insulin resistance. Recently, it has been reported that more than one third of inflammatory bowel disease (IBD) patients suffered from sarcopenia. Notably, the role of gut microbiota (GM) in developing muscle failure in IBD patient is a matter of increasing interest. It has been hypothesized that gut dysbiosis, that typically characterizes IBD, might alter the immune response and host metabolism, promoting a low-grade inflammation status able to up-regulate several molecular pathways related to sarcopenia. Therefore, we aim to describe the basis of IBD-related sarcopenia and provide the rationale for new potential therapeutic targets that may regulate the gut-muscle axis in IBD patients.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Roberto de Sire
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Valentina Petito
- Department of Medicine and Translational Surgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, University Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Testa
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Guido Villani
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Franco Scaldaferri
- Department of Medicine and Translational Surgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, University Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiana Castiglione
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| |
Collapse
|
91
|
Xu Y, Liu X, Liu X, Chen D, Wang M, Jiang X, Xiong Z. The Roles of the Gut Microbiota and Chronic Low-Grade Inflammation in Older Adults With Frailty. Front Cell Infect Microbiol 2021; 11:675414. [PMID: 34277468 PMCID: PMC8282182 DOI: 10.3389/fcimb.2021.675414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Frailty is a major public issue that affects the physical health and quality of life of older adults, especially as the population ages. Chronic low-grade inflammation has been speculated to accelerate the aging process as well as the development of age-related diseases such as frailty. Intestinal homeostasis plays a crucial role in healthy aging. The interaction between the microbiome and the host regulates the inflammatory response. Emerging evidence indicates that in older adults with frailty, the diversity and composition structure of gut microbiota are altered. Age-associated changes in gut microbiota composition and in their metabolites contribute to increased gut permeability and imbalances in immune function. In this review, we aim to: identify gut microbiota changes in the aging and frail populations; summarize the role of chronic low-grade inflammation in the development of frailty; and outline how gut microbiota may be related to the pathogenesis of frailty, more specifically, in the regulation of gut-derived chronic inflammation. Although additional research is needed, the regulation of gut microbiota may represent a safe, easy, and inexpensive intervention to counteract the chronic inflammation leading to frailty.
Collapse
Affiliation(s)
- YuShuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XiangJie Liu
- Division of Geriatric, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XiaoXia Liu
- Division of Geriatric, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Chen
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - MengMeng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ZhiFan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
92
|
Conway J, A Duggal N. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Res Rev 2021; 68:101323. [PMID: 33771720 DOI: 10.1016/j.arr.2021.101323] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
Advancing age is accompanied by changes in the gut microbiota characterised by a loss of beneficial commensal microbes that is driven by intrinsic and extrinsic factors such as diet, medications, sedentary behaviour and chronic health conditions. Concurrently, ageing is accompanied by an impaired ability to mount a robust immune response, termed immunesenescence, and age-associated inflammation, termed inflammaging. The microbiome has been proposed to impact the immune system and is a potential determinant of healthy aging. In this review we summarise the knowledge on the impact of ageing on microbial dysbiosis, intestinal permeability, inflammaging, and the immune system and investigate whether dysbiosis of the gut microbiota could be a potential mechanism underlying the decline in immune function, overall health and longevity with advancing age. Furthermore, we examine the potential of altering the gut microbiome composition as a novel intervention strategy to reverse the immune ageing clock and possibly support overall good health during old age.
Collapse
|
93
|
Cui J, Yang X, Wang F, Liu S, Han S, Chen B. Effects of ammonia on growth performance, lipid metabolism and cecal microbial community of rabbits. PLoS One 2021; 16:e0252065. [PMID: 34191811 PMCID: PMC8244895 DOI: 10.1371/journal.pone.0252065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/09/2021] [Indexed: 01/12/2023] Open
Abstract
This study was designed to investigate the effect of ammonia on growth performance, lipid metabolism and intestinal flora of rabbits. A total of 150 female IRA rabbits (35-days-old) were randomly divided into three groups including 0 ppm (CG), 10 ppm (LAC) and 30 ppm ammonia (HAC) groups for a period of 28 days. The average daily weight gain (ADG) of rabbits was significantly reduced in LAC (-17.11%; p < 0.001) and HAC groups (-17.46%; p < 0.001) as compared with the CG. Serum concentration of high density lipoprotein (HDL) and glucose (Glu) were increased in LAC (+80.95%; +45.99; p < 0.05) and HAC groups (+219.05%; +45.89; p < 0.001), while apolipoprotein A1 (apoA1) was decreased in LAC (-58.49%; p < 0.001) and HAC groups (-36.92%; p < 0.001). The structural integrity of cecum was damaged, and the thickness of mucosa and serosa were significantly decreased in LAC and HAC. The acetate, butyrate and propionate level of cecal chyme were reduced in HAC group (-21.67%; -19.82%; -30.81%; p < 0.05). Microbial diversity and burden of Firmicutes were significantly decreased, while that of pathogenic bacteria, such as Bacteroidetes, Clostridium and Proteobacteria were increased in ammonia treated groups. Spearman's correlation confirmed that burden of Ruminococcaceae_NK4A214_group showed significantly negative correlation with acetic acid (r = -0.67; p < 0.001) while Barnesiellaceae_unclassified showed significantly positive correlation with propionic acid (r = 0.50; p < 0.001). In conclusion, ammonia treatment was responsible for an imbalance of intestinal flora, which affected lipid metabolism and damaged intestinal barrier of rabbits, resulting in low growth performance due to lipid metabolism dysfunction.
