51
|
Donate R, Monzón M, Alemán-Domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0046] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.
Collapse
Affiliation(s)
- Ricardo Donate
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - Mario Monzón
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - María Elena Alemán-Domínguez
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| |
Collapse
|
52
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
53
|
Firoozi N, Kang Y. Immobilization of FGF on Poly(xylitol dodecanedioic Acid) Polymer for Tissue Regeneration. Sci Rep 2020; 10:10419. [PMID: 32591607 PMCID: PMC7320172 DOI: 10.1038/s41598-020-67261-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) plays a vital role in the repair and regeneration of most tissues. However, its low stability, short half-life, and rapid inactivation by enzymes in physiological conditions affect their clinical applications. Therefore, to increase the effectiveness of growth factors and to improve tissue regeneration, we developed an elastic polymeric material poly(xylitol dodecanedioic acid) (PXDDA) and loaded FGF on the PXDDA for sustained drug delivery. In this study, we used a simple dopamine coating method to load FGF on the surface of PXDDA polymeric films. The polydopamine-coated FGF-loaded PXDDA samples were then characterized using FTIR and XRD. The in vitro drug release profile of FGF from PXDDA film and cell growth behavior were measured. Results showed that the polydopamine layer coated on the surface of the PXDDA film enhanced the immobilization of FGF and controlled its sustained release. Human fibroblast cells attachment and proliferation on FGF-immobilized PXDDA films were much higher than the other groups without coatings or FGF loading. Based on our results, the surface modification procedure with immobilizing growth factors shows excellent application potential in tissue regeneration.
Collapse
Affiliation(s)
- Negar Firoozi
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States.
- Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States.
- Integrative Biology Ph.D. Program, Department of Biological Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States.
| |
Collapse
|
54
|
Bonadies I, Di Cristo F, Valentino A, Peluso G, Calarco A, Di Salle A. pH-Responsive Resveratrol-Loaded Electrospun Membranes for the Prevention of Implant-Associated Infections. NANOMATERIALS 2020; 10:nano10061175. [PMID: 32560209 PMCID: PMC7353298 DOI: 10.3390/nano10061175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
To date, the implant-associated infections represent a worldwide challenge for the recently reported bacterial drug resistance that can lead to the inefficacy or low efficacy of conventional antibiotic therapies. Plant polyphenolic compounds, including resveratrol (RSV), are increasingly gaining consensus as valid and effective alternatives to antibiotics limiting antibiotic resistance. In this study, electrospun polylactic acid (PLA) membranes loaded with different concentrations of RSV are synthesized and characterized in their chemical, morphological, and release features. The obtained data show that the RSV release rate from the PLA-membranes is remarkably higher in acidic conditions than at neutral pH. In addition, a change in pH from neutral to slightly acidic triggers a significant increase in the RSV release. This behavior indicates that the PLA-RSV membranes can act as drug reservoir when the environmental pH is neutral, starting to release the bioactive molecules when the pH decreases, as in presence of oral bacterial infection. Indeed, our results demonstrate that PLA-RSV2 displays a significant antibacterial and antibiofilm activity against two bacterial strains, Pseudomonas aeruginosa PAO1, and Streptococcus mutans, responsible for both acute and chronic infections in humans, thus representing a promising solution for the prevention of the implant-associated infections.
Collapse
Affiliation(s)
- Irene Bonadies
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy;
| | - Francesca Di Cristo
- Elleva Pharma S.R.L. Via Pietro Castellino, 111, 80131 Naples, Italy; (F.D.C.); (A.V.)
| | - Anna Valentino
- Elleva Pharma S.R.L. Via Pietro Castellino, 111, 80131 Naples, Italy; (F.D.C.); (A.V.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (G.P.); (A.D.S.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (G.P.); (A.D.S.)
