51
|
Kay EJ, Mauri M, Willcocks SJ, Scott TA, Cuccui J, Wren BW. Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines. Microb Cell Fact 2022; 21:66. [PMID: 35449016 PMCID: PMC9026721 DOI: 10.1186/s12934-022-01792-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Sam J Willcocks
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Timothy A Scott
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
52
|
Hu T, Done N, Petigara T, Mohanty S, Song Y, Liu Q, Lemus-Wirtz E, Signorovitch J, Sarpong E, Weiss T. Incidence of acute otitis media in children in the United States before and after the introduction of 7- and 13-valent pneumococcal conjugate vaccines during 1998–2018. BMC Infect Dis 2022; 22:294. [PMID: 35346092 PMCID: PMC8962537 DOI: 10.1186/s12879-022-07275-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Acute otitis media (AOM) is a leading cause of office visits and antibiotic prescriptions in children. Pneumococcal conjugate vaccines were introduced in the USA in 2000 (7-valent, PCV7) and 2010 (13-valent, PCV13). Expanded valency PCVs are currently under development. To describe the impact of PCVs and quantify the residual burden of AOM, this study estimated annual incidence rates (IRs) of AOM and AOM-related complications and surgical procedures in children < 18 years in the USA before and after the introduction of PCV7 and PCV13.
Methods
AOM episodes were identified in the IBM MarketScan® Commercial and Medicaid databases using diagnosis codes (ICD-9-CM: 382.x; ICD-10-CM: H66.xx and H67.xx). Annual IRs were calculated as the number of episodes per 1000 person-years (PYs) for all children < 18 years and by age group (< 2, 2–4, and 5–17 years). National estimates of annual AOM IRs were extrapolated using Census Bureau data. Interrupted time series analyses were used to assess immediate and gradual changes in monthly AOM IRs, controlling for seasonality.
Results
In the commercially insured population, AOM IRs declined between the pre-PCV7 period (1998–1999) and the late PCV13 period (2014–2018) from 1170.1 to 768.8 episodes per 1000 PY for children < 2 years, from 547.4 to 410.3 episodes per 1000 PY in children 2–4 years, and from 115.6 to 91.8 episodes per 1000 PY in children 5–17 years. The interrupted time series analyses indicated significant immediate or gradual decreases in the early PCV7 period (2001–2005), and gradual increases in the late PCV7 period (2006–2009) in children < 2 years; however, crude IRs trended downward in all time periods. In older children, IRs decreased in the early PCV7 and early PCV13 period (2011–2013), but gradually increased in the late PCV7 period. IRs of AOM-related surgical procedures decreased, and IRs of AOM-related complications increased during the study timeframe.
Conclusions
AOM disease burden remains high in children of all ages despite overall reductions in AOM IRs during 1998–2018 following the introduction of PCV7 and PCV13. The impact of investigational PCVs on the disease burden of AOM will likely depend on AOM etiology and circulating pneumococcal serotypes.
Collapse
|
53
|
Perdrizet J, Farkouh RA, Horn EK, Hayford K, Sings HL, Wasserman MD. The broader impacts of otitis media and sequelae for informing economic evaluations of pneumococcal conjugate vaccines. Expert Rev Vaccines 2022; 21:499-511. [PMID: 35191368 DOI: 10.1080/14760584.2022.2040989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Otitis media (OM) is a common childhood infection. Pneumococcal conjugate vaccines (PCVs) prevent OM episodes, thereby reducing short- and long-term clinical, economic, humanistic, and societal consequences. Most economic evaluations of PCVs focus on direct health gains and cost savings from prevented acute episodes but do not fully account for the broader societal impacts of OM prevention. AREAS COVERED This review explores the broader burden of OM on children, caregivers, and society to better inform future economic evaluations of PCVs. EXPERT OPINION OM causes a substantial burden to society through long-term sequelae, productivity losses, reduced quality of life for children and caregivers, and contribution to antimicrobial resistance from inappropriate antibiotic use. The effect of PCVs on acute OM has been recognized globally, yet the broader impact has not been consistently quantified, studied, or communicated. Economic evaluations of PCVs must evolve to include broader effects for patients, caregivers, and society from OM prevention. Future PCVs with broader coverage may further reduce OM incidence and antimicrobial resistance, but optimal uptake will depend on increasing the recognition and use of novel frameworks that include broader benefits. Communicating the full value of PCVs to decision makers may result in wider access and positive societal returns.