Collapse
Affiliation(s)
- Jia Cui
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| |
Collapse
|
94
|
Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021; 13:nu13062045. [PMID: 34203776 PMCID: PMC8232643 DOI: 10.3390/nu13062045] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Living longer is associated with an increased risk of chronic diseases, including impairments of the musculoskeletal and immune system as well as metabolic disorders and certain cancers, each of which can negatively affect the relationship between host and microbiota up to the occurrence of dysbiosis. On the other hand, lifestyle factors, including regular physical exercise and a healthy diet, can affect skeletal muscle and immune aging positively at all ages. Accordingly, health benefits could partly depend on the effect of such interventions that influence the biodiversity and functionality of intestinal microbiota. In the present review, we first discuss the physiological effects of aging on the gut microbiota, immune system, and skeletal muscle. Secondly, we describe human epidemiological evidence about the associations between physical activity and fitness and the gut microbiota composition in older adults. The third part highlights the relevance and restorative mechanisms of immune protection through physical activity and specific exercise interventions during aging. Fourth, we present important research findings on the effects of exercise and protein as well as other nutrients on skeletal muscle performance in older adults. Finally, we provide nutritional recommendations to prevent malnutrition and support healthy active aging with a focus on gut microbiota. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low muscle mass and a higher demand for specific nutrients (e.g., dietary fiber, polyphenols and polyunsaturated fatty acids) that can modify the composition, diversity, and metabolic capacity of the gut microbiota, and may thus provide a practical means of enhancing gut and systemic immune function.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, 1020 Vienna, Austria
- Correspondence:
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology–BIPS, 28359 Bremen, Germany;
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Andrea Ticinesi
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
95
|
Zhao J, Huang Y, Yu X. A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. Int J Gen Med 2021; 14:1263-1273. [PMID: 33880058 PMCID: PMC8053521 DOI: 10.2147/ijgm.s301141] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a multifactorial disease related to aging, chronic inflammation, insufficient nutrition, and physical inactivity. Previous studies have suggested that there is a relationship between sarcopenia and gut microbiota,namely, the gut-muscle axis. The present review highlights that the gut microbiota can affect muscle mass and muscle function from inflammation and immunity,substance and energy metabolism, endocrine and insulin sensitivity, etc., directly or indirectly establishing a connection with sarcopenia, thereby realizing the “gut-muscle axis”.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Yiqin Huang
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xiaofeng Yu
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
96
|
Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Coelho-Junior HJ, Cesari M, Bossola M, Urbani A, Onder G, Landi F, Bernabei R, Marzetti E. Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study. GeroScience 2021; 43:727-740. [PMID: 32488674 PMCID: PMC8110636 DOI: 10.1007/s11357-020-00197-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
Physical frailty and sarcopenia (PF&S) is a prototypical geriatric condition characterized by reduced physical function and low muscle mass. The aim of the present study was to provide an initial selection of biomarkers for PF&S using a novel multivariate analytic strategy. Two-hundred community-dwellers, 100 with PF&S and 100 non-physically frail, non-sarcopenic (nonPF&S) controls aged 70 and older were enrolled as part of the BIOmarkers associated with Sarcopenia and Physical frailty in EldeRly pErsons (BIOSPHERE) study. A panel of 74 serum analytes involved in inflammation, muscle growth and remodeling, neuromuscular junction damage, and amino acid metabolism was assayed. Biomarker selection was accomplished through sequential and orthogonalized covariance selection (SO-CovSel) analysis. Separate SO-CovSel models were constructed for the whole study population and for the two genders. The model with the best prediction ability obtained with the smallest number of variables was built using seven biomolecules. This model allowed correct classification of 80.6 ± 5.3% PF&S participants and 79.9 ± 5.1% nonPF&S controls. The PF&S biomarker profile was characterized by higher serum levels of asparagine, aspartic acid, and citrulline. Higher serum concentrations of platelet-derived growth factor BB, heat shock protein 72 (Hsp72), myeloperoxidase, and α-aminobutyric acid defined the profile of nonPF&S participants. Gender-specific SO-CovSel models identified a "core" biomarker profile of PF&S, characterized by higher serum levels of aspartic acid and Hsp72 and lower concentrations of macrophage inflammatory protein 1β, with peculiar signatures in men and women.SO-CovSel analysis allowed identifying a set of potential biomarkers for PF&S. The adoption of such an innovative multivariate approach could help address the complex pathophysiology of PF&S, translate biomarker discovery from bench to bedside, and unveil novel targets for interventions.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy.