- Correspondence:
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (G.P.); (A.D.S.)
| |
Collapse
|
55
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
56
|
García-García P, Reyes R, Pérez-Herrero E, Arnau MR, Évora C, Delgado A. Alginate-hydrogel versus alginate-solid system. Efficacy in bone regeneration in osteoporosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111009. [PMID: 32600680 DOI: 10.1016/j.msec.2020.111009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
In the present study, two different PLGA-Alginate scaffolds, a hydrogel (HY) and a solid sponge (SS), were developed for β-estradiol and BMP-2 sustained delivery for bone regeneration in osteoporosis. β-Estradiol and BMP-2 were encapsulated in PLGA and PLGA-Alginate microspheres respectively. Scaffolds were characterized in vitro in terms of porosity, water uptake, release rate and HY rheological properties. BMP-2 release profiles were also analysed in vivo. The bone regeneration induced by both HY and SS was evaluated using a critical-sized bone defect in an osteoporotic (OP) rat model. Compared to HY, SS presented 30% higher porosity, more than double water absorption capacity and almost negligible mass loss compared to the 40% of HY. Both systems were flexible and fit well the defect shape, however, HY has the advantage of being injectable. Despite both delivery systems had similar composition and release profile, bone repair was around 30% higher with SS than with HY, possibly due to its longer residence time at the defect site. The incorporation of mesenchymal stem cells obtained from OP rats did not result in any improvement or synergistic effect on bone repair.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Edgar Pérez-Herrero
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain
| | - María Rosa Arnau
- Servicio de Estabulario, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain.
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain; Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain.
| |
Collapse
|
57
|
Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020; 12:E844. [PMID: 32268607 PMCID: PMC7240665 DOI: 10.3390/polym12040844] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | | |
Collapse
|
58
|
Developments in Antibiotic-Eluting Scaffolds for the Treatment of Osteomyelitis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteomyelitis is a devastating disease caused by the infection of bone tissue and is associated with significant morbidity and mortality. It is treated with antibiotic therapy and surgical debridement. A high dose of systemic antibiotics is often required due to poor bone penetration and this is often associated with unacceptable side-effects. To overcome this, local, implantable antibiotic carriers such as polymethyl methacrylate have been developed. However, this is a non-biodegradable material that requires a second surgery to be removed. Attention has therefore shifted to new antibiotic-eluting scaffolds which can be created with a range of unique properties. The purpose of this review is to assess the level of evidence that exists for these novel local treatments. Although this field is still developing, these strategies seem promising and provide hope for the future treatment of chronic osteomyelitis.
Collapse
|
59
|
Nizan NSNH, Zulkifli FH, Hamid HA, Mazwir MH. Effect of Different Concentration of Cellulose Nanocrystals Comprising Hydroxyethyl Cellulose / Poly(Vinyl Alcohol) as a Bone Tissue Engineering Scaffold. MATERIALS SCIENCE FORUM 2020; 981:285-290. [DOI: 10.4028/www.scientific.net/msf.981.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this study, biodegradable scaffolds based on hydroxyethyl cellulose (HEC) (5 wt%) and poly (vinyl alcohol) (PVA) (15 wt%) with different percentages of celullose nanocrystal (CNC) (1 and 7 wt%) were fabricated by lyophilization method to get highly porous scaffolds. These scaffolds were made water insoluble by cross-linking via heat treatment. The morphology and thermal properties of HEC/PVA/CNCs scaffolds were characterized by using Scanning Electron Microscope (SEM) and Thermogravimetric Analysis (TGA). The morphological study showed that both prepared scaffold have highly porous structures with good pore interconnected structure. It was observed that thermal properties of scaffolds increased significantly as the concentration of CNCs increased. Cytotoxicity studies on scaffolds were carried out by utilizing human fetal osteoblast (hFOB) cells using DAPI nuclear stain and then confirmed using SEM. hFOB cells were able to attach and spread on all scaffolds. Incorporated CNCs as reinforcing nanofiller on scaffolds promising a superior functionality in bone tissue engineering.
Collapse
|
60
|
Alksne M, Kalvaityte M, Simoliunas E, Rinkunaite I, Gendviliene I, Locs J, Rutkunas V, Bukelskiene V. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater 2020; 104:103641. [PMID: 32174399 DOI: 10.1016/j.jmbbm.2020.103641] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
3D printing of polylactic acid (PLA) and hydroxyapatite (HA) or bioglass (BG) bioceramics composites is the most promising technique for artificial bone construction. However, HA and BG have different chemical composition as well as different bone regeneration inducing mechanisms. Thus, it is important to compare differentiation processes induced by 3D printed PLA + HA and PLA + BG scaffolds in order to evaluate the strongest osteoconductive and osteoinductive properties possessing bioceramics. In this study, we analysed porous PLA + HA (10%) and PLA + BG (10%) composites' effect on rat's dental pulp stem cells fate in vitro. Obtained results indicated, that PLA + BG scaffolds lead to weaker cell adhesion and proliferation than PLA + HA. Nevertheless, osteoinductive and other biofriendly properties were more pronounced by PLA + BG composites. Overall, the results showed a strong advantage of bioceramic BG against HA, thus, 3D printed PLA + BG composite scaffolds could be a perspective component for patient-specific, cheaper and faster artificial bone tissue production.
Collapse
Affiliation(s)
- Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania.
| | - Migle Kalvaityte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Ieva Gendviliene
- Institute of Odontology, Faculty of Medicine, Vilnius University, Zalgirio Str. 115, LT-08217, Vilnius, Lithuania
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV-1007, Latvia
| | - Vygandas Rutkunas
- Institute of Odontology, Faculty of Medicine, Vilnius University, Zalgirio Str. 115, LT-08217, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
61
|
Azarudeen RS, Hassan MN, Yassin MA, Thirumarimurugan M, Muthukumarasamy N, Velauthapillai D, Mustafa K. 3D printable Polycaprolactone-gelatin blends characterized for in vitro osteogenic potency. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
63
|
Abri S, Ghatpande AA, Ress J, Barton HA, Leipzig ND. Polyionic Complexed Antibacterial Heparin–Chitosan Particles for Antibiotic Delivery. ACS APPLIED BIO MATERIALS 2019; 2:5848-5858. [DOI: 10.1021/acsabm.9b00833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shahrzad Abri
- Department of Chemical and Biomolecular Engineering and ‡Department of Biology, University of Akron, Akron, Ohio 44325, United States of America
| | | | - Jacob Ress
- Department of Chemical and Biomolecular Engineering and ‡Department of Biology, University of Akron, Akron, Ohio 44325, United States of America
| | | | - Nic D. Leipzig
- Department of Chemical and Biomolecular Engineering and ‡Department of Biology, University of Akron, Akron, Ohio 44325, United States of America
| |
Collapse
|
64
|
De R, Jung M, Lee H. Designing Microparticle-Impregnated Polyelectrolyte Composite: The Combination of ATRP, Fast Azidation, and Click Reaction Using a Single-Catalyst, Single-Pot Strategy. Int J Mol Sci 2019; 20:E5582. [PMID: 31717319 PMCID: PMC6888670 DOI: 10.3390/ijms20225582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Polystyrene microparticles were covalently impregnated into the networks of functional polyelectrolyte chains designed via a tandem run of three reactions: (i) synthesis of water-soluble polyelectrolyte, (ii) fast azidation and (iii) a 'click' reaction, using the single-catalyst, single-pot strategy at room temperature in mild aqueous media. The model polyelectrolyte sodium polystyrenesulfonate (NaPSS) was synthesized via the well-controlled atom transfer radical polymerization (ATRP) whose halogen living-end was transformed to azide and subsequently coupled with an alkyne carboxylic acid through a 'click' reaction using the same ATRP catalyst, throughout. Halogen to azide transformation was fast and followed the radical pathway, which was explained through a plausible mechanism. Finally, the success of microparticle impregnation into the NaPSS network was evaluated through Kaiser assay and imaging. This versatile synthetic procedure, having a reduced number of discrete reaction steps and eliminated intermediate work-ups, has established a fast and simple pathway to design functional polymers required to fabricate stable polymer-particle composites where the particles are impregnated covalently and controllably.
Collapse
Affiliation(s)
| | | | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (R.D.); (M.J.)
| |
Collapse
|
65
|
Extended Release Combination Antibiotic Therapy from a Bone Void Filling Putty for Treatment of Osteomyelitis. Pharmaceutics 2019; 11:pharmaceutics11110592. [PMID: 31717467 PMCID: PMC6920883 DOI: 10.3390/pharmaceutics11110592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
In spite of advances in Total Joint Replacements (TJR), infection remains a major concern and a primary causative factor for revision surgery. Current clinical standards treat these osteomyelitis infections with antibiotic-laden poly(methyl methacrylate) (PMMA)-based cement, which has several disadvantages, including inadequate local drug release kinetics, antibiotic leaching for a prolonged period and additional surgical interventions to remove it, etc. Moreover, not all antibiotics (e.g., rifampicin, a potent antibiofilm antibiotic) are compatible with PMMA. For this reason, treatment of TJR-associated infections and related complications remains a significant concern. The objective of this study was to develop a polymer-controlled dual antibiotic-releasing bone void filler (ABVF) with an underlying osseointegrating substrate to treat TJR implant-associated biofilm infections. An ABVF putty was designed to provide sustained vancomycin and rifampicin antibiotic release for 6 weeks while concurrently providing an osseointegrating support for regrowth of lost bone. The reported ABVF showed efficient antibacterial and antibiofilm activity both in vitro and in a rat infection model where the ABVF both showed complete bacterial elimination and supported bone growth. Furthermore, in an in vivo k-wire-based biofilm infection model, the ABVF putty was also able to eliminate the biofilm infection while supporting osseointegration. The retrieved k-wire implants were also free from biofilm and bacterial burden. The ABVF putty delivering combination antibiotics demonstrated that it can be a viable treatment option for implant-related osteomyelitis and may lead to retention of the hardware while enabling single-stage surgery.
Collapse
|
66
|
d'Angelo M, Benedetti E, Tupone MG, Catanesi M, Castelli V, Antonosante A, Cimini A. The Role of Stiffness in Cell Reprogramming: A Potential Role for Biomaterials in Inducing Tissue Regeneration. Cells 2019; 8:E1036. [PMID: 31491966 PMCID: PMC6770247 DOI: 10.3390/cells8091036] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
Abstract
The mechanotransduction is the process by which cells sense mechanical stimuli such as elasticity, viscosity, and nanotopography of extracellular matrix and translate them into biochemical signals. The mechanotransduction regulates several aspects of the cell behavior, including migration, proliferation, and differentiation in a time-dependent manner. Several reports have indicated that cell behavior and fate are not transmitted by a single signal, but rather by an intricate network of many signals operating on different length and timescales that determine cell fate. Since cell biology and biomaterial technology are fundamentals in cell-based regenerative therapies, comprehending the interaction between cells and biomaterials may allow the design of new biomaterials for clinical therapeutic applications in tissue regeneration. In this work, we present the most relevant mechanism by which the biomechanical properties of extracellular matrix (ECM) influence cell reprogramming, with particular attention on the new technologies and materials engineering, in which are taken into account not only the biochemical and biophysical signals patterns but also the factor time.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
67
|
Lima AC, Ferreira H, Reis RL, Neves NM. Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin Drug Deliv 2019; 16:795-813. [DOI: 10.1080/17425247.2019.1635117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Cláudia Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
68
|
Raja IS, Kim C, Song SJ, Shin YC, Kang MS, Hyon SH, Oh JW, Han DW. Virus-Incorporated Biomimetic Nanocomposites for Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1014. [PMID: 31311134 PMCID: PMC6669830 DOI: 10.3390/nano9071014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Owing to the astonishing properties of non-harmful viruses, tissue regeneration using virus-based biomimetic materials has been an emerging trend recently. The selective peptide expression and enrichment of the desired peptide on the surface, monodispersion, self-assembly, and ease of genetic and chemical modification properties have allowed viruses to take a long stride in biomedical applications. Researchers have published many reviews so far describing unusual properties of virus-based nanoparticles, phage display, modification, and possible biomedical applications, including biosensors, bioimaging, tissue regeneration, and drug delivery, however the integration of the virus into different biomaterials for the application of tissue regeneration is not yet discussed in detail. This review will focus on various morphologies of virus-incorporated biomimetic nanocomposites in tissue regeneration and highlight the progress, challenges, and future directions in this area.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Yong Cheol Shin
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Suong-Hyu Hyon
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-8580, Japan
| | - Jin-Woo Oh
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
69
|
Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol 2019; 46 Suppl 21:92-102. [DOI: 10.1111/jcpe.13058] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials; Institute of Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials; Institute of Clinical Dentistry; Faculty of Dentistry; University of Oslo; Oslo Norway
- Corticalis AS; Oslo Science Park Oslo Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milano Italy
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA; Mezzovico-Vira Switzerland
- Biomaterials Laboratory; Institute for Mechanical Engineering and Materials Technology; University of Applied Sciences and Arts of Southern Switzerland; Manno Switzerland
- Department of Surgical Sciences; Faculty of Medical Sciences; Orthopaedic Clinic-IRCCS A.O.U. San Martino; Genova Italy
| |
Collapse
|
70
|
Bagde A, Kuthe A, Quazi S, Gupta V, Jaiswal S, Jyothilal S, Lande N, Nagdeve S. State of the Art Technology for Bone Tissue Engineering and Drug Delivery. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
71
|
Kimna C, Deger S, Tamburaci S, Tihminlioglu F. Chitosan/montmorillonite composite nanospheres for sustained antibiotic delivery at post-implantation bone infection treatment. Biomed Mater 2019; 14:044101. [DOI: 10.1088/1748-605x/ab1a04] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
72
|
Suchý T, Šupová M, Sauerová P, Hubálek Kalbáčová M, Klapková E, Pokorný M, Horný L, Závora J, Ballay R, Denk F, Sojka M, Vištejnová L. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur J Pharm Biopharm 2019; 140:50-59. [PMID: 31055065 DOI: 10.1016/j.ejpb.2019.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to develop a biodegradable nanostructured electrospun layer based on collagen (COL), hydroxyapatite nanoparticles (HA), vancomycin hydrochloride (V), gentamicin sulphate (G) and their combination (VG) for the treatment of prosthetic joint infections and the prevention of infection during the joint replacement procedure. COL/HA layers containing different amounts of HA (0, 5 and 15 wt%) were tested for the in vitro release kinetics of antibiotics, antimicrobial activity against MRSA, gentamicin-resistant Staphylococcus epidermidis and Enterococcus faecalis isolates and cytocompatibility using SAOS-2 bone-like cells. The results revealed that the COL/HA layers released high concentrations of vancomycin and gentamicin for 21 days and performed effectively against the tested clinically-relevant bacterial isolates. The presence of HA in the collagen layers was found not to affect the release kinetics of the vancomycin from the layers loaded only with vancomycin or its combination with gentamicin. Conversely, the presence of HA slowed down the release of gentamicin from the COL/HA layers loaded with gentamicin and its combination with vancomycin. The combination of both antibiotics exerted a positive effect on the prolongation of the conversion of vancomycin into its degradation products. All the layers tested with different antibiotics exhibited potential antibacterial activity with respect to both the tested staphylococci isolates and enterococci. The complemental effect of vancomycin was determined against both gentamicin-resistant Staphylococcus epidermidis and Enterococcus faecalis in contrast to the application of gentamicin as a single agent. This combination was also found to be more effective against MRSA than is vancomycin as a single agent. Importantly, this combination of vancomycin and gentamicin in the COL/HA layers exhibited sufficient cytocompatibility to SAOS-2, which was independent of the HA content. Conversely, only gentamicin caused the death of SAOS-2 independently of HA content and only vancomycin stimulated SAOS-2 behaviour with an increased concentration of HA in the COL/HA layers. In conclusion, COL/HA layers with 15 wt% of HA impregnated with vancomycin or with a combination of vancomycin and gentamicin offer a promising treatment approach and the potential to prevent infection during the joint replacement procedures.
Collapse
Affiliation(s)
- Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic; Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 6, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.
| | - Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Pavla Sauerová
- Institute of Pathological Physiology, 1(st) Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Marie Hubálek Kalbáčová
- Institute of Pathological Physiology, 1(st) Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Eva Klapková
- Department of Medical Chemistry and Clinical Biochemistry, Charles University, 2(nd) Medical School and University Hospital Motol, Prague 5, Czech Republic
| | - Marek Pokorný
- Contipro a.s., R&D Department, Dolni Dobrouc, Czech Republic
| | - Lukáš Horný
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 6, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Jan Závora
- Clinical Microbiology and ATB Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, 1(st) Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 2, Czech Republic
| | - Rastislav Ballay
- 1(st) Department of Orthopaedics, 1(st) Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague 5, Czech Republic
| | - František Denk
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Martin Sojka
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Institute ofMicrobiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Lucie Vištejnová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
73
|
Baird A, Dominguez Falcon N, Saeed A, Guest DJ. Biocompatible Three-Dimensional Printed Thermoplastic Scaffold for Osteoblast Differentiation of Equine Induced Pluripotent Stem Cells. Tissue Eng Part C Methods 2019; 25:253-261. [DOI: 10.1089/ten.tec.2018.0343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Arabella Baird
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | | | - Aram Saeed
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Deborah Jane Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
74
|
Junka A, Bartoszewicz M, Dziadas M, Szymczyk P, Dydak K, Żywicka A, Owczarek A, Bil-Lula I, Czajkowska J, Fijałkowski K. Application of bacterial cellulose experimental dressings saturated with gentamycin for management of bone biofilm in vitro and ex vivo. J Biomed Mater Res B Appl Biomater 2019; 108:30-37. [PMID: 30883023 DOI: 10.1002/jbm.b.34362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/24/2019] [Accepted: 02/27/2019] [Indexed: 11/11/2022]
Abstract
Bacterial cellulose is one of the most promising polymers of recent years. Herein, we present a possibility of BC application as a carrier of gentamycin antibiotic for the treatment and prevention of bone infections. We have shown that BC saturated with gentamycin significantly reduces the level of biofilm-forming bone pathogens, namely Staphylococcus aureus and Pseudomonas aeruginosa, and displays very low cytotoxicity in vitro against osteoblast cell cultures. Another beneficial feature of our prototype dressing is prolonged release of gentamycin, which provides efficient protection from microbial contamination and subsequent infection. Moreover, it seems that bacterial cellulose (BC) alone without any antimicrobial added, may serve as a barrier by significantly hampering the ability of the pathogen to penetrate to the bone structure. Therefore, a gentamycin-saturated BC dressing may be considered as a possible alternative for gentamycin collagen sponge broadly used in clinical setting. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:30-37, 2020.
Collapse
Affiliation(s)
- Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Mariusz Dziadas
- Faculty of Chemistry, University of Wroclaw, 50-353, Wrocław, Poland
| | - Patrycja Szymczyk
- Centre for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, Wroclaw Technical University, 50-371, Wrocław, Poland
| | - Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Anna Żywicka
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311, Szczecin, Poland
| | - Artur Owczarek
- Department of Drug Form Technology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Iwona Bil-Lula
- Department of Clinical Chemistry, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Joanna Czajkowska
- Laboratory of Microbiology, Wroclaw Research Centre EIT+, 54-066, Wrocław, Poland
| | - Karol Fijałkowski
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311, Szczecin, Poland
| |
Collapse
|
75
|
Chocholata P, Kulda V, Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E568. [PMID: 30769821 PMCID: PMC6416573 DOI: 10.3390/ma12040568] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.
Collapse
Affiliation(s)
- Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| |
Collapse
|
76
|
Aragón J, Feoli S, Irusta S, Mendoza G. Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair. Int J Pharm 2019; 557:162-169. [DOI: 10.1016/j.ijpharm.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/12/2023]
|
77
|
Zhu Y, Song F, Ju Y, Huang L, Zhang L, Tang C, Yang H, Huang C. NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs in vitro. Int J Nanomedicine 2019; 14:787-798. [PMID: 30774333 PMCID: PMC6361317 DOI: 10.2147/ijn.s183233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In this study, we aimed to develop a unique N-acetyl cysteine (NAC)-loaded polylactic-co-glycolic acid (PLGA) electrospun system with separate compartments for the promotion of osteogenesis. Materials and methods We first prepared solutions of NAC-loaded mesoporous silica nanoparticles (MSNs), PLGA, and NAC in N, N-dimethylformamide and tetrahydrofuran for the construction of the electrospun system. We then fed solutions to a specific injector for electrospinning. The physical and chemical properties of the scaffold were characterized through scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The release of NAC and Si from different PLGA scaffolds was estimated. The cell viability, cell growth, and osteogenic potential of rat bone marrow-derived stroma cell (rBMSCs) on different PLGA scaffolds were evaluated through MTT assay, live/dead staining, phalloidin staining, and Alizarin red staining. The expression levels of osteogenic-related markers were analyzed through real-time PCR (qRT-PCR). Results NAC was successfully loaded into MSNs. The addition of MSNs and NAC decreased the diameters of the electrospun fibers, increased the hydrophilicity and mechanical property of the PLGA scaffold. The release kinetic curve indicated that NAC was released from (PLGA + NAC)/(NAC@MSN) in a biphasic pattern, that featured an initial burst release stage and a later sustained release stage. This release pattern of NAC encapsulated on the (PLGA + NAC)/(NAC@MSN) scaffolds enabled to prolong the high concentrations of release of NAC, thus drastically affecting the osteogenic differentiation of rBMSCs. Conclusion A PLGA electrospun scaffold was developed, and MSNs were used as separate nanocarriers for recharging NAC concentration, demonstrating the promising use of (PLGA + NAC)/(NAC@MSN) for bone tissue engineering.
Collapse
Affiliation(s)
- Yuanjing Zhu
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Fangfang Song
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Yanyun Ju
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China
| | - Liyuan Huang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Lu Zhang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Chuliang Tang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Hongye Yang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Cui Huang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| |
Collapse
|
78
|
B. Erdal N, Yao JG, Hakkarainen M. Cellulose-Derived Nanographene Oxide Surface-Functionalized Three-Dimensional Scaffolds with Drug Delivery Capability. Biomacromolecules 2018; 20:738-749. [DOI: 10.1021/acs.biomac.8b01421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nejla B. Erdal
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Jenevieve G. Yao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
79
|
Ferracini R, Martínez Herreros I, Russo A, Casalini T, Rossi F, Perale G. Scaffolds as Structural Tools for Bone-Targeted Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10030122. [PMID: 30096765 PMCID: PMC6161191 DOI: 10.3390/pharmaceutics10030122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in materials science have provided several innovations, underlying the increasing importance of biomaterials in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from organic or inorganic materials, incorporating drugs and growth factors, to induce new bone tissue formation. This review emphasizes recent progress in materials science that allows reliable scaffolds to be synthesized for targeted drug delivery in bone regeneration, also with respect to past directions no longer considered promising. A general overview concerning modeling approaches suitable for the discussed systems is also provided.
Collapse
Affiliation(s)
- Riccardo Ferracini
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Isabel Martínez Herreros
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Antonio Russo
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
| | - Tommaso Casalini
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria, 26928 Manno, Switzerland.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Giuseppe Perale
- Department of Surgical Sciences, Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genova, Italy.
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria, 26928 Manno, Switzerland.
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland.
| |
Collapse
|
80
|
The Effect of Glutaraldehyde on Hydroxyapatite-Gelatin Composite with Addition of Alendronate for Bone Filler Application. ACTA ACUST UNITED AC 2018. [DOI: 10.4028/www.scientific.net/jbbbe.37.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on data from Indonesian Health Ministry in 2009, osteoporosis case reached 19,7 % of the populations in Indonesia, especially women in menopause period. The treatment was performed by consuming bisphosphonate drugs per oral which was not effective since the absorption intake of the drug was only less than 55% of the intake dosage. Because of that, the bone filler which also has a function as drug delivery system was developed. The hydroxyapatite-gelatin bone filler with the addition of alendronate was studied. To increase the characteristics of this bone filler, glutaraldehyde was introduced in the composite as a crosslinking agent. The concentration of 0.25%, 0.5%, and 0.75% were used. The bone filler was then characterized based on FTIR test, morphology test, compressive strength test, cytotoxicity test, and degradation test. The FTIR result showed that there was no significant difference between the sample with and without glutaraldehyde since the crosslinking bond of glutaraldehyde and gelatin was C=N bond which also presented in the gelatin. The morphology of the samples depicted a bigger pore size for higher glutaraldehyde concentration which also supported by lower compressive strength. All the samples were non-toxic based on the cytotoxicity test which had cell viability more than 100%. The degradation tests showed that with the presence of glutaraldehyde in the bone filler could maintain its form longer than the bone filler without glutaraldehyde. In conclusion, the presence of glutaraldehyde could increase the characteristics of the hydroxyapatite-gelatin composite with the addition of alendronate as a bone filler candidate for osteoporotic bone.
Collapse
|