Collapse
Affiliation(s)
- Johnna Perdrizet
- Health Economics and Outcomes Research, Pfizer Inc, New York, NY, USA
| | - Raymond A Farkouh
- Health Economics and Outcomes Research, Pfizer Inc, New York, NY, USA
| | - Emily K Horn
- Health Economics and Outcomes Research, Pfizer Inc, New York, NY, USA
| | - Kyla Hayford
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer, Inc., Toronto, Canada
| | - Heather L Sings
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer, Inc., Collegeville, PA, USA
| | - Matt D Wasserman
- Health Economics and Outcomes Research, Pfizer Inc, New York, NY, USA
| |
Collapse
|
54
|
Khan K, Jalal K, Khan A, Al-Harrasi A, Uddin R. Comparative Metabolic Pathways Analysis and Subtractive Genomics Profiling to Prioritize Potential Drug Targets Against Streptococcus pneumoniae. Front Microbiol 2022; 12:796363. [PMID: 35222301 PMCID: PMC8866961 DOI: 10.3389/fmicb.2021.796363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae is a notorious pathogen that affects ∼450 million people worldwide and causes up to four million deaths per annum. Despite availability of antibiotics (i.e., penicillin, doxycycline, or clarithromycin) and conjugate vaccines (e.g., PCVs), it is still challenging to treat because of its drug resistance ability. The rise of antibiotic resistance in S. pneumoniae is a major source of concern across the world. Computational subtractive genomics is one of the most applied techniques in which the whole proteome of the bacterial pathogen is gradually reduced to a limited number of potential therapeutic targets. Whole-genome sequencing has greatly reduced the time required and provides more opportunities for drug target identification. The goal of this work is to evaluate and analyze metabolic pathways in serotype 14 of S. pneumonia to identify potential drug targets. In the present study, 47 potent drug targets were identified against S. pneumonia by employing the computational subtractive genomics approach. Among these, two proteins are prioritized (i.e., 4-oxalocrotonate tautomerase and Sensor histidine kinase uniquely present in S. pneumonia) as novel drug targets and selected for further structure-based studies. The identified proteins may provide a platform for the discovery of a lead drug candidate that may be capable of inhibiting these proteins and, therefore, could be helpful in minimizing the associated risk related to the drug-resistant S. pneumoniae. Finally, these enzymatic proteins could be of prime interest against S. pneumoniae to design rational targeted therapy.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
55
|
Lane JR, Tata M, Briles DE, Orihuela CJ. A Jack of All Trades: The Role of Pneumococcal Surface Protein A in the Pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2022; 12:826264. [PMID: 35186799 PMCID: PMC8847780 DOI: 10.3389/fcimb.2022.826264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae (Spn), or the pneumococcus, is a Gram-positive bacterium that colonizes the upper airway. Spn is an opportunistic pathogen capable of life-threatening disease should it become established in the lungs, gain access to the bloodstream, or disseminate to vital organs including the central nervous system. Spn is encapsulated, allowing it to avoid phagocytosis, and current preventative measures against infection include polyvalent vaccines composed of capsular polysaccharide corresponding to its most prevalent serotypes. The pneumococcus also has a plethora of surface components that allow the bacteria to adhere to host cells, facilitate the evasion of the immune system, and obtain vital nutrients; one family of these are the choline-binding proteins (CBPs). Pneumococcal surface protein A (PspA) is one of the most abundant CBPs and confers protection against the host by inhibiting recognition by C-reactive protein and neutralizing the antimicrobial peptide lactoferricin. Recently our group has identified two new roles for PspA: binding to dying host cells via host-cell bound glyceraldehyde 3-phosphate dehydrogenase and co-opting of host lactate dehydrogenase to enhance lactate availability. These properties have been shown to influence Spn localization and enhance virulence in the lower airway, respectively. Herein, we review the impact of CBPs, and in particular PspA, on pneumococcal pathogenesis. We discuss the potential and limitations of using PspA as a conserved vaccine antigen in a conjugate vaccine formulation. PspA is a vital component of the pneumococcal virulence arsenal - therefore, understanding the molecular aspects of this protein is essential in understanding pneumococcal pathogenesis and utilizing PspA as a target for treating or preventing pneumococcal pneumonia.
Collapse
Affiliation(s)
| | | | | | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
56
|
Deng JZ, Lancaster C, Winters MA, Phillips KM, Zhuang P, Ha S. Multi-attribute characterization of pneumococcal conjugate vaccine by Size-exclusion chromatography coupled with UV-MALS-RI detections. Vaccine 2022; 40:1464-1471. [DOI: 10.1016/j.vaccine.2022.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
|
57
|
Staphylococcus aureus-A Known Opponent against Host Defense Mechanisms and Vaccine Development-Do We Still Have a Chance to Win? Int J Mol Sci 2022; 23:ijms23020948. [PMID: 35055134 PMCID: PMC8781139 DOI: 10.3390/ijms23020948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.
Collapse
|
58
|
Serotypes and Clonal Composition of Streptococcus pneumoniae Isolates Causing IPD in Children and Adults in Catalonia before 2013 to 2015 and after 2017 to 2019 Systematic Introduction of PCV13. Microbiol Spectr 2021; 9:e0115021. [PMID: 34878302 PMCID: PMC8653838 DOI: 10.1128/spectrum.01150-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to investigate the distribution of serotypes and clonal composition of Streptococcus pneumoniae isolates causing invasive pneumococcal disease (IPD) in Catalonia, before and after systematic introduction of PCV13. Pneumococcal strains isolated from normally sterile sites obtained from patients of all ages with IPD received between 2013 and 2019 from 25 health centers of Catalonia were included. Two study periods were defined: presystematic vaccination period (2013 and 2015) and systematic vaccination period (SVP) (2017 to 2019). A total of 2,303 isolates were analyzed. In the SVP, there was a significant decrease in the incidence of IPD cases in children 5 to 17 years old (relative risk [RR] 0.61; 95% confidence interval [CI] 0.38 to 0.99), while there was a significant increase in the incidence of IPD cases in 18- to 64-year-old adults (RR 1.33; 95% CI 1.16 to 1.52) and adults over 65 years old (RR 1.23; 95% CI 1.09 to 1.38). Serotype 8 was the major emerging serotype in all age groups except in 5- to 17-year-old children. In children younger than 5 years old, the main serotypes in SVP were 24F, 15A, and 3, while in adults older than 65 years they were serotypes 3, 8, and 12F. A significant decrease in the proportions of clonal complexes CC156, CC191, and ST306 and an increase in those of CC180, CC53, and CC404 were observed. A steady decrease in the incidence of IPD caused by PCV13 serotypes indicates the importance and impact of systematic vaccination. The increase of non-PCV13 serotypes highlights the need to expand serotype coverage in future vaccines and rethink vaccination programs for older adults. IMPORTANCE We found that with the incorporation of the PCV13 vaccine, the numbers of IPD cases caused by serotypes included in this vaccine decreased in all of the age groups. Still, there was an unforeseen increase of the serotypes not included in this vaccine causing IPD, especially in the >65-year-old group. Moreover, a significant increase of serotype 3 included in the vaccine has been observed; this event has been reported by other researchers. These facts call for the incorporation of more serotypes in future vaccines and a more thorough surveillance of the dynamics of this microorganism.
Collapse
|
59
|
Mateu Ferrando R, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:57-67. [PMID: 34895641 DOI: 10.1016/j.ddtec.2021.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.
Collapse
Affiliation(s)
- Ruth Mateu Ferrando
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy; CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
60
|
Zintgraff J, Gagetti P, Napoli D, Sanchez Eluchans N, Irazu L, Moscoloni M, Regueira M, Lara CS, Corso A. Invasive Streptococcus pneumoniae isolates from pediatric population in Argentina for the period 2006-2019. Temporal progression of serotypes distribution and antibiotic resistance. Vaccine 2021; 40:459-470. [PMID: 34920903 DOI: 10.1016/j.vaccine.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae is a major cause of severe invasive disease associated with high mortality and morbidity worldwide. A total of 2908 pneumococcal isolates were analyzed between 2006 and 2019. Gold standard pneumococcal serotyping (the Neufeld-Quellung reaction) was performed to identify the serotypes associated with infection in children < 5 years in Argentina and agar dilution method was carried out to determine their profiles to 14 antimicrobial agents. In 2012, the 13-valent pneumococcal conjugate vaccine (PCV13) was included in the National Immunization Program. In this work we have analyzed the local epidemiology of invasive pneumococcal diseases before and after the introduction of this vaccine in order to understand the epidemiological relevance and impact of PCV13. During the periods compared in the present study there was a significant increase in the proportion of non-PCV13 serotypes, serogroup 24 (246.7%) and 12F (85.7%), and a significant decrease in PCV13 serotypes, including serotypes 14 (91.2%), 5 (95.6%) and 1 (84.6%) among others. Another observation was that serotypes 3 (7.4%) and 19A (4.9%) still remain among the most frequent serotypes despite being part of the PCV13 formulation. Regarding antimicrobial resistance, in the present study we observed an increase in erythromycin resistance during the period of study mainly associated to serotype 14 in the pre-PCV13 period and to serogroup 24 in the post-PCV13 period, which also was the major NVT serotype associated with antimicrobial resistance and MDR. Serotypes 14, 24A/B/F and 19A were in the first three places among isolates resistant to all the antibiotics tested. Our data highlight the importance of continuous surveillance to assess the impact of pneumococcal vaccines and the use of antibiotics in the dynamic of pneumococcal serotypes.
Collapse
Affiliation(s)
- Jonathan Zintgraff
- Servicio de Bacteriología Clínica, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| | - Paula Gagetti
- Servicio Antimicrobianos, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Daniela Napoli
- Servicio de Bacteriología Clínica, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Nahuel Sanchez Eluchans
- Servicio de Bacteriología Clínica, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Lucia Irazu
- Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Maria Moscoloni
- Servicio de Bacteriología Clínica, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Mabel Regueira
- Servicio de Bacteriología Clínica, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Claudia S Lara
- Servicio de Bacteriología Clínica, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Departamento de Bacteriología. Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
61
|
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement. Front Cell Infect Microbiol 2021; 11:775402. [PMID: 34869076 PMCID: PMC8637289 DOI: 10.3389/fcimb.2021.775402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
62
|
Yan Z, Cui Y, Huang X, Lei S, Zhou W, Tong W, Chen W, Shen M, Wu K, Jiang Y. Molecular Characterization Based on Whole-Genome Sequencing of Streptococcus pneumoniae in Children Living in Southwest China During 2017-2019. Front Cell Infect Microbiol 2021; 11:726740. [PMID: 34796125 PMCID: PMC8593041 DOI: 10.3389/fcimb.2021.726740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 01/30/2023] Open
Abstract
Background Streptococcus pneumoniae is an important pathogen causing high morbidity and high mortality in children and undergoes frequent recombination for capsule switching to neutralize the 13-valent pneumococcal conjugate vaccine (PCV13). This study aimed to investigate the prevalence, and molecular characteristics including serotypes and antibiotic susceptibility of S. pneumoniae isolated from children living in Southwest China from 2017 to 2019 to facilitate the selection of effective vaccine formulations and appropriate antibiotic treatment regimens. Methods This study was conducted at West China Second University Hospital (Chengdu, Sichuan Province, China), Zunyi Medical University Third Affiliated Hospital/First People's Hospital of Zunyi (Zunyi, Guizhou Province, China) and Chengdu Jinjiang District Maternal and Child Healthcare Hospital (Chengdu, Sichuan Province, China). Demographic and clinical characteristics of children infected with S. pneumoniae were collected and analysed. Next-generation sequencing and sequence analysis were used to determine the serotypes, sequence types, antibiotic resistance and potential protein vaccine target genes of the pneumococcal isolates. The coverage rate provided by PCV13 was estimated by calculating the percentage of the specific serotypes that were specifically the PCV13-included serotypes. Antimicrobial susceptibility was determined by the microdilution broth method. Results The most prevalent pneumococcal serotypes were 19F (25.8%), 19A (14.1%), 6B (12.5%), 6A (9.4%) and 14 (7.8%). The predominant STs were ST271 (23.3%), ST320 (15.5%) and ST90 (8.6%), dominated by the clonal complex Taiwan19F-14 (39.1%). The coverage rate of PCV13 was 77.3% in all the isolates, with relatively higher values in invasive isolates (86.4%). Over the decade, the rates of resistance to penicillin, amoxicillin and cefotaxime were 5.6%, 5.3% and 5.1%, respectively, with significantly higher values in invasive isolates (22.4%, 14.9% and 11.9%). Almost all the isolates were resistant to erythromycin (99.1%) and clindamycin (95.9%). All isolates carried virulence-related genes, including ply, psaA, piaA, piuA, phtE, nanA, pepO, danJ, pvaA, clpP, pcsB, stkP, potD, and strH. The carriage of virulence and resistance genes varied among serotypes and clades, with serotype 19F/ST271 showing higher resistance to antibiotics and being more likely to carry pilus genes and other virulence genes. Conclusion These data provide valuable information for the understanding of pneumococcal pathogenesis, antimicrobial resistance and the development of protein-based vaccines against pneumococcal infection.
Collapse
Affiliation(s)
- Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Department of Laboratory Medicine, Meishan Women and Children's Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, China
| | - Xiaocui Huang
- Department of Laboratory Medicine, Chengdu Jinjiang District Maternal and Child Healthcare Hospital, Chengdu, China
| | - Shikun Lei
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wei Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wen Tong
- Department of Laboratory Medicine, Sichuan Jinxin Women and Children Hospital, Chengdu, China
| | - Wen Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meijing Shen
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/First People's Hospital of Zunyi, Zunyi, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/First People's Hospital of Zunyi, Zunyi, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
63
|
Pneumococcal Vaccines: Past Findings, Present Work, and Future Strategies. Vaccines (Basel) 2021; 9:vaccines9111338. [PMID: 34835269 PMCID: PMC8620834 DOI: 10.3390/vaccines9111338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/24/2023] Open
Abstract
The importance of Streptococcus pneumoniae has been well established. These bacteria can colonize infants and adults without symptoms, but in some cases can spread, invade other tissues and cause disease with high morbidity and mortality. The development of pneumococcal conjugate vaccines (PCV) caused an enormous impact in invasive pneumococcal disease and protected unvaccinated people by herd effect. However, serotype replacement is a well-known phenomenon that has occurred after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) and has also been reported for other PCVs. Therefore, it is possible that serotype replacement will continue to occur even with higher valence formulations, but the development of serotype-independent vaccines might overcome this problem. Alternative vaccines are under development in order to improve cost effectiveness, either using proteins or the pneumococcal whole cell. These approaches can be used as a stand-alone strategy or together with polysaccharide vaccines. Looking ahead, the next generation of pneumococcal vaccines can be impacted by the new technologies recently approved for human use, such as mRNA vaccines and viral vectors. In this paper, we will review the advantages and disadvantages of the addition of new polysaccharides in the current PCVs, mainly for low- and middle-income countries, and we will also address future perspectives.
Collapse
|
64
|
Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021; 18:38. [PMID: 34627326 PMCID: PMC8501352 DOI: 10.1186/s12979-021-00249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older adults were among the first target groups for vaccination due to their high risk for severe disease. This review highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide optimal protection for the vulnerable older age group.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
65
|
Morelli L, Lay L, Santana-Mederos D, Valdes-Balbin Y, Verez Bencomo V, van Diepen A, Hokke CH, Chiodo F, Compostella F. Glycan Array Evaluation of Synthetic Epitopes between the Capsular Polysaccharides from Streptococcus pneumoniae 19F and 19A. ACS Chem Biol 2021; 16:1671-1679. [PMID: 34469105 PMCID: PMC8453487 DOI: 10.1021/acschembio.1c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Vaccination represents
the most effective way to prevent invasive
pneumococcal diseases. The glycoconjugate vaccines licensed so far
are obtained from capsular polysaccharides (CPSs) of the most virulent
serotypes. Protection is largely limited to the specific vaccine serotypes,
and the continuous need for broader coverage to control the outbreak
of emerging serotypes is pushing the development of new vaccine candidates.
Indeed, the development of efficacious vaccine formulation is complicated
by the high number of bacterial serotypes with different CPSs. In
this context, to simplify vaccine composition, we propose the design
of new saccharide fragments containing chemical structures shared
by different serotypes as cross-reactive and potentially cross-protective
common antigens. In particular, we focused on Streptococcus
pneumoniae (Sp) 19A and 19F. The CPS repeating units of Sp
19F and 19A are very similar and share a common structure, the disaccharide
ManNAc-β-(1→4)-Glc (A-B). Herein, we describe the synthesis
of a small library of compounds containing different combinations
of the common 19F/19A disaccharide. The six new compounds were tested
with a glycan array to evaluate their recognition by antibodies in
reference group 19 antisera and factor reference antisera (reacting
against 19F or 19A). The disaccharide A-B, phosphorylated at the upstream
end, emerged as a hit from the glycan array screening because it is
strongly recognized by the group 19 antisera and by the 19F and 19A
factor antisera, with similar intensity compared with the CPSs used
as controls. Our data give a strong indication that the phosphorylated
disaccharide A-B can be considered a common epitope among different
Sp 19 serotypes.
Collapse
Affiliation(s)
- Laura Morelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | | | | | | | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Italian National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
| |
Collapse
|
66
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
67
|
Sundaresh B, Xu S, Noonan B, Mansour MK, Leong JM, van Opijnen T. Host-informed therapies for the treatment of pneumococcal pneumonia. Trends Mol Med 2021; 27:971-989. [PMID: 34376327 DOI: 10.1016/j.molmed.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Over the past two decades, traditional antimicrobial strategies have lost efficacy due to a rapid rise in antibiotic resistance and limited success in developing new antibiotics. Rather than relying on therapeutics solely targeting the bacterial pathogen, therapies are emerging that simultaneously focus on host responses. Here, we describe the most promising 'host-informed therapies' (HITs) in two categories: those that aid patients with fully functional immune systems, and those that aid patients with perturbed immune processes. Using Streptococcus pneumoniae, the leading cause of bacterial pneumonia, as a case study, we show HITs as an attractive option for supplementing infection management. However, to broaden their applicability and design new strategies, targeted research and clinical trials will be essential.
Collapse
Affiliation(s)
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Brian Noonan
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
68
|
Froneman C, Kelleher P, José RJ. Pneumococcal Vaccination in Immunocompromised Hosts: An Update. Vaccines (Basel) 2021; 9:536. [PMID: 34063785 PMCID: PMC8223771 DOI: 10.3390/vaccines9060536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Infections with the pathogen, Streptococcus pneumoniae, are a common cause of morbidity and mortality worldwide. It particularly affects those at the extremes of age and immunocompromised individuals. Preventing pneumococcal disease is paramount in at risk individuals, and pneumococcal vaccination should be offered. Here, we discuss the role of pneumococcal vaccination in specific groups of immunocompromised hosts.
Collapse
Affiliation(s)
- Claire Froneman
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
| | - Peter Kelleher
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
- Department of Infectious Disease, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ricardo J. José
- Department of Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK; (C.F.); (P.K.)
- Centre for Inflammation and Tissue Repair, UCL, London WC1E 6BT, UK
| |
Collapse
|
69
|
Esposito S, Dal Canto G, Caramia MR, Fainardi V, Pisi G, Principi N. Complications in community acquired pneumonia: magnitude of problem, risk factors, and management in pediatric age. Expert Rev Anti Infect Ther 2021; 20:45-51. [PMID: 33971782 DOI: 10.1080/14787210.2021.1927710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: In the last decades, the large use of several effective vaccines has dramatically reduced the incidence of community acquired pneumonia (CAP) in infants and children. Moreover, the availability of new antibiotics effective against emerging resistant strains of bacteria has greatly improved the early and long-term prognosis of this disease.Areas covered: The aim of this manuscript is to evaluate the burden of complicated CAP in pediatric age and to discuss its appropriate management.Expert opinion: Complicated CAP remains a problem for children in industrialized and developing countries. A larger use of lung ultrasonography (US) as first diagnostic approach could significantly improve early identification of cases at higher risk of complications. Difficult to solve, is the problem of the use of an antibiotic therapy able to assure adequate control in all the CAP cases, including those at high risk of or with already established complications. All these findings reveal that control of the incidence of complicated CAP remains difficult and will not be significantly changed in the next few years. Any attempt to improve complicated CAP management must be made. Consensus documents on better definition of the use of corticosteroids, fibrinolytic agents, and interventional procedures (including surgery) can allow us to reach this goal.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Giulia Dal Canto
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Maria Rosaria Caramia
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Giovanna Pisi
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | | |
Collapse
|
70
|
Effect of prophylactic administration of antipyretics on the immune response to pneumococcal conjugate vaccines in children: a systematic review. Pneumonia (Nathan) 2021; 13:7. [PMID: 33894782 PMCID: PMC8070291 DOI: 10.1186/s41479-021-00085-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 02/01/2023] Open
Abstract
Background Prophylactic administration of antipyretics at the time of immunization seems to decrease some side effects, however reduced immune responses have been reported in some studies. This systematic review aimed to investigate the effect of prophylactic use of antipyretics on the immune response following administration of pneumococcal conjugate vaccines (PCVs). Methods A systematic review of randomized controlled trials and observational studies concerning the immune response to PCVs after antipyretic administration was performed up to November 2020 in the electronic databases of Pubmed and Scopus. Results Of the 3956 citations retrieved, a total of 5 randomized control trials including 2775 children were included in the review. Included studies were referred to PCV10 (3 studies), PCV7 and PCV13 (one study each). The prophylactic administration of paracetamol decreased the immune response to certain pneumococcal serotypes in all included studies. The effect was more evident following primary vaccination and with immediate administration of paracetamol. Despite the reductions in antibody geometric mean concentrations, a robust memory response was observed following the booster dose. Besides, antibody titers remained above protective levels in 88–100% of participants. The use of ibuprofen, that was evaluated in two studies, did not seem to affect the immunogenicity of PCVs . Conclusion Although the reviewed studies had significant heterogeneity in design, paracetamol administration seems to affect the immune response for certain serotypes. The clinical significance of reduced immunogenicity especially before booster dose needs further investigation.
Collapse
|
71
|
Scelfo C, Menzella F, Fontana M, Ghidoni G, Galeone C, Facciolongo NC. Pneumonia and Invasive Pneumococcal Diseases: The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance. Vaccines (Basel) 2021; 9:420. [PMID: 33922273 PMCID: PMC8145843 DOI: 10.3390/vaccines9050420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae related diseases are a leading cause of morbidity and mortality, especially in children and in the elderly population. It is transmitted to other individuals through droplets and it can spread to other parts of the human host, causing a wide spectrum of clinical syndromes, affecting between 10 and 100 cases per 100,000 people in Europe and the USA. In order to reduce morbidity and mortality caused by this agent, pneumococcal vaccines have been developed over the years and have shown incredible effectiveness in reducing the spread of this bacterium and the development of related diseases, obtaining a significant reduction in mortality, especially in developing countries. However, considerable problems are emerging mainly due to the replacement phenomenon, multi-drug resistance, and the high production costs of conjugated vaccines. There is still a debate about the indications given by various countries to different age groups; this is one of the reasons for the diffusion of different serotypes. To cope with these problems, significant efforts have been made in the research field to further improve vaccination serotypes coverage. On the other hand, an equally important commitment by health care systems to all age group populations is needed to improve vaccination coverage.
Collapse
Affiliation(s)
- Chiara Scelfo
- Pneumology Unit, Department of Medical Specialties, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42100 Reggio Emilia, Italy; (F.M.); (M.F.); (G.G.); (C.G.); (N.C.F.)
| | | | | | | | | | | |
Collapse
|
72
|
Dietl B, Henares D, Boix-Palop L, Muñoz-Almagro C, Garau J, Calbo E. Related Factors to Streptococcus pneumoniae Invasive Infection and Clinical Manifestations: The Potential Role of Nasopharyngeal Microbiome. Front Med (Lausanne) 2021; 8:650271. [PMID: 33996857 PMCID: PMC8117960 DOI: 10.3389/fmed.2021.650271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Infections of the lower respiratory tract, such as pneumonia, are one of the leading causes of death worldwide. Streptococcus pneumoniae might colonize the upper respiratory tract and is the main aetiological agent of community-acquired pneumonia (CAP). In the last decades, several factors related to the host, the microorganism and the antibiotic therapy have been investigated to identify risk factors associated with the development of invasive pneumococcal disease (IPD). Nevertheless, these factors themselves do not explain the risk of developing disease or its severity. Recently, some studies have focused on the importance of nasopharyngeal (NP) microbiome and its relation to respiratory health. This review presents existing evidence of the potential role of NP microbiome in the development of IPD.
Collapse
Affiliation(s)
- Beatriz Dietl
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Desirée Henares
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Center for Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Boix-Palop
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Center for Epidemiology and Public Health, CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Garau
- Internal Medicine Department, Clínica Rotger, Palma de Mallorca, Spain
| | - Esther Calbo
- Infectious Diseases Unit, Hospital Universitari Mútua Terrassa, Terrassa, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
73
|
Vaccines against antimicrobial resistance: a promising escape route for multidrug resistance. Pharm Pat Anal 2021; 10:83-98. [PMID: 33829866 DOI: 10.4155/ppa-2020-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibiotic resistance has become a global health problem requiring urgent intervention. The pace of development and frequency of transmission of antimicrobial resistance have tremendously surpassed the number of antibiotics developed in the past few decades. Emergence and transmission of multidrug-resistant genes, for example, mcr-1 and mcr-5.3, against the last resort of antibiotics has challenged the treatment options. Vaccination is a promising approach with no instance of antimicrobial resistance generation or transmission reported so far. The time required for developing a vaccine, extensive pre- and post-licensure studies and the financial constraints for the R&D has hampered vaccine development over the past few decades. Vaccine can prove to be an effective future strategy for combating antimicrobial resistance.
Collapse
|
74
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
75
|
Principi N, Esposito S. Pneumococcal Disease Prevention: Are We on the Right Track? Vaccines (Basel) 2021; 9:vaccines9040305. [PMID: 33804822 PMCID: PMC8063798 DOI: 10.3390/vaccines9040305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The history of Streptococcus pneumoniae diseases dramatically changed with the introduction into the immunization schedule of infants and children of the first pneumococcal conjugate vaccine, the one containing 7 (PCV7) of the most common pneumococcal serotypes (STs) causing invasive pneumococcal diseases (IPDs). Where PCV7 was largely used, incidence of both IPDs and non-invasive pneumococcal diseases (nIPDs) in vaccinated children and in unvaccinated subjects of any age, mainly the elderly, significantly decreased. Unfortunately, the impact of PCV7 administration was slightly lower than expected, as the reduction in infections due to vaccine serotypes (STs) was accompanied by a significant increase in the number of IPDs and nIPDs due to STs not included in the vaccine. To overcome this problem, two PCVs containing 10 (PCV10) and 13 (PCV13) STs, chosen among those emerging, were developed and licensed. However, ST replacement occurred again. Moreover, the new PCVs showed little effectiveness in the prevention of infection due to non-encapsulated STs and to ST3. Next-generation S. pneumoniae vaccines able to prevent pneumococcal infections regardless of infecting ST are urgently needed. For the moment, the use of available PCVs remains fundamental because their benefits far outweigh any concerns for emerging STs.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-903524
| |
Collapse
|
76
|
Scott NR, Mann B, Tuomanen EI, Orihuela CJ. Multi-Valent Protein Hybrid Pneumococcal Vaccines: A Strategy for the Next Generation of Vaccines. Vaccines (Basel) 2021; 9:209. [PMID: 33801372 PMCID: PMC8002124 DOI: 10.3390/vaccines9030209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a bacterial pathogen known to colonize the upper respiratory tract and cause serious opportunistic diseases such as pneumonia, bacteremia, sepsis and meningitis. As a consequence, millions of attributable deaths occur annually, especially among infants, the elderly and immunocompromised individuals. Although current vaccines, composed of purified pneumococcal polysaccharide in free form or conjugated to a protein carrier, are widely used and have been demonstrated to be effective in target groups, Spn has continued to colonize and cause life-threatening disease in susceptible populations. This lack of broad protection highlights the necessity of improving upon the current "gold standard" pneumococcal vaccines to increase protection both by decreasing colonization and reducing the incidence of sterile-site infections. Over the past century, most of the pneumococcal proteins that play an essential role in colonization and pathogenesis have been identified and characterized. Some of these proteins have the potential to serve as antigens in a multi-valent protein vaccine that confers capsule independent protection. This review seeks to summarize the benefits and limitations of the currently employed vaccine strategies, describes how leading candidate proteins contribute to pneumococcal disease development, and discusses the potential of these proteins as protective antigens-including as a hybrid construct.
Collapse
Affiliation(s)
- Ninecia R. Scott
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.); (E.I.T.)
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.); (E.I.T.)
| | - Carlos J. Orihuela
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
77
|
Vaccination with LytA, LytC, or Pce of Streptococcus pneumoniae Protects against Sepsis by Inducing IgGs That Activate the Complement System. Vaccines (Basel) 2021; 9:vaccines9020186. [PMID: 33672306 PMCID: PMC7926378 DOI: 10.3390/vaccines9020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of non-vaccine serotypes of Streptococcus pneumoniae after the use of vaccines based in capsular polysaccharides demonstrates the need of a broader protection vaccine based in protein antigens and widely conserved. In this study, we characterized three important virulence factors of S. pneumoniae namely LytA, LytC, and Pce as vaccine candidates. These proteins are choline-binding proteins that belong to the cell wall hydrolases’ family. Immunization of mice with LytA, LytC, or Pce induced high titers of immunoglobulins G (IgGs) of different subclasses, with IgG1, IgG2a, and IgG2b as the predominant immunoglobulins raised. These antibodies activated the classical pathway of the complement system by increasing the recognition of C1q on the surface of pneumococcal strains of different serotypes. Consequently, the key complement component C3 recognized more efficiently these strains in the presence of specific antibodies elicited by these proteins, activating, therefore, the phagocytosis. Finally, a mouse sepsis model of infection was established, confirming that vaccination with these proteins controlled bacterial replication in the bloodstream, increasing the survival rate. Overall, these results demonstrate that LytA, LytC, and Pce can be protein antigens to be contained in a future universal vaccine against S. pneumoniae.
Collapse
|
78
|
Abstract
The proportion of the global population aged 65 and older is rapidly increasing. Infections in this age group, most recently with SARS-CoV-2, cause substantial morbidity and mortality. Major improvements have been made in vaccines for older people, either through the addition of novel adjuvants-as in the new recombinant zoster vaccine and an adjuvanted influenza vaccine-or by increasing antigen concentration, as in influenza vaccines. In this article we review improvements in immunization for the three most important vaccine preventable diseases of aging. The recombinant zoster vaccine has an efficacy of 90% that is minimally affected by the age of the person being vaccinated and persists for more than four years. Increasing antigen dose or inclusion of adjuvant has improved the immunogenicity of influenza vaccines in older adults, although the relative effectiveness of the enhanced influenza vaccines and the durability of the immune response are the focus of ongoing clinical trials. Conjugate and polysaccharide pneumococcal vaccines have similar efficacy against invasive pneumococcal disease and pneumococcal pneumonia caused by vaccine serotypes in older adults. Their relative value varies by setting, depending on the prevalence of vaccine serotypes, largely related to conjugate vaccine coverage in children. Improved efficacy will increase public confidence and uptake of these vaccines. Co-administration of these vaccines is feasible and important for maximal uptake in older people. Development of new vaccine platforms has accelerated following the arrival of SARS-CoV-2, and will likely result in new vaccines against other pathogens in the future.
Collapse
Affiliation(s)
- Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Faculty of Medicine and Health, University of Sydney, Australia
| | - Peter McIntyre
- Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kanta Subbarao
- WHO CollaboratingCentre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Robert Booy
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, University of Sydney, Australia
| | - Myron J Levin
- Departments of Pediatrics and Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
79
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
80
|
Grego EA, Siddoway AC, Uz M, Liu L, Christiansen JC, Ross KA, Kelly SM, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol 2021; 433:29-76. [PMID: 33165869 PMCID: PMC8107186 DOI: 10.1007/82_2020_226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.
Collapse
Affiliation(s)
- Elizabeth A Grego
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alaric C Siddoway
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Metin Uz
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - John C Christiansen
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kathleen A Ross
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Sean M Kelly
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
81
|
Bonville C, Domachowske J. Pneumococcus. Vaccines (Basel) 2021. [DOI: 10.1007/978-3-030-58414-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
82
|
Effect of N-terminal poly histidine-tag on immunogenicity of Streptococcus pneumoniae surface protein SP0845. Int J Biol Macromol 2020; 163:1240-1248. [DOI: 10.1016/j.ijbiomac.2020.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
|
83
|
Root-Bernstein R. Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death. Vaccines (Basel) 2020; 8:E559. [PMID: 32987794 PMCID: PMC7712751 DOI: 10.3390/vaccines8040559] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023] Open
Abstract
Various studies indicate that vaccination, especially with pneumococcal vaccines, protects against symptomatic cases of SARS-CoV-2 infection and death. This paper explores the possibility that pneumococcal vaccines in particular, but perhaps other vaccines as well, contain antigens that might be cross-reactive with SARS-CoV-2 antigens. Comparison of the glycosylation structures of SARS-CoV-2 with the polysaccharide structures of pneumococcal vaccines yielded no obvious similarities. However, while pneumococcal vaccines are primarily composed of capsular polysaccharides, some are conjugated to cross-reacting material CRM197, a modified diphtheria toxin, and all contain about three percent protein contaminants, including the pneumococcal surface proteins PsaA, PspA and probably PspC. All of these proteins have very high degrees of similarity, using very stringent criteria, with several SARS-CoV-2 proteins including the spike protein, membrane protein and replicase 1a. CRM197 is also present in Haemophilus influenzae type b (Hib) and meningitis vaccines. Equivalent similarities were found at lower rates, or were completely absent, among the proteins in diphtheria, tetanus, pertussis, measles, mumps, rubella, and poliovirus vaccines. Notably, PspA and PspC are highly antigenic and new pneumococcal vaccines based on them are currently in human clinical trials so that their effectiveness against SARS-CoV-2 disease is easily testable.
Collapse
|