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy.
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | | | - Jacopo Gervasoni
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Silvia Persichilli
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Aniello Primiano
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Hélio J Coelho-Junior
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
- Applied Kinesiology Laboratory-LCA, School of Physical Education, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Università di Milano, Milan, Italy
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Bossola
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Andrea Urbani
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Graziano Onder
- Department of Cardiovascular, Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Roberto Bernabei
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy.
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
97
|
Molecular Mechanism and Pathogenesis of Sarcopenia: An Overview. Int J Mol Sci 2021; 22:ijms22063032. [PMID: 33809723 PMCID: PMC8002369 DOI: 10.3390/ijms22063032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
|
98
|
Picca A, Calvani R, Sirago G, Coelho-Junior HJ, Marzetti E. Molecular routes to sarcopenia and biomarker development: per aspera ad astra. Curr Opin Pharmacol 2021; 57:140-147. [PMID: 33721617 DOI: 10.1016/j.coph.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Sarcopenia, the age-related decline in muscle mass and strength/function, is a prototypical geroscience condition. The dissection of muscle-specific molecular pathways through analyses of tissue biopsies has provided valuable insights into the pathophysiology of sarcopenia. However, such an approach is unsuitable for capturing the dynamic nature of the condition. Furthermore, the muscle sampling procedure may be perceived as burdensome especially by multimorbid, frail older adults. To overcome these limitations, sophisticated statistical methods have been devised for the simultaneous analysis of circulating factors related to the multiple domains of sarcopenia. This approach has shown potential for achieving a more comprehensive appraisal of the condition, unveiling new therapeutic targets, and identifying meaningful biomarkers. Here, we discuss the main pathogenetic pathways of sarcopenia, with a focus on mediators that are currently in the spotlight as biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Giuseppe Sirago
- Department of Biomedical Sciences DBS, Università degli Studi di Padova, Padua, Italy
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy.
| |
Collapse
|
99
|
Gizard F, Fernandez A, De Vadder F. Interactions between gut microbiota and skeletal muscle. Nutr Metab Insights 2021; 13:1178638820980490. [PMID: 33402830 PMCID: PMC7745561 DOI: 10.1177/1178638820980490] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is now recognized as a major contributor to the host’s nutrition, metabolism, immunity, and neurological functions. Imbalanced microbiota (ie, dysbiosis) is linked to undernutrition-induced stunting, inflammatory and metabolic diseases, and cancers. Skeletal muscle also takes part in the interorgan crosstalk regulating substrate metabolism, immunity, and health. Here, we review the reciprocal influence of gut microbiota and skeletal muscle in relation to juvenile growth, performance, aging, and chronic diseases. Several routes involving the vascular system and organs such as the liver and adipose tissue connect the gut microbiota and skeletal muscle, with effects on fitness and health. Therapeutic perspectives arise from the health benefits observed with changes in gut microbiota and muscle activity, further encouraging multimodal therapeutic strategies.
Collapse
Affiliation(s)
- Florence Gizard
- Mammalian Cell Biology Group, Institute of Human Genetics UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne Fernandez
- Mammalian Cell Biology Group, Institute of Human Genetics UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| |
Collapse
|
100
|
Liao X, Wu M, Hao Y, Deng H. Exploring the Preventive Effect and Mechanism of Senile Sarcopenia Based on "Gut-Muscle Axis". Front Bioeng Biotechnol 2020; 8:590869. [PMID: 33251202 PMCID: PMC7674676 DOI: 10.3389/fbioe.2020.590869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related sarcopenia probably leads to chronic systemic inflammation and plays a vital role in the development of the complications of the disease. Gut microbiota, an environmental factor, is the medium of nutritional support to muscle cells, having significant impact on sarcopenia. Consequently, a significant amount of studies explored and showed the presence of gut microbiome–muscle axis (gut–muscle axis for short), which was possibly considered as the disease interventional target of age-related sarcopenia. However, a variety of nutrients probably affect the changes of the gut–muscle axis so as to affect the healthy balance of skeletal muscle. Therefore, it is necessary to study the mechanism of intestinal–muscle axis, and nutrients play a role in the treatment of senile sarcopenia through this mechanism. This review summarizes the available literature on mechanisms and specific pathways of gut–muscle axis and discusses the potential role and therapeutic feasibility of gut microbiota in age-related sarcopenia to understand the development of age-related sarcopenia and figure out the novel perspective of the potential therapeutic interventional targets.
Collapse
Affiliation(s)
- Xiaoshan Liao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengting Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|