51
|
Xu N, Han X, Zhang Y, Huang X, Zhu W, Shen M, Zhang W, Jialin C, Wei M, Qiu Z, Zeng X. Clinical features of gout in adult patients with type Ia glycogen storage disease: a single-centre retrospective study and a review of literature. Arthritis Res Ther 2022; 24:58. [PMID: 35219330 PMCID: PMC8881853 DOI: 10.1186/s13075-021-02706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background This study aimed to explore the clinical features of gout in adult patients with glycogen storage disease type Ia (GSD Ia). Methods Ninety-five adult patients with GSD Ia admitted to Peking Union Medical College Hospital were retrospectively analysed. A clinical diagnosis of GSD Ia was confirmed in all patients through gene sequencing. All patients had hyperuricaemia; 31 patients complicated with gout were enrolled, and 64 adult GSD Ia patients with asymptomatic hyperuricaemia were selected as a control group during the same period. Clinical characteristics were analysed and compared between the two groups. Results Thirty-one of the 95 patients had complications of gout (median age, 25 years; 11 (35.5%) females). All 31 patients had hepatomegaly, abnormal liver function, fasting hypoglycaemia, hyperuricaemia, hyperlipaemia, and hyperlacticaemia. A protuberant abdomen, growth retardation, recurrent epistaxis, and diarrhoea were the most common clinical manifestations. Among these 31 patients, 10 patients (32.3%) had gout as the presenting manifestation and were diagnosed with GSD Ia at a median time of 5 years (range, 1–14) after the first gout flare. The median age of gout onset was 18 years (range, 10–29). Fifteen of the 31 GSD Ia-related gout patients were complicated with gouty tophi, which has an average incidence time of 2 years after the first gouty flare. The mean value of the maximum serum uric acid (SUA) was 800.5 μmol/L (range, 468–1068). The incidence of gout in adult GSD Ia patients was significantly associated with the initial age of regular treatment with raw corn starch, the proportion of urate-lowering therapy initiated during the asymptomatic hyperuricaemic stage, maximum SUA level, and mean cholesterol level. Conclusions Determination of GSD Ia should be performed for young-onset gout patients with an early occurrence of gouty tophi, especially in patients with hepatomegaly, recurrent hypoglycaemia, or growth retardation. Early detection and long-term regulatory management of hyperuricaemia, in addition to early raw corn starch and lifestyle intervention, should be emphasized for GSD Ia patients in order to maintain good metabolic control. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Na Xu
- Department of family medicine & Division of General Internal Medicine, Department of medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Beijing, China
| | - Xinxin Han
- Department of family medicine & Division of General Internal Medicine, Department of medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Beijing, China
| | - Yun Zhang
- Department of family medicine & Division of General Internal Medicine, Department of medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Beijing, China
| | - Xiaoming Huang
- Department of family medicine & Division of General Internal Medicine, Department of medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Beijing, China
| | - Weiguo Zhu
- Department of family medicine & Division of General Internal Medicine, Department of medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Beijing, China
| | - Min Shen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Chen Jialin
- Department of family medicine & Division of General Internal Medicine, Department of medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Beijing, China
| | - Min Wei
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xuejun Zeng
- Department of family medicine & Division of General Internal Medicine, Department of medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases (Peking Union Medical College Hospital), Beijing, China.
| |
Collapse
|
52
|
Luo X, Duan Y, Fang D, Sun Y, Xiao B, Zhang H, Han L, Liang L, Gong Z, Gu X, Yu Y, Qiu W. Diagnosis and follow-up of Glycogen Storage Disease (GSD) Type VI from the largest GSD center in China. Hum Mutat 2022; 43:557-567. [PMID: 35143115 DOI: 10.1002/humu.24345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Glycogen storage disease (GSD) type VI is a glycogenolysis disorder caused by variants of PYGL. Knowledge about this disease is limited because only approximately 50 cases have been reported. we investigated the clinical profiles, molecular diagnosis, and treatment outcomes in patients with gsd VI from 2000 to 2021. The main initial clinical features of this cohort include hepatomegaly, short stature, elevated liver transaminases, hypertriglyceridemia, fasting hypoglycemia, and hyperuricemia. After uncooked cornstarch treatment, the stature and biochemical parameters improved significantly (P < 0.05). However, hyperuricemia recurred in most patients during adolescence. Among the 56 GSD VI patients, 54 biallelic variants and two single allelic variants of PYGL were identified, of which 43 were novel. There were two hotspot variants, c.1621-258_2178-23del and c.2467C>T p.(Gln823*), mainly in patients from Southwest and South China. c.1621-258_2178-23del is a 3.6 kb deletion that results in an out-of-frame deletion r.1621_2177del and an in-frame deletion r.1621_2265del. Our data show for the first time that long-term monitoring of uric acid is recommended for older GSD VI patients. This study also broadens the variant spectrum of PYGL and indicates that there are two hot-spot variants in China. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Duan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Di Fang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Yu Sun
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
53
|
Mukherjee S, Ray SK. Inborn Errors of Metabolism Screening in Neonates: Current Perspective with Diagnosis and Therapy. Curr Pediatr Rev 2022; 18:274-285. [PMID: 35379134 DOI: 10.2174/1573396318666220404194452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Inborn errors of metabolism (IEMs) are rare hereditary or acquired disorders resulting from an enzymatic deformity in biochemical and metabolic pathways influencing proteins, fats, carbohydrate metabolism, or hampered some organelle function. Even though individual IEMs are uncommon, together, they represent a diverse class of genetic diseases, with new issues and disease mechanisms being portrayed consistently. IEM includes the extraordinary multifaceted nature of the fundamental pathophysiology, biochemical diagnosis, molecular level investigation, and complex therapeutic choices. However, due to the molecular, biochemical, and clinical heterogeneity of IEM, screening alone will not detect and diagnose all illnesses included in newborn screening programs. Early diagnosis prevents the emergence of severe clinical symptoms in the majority of IEM cases, lowering morbidity and death. The appearance of IEM disease can vary from neonates to adult people, with the more serious conditions showing up in juvenile stages along with significant morbidity as well as mortality. Advances in understanding the physiological, biochemical, and molecular etiologies of numerous IEMs by means of modalities, for instance, the latest molecular-genetic technologies, genome engineering knowledge, entire exome sequencing, and metabolomics, have prompted remarkable advancement in detection and treatment in modern times. In this review, we analyze the biochemical basis of IEMs, clinical manifestations, the present status of screening, ongoing advances, and efficiency of diagnosis in treatment for IEMs, along with prospects for further exploration as well as innovation.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
54
|
Evaluation of Glycogen Storage Patients: Report of Twelve Novel Variants and New Clinical Findings in a Turkish Population. Genes (Basel) 2021; 12:genes12121987. [PMID: 34946936 PMCID: PMC8701369 DOI: 10.3390/genes12121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Glycogen storage diseases (GSDs) are clinically and genetically heterogeneous disorders that disturb glycogen synthesis or utilization. Although it is one of the oldest inherited metabolic disorders, new genetic methods and long-time patient follow-ups provide us with unique insight into the genotype-phenotype correlations. The aim of this study was to share the phenotypic features and molecular diagnostic results that include new pathogenic variants in our GSD cases. Twenty-six GSD patients were evaluated retrospectively. Demographic data, initial laboratory and imaging features, and current findings of the patients were recorded. Molecular analysis results were classified as novel or previously defined variants. Novel variants were analyzed with pathogenicity prediction tools according to American College of Medical Genetics and Genomics (ACGM) criteria. Twelve novel and rare variants in six different genes were associated with the disease. Hearing impairment in two patients with GSD I, early peripheral neuropathy after liver transplantation in one patient with GSD IV, epilepsy and neuromotor retardation in three patients with GSD IXA were determined. We characterized a heterogeneous group of all diagnosed GSDs over a 5-year period in our institution, and identified novel variants and new clinical findings. It is still difficult to establish a genotype-phenotype correlation in GSDs.
Collapse
|
55
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
56
|
Derks TGJ, Rodriguez-Buritica DF, Ahmad A, de Boer F, Couce ML, Grünert SC, Labrune P, López Maldonado N, Fischinger Moura de Souza C, Riba-Wolman R, Rossi A, Saavedra H, Gupta RN, Valayannopoulos V, Mitchell J. Glycogen Storage Disease Type Ia: Current Management Options, Burden and Unmet Needs. Nutrients 2021; 13:3828. [PMID: 34836082 PMCID: PMC8621617 DOI: 10.3390/nu13113828] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is caused by defective glucose-6-phosphatase, a key enzyme in carbohydrate metabolism. Affected individuals cannot release glucose during fasting and accumulate excess glycogen and fat in the liver and kidney, putting them at risk of severe hypoglycaemia and secondary metabolic perturbations. Good glycaemic/metabolic control through strict dietary treatment and regular doses of uncooked cornstarch (UCCS) is essential for preventing hypoglycaemia and long-term complications. Dietary treatment has improved the prognosis for patients with GSDIa; however, the disease itself, its management and monitoring have significant physical, psychological and psychosocial burden on individuals and parents/caregivers. Hypoglycaemia risk persists if a single dose of UCCS is delayed/missed or in cases of gastrointestinal intolerance. UCCS therapy is imprecise, does not treat the cause of disease, may trigger secondary metabolic manifestations and may not prevent long-term complications. We review the importance of and challenges associated with achieving good glycaemic/metabolic control in individuals with GSDIa and how this should be balanced with age-specific psychosocial development towards independence, management of anxiety and preservation of quality of life (QoL). The unmet need for treatment strategies that address the cause of disease, restore glucose homeostasis, reduce the risk of hypoglycaemia/secondary metabolic perturbations and improve QoL is also discussed.
Collapse
Affiliation(s)
- Terry G. J. Derks
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (F.d.B.); (A.R.)
| | - David F. Rodriguez-Buritica
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA; (D.F.R.-B.); (H.S.)
| | - Ayesha Ahmad
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Foekje de Boer
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (F.d.B.); (A.R.)
| | - María L. Couce
- IDIS, CIBERER, MetabERN, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany;
| | - Philippe Labrune
- APHP, Université Paris-Saclay, Hôpital Antoine-Béclère, 92140 Clamart, France;
- Inserm U 1195, Paris-Saclay University, 94276 Le Kremlin Bicêtre, France
| | - Nerea López Maldonado
- Piera Health Center, Catalan Institute of Health, 08007 Barcelona, Spain;
- Autonomous University of Barcelona, 08193 Barcelona, Spain
| | | | - Rebecca Riba-Wolman
- Connecticut Children’s Medical Center, Department of Pediatrics, Division of Endocrinology, University of Connecticut, Farmington, CT 06032, USA;
| | - Alessandro Rossi
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (F.d.B.); (A.R.)
- Department of Translational Medicine, Section of Paediatrics, University of Naples “Federico II”, 80131 Naples, Italy
| | - Heather Saavedra
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA; (D.F.R.-B.); (H.S.)
| | - Rupal Naik Gupta
- Ultragenyx Pharmaceutical Inc., Novato, CA 94949, USA; (R.N.G.); (V.V.)
| | | | - John Mitchell
- Department of Pediatrics, Division of Pediatric Endocrinology, Montreal Children’s Hospital, McGill University Health Center, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
57
|
Kakhlon O, Vaknin H, Mishra K, D’Souza J, Marisat M, Sprecher U, Wald‐Altman S, Dukhovny A, Raviv Y, Da’adoosh B, Engel H, Benhamron S, Nitzan K, Sweetat S, Permyakova A, Mordechai A, Akman HO, Rosenmann H, Lossos A, Tam J, Minassian BA, Weil M. Alleviation of a polyglucosan storage disorder by enhancement of autophagic glycogen catabolism. EMBO Mol Med 2021; 13:e14554. [PMID: 34486811 PMCID: PMC8495453 DOI: 10.15252/emmm.202114554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.
Collapse
Affiliation(s)
- Or Kakhlon
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Hilla Vaknin
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Kumudesh Mishra
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Jeevitha D’Souza
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Monzer Marisat
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Uri Sprecher
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Shane Wald‐Altman
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Anna Dukhovny
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Yuval Raviv
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Benny Da’adoosh
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel AvivIsrael
| | - Hamutal Engel
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel AvivIsrael
| | - Sandrine Benhamron
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Keren Nitzan
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Sahar Sweetat
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Anna Permyakova
- Obesity and Metabolism LaboratoryInstitute for Drug ResearchSchool of PharmacyFaculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Anat Mordechai
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Hasan Orhan Akman
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Hanna Rosenmann
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
- Hadassah BrainLabs – National Knowledge Center for Research on Brain DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Alexander Lossos
- Department of NeurologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Joseph Tam
- Obesity and Metabolism LaboratoryInstitute for Drug ResearchSchool of PharmacyFaculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Berge A. Minassian
- Division of NeurologyDepartment of PediatricsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized MedicineThe Cell Screening Facility for Personalized MedicineThe Shmunis School of Biomedicine and Cancer ResearchThe George S. Wise Faculty for Life SciencesSagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
58
|
Bone Mineral Density in Patients with Hepatic Glycogen Storage Diseases. Nutrients 2021; 13:nu13092987. [PMID: 34578865 PMCID: PMC8469033 DOI: 10.3390/nu13092987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023] Open
Abstract
The association between bone mineral density (BMD) and hepatic glycogen storage diseases (GSDs) is still unclear. To evaluate the BMD of patients with GSD I, IIIa and IXα, a cross-sectional study was performed, including 23 patients (GSD Ia = 13, Ib = 5, IIIa = 2 and IXα = 3; median age = 11.9 years; IQ = 10.9–20.1) who underwent a dual-energy X-ray absorptiometry (DXA). Osteocalcin (OC, n = 18), procollagen type 1 N-terminal propeptide (P1NP, n = 19), collagen type 1 C-terminal telopeptide (CTX, n = 18) and 25-OH Vitamin D (n = 23) were also measured. The participants completed a 3-day food diary (n = 20). Low BMD was defined as a Z-score ≤ −2.0. All participants were receiving uncooked cornstarch (median dosage = 6.3 g/kg/day) at inclusion, and 11 (47.8%) presented good metabolic control. Three (13%) patients (GSD Ia = 1, with poor metabolic control; IIIa = 2, both with high CPK levels) had a BMD ≤ −2.0. CTX, OC and P1NP correlated negatively with body weight and age. 25-OH Vitamin D concentration was decreased in seven (30.4%) patients. Our data suggest that patients with hepatic GSDs may have low BMD, especially in the presence of muscular involvement and poor metabolic control. Systematic nutritional monitoring of these patients is essential.
Collapse
|
59
|
Cai X, Genchev GZ, He P, Lu H, Yu G. Demographics, in-hospital analysis, and prevalence of 33 rare diseases with effective treatment in Shanghai. Orphanet J Rare Dis 2021; 16:262. [PMID: 34103049 PMCID: PMC8186176 DOI: 