51
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
52
|
Di Ciccio P, Rubiola S, Panebianco F, Lomonaco S, Allard M, Bianchi DM, Civera T, Chiesa F. Biofilm formation and genomic features of Listeria monocytogenes strains isolated from meat and dairy industries located in Piedmont (Italy). Int J Food Microbiol 2022; 378:109784. [PMID: 35749910 DOI: 10.1016/j.ijfoodmicro.2022.109784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes is considered a major challenge for the food industry as it can persist for long periods in food processing plants by forming biofilms. The aims of this study were: i) to assess the biofilm producing ability of 57 Listeria monocytogenes isolates previously subjected to whole-genome sequencing (WGS); ii) to compare the levels of biofilm formation with the presence or absence of biofilm associated genes. To determine the presence or absence of a known set of biofilm associated genes, a comparative genomic analysis was performed on each strain. Among Listeria monocytogenes isolates, 58 %, 38.5 % and 3.5 % exhibited weak, moderate or strong biofilm production, respectively. No difference in biofilm production was observed between food and environmental isolates. The percentage of Listeria monocytogenes strains isolated from meat products (57 %) classified as moderate or strong biofilm producers was higher than the percentage obtained for strains isolated from dairy products (28 %). The presence of the Stress Survival Islet 1, the arsD stress gene and the truncated inlA protein was significantly associated with increased levels of biofilm. Combining biofilm phenotype with molecular and genotyping data may provide the opportunity to better understand the relationship between genes linked to biofilm formation in Listeria monocytogenes.
Collapse
Affiliation(s)
- Pierluigi Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy.
| | - Sara Lomonaco
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Daniela Manila Bianchi
- S.C. Sicurezza e Qualità degli Alimenti, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
53
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes - How This Pathogen Survives in Food-Production Environments? Front Microbiol 2022; 13:866462. [PMID: 35558128 PMCID: PMC9087598 DOI: 10.3389/fmicb.2022.866462] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is the causative agent of human listeriosis, a severe disease, especially dangerous for the elderly, pregnant women, and newborns. Although this infection is comparatively rare, it is often associated with a significant mortality rate of 20-30% worldwide. Therefore, this microorganism has an important impact on food safety. L. monocytogenes can adapt, survive and even grow over a wide range of food production environmental stress conditions such as temperatures, low and high pH, high salt concentration, ultraviolet lights, presence of biocides and heavy metals. Furthermore, this bacterium is also able to form biofilm structures on a variety of surfaces in food production environments which makes it difficult to remove and allows it to persist for a long time. This increases the risk of contamination of food production facilities and finally foods. The present review focuses on the key issues related to the molecular mechanisms of the pathogen survival and adaptation to adverse environmental conditions. Knowledge and understanding of the L. monocytogenes adaptation approaches to environmental stress factors will have a significant influence on the development of new, efficient, and cost-effective methods of the pathogen control in the food industry, which is critical to ensure food production safety.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
| | | | | |
Collapse
|
54
|
Review of CRISPR-Cas Systems in Listeria Species: Current Knowledge and Perspectives. Int J Microbiol 2022; 2022:9829770. [PMID: 35502187 PMCID: PMC9056214 DOI: 10.1155/2022/9829770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria spp. are pathogens widely distributed in the environment and Listeria monocytogenes is associated with food-borne illness in humans. Food facilities represent an adverse environment for this bacterium, mainly due to the disinfection and cleaning processes included in good hygiene practices, and its virulence is related to stress responses. One of the recently described stress-response systems is CRISPR-Cas. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes have been found in several bacteria. CRISPR-Cas has revolutionized biotechnology since it acts as an adaptive immune system of bacteria, which also helps in the evasion of the host immune response. There are three CRISPR systems described on Listeria species. Type II is present in many pathogenic bacteria and characterized by the presence of cas9 that becomes the main target of some anti-CRISPR proteins, such as AcrIIA1, encoded on Listeria phages. The presence of Cas9, either alone or in combination with anti-CRISPR proteins, suggests having a main role on the virulence of bacteria. In this review, we describe the most recent information on CRISPR-Cas systems in Listeria spp., particularly in L. monocytogenes, and their relationship with the virulence and pathogenicity of those bacteria. Besides, some applications of CRISPR systems and future challenges in the food processing industry, bacterial vaccination, antimicrobial resistance, pathogens biocontrol by phage therapy, and regulation of gene expression have been explored.
Collapse
|
55
|
Evaluation of the Persistence and Characterization of Listeria monocytogenes in Foodservice Operations. Foods 2022; 11:foods11060886. [PMID: 35327308 PMCID: PMC8955912 DOI: 10.3390/foods11060886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can contaminate food products and colonize food-producing facilities. Foodservice operations (FSOp) are frequently responsible for foodborne outbreaks due to food safety practices failures. We investigated the presence of and characterized L. monocytogenes from two FSOp (cafeterias) distributing ready-to-eat meals and verified FSOp’s compliance with good manufacturing practices (GMP). Two facilities (FSOp-A and FSOp-B) were visited three times each over 5 months. We sampled foods, ingredients, and surfaces for microbiological analysis, and L. monocytogenes isolates were characterized by phylogenetic analyses and phenotypic characteristics. GMP audits were performed in the first and third visits. A ready-to-eat salad (FSOp-A) and a frozen ingredient (FSOp-B) were contaminated with L. monocytogenes, which was also detected on Zone 3 surfaces (floor, drains, and a boot cover). The phylogenetic analysis demonstrated that FSOp-B had persistent L. monocytogenes strains, but environmental isolates were not closely related to food or ingredient isolates. GMP audits showed that both operations worked under “fair” conditions, and “facilities and equipment” was the section with the least compliances. The presence of L. monocytogenes in the environment and GMP failures could promote food contamination with this pathogen, presenting a risk to consumers.
Collapse
|
56
|
Awadelkareem AM, Al-Shammari E, Elkhalifa AO, Adnan M, Siddiqui AJ, Mahmood D, Azad ZRAA, Patel M, Mehmood K, Danciu C, Ashraf SA. Anti-Adhesion and Antibiofilm Activity of Eruca sativa Miller Extract Targeting Cell Adhesion Proteins of Food-Borne Bacteria as a Potential Mechanism: Combined In Vitro-In Silico Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:610. [PMID: 35270080 PMCID: PMC8912376 DOI: 10.3390/plants11050610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 05/05/2023]
Abstract
Bacterial cells have the ability to form biofilm onto the surfaces of food matrixes and on food processing equipment, leading to a source of food contamination posing serious health implications. Therefore, our study aimed to determine the effect of Eruca sativa Miller (E. sativa) crude extract against biofilms of food-borne bacteria along with in silico approaches to investigate adhesion proteins responsible for biofilm activity against the identified phytochemicals. The antibacterial potential of crude extract was evaluated using agar well diffusion technique and combinations of light and scanning electron microscopy to assess the efficacy of crude extract against the developed biofilms. Our results showed that crude extract of E. sativa was active against all tested food-borne bacteria, exhibiting a rapid kinetics of killing bacteria in a time-dependent manner. MIC and MBC values of E. sativa crude extract were found to be ranging from 125 to 500 µg/mL and 250 to 1000 µg/mL respectively. Furthermore, inhibition of developed biofilm by E sativa was found to be ranging from 58.68% to 73.45% for all the tested strains. The crude extract also reduced the viability of bacterial cells within biofilms and amount of EPS (ranging 59.73-82.77%) in the biofilm matrix. Additionally, the microscopic images also revealed significant disruption in the structure of biofilms. A molecular docking analysis of E. sativa phytochemicals showed interaction with active site of adhesion proteins Sortase A, EspA, OprD, and type IV b pilin of S. aureus, E. coli, P. aeruginosa, and S. enterica ser. typhi, respectively. Thus, our findings represent the first demonstration of E. sativa crude extract's bioactivity and potency against food-borne bacteria in their planktonic forms, as well as against the developed biofilms. Therefore, a possible mechanistic approach for inhibition of biofilm via targeting adhesion proteins can be explored further to target biofilm producing food-borne bacterial pathogens.
Collapse
Affiliation(s)
- Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (M.A.); (A.J.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (M.A.); (A.J.S.)
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, P.O. Box 6688, Qassim 51452, Saudi Arabia;
| | - Z. R. Azaz Ahmad Azad
- Department of Post-Harvest Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia;
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, P.O. Box 2440, Hail 34464, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| |
Collapse
|
57
|
Development and characterization of anti-biofilm coatings applied by Non-Equilibrium Atmospheric Plasma on stainless steel. Food Res Int 2022; 152:109891. [PMID: 35181104 DOI: 10.1016/j.foodres.2020.109891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022]
Abstract
Biofilm-mediated microbial persistence of pathogenic and spoilage bacteria is a serious problem in food industries. Due to the difficulty of removing mature biofilms, great efforts are being made to find new strategies to prevent bacterial adherence to surfaces, the first step for biofilm development. In this study, coatings of (3-aminopropyl)triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and acrylic acid (AA) were applied by Non-Equilibrium Atmospheric Plasma on stainless steel (SS) AISI 316, the SS most commonly used in food industry equipment. Their anti-biofilm activity was assessed against Listeria monocytogenes CECT911 and Escherichia coli CECT515 after incubation at 37 °C. The best results were obtained for L. monocytogenes, with coatings consisting of a base coating of APTES and a functional coating of TEOS (AP10 + TE6) or AA (AP10 + AA6) that reduced biofilm production by 45% and 74%, respectively, when compared with the uncoated SS. These coatings were further characterized, together with a variation of the best one that replaced the acrylic acid with succinic acid (AP10 + SA6). Their anti-biofilm activity was assessed under different incubation conditions, including two strains of L. monocytogenes isolated from processing environments of a meat industry. The coating AP10 + AA6 reduced the biofilm formation by 90% after incubation at 12 °C, a temperature more representative of those commonly found in food processing environments. The morphological and physico-chemical characterization of the selected coatings showed that the coating with the highest anti-biofilm activity (i.e., AP10 + AA6) had lower surface roughness and higher hydrophilicity. This suggests that the formation of a hydration layer prevents the adherence of L. monocytogenes, an effect that seems to be enhanced by low temperature conditions, when the wettability of the strains is increased.
Collapse
|
58
|
From the Physicochemical Characteristic of Novel Hesperetin Hydrazone to Its In Vitro Antimicrobial Aspects. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030845. [PMID: 35164110 PMCID: PMC8839478 DOI: 10.3390/molecules27030845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N'-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.
Collapse
|
59
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
60
|
Phan TN, Miyamoto T, Thi ANT. Microbiological assessment of Pangasianodon hypophthalmus at fish-processing plants in Vietnam. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Trang Nguyen Phan
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Takahisa Miyamoto
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Anh Ngoc Tong Thi
- Department of Food Technology, College of Agriculture, Can Tho University
| |
Collapse
|
61
|
Li R, Liang Q, Tian S, Zhang Y, Liu S, Ou Q, Chen Z, Wang C. Hemolysin function of Listeria is related to biofilm formation: transcriptomics analysis. Vet Res 2022; 53:113. [PMID: 36587206 PMCID: PMC9805692 DOI: 10.1186/s13567-022-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 01/02/2023] Open
Abstract
Listeriolysin O (LLO) is the main virulence protein of Listeria monocytogenes (LM), that helps LM escape lysosomes. We previously found that the cellular immune response elicited by L.ivanovii (LI) is weaker than that elicited by LM. We speculated that this may be related to the function of ivanolysin O (ILO). Here, we constructed hemolysin gene deletion strain, LIΔilo, and a modified strain, LIΔilo::hly, in which ilo was replaced by hly. Prokaryotic transcriptome sequencing was performed on LI, LIΔilo, and LIΔilo::hly. Transcriptome differences between the three strains were compared, and genes and pathways with significant differences between the three strains were analyzed. Prokaryotic transcriptome sequencing results revealed the relationship of ilo to the ribosome, quorum sensing, and phosphotransferase system (PTS) pathways, etc. LIΔilo exhibited attenuated biofilm formation ability compared to LI. Biofilm formation was significantly recovered or even increased after replenishing hly. After knocking out ilo, the relative expression levels of some virulence genes, including sigB, prfA, actA, smcL, and virR, were up-regulated compared to LI. After replenishing hly, these genes were down-regulated compared to LIΔilo. The trend and degree of such variation were not completely consistent when cultured in media containing only monosaccharides or disaccharides. The results confirmed that hemolysin is related to some important biological properties of Listeria, including biofilm formation and virulence gene expression levels. This is the first comprehensive study on ILO function at the transcriptomic level and the first evidence of a relationship between Listeria hemolysin and biofilm formation.
Collapse
Affiliation(s)
- Ruidan Li
- grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061 China ,Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, 518057 China
| | - Qian Liang
- grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061 China ,Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, 518057 China
| | - Sicheng Tian
- grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061 China
| | - Yunwen Zhang
- grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061 China
| | - Sijing Liu
- grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061 China
| | - Qian Ou
- grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061 China
| | - Zhaobin Chen
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, 518057 China
| | - Chuan Wang
- grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610061 China
| |
Collapse
|
62
|
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Advances in emerging technologies for the decontamination of the food contact surfaces. Food Res Int 2022; 151:110865. [PMID: 34980401 DOI: 10.1016/j.foodres.2021.110865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Foodborne pathogens could be transferred to food from food contact surfaces contaminated by poor hygiene or biofilm formation. The food processing industry has various conditions favouring microbes' adherence, such as moisture, nutrients, and the microbial inoculums obtained from the raw material. The function of the ideal antimicrobial surface is preventing initial attachment of the microbes, killing the microbes or/and removing the dead bacteria. This review article provides detail about the challenges food industries are facing with respect to food contact materials. It also summarises the merits and demerits of several sanitizing methods developed for industrial use. Furthermore, it reviews the new and emerging techniques that enhance the efficiency of reducing microbial contamination. Techniques such as surface functionalisation, high-intensity ultrasound, cold plasma technologies etc. which have high potential to be used for the decontamination of food contact surfaces are discussed. The emerging designs of antibacterial surfaces provide the opportunity to reduce or eradicate the adhesion of microorganisms. The most important purpose of these surfaces is to prevent the attachment of bacteria and to kill the bacteria that come in contact. These emerging technologies have a high potential for developing safe and inert food contact materials for the food industry.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland; Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| |
Collapse
|
63
|
Gu T, Meesrisom A, Luo Y, Dinh QN, Lin S, Yang M, Sharma A, Tang R, Zhang J, Jia Z, Millner PD, Pearlstein AJ, Zhang B. Listeria monocytogenes biofilm formation as affected by stainless steel surface topography and coating composition. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
64
|
Papatzimos G, Kotzamanidis C, Kyritsi M, Malissiova E, Economou V, Giantzi V, Zdragas A, Hadjichristodoulou C, Sergelidis D. Prevalence and characteristics of Listeria monocytogenes in meat, meat products, food handlers and the environment of the meat processing and the retail facilities of a company in Northern Greece. Lett Appl Microbiol 2021; 74:367-376. [PMID: 34850423 DOI: 10.1111/lam.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023]
Abstract
In this study, we investigated the incidence of Listeria monocytogenes in the receiving meat, the meat products, the personnel and the environment of a vertically integrated company in Northern Greece owing a processing plant and three trading facilities. A total of 303 samples were examined from the receiving raw meat, raw meat preparations, ready-to-eat meat products, processing surfaces and the environment of these facilities as well as the food handlers' hands and nasal cavities. MALDI-TOF MS was used for Listeria identification; from the 22 (7·26%) positive to Listeria spp. isolates, 12 (3·96%) identified as L. monocytogenes, eight (2·64%) as Listeria innocua and two (0·66%) as Listeria welshimeri. Molecular serotyping of L. monocytogenes isolates by multiplex PCR revealed 11 strains belonging to serogroup IIa (1/2a and 3a) and one to IIc (1/2c and 3c). The assay for the detection of the virulence-associated genes revealed eight isolates carrying all the examined genes (inlA, inlB, inlC, plcA, prfA, actA, hlyA and iap) and four carrying all except the actA gene. Eleven (91·7%) of the isolates showed a strong ability to form biofilm. All isolates were multidrug resistant. The MALDI-TOF Main Spectrum Profile (MSPs), revealed three clusters: one with five isolates (four from environmental samples and one from a food handler), one with five isolates (all from environmental samples) and one with two isolates (both from raw meat products). MALDI-TOF MS seems to be a reliable tool for the identification of niches and contamination routes in processing plants, contributing also to the evaluation and improvement of the applied preventive measures to control L. monocytogenes.
Collapse
Affiliation(s)
- G Papatzimos
- Laboratory of Hygiene of Foods of Animal Origin - Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Kotzamanidis
- Hellenic Agricultural Organization-DIMITRA, Veterinary Research Institute of Thessaloniki, Thermi, Greece
| | - M Kyritsi
- Laboratory of Hygiene and Epidemiology, Medical School, University of Thessaly, Larissa, Greece
| | - E Malissiova
- Food of Animal Origin Laboratory, Animal Science Department, University of Thessaly, Larisa, Greece
| | - V Economou
- Laboratory of Hygiene of Foods of Animal Origin - Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V Giantzi
- Hellenic Agricultural Organization-DIMITRA, Veterinary Research Institute of Thessaloniki, Thermi, Greece
| | - A Zdragas
- Hellenic Agricultural Organization-DIMITRA, Veterinary Research Institute of Thessaloniki, Thermi, Greece
| | - C Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology, Medical School, University of Thessaly, Larissa, Greece
| | - D Sergelidis
- Laboratory of Hygiene of Foods of Animal Origin - Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
65
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
66
|
Rhizobacteria Impact Colonization of Listeria monocytogenes on Arabidopsis thaliana Roots. Appl Environ Microbiol 2021; 87:e0141121. [PMID: 34550783 PMCID: PMC8579980 DOI: 10.1128/aem.01411-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In spite of its relevance as a foodborne pathogen, we have limited knowledge about Listeria monocytogenes in the environment. L. monocytogenes outbreaks have been linked to fruits and vegetables; thus, a better understanding of the factors influencing its ability to colonize plants is important. We tested how environmental factors and other soil- and plant-associated bacteria influenced L. monocytogenes' ability to colonize plant roots using Arabidopsis thaliana seedlings in a hydroponic growth system. We determined that the successful root colonization of L. monocytogenes 10403S was modestly but significantly enhanced by the bacterium being pregrown at higher temperatures, and this effect was independent of the biofilm and virulence regulator PrfA. We tested 14 rhizosphere-derived bacteria for their impact on L. monocytogenes 10403S, identifying one that enhanced and 10 that inhibited the association of 10403S with plant roots. We also characterized the outcomes of these interactions under both coinoculation and invasion conditions. We characterized the physical requirements of five of these rhizobacteria to impact the association of L. monocytogenes 10403S with roots, visualizing one of these interactions by microscopy. Furthermore, we determined that two rhizobacteria (one an inhibitor, the other an enhancer of 10403S root association) were able to similarly impact 10 different L. monocytogenes strains, indicating that the effects of these rhizobacteria on L. monocytogenes are not strain specific. Taken together, our results advance our understanding of the parameters that affect L. monocytogenes plant root colonization, knowledge that may enable us to deter its association with and, thus, downstream contamination of, food crops. IMPORTANCE Listeria monocytogenes is ubiquitous in the environment, being found in or on soil, water, plants, and wildlife. However, little is known about the requirements for L. monocytogenes' existence in these settings. Recent L. monocytogenes outbreaks have been associated with contaminated produce; thus, we used a plant colonization model to investigate factors that alter L. monocytogenes' ability to colonize plant roots. We show that L. monocytogenes colonization of roots was enhanced when grown at higher temperatures prior to inoculation but did not require a known regulator of virulence and biofilm formation. Additionally, we identified several rhizobacteria that altered the ability of 11 different strains of L. monocytogenes to colonize plant roots. Understanding the factors that impact L. monocytogenes physiology and growth will be crucial for finding mechanisms (whether chemical or microbial) that enable its removal from plant surfaces to reduce L. monocytogenes contamination of produce and eliminate foodborne illness.
Collapse
|
67
|
Cavalini L, Jankoski P, Correa APF, Brandelli A, Motta ASDA. Characterization of the antimicrobial activity produced by Bacillus sp. isolated from wetland sediment. AN ACAD BRAS CIENC 2021; 93:e20201820. [PMID: 34730619 DOI: 10.1590/0001-3765202120201820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Bacteria of the genus Bacillus sp. present the potential for inhibiting various pathogens, making them a promising starting point in the search for new antimicrobial substances. In this study, bacteria were isolated from sediment samples from humid areas of a Natural Conservation Unit in the state of Rio Grande do Sul, Brazil. The isolate Bacillus sp. sed 1.4 was selected for production of antimicrobial activity, and was characterized by MALDI-TOF and 16S rDNA sequencing. Phylogenetic analysis showed that Bacillus sed 1.4 was closely related to Bacillus altitudinis and Bacillus pumilus. The cell-free supernatant was partially purified using ammonium sulfate precipitation, gel filtration chromatography (Sephadex G-200) and an ultrafiltration membrane. Partial purification resulted in specific activity of 769.23 AU/mg, with a molecular mass of approximately 148 kDa. This antimicrobial substance showed stability at 100°C for 5 min, and was inactivated by proteolytic enzymes. An antimicrobial effect against Listeria species was observed. Considering the importance of the Listeria genus in the area of food safety, this antimicrobial activity should be further explored, specifically in the field of dairy products and with a focus on food biopreservation studies.
Collapse
Affiliation(s)
- Luciani Cavalini
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| | - Priscila Jankoski
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| | - Ana Paula F Correa
- Universidade Federal de Roraima, Programa de Pós-graduação em Recursos Naturais-PRONAT, Av. Ene Garcez, 2413, Bairro Aeroporto, 69304-000 Boa Vista, RR, Brazil
| | - Adriano Brandelli
- Universidade Federal do Rio Grande do Sul, Departamento de Ciência dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, Prédio 43.212, 91501-970 Porto Alegre, RS, Brazil
| | - Amanda S DA Motta
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
68
|
Shedleur-Bourguignon F, Thériault WP, Longpré J, Thibodeau A, Fravalo P. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of Listeria monocytogenes on Conveyor Belt Surfaces in a Swine Slaughterhouse in the Province of Quebec, Canada. Pathogens 2021; 10:pathogens10111368. [PMID: 34832524 PMCID: PMC8625388 DOI: 10.3390/pathogens10111368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the accompanying microbiota in the presence of Listeria monocytogenes on meat processing surfaces is not yet understood, especially in industrial production conditions. In this study, 300 conveyor belt samples from the cutting room of a swine slaughterhouse were collected during production. The samples were subjected to the detection of L. monocytogenes. Recovered strains were characterized by serogrouping-PCR, InlA Sanger sequencing and for their ability to form biofilm. A selection of isolates was compared with core genome multi-locus sequence typing analysis (cgMLST). The sequencing of the V4 region of the 16S RNA gene of the microorganisms harvested from each sample was carried out in parallel using the Illumina MiSeq platform. Diversity analyses were performed and MaAsLin analysis was used to assess the link between L. monocytogenes detection and the surrounding bacteria. The 72 isolates collected showed a low genetic diversity and important persistence characteristics. L. monocytogenes isolates were not stochastically distributed on the surfaces: the isolates were detected on three out of six production lines, each associated with a specific meat cut: the half carcasses, the bostons and the picnics. MaAsLin biomarker analysis identified the taxa Veillonella (p ≤ 0.0397) as a bacterial determinant of the presence of L. monocytogenes on processing surfaces. The results of this study revealed a heterogenous contamination pattern of the processing surfaces by L. monocytogenes and targeted a bacterial indicator of the presence of the pathogen. These results could lead to a better risk assessment of the contamination of meat products.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
69
|
Maggio F, Rossi C, Chiaverini A, Ruolo A, Orsini M, Centorame P, Acciari VA, Chaves López C, Salini R, Torresi M, Serio A, Pomilio F, Paparella A. Genetic relationships and biofilm formation of Listeria monocytogenes isolated from the smoked salmon industry. Int J Food Microbiol 2021; 356:109353. [PMID: 34411997 DOI: 10.1016/j.ijfoodmicro.2021.109353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Among pathogens, L. monocytogenes has the capability to persist on Food Processing Environment (FPE), first of all posing safety issues, then economic impact on productivity. The aim of this work was to determine the influence of biofilm forming-ability and molecular features on the persistence of 19 Listeria monocytogenes isolates obtained from FPE, raw and processed products of a cold-smoked salmon processing plant. To verify the phenotypic and genomic correlations among the isolates, different analyses were employed: serotyping, Clonal Complex (CC), core genome Multi-Locus Sequence Typing (cgMLST) and Single Nucleotide Polymorphisms (SNPs) clustering, and evaluation of the presence of virulence- and persistence-associated genes. From our results, the biofilm formation was significantly higher (*P < 0.05) at 37 °C, compared to 30 and 12 °C, suggesting a temperature-dependent behaviour. Moreover, the biofilm-forming ability showed a strain-specific trend, not correlated with CC or with strains persistence. Instead, the presence of internalin (inL), Stress Survival Islet (SSI) and resistance to erythromycin (ermC) genes was correlated with the ability to produce biofilms. Our data demonstrate that the genetic profile influences the adhesion capacity and persistence of L. monocytogenes in food processing plants and could be the result of environmental adaptation in response to the external selective pressure.
Collapse
Affiliation(s)
- Francesca Maggio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| | - Alexandra Chiaverini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Anna Ruolo
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Massimiliano Orsini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy; Department of Risk Analysis and Public Health Surveillance, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Patrizia Centorame
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Vicdalia A Acciari
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Clemencia Chaves López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| | - Romolo Salini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy.
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, TE, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, TE, Italy
| |
Collapse
|
70
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
71
|
Benameur Q, Gervasi T, Giarratana F, Vitale M, Anzà D, La Camera E, Nostro A, Cicero N, Marino A. Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria. Antibiotics (Basel) 2021; 10:antibiotics10101157. [PMID: 34680738 PMCID: PMC8532970 DOI: 10.3390/antibiotics10101157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to assess the virulence, antimicrobial resistance and biofilm production of Escherichia coli strains isolated from healthy broiler chickens in Western Algeria. E. coli strains (n = 18) were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Susceptibility to 10 antibiotics was determined by standard methods. Virulence and extended-spectrum β-lactamase (ESBL) genes were detected by PCR. The biofilm production was evaluated by microplate assay. All the isolates were negative for the major virulence/toxin genes tested (rfbE, fliC, eaeA, stx1), except one was stx2-positive. However, all were resistant to at least three antibiotics. Ten strains were ESBL-positive. Seven carried the β-lactamase blaTEM gene only and two co-harbored blaTEM and blaCTX-M-1 genes. One carried the blaSHV gene. Among the seven strains harboring blaTEM only, six had putative enteroaggregative genes. Two contained irp2, two contained both irp2 and astA, one contained astA and another contained aggR, astA and irp2 genes. All isolates carrying ESBL genes were non-biofilm producers, except one weak producer. The ESBL-negative isolates were moderate biofilm producers and, among them, two harbored astA, two irp2, and one aggR, astA and irp2 genes. This study highlights the spread of antimicrobial-resistant E. coli strains from healthy broiler chickens in Western Algeria.
Collapse
Affiliation(s)
- Qada Benameur
- Nursing Department, Faculty of Nature and Life Sciences, University of Mostaganem, Mostaganem 27000, Algeria;
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
- Correspondence: ; Tel.: +39-090-676-2870
| | - Filippo Giarratana
- Department of Veterinary Sciences, University of Messina, 98100 Messina, Italy;
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia “Adelmo Mirri”, 90141 Palermo, Italy; (M.V.); (D.A.)
| | - Davide Anzà
- Istituto Zooprofilattico Sperimentale della Sicilia “Adelmo Mirri”, 90141 Palermo, Italy; (M.V.); (D.A.)
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| |
Collapse
|
72
|
Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X. Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai. Front Microbiol 2021; 12:729114. [PMID: 34512606 PMCID: PMC8427505 DOI: 10.3389/fmicb.2021.729114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that causes listeriosis and is mostly linked to consumption of ready-to-eat (RTE) foods. Lack of hygiene in food processing environments may be a primary reason for contamination by L. monocytogenes isolates. In this study, L. monocytogenes strains isolated from two RTE meat processing plants in the Shanghai municipality, China, were characterized during 2019–2020 using pulsed-field gel electrophoresis and whole-genome sequencing. Results showed that 29 samples (12.2%) out of 239 were positive for L. monocytogenes, with 21 (18.9%) and 8 (6.25%) isolates from plants A and B, respectively. The packaging room at plant A had the most contamination (14, 48.3%; p < 0.05), with a peak occurrence of 76.5% in processing environments. Nineteen L. monocytogenes isolates belonging to the pulsotype (PT) 7 group were indistinguishable (≥ 95.7%). Furthermore, core-genome multiple loci sequencing typing identified up to nine allelic differences, and the closet pairwise differences among these ST5 isolates included 0–16 small nucleotide polymorphisms. Therefore, L. monocytogenes likely persisted at plant A during 2019–2020 with ongoing clone transmission. In contrast, no L. monocytogenes isolates were identified from processing environments at plant B. Most L. monocytogenes isolates were sampled from raw materials (62.5%). Several isolates (ST378, ST8, and ST120) were detected only once in 2020 and were considered as transient isolates. However, three ST121 isolates with the same PT (PT2) were detected in 2020 and should be noted for their stronger survival ability in harsh environments. These results suggest that continuous monitoring, stringent surveillance, and source tracking are crucial to guaranteeing food safety in RTE food plants.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jing Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Zhaoyu Chang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Liu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Ying Yu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xiaoguang Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Qingli Dong
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Yulong Ye
- The Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
73
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
74
|
Exploring Listeria monocytogenes perceptions in small and medium sized food manufacturers: Technical leaders' perceptions of risk, control and responsibility. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
75
|
Prevalence, Antibiogram and Biofilm Production of Listeria Monocytogenes from Faeces and Foetuses of Slaughtered Pregnant Cows: Environmental and Public Health Implications. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
The indiscriminate slaughter of pregnant animals which characterizes most developing countries poses increasing environmental and public health risks from Listeria monocytogenes infections which are endemic in such settings. The available reports show increasing trends of Listeria monocytogenes infections in both humans and animals in Nigeria. This study examined the prevalence, antibiogram and biofilm production of L. monocytogenes from faeces and foetuses of slaughtered pregnant cows in Ibadan Central Abattoir, Nigeria. Faecal (n = 118) and foetal (n = 118) swabs were cultured and isolates tested for antibiotic susceptibility by Kirby-Bauer assay, while biofilm production was quantified following the standard procedures. The data were analysed using the Chi Square and Student’s t-test at P < 0.05. Listeria monocytogenes were isolated from five (4.2 %) and three (2.5 %) faeces and foetus swabs, respectively, without significant association with sample type (P = 0.50). The isolates were resistant to all the antibiotics tested except gentamicin; with significantly higher production of biofilm by those from foetal samples (P = 0.012). The detection of widespread antibiotic-resistant L. monocytogenes from faeces and foetuses has important environmental and public health implications, given the risk of contamination through faecal shedding and foetal handling. The biofilm production by the pathogen connotes its ability to persist in the environment, suggestive of the challenging effects to its control. Campaigns against indiscriminate slaughter of pregnant animals, and proper hygiene are advocated to ultimately safeguard human and animal health.
Collapse
|
76
|
Janež N, Škrlj B, Sterniša M, Klančnik A, Sabotič J. The role of the Listeria monocytogenes surfactome in biofilm formation. Microb Biotechnol 2021; 14:1269-1281. [PMID: 34106516 PMCID: PMC8313260 DOI: 10.1111/1751-7915.13847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.
Collapse
Affiliation(s)
- Nika Janež
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| | - Blaž Škrlj
- Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Meta Sterniša
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Anja Klančnik
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Jerica Sabotič
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| |
Collapse
|
77
|
Effect of Gaseous Ozone on Listeria monocytogenes Planktonic Cells and Biofilm: An In Vitro Study. Foods 2021; 10:foods10071484. [PMID: 34206833 PMCID: PMC8306814 DOI: 10.3390/foods10071484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Among food-borne pathogens, Listeria monocytogenes continues to pose concerns to food business operators due to its capacity to form biofilm in processing environments. Ozone may be an eco-friendly technology to control microbial contaminations, but data concerning its effect on Listeria monocytogenes biofilm are still limited. In this study, the effect of gaseous ozone at 50 ppm on planktonic cells and biofilm of reference and food-related Listeria monocytogenes strains was evaluated. Ozone caused a reduction in microbial loads of 3.7 ± 0.4 and 3.9 ± 0.4 Log10 CFU/mL after 10 and 30 min, respectively. A complete inactivation of planktonic cells after 6 h of treatment was observed. Biofilm inhibition and eradication treatments (50 ppm, 6 h) resulted in a significant decrease of the biofilm biomass for 59% of the strains tested, whilst a slight dampening of live cell loads in the biofilm state was observed. In conclusion, gaseous ozone is not sufficient to completely counteract Listeria monocytogenes biofilm, but it may be useful as an additional tool to contrast Listeria monocytogenes free-living cells and to improve the existing sanitization procedures in food processing environments.
Collapse
|
78
|
Gray J, Chandry PS, Kaur M, Kocharunchitt C, Fanning S, Bowman JP, Fox EM. Colonisation dynamics of Listeria monocytogenes strains isolated from food production environments. Sci Rep 2021; 11:12195. [PMID: 34108547 PMCID: PMC8190317 DOI: 10.1038/s41598-021-91503-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium capable of colonising and persisting within food production environments (FPEs) for many years, even decades. This ability to colonise, survive and persist within the FPEs can result in food product cross-contamination, including vulnerable products such as ready to eat food items. Various environmental and genetic elements are purported to be involved, with the ability to form biofilms being an important factor. In this study we examined various mechanisms which can influence colonisation in FPEs. The ability of isolates (n = 52) to attach and grow in biofilm was assessed, distinguishing slower biofilm formers from isolates forming biofilm more rapidly. These isolates were further assessed to determine if growth rate, exopolymeric substance production and/or the agr signalling propeptide influenced these dynamics and could promote persistence in conditions reflective of FPE. Despite no strong association with the above factors to a rapid colonisation phenotype, the global transcriptome suggested transport, energy production and metabolism genes were widely upregulated during the initial colonisation stages under nutrient limited conditions. However, the upregulation of the metabolism systems varied between isolates supporting the idea that L. monocytogenes ability to colonise the FPEs is strain-specific.
Collapse
Affiliation(s)
- Jessica Gray
- CSIRO Agriculture and Food, Werribee, VIC, Australia. .,Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia.
| | | | - Mandeep Kaur
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, D04 N2E5, Ireland.,Institute for Global Food Security, Queen's University Belfast, Chlorine Gardens, Belfast, BT5 6AG, UK
| | - John P Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Edward M Fox
- CSIRO Agriculture and Food, Werribee, VIC, Australia. .,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
79
|
Molecular Characterization and Biofilm Formation Study of Contaminant Bacteria Isolated from Domiaty and Hungarian Cheeses in Jeddah City. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim was to study the microbiological quality of Domiaty and Hungarian cheeses, molecular identification and biofilm formation of some selected contaminant bacteria. Samples were collected from two M and P big markets in Jeddah City through the period from February to October 2018, nine visits for two types of natural cheese. Results showed that the total bacterial counts (CFU/ml) from Domiaty cheese from two markets (M and P) were 0.1 x 105, 8 x 105 and 1 x 10 5 CFU/ml respectively (3 visits of M market) and 4 x 106, 0.4 x 106, 6.5 x 103, 1 x 103, 0.1 x 103 and 0.1 x 103 CFU/ml respectively (six samples from 6 visits from P market). Results showed that the total bacterial counts (CFU/ml) from Hungarian cheese were 1.5 x 10 5, 1x 10 4, 11 x 10 4 and 4 x10 6 CFU/ml respectively from (4 visits of M market) and 0.18 x 104, 3 x 106, 22 x 106, 6 x 106 and 5 x 104 CFU/ml respectively (5 visits from P market).Different bacterial isolates from cheese were identified by morphology and biochemical test. Bacterial isolates from cheeses were identified by VITEK MS as follow: Serratia liquefaciens (D6-1, D6-2, D14-1, D13-1 and D13-2), and Pseudomonas fluorescens (D14-2) were isolated from Domiaty cheese while Enterococcus faecium (H11-2), Serratia liquefaciens (H15-1) and Streptococcus thermophilus (H14-1) were isolated from Hungarian cheese. Some selected bacterial isolates were identified by 16S rRNA. Isolates were belong to MK757978 (Raoultilla terrigena (D15-1)), MK757979 (Bacillus cereus (D16-1)), MK757980 (Enterococcus faecalis (H10-2)), MK757982 (Enterococcus fiscalism (H11-1)), MK757981 (Serratia liquefactions (H13-1)), MK757984 (Anoxybacillus flavithermus (H17-1). All bacterial isolates have been tested for the formation of biofilm using a Tissue Culture Plate (TCP). Results revealed 12.5% and 46.15% of high biofilm formation respectively for bacterial isolates of Domiaty and Hungarian cheeses.
Collapse
|
80
|
Haddad S, Elliot M, Savard T, Deschênes L, Smith T, Ells T. Variations in biofilms harbouring Listeria monocytogenes in dual and triplex cultures with Pseudomonas fluorescens and Lactobacillus plantarum produced under a model system of simulated meat processing conditions, and their resistance to benzalkonium chloride. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
81
|
Fagerlund A, Wubshet SG, Møretrø T, Schmidt G, Borge GI, Langsrud S. Anti-listerial properties of chemical constituents of Eruca sativa (rocket salad): From industrial observation to in vitro activity. PLoS One 2021; 16:e0250648. [PMID: 33905441 PMCID: PMC8078797 DOI: 10.1371/journal.pone.0250648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The frequency of foodborne outbreaks epidemiologically associated with Listeria monocytogenes in fresh produce has increased in recent years. Although L. monocytogenes may be transferred from the environment to vegetables during farming, contamination of food products most commonly occurs in food processing facilities, where L. monocytogenes has the ability to establish and persist on processing equipment. The current study was undertaken to collect data on the occurrence of L. monocytogenes and the identity of the endogenous microbiota in a fresh produce processing facility, for which information has remained scarce. L. monocytogenes was not detected in the facility. Experiments simulating conditions in the processing environment were performed, including examination of bacterial growth in nutrients based on vegetables (salad juice) compared to in other types of nutrients (fish, meat). Results showed that the endogenous microbiota (dominated by Pseudomonas) grew well in iceberg lettuce and rocket salad juice at low temperatures, while growth inhibition of L. monocytogenes was observed, particularly in rocket salad juice. The anti-listerial activity in rocket salad juice was retained in a polar chromatographic fraction containing several metabolites. Characterization of this active fraction, using LC-MS/MS, led to identification of 19 compounds including nucleosides and amino acids. Further work is necessary to determine the molecular mechanism responsible for the inhibitory activity of rocket salad constituents. The study nevertheless suggests that the available nutrients, as well as a low temperature (3 °C) and the in-house bacterial flora, may influence the prevalence of L. monocytogenes in fresh produce processing facilities.
Collapse
Affiliation(s)
- Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- * E-mail:
| | | | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Gesine Schmidt
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Grethe Iren Borge
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
82
|
Lachtara B, Osek J, Wieczorek K. Molecular Typing of Listeria monocytogenes IVb Serogroup Isolated from Food and Food Production Environments in Poland. Pathogens 2021; 10:pathogens10040482. [PMID: 33921133 PMCID: PMC8071568 DOI: 10.3390/pathogens10040482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that may be present in food and in food processing environments. In the present study, 91 L. monocytogenes isolates of serogroup IVb from raw meat, ready-to-eat food and food production environments in Poland were characterized by whole genome sequencing (WGS). The strains were also compared, using core genome multi-locus sequence typing (cgMLST) analysis, with 186 genomes of L. monocytogenes recovered worldwide from food, environments, and from humans with listeriosis. The L. monocytogenes examined belonged to three MLST clonal complexes: CC1 (10; 11.0% isolates), CC2 (70; 76.9%), and CC6 (11; 12.1%). CC1 comprised of two STs (ST1 and ST515) which could be divided into five cgMLST, CC2 covered two STs (ST2 and ST145) with a total of 20 cgMLST types, whereas CC6 consisted of only one ST (ST6) classified as one cgMLST. WGS sequences of the tested strains revealed that they had several pathogenic markers making them potentially hazardous for public health. Molecular comparison of L. monocytogenes strains tested in the present study with those isolated from food and human listeriosis showed a relationship between the isolates from Poland, but not from other countries.
Collapse
|
83
|
Perez‐Arnedo I, Cantalejo MJ, Martínez‐Laorden A, Gonzalez‐Fandos E. Effect of processing on the microbiological quality and safety of chicken carcasses at slaughterhouse. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Iratxe Perez‐Arnedo
- Food Technology Department CIVA Research Center University of La Rioja Madre de Dios 53 Logrono La Rioja26006Spain
| | - María J. Cantalejo
- School of Agricultural Engineering Public University of NavarreEdificio Los Olivos Campus de Arrosadia sn Pamplona31006Spain
| | - Alba Martínez‐Laorden
- Food Technology Department CIVA Research Center University of La Rioja Madre de Dios 53 Logrono La Rioja26006Spain
| | - Elena Gonzalez‐Fandos
- Food Technology Department CIVA Research Center University of La Rioja Madre de Dios 53 Logrono La Rioja26006Spain
| |
Collapse
|
84
|
Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 2021; 142:110193. [PMID: 33773669 DOI: 10.1016/j.foodres.2021.110193] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Phytic acid (PA), [myo-inositol 1,2,3,4,5,6-hexakisphosphate] is the principal storage compound of phosphorus (P) and account for 65%-85% of the seeds total P. The negative charge on PA attracts and chelates metal cations resulting in a mixed insoluble salt, phytate. Phytate contains six negatively charged ions, chelates divalent cations such as Fe2+, Zn2+, Mg2+, and Ca2+ rendering them unavailable for absorption by monogastric animals. This may lead to micronutrient deficiencies in humans since they lack the enzyme phytase that hydrolyzes phytate and releases the bound micronutrients. There are two main concerns about the presence of PA in human diet. The first is its negative impact on the bioavailability of several minerals and the second is the evidence of PA inhibiting various proteases essential for protein degradation and the subsequent digestion in stomach and small intestine. The beneficial role of PA has been underestimated due to its distinct negative consequences. PA is reported to be a potent natural plant antioxidant which plays a protective role against oxidative stress in seeds and preventive role in various human diseases. Recently beneficial roles of PA as an antidiabetic and antibacterial agent has been reported. Thus, the development of grains with low-PA and modified distribution pattern can be achieved through fine-tuning of its content in the seeds.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR- National Rice Research Institute (ICAR-NRRI), Cuttack-753006, Odisha, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Pinky Raigond
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Chandrasekhar Sahu
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Udit Nandan Mishra
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Srigopal Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
85
|
Dula S, Ajayeoba TA, Ijabadeniyi OA. Bacterial biofilm formation on stainless steel in the food processing environment and its health implications. Folia Microbiol (Praha) 2021; 66:293-302. [PMID: 33768506 DOI: 10.1007/s12223-021-00864-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022]
Abstract
Biofilm formation (BF) and production in the food processing industry (FPI) is a continual threat to food safety and quality. Various bacterial pathogens possess the ability to adhere and produce biofilms on stainless steel (SS) in the FPI due to flagella, curli, pili, fimbrial adhesins, extra polymeric substances, and surface proteins. The facilitating environmental conditions (temperature, pressure, variations in climatic conditions), SS properties (surface energy, hydrophobicity, surface roughness, topography), type of raw food materials, pre-processing, and processing conditions play a significant role in the enhancement of bacterial adhesion and favorable condition for BF. Furthermore, biofilm formers can tolerate different sanitizers and cleaning agents due to the constituents, concentration, contact time, bacterial cluster distribution, and composition of bacteria within the biofilm. Also, bacterial biofilms' ability to produce various endotoxins and exotoxins when consumed cause food infections and intoxications with serious health implications. It is thus crucial to understand BF's repercussions and develop effective interventions against these phenomena that make persistent pathogens difficult to remove in the food processing environment.
Collapse
Affiliation(s)
- Stanley Dula
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Titilayo Adenike Ajayeoba
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa. .,Department of Microbiology, Faculty of Science, Adeleke University, Ede, Nigeria.
| | | |
Collapse
|
86
|
Zhang H, Que F, Xu B, Sun L, Zhu Y, Chen W, Ye Y, Dong Q, Liu H, Zhang X. Identification of Listeria monocytogenes Contamination in a Ready-to-Eat Meat Processing Plant in China. Front Microbiol 2021; 12:628204. [PMID: 33717016 PMCID: PMC7947619 DOI: 10.3389/fmicb.2021.628204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is the etiologic agent of listeriosis, which remains a significant public health concern in many countries due to its high case-fatality rate. The constant risk of L. monocytogenes transmission to consumers remains a central challenge in the food production industry. At present, there is very little known about L. monocytogenes contamination in ready-to-eat (RTE) processing plants in China. In this study, L. monocytogenes in an RTE meat processing plant in Shanghai municipality was characterized using pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). Furthermore, the biofilm formation ability of the pathogen was also tested. Results revealed that L. monocytogenes isolates were present in 12 samples out of the 48 samples investigated. Most of them (66.7%, 8/12) were identified from the processing facilities irrespective of observed hygiene levels of aerobic plate count (APC) and coliforms. Coliforms were present in only one processing area. ST5 (1/2b) isolates were predominant (83.3%, 10/12) and were identified in two dominant pulsotypes (PTs) (three in PT3 and seven in PT4, respectively). Results of the core-genome multi-locus sequence typing (cgMLST) showed that ST5 in three PTs (PT1, PT3, and PT4) had 0-8 alleles, which confirmed that clonal transmission occurred in the RTE meat processing facilities. In addition, the biofilm formation test confirmed that the isolates from the processing facilities could form biofilms, which helped them colonize and facilitate persistence in the environment. These results indicated that common sanitation procedures regularly applied in the processing environment were efficient but not sufficient to remove L. monocytogenes isolates, especially biofilm of L. monocytogenes. Furthermore, the ST5 isolates in this study exhibited 12 alleles with one ST5 clinical isolate, which contributes to the understanding of the potential pathogenic risk that L. monocytogenes in RTE meat processing equipment posed to consumers. Therefore, strong hygienic measures, especially sanitation procedures for biofilms eradication, should be implemented to ensure the safety of raw materials. Meanwhile, continuous surveillance might be vital for the prevention and control of listeriosis caused by L. monocytogenes.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Fengxia Que
- The Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Linjun Sun
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanqi Zhu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Wenjie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yulong Ye
- The Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Qingli Dong
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
87
|
Properties of the Extracellular Polymeric Substance Layer from Minimally Grown Planktonic Cells of Listeria monocytogenes. Biomolecules 2021; 11:biom11020331. [PMID: 33671666 PMCID: PMC7926710 DOI: 10.3390/biom11020331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterium Listeria monocytogenes is a serious concern to food processing facilities because of its persistence. When liquid cultures of L. monocytogenes were prepared in defined media, it was noted that planktonic cells rapidly dropped out of suspension. Zeta potential and hydrophobicity assays found that the cells were more negatively charged (−22, −18, −10 mV in defined media D10, MCDB 202 and brain heart infusion [BHI] media, respectively) and were also more hydrophobic. A SEM analysis detected a capsular-like structure on the surface of cells grown in D10 media. A crude extract of the extracellular polymeric substance (EPS) was found to contain cell-associated proteins. The proteins were removed with pronase treatment. The remaining non-proteinaceous component was not stained by Coomassie blue dye and a further chemical analysis of the EPS did not detect significant amounts of sugars, DNA, polyglutamic acid or any other specific amino acid. When the purified EPS was subjected to attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, the spectra obtained did not match the profile of any of the 12 reference compounds used. An x-ray diffraction (XRD) analysis showed that the EPS was amorphous and a nuclear magnetic resonance (NMR) analysis detected the presence of glycerol. An elemental energy dispersive x-ray (EDX) analysis showed traces of phosphorous as a major component. In conclusion, it is proposed that the non-proteinaceous component may be phospholipid in nature, possibly derived from the cell wall lipoteichoic acid.
Collapse
|
88
|
Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial Biofilms in the Food Industry-A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042014. [PMID: 33669645 PMCID: PMC7922197 DOI: 10.3390/ijerph18042014] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Biofilms, present as microorganisms and surviving on surfaces, can increase food cross-contamination, leading to changes in the food industry’s cleaning and disinfection dynamics. Biofilm is an association of microorganisms that is irreversibly linked with a surface, contained in an extracellular polymeric substance matrix, which poses a formidable challenge for food industries. To avoid biofilms from forming, and to eliminate them from reversible attachment and irreversible stages, where attached microorganisms improve surface adhesion, a strong disinfectant is required to eliminate bacterial attachments. This review paper tackles biofilm problems from all perspectives, including biofilm-forming pathogens in the food industry, disinfectant resistance of biofilm, and identification methods. As biofilms are largely responsible for food spoilage and outbreaks, they are also considered responsible for damage to food processing equipment. Hence the need to gain good knowledge about all of the factors favouring their development or growth, such as the attachment surface, food matrix components, environmental conditions, the bacterial cells involved, and electrostatic charging of surfaces. Overall, this review study shows the real threat of biofilms in the food industry due to the resistance of disinfectants and the mechanisms developed for their survival, including the intercellular signalling system, the cyclic nucleotide second messenger, and biofilm-associated proteins.
Collapse
Affiliation(s)
- Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
- Correspondence: (C.C.); (A.R.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, 55142 Apartado, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (C.C.); (A.R.)
| |
Collapse
|
89
|
Tian F, Li J, Nazir A, Tong Y. Bacteriophage - A Promising Alternative Measure for Bacterial Biofilm Control. Infect Drug Resist 2021; 14:205-217. [PMID: 33505163 PMCID: PMC7829120 DOI: 10.2147/idr.s290093] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023] Open
Abstract
Bacterial biofilms can enhance bacteria's viability by providing resistance against antibiotics and conventional disinfectants. The existence of biofilm is a serious threat to human health, causing incalculable loss. Therefore, new strategies to deal with bacterial biofilms are needed. Bacteriophages are unique due to their activity on bacteria and do not pose a threat to humans. Consequently, they are considered safe alternatives to drugs for the treatment of bacterial diseases. They can effectively obliterate bacterial biofilms and have great potential in medical treatment, the food industry, and pollution control. There are intricate mechanisms of interaction between phages and biofilms. Biofilms may prevent the invasion of phages, and phages can kill bacteria for biofilm control purposes or influence the formation of biofilms. At present, there are various measures for the prevention and control of biofilms through phages, including the combined use of drugs and the application of phage cocktails. This article mainly reviews the function and formation process of bacterial biofilms, summarizes the different mechanisms between phages and biofilms, briefly explains the phage usage for the control of bacterial biofilms, and promotes phage application maintenance human health and the protection of the natural environment.
Collapse
Affiliation(s)
- Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Jing Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Amina Nazir
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
90
|
Dou F, Huang K, Nitin N. Targeted Photodynamic Treatment of Bacterial Biofilms Using Curcumin Encapsulated in Cells and Cell Wall Particles. ACS APPLIED BIO MATERIALS 2021; 4:514-522. [PMID: 35014299 DOI: 10.1021/acsabm.0c01051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Efficient inactivation and removal of pathogenic biofilms in food and biomedical environments remain a significant challenge for food safety applications and medical facilities. This research aims to develop food-grade microcarriers for the targeted delivery of a photosensitizer, curcumin, and photodynamic inactivation of a model pathogenic bacterial biofilm. The microcarriers evaluated in this study include alive yeast cell carriers, deactivated yeast cell carriers, and yeast cell wall particles. The microcarriers were evaluated based on the encapsulation yield of a model photosensitizer (curcumin), binding of the microcarriers to biofilms, and inactivation of the bacteria in the biofilms. The results illustrate that the combination of binding affinity, encapsulation yield, and the intracellular composition of the microcarriers influenced the overall inactivation of bacteria in the biofilms. All of the selected compositions achieved more than 93% inactivation of the bacteria in the biofilm using the photodynamic treatment, and the yeast cell wall particles with curcumin achieved over 99% inactivation of the bacteria in the biofilm matrix. In addition, all of the selected compositions demonstrated significant potential to remove the biofilm from the plastic surface, suggesting the role of binding affinity of the microcarriers in removal of the biofilm from surfaces. Overall, this study developed biomaterial formulations for targeted photodynamic inactivation and potential removal of biofilms.
Collapse
Affiliation(s)
- Fang Dou
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, California 95616, United States.,Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
91
|
Mazaheri T, Cervantes-Huamán BRH, Bermúdez-Capdevila M, Ripolles-Avila C, Rodríguez-Jerez JJ. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms 2021; 9:microorganisms9010181. [PMID: 33467747 PMCID: PMC7830665 DOI: 10.3390/microorganisms9010181] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Biofilms contain microbial cells which are protected by a self-produced matrix and they firmly attach themselves to many different food industry surfaces. Due to this protection, microorganisms within biofilms are much more difficult to eradicate and therefore to control than suspended cells. A bacterium that tends to produce these structures and persist in food processing plants is Listeria monocytogenes. To this effect, many attempts have been made to develop control strategies to be applied in the food industry, although there seems to be no clear direction on how to manage the risk the bacteria poses. There is no standardized protocol that is applied equally to all food sectors, so the strategies for the control of this pathogen depend on the type of surface, the nature of the product, the conditions of the food industry environment, and indeed the budget. The food industry performs different preventive and corrective measures on possible L. monocytogenes-contaminated surfaces. However, a critical evaluation of the sanitization methods applied must be performed to discern whether the treatment can be effective in the long-term. This review will focus on currently used strategies to eliminate biofilms and control their formation in processing facilities in different food sectors (i.e., dairy, meat, fish, chilled vegetables, and ready-to-eat products). The technologies employed for their control will be exemplified and discussed with the objective of understanding how L. monocytogenes can be improved through food safety management systems.
Collapse
|
92
|
Aguilar-Marcelino L, Al-Ani LKT, Freitas Soares FED, Moreira ALE, Téllez-Téllez M, Castañeda-Ramírez GS, Lourdes Acosta-Urdapilleta MD, Díaz-Godínez G, Pineda-Alegría JA. Formation, Resistance, and Pathogenicity of Fungal Biofilms: Current Trends and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
93
|
Gray JA, Chandry PS, Bowman JP, Fox EM. High-Throughput Screening of Biofilm Formation of Listeria monocytogenes on Stainless Steel Coupons Using a 96-Well Plate Format. Methods Mol Biol 2021; 2220:115-122. [PMID: 32975770 DOI: 10.1007/978-1-0716-0982-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen capable of colonizing and persisting in the food production environment (FPE). While there are a variety of factors involved in L. monocytogenes' ability to persist in FPE, the ability to form biofilms has the potential to increase their chance of survival and long-term colonization. Understanding the mechanisms involved in L. monocytogenes ability to form biofilms may potentially help food safety managers optimize control strategies targeting it in the FPE. In this chapter, a high-throughput method to determine L. monocytogenes ability to attach and form biofilms utilizing FPE-grade stainless steel is described. This method provides fast and efficient results, facilitating scaling up to large numbers of isolates to measure their ability to form biofilms, where lower-throughput approaches can then be utilized to further characterize isolates of interest.
Collapse
Affiliation(s)
| | | | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Edward M Fox
- CSIRO Agriculture and Food, Werribee, VIC, Australia.
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK.
| |
Collapse
|
94
|
Soares VM, Sampaio ANDCE, Dos Santos EAR, Tadielo LE, Pereira JG. Presence of Listeria monocytogenes and Salmonella spp. in lamb meat commercialized in Uruguaiana, Rio Grande do Sul, Brazil. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2021; 43:e114420. [PMID: 35749107 PMCID: PMC9179196 DOI: 10.29374/2527-2179.bjvm114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to evaluate the hygienic-sanitary quality of lamb meat sold in the city of Uruguaiana, Rio Grande do Sul (RS) by counting the indicator microorganisms and detecting pathogens such as Salmonella spp. and Listeria monocytogenes. Thirty-nine lamb meat samples were collected from 10 commercial establishments in Uruguaiana. The samples were subjected to counts of aerobic mesophilic microorganisms and enterobacteria, and to the detection of Salmonella spp. and L. monocytogenes, all following standard methods. The average counts of mesophilic microorganisms and enterobacteria were 6.08 log CFU/g (minimum 4.07 and max 6.87) and 4.73 log CFU/g (minimum 0 and max 5.88), respectively. For pathogens, L. monocytogenes was isolated from five samples (12.82%), with three samples in the same location. Only two samples (5.13%) were positive for Salmonella spp. The results demonstrated unsatisfactory hygienic-sanitary conditions because high counts of pathogens such as Salmonella spp. and L. monocytogenes. The counts of enterobacteria showed poor hygiene conditions during the various stages of production. The results also indicated fecal contamination, as Salmonella spp. and L. monocytogenes are present in the intestinal tract of both humans and animals. The high count of mesophilic microorganisms obtained could be owing to contaminated raw material or unsatisfactory processing, including unsanitary conditions and the inappropriate use of binomial time/temperature during storage.
Collapse
Affiliation(s)
- Vanessa Mendonça Soares
- Veterinarian, DSc. Programa de Pós-Graduação em Ciência Animal. Universidade Federal do Pampa (UNIPAMPA). Campus Uruguaiana, RS. Brasil
| | - Aryele Nunes da Cruz Encide Sampaio
- Veterinarian, Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Departamento de Produção Animal e Medicina Veterinária Preventiva (DPAMVP), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", (UNESP). Campus Botucatu, SP. Brasil
| | | | | | | |
Collapse
|
95
|
Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms 2020; 8:microorganisms8122020. [PMID: 33348645 PMCID: PMC7766987 DOI: 10.3390/microorganisms8122020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023] Open
Abstract
Since they were discovered, amyloids have proven to be versatile proteins able to participate in a variety of cellular functions across all kingdoms of life. This multitask trait seems to reside in their ability to coexist as monomers, aggregates or fibrillar entities, with morphological and biochemical peculiarities. It is precisely this common molecular behaviour that allows amyloids to cross react with one another, triggering heterologous aggregation. In bacteria, many of these functional amyloids are devoted to the assembly of biofilms by organizing the matrix scaffold that keeps cells together. However, consistent with their notion of multifunctional proteins, functional amyloids participate in other biological roles within the same organisms, and emerging unprecedented functions are being discovered. In this review, we focus on functional amyloids reported in gram-positive bacteria, which are diverse in their assembly mechanisms and remarkably specific in their biological functions that they perform. Finally, we consider cross-seeding between functional amyloids as an emerging theme in interspecies interactions that contributes to the diversification of bacterial biology.
Collapse
|
96
|
Clean-in-place disinfection of dual-species biofilm (Listeria and Pseudomonas) by a green antibacterial product made from citrus extract. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
97
|
Scorpion-Venom-Derived Antimicrobial Peptide Css54 Exerts Potent Antimicrobial Activity by Disrupting Bacterial Membrane of Zoonotic Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9110831. [PMID: 33233541 PMCID: PMC7699533 DOI: 10.3390/antibiotics9110831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023] Open
Abstract
Antibiotic resistance is an important issue affecting humans and livestock. Antimicrobial peptides are promising alternatives to antibiotics. In this study, the antimicrobial peptide Css54, isolated from the venom of C. suffuses, was found to exhibit antimicrobial activity against bacteria such as Listeria monocytogenes, Streptococcus suis, Campylobacter jejuni, and Salmonella typhimurium that cause zoonotic diseases. Moreover, the cytotoxicity and hemolytic activity of Css54 was lower than that of melittin isolated from bee venom. Circular dichroism assays showed that Css54 has an α-helix structure in an environment mimicking that of bacterial cell membranes. We examined the effect of Css54 on bacterial membranes using N-phenyl-1-naphthylamine, 3,3'-dipropylthiadicarbbocyanine iodides, SYTOX green, and propidium iodide. Our findings suggest that the Css54 peptide kills bacteria by disrupting the bacterial membrane. Moreover, Css54 exhibited antibiofilm activity against L. monocytogenes. Thus, Css54 may be useful as an alternative to antibiotics in humans and animal husbandry.
Collapse
|
98
|
El-Hajjaji S, Gérard A, Sindic M. Is Butter A Product at Risk Regarding Listeria Monocytogenes? - A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1831528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Soundous El-Hajjaji
- Laboratory of Quality and Safety of Agro-food Products, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Amaury Gérard
- Laboratory of Quality and Safety of Agro-food Products, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Marianne Sindic
- Laboratory of Quality and Safety of Agro-food Products, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
99
|
Keba A, Rolon ML, Tamene A, Dessie K, Vipham J, Kovac J, Zewdu A. Review of the prevalence of foodborne pathogens in milk and dairy products in Ethiopia. Int Dairy J 2020; 109:104762. [PMID: 33013007 PMCID: PMC7430047 DOI: 10.1016/j.idairyj.2020.104762] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Food safety is a significant barrier to social and economic development throughout the world, particularly in developing countries. Here, we reviewed the prevalence of major bacterial foodborne pathogens (Salmonella spp., Listeria monocytogenes, Escherichia coli O157:H7 and Campylobacter spp.) in the rapidly growing Ethiopian dairy supply-chain. We identified 15, 9, 5 and 0 studies that had reported the prevalence of Salmonella spp., L. monocytogenes, E. coli O157:H7, and Campylobacter spp. in dairy foods, respectively. The studies reviewed reported a median prevalence of Salmonella, L. monocytogenes, and E. coli O157:H7 of 6, 9 and 10%, respectively, in raw cow milk in Ethiopia, indicating a concerning occurrence of bacterial foodborne pathogens in raw milk. Implementation of good hygiene and production practices and assessment of interventions targeting the reduction of contamination in the dairy supply chain is needed to inform coordinated efforts focused on improvement of dairy food safety in Ethiopia.
Collapse
Affiliation(s)
- Abdi Keba
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Centre, PO Box 036, Addis Ababa, Ethiopia
| | - M. Laura Rolon
- Department of Food Science, The Pennsylvania State University, 202 Rodney A. Erickson Food Science Building, University Park, PA 16802, USA
| | - Aynadis Tamene
- Centre for Food Science and Nutrition, Addis Ababa University, New Graduate Building, College of Natural Sciences, PO Box 1176, Addis Ababa, Ethiopia
| | - Kindinew Dessie
- Department of Plant Science, University of Aksum, PO Box 314, Aksum, Ethiopia
| | - Jessie Vipham
- Department of Animal Science and Industry, Kansas State University, 108 Waters Hall, Manhattan, KS 66506, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, 202 Rodney A. Erickson Food Science Building, University Park, PA 16802, USA
| | - Ashagrie Zewdu
- Centre for Food Science and Nutrition, Addis Ababa University, New Graduate Building, College of Natural Sciences, PO Box 1176, Addis Ababa, Ethiopia
- Corresponding author. Tel.: +251 911194508.
| |
Collapse
|
100
|
Confocal Laser Microscopy Analysis of Listeria monocytogenes Biofilms and Spatially Organized Communities. Methods Mol Biol 2020. [PMID: 32975771 DOI: 10.1007/978-1-0716-0982-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The behavior of Listeria monocytogenes communities in the food chain is closely associated with their spatial organization. Whether as biofilms on industrial surfaces or as microcolonies in food matrices, the resulting physiological diversification combined with the presence of extracellular polymeric substances (EPS) triggers emergent community functions involved in the pathogen survival and persistence (e.g., tolerance to dehydration, biocides, or preservatives). In this contribution, we present a noninvasive confocal laser microscopy (CLM) protocol allowing exploration of the spatial organization of L. monocytogenes communities on various inert or nutritive materials relevant for the food industry.
Collapse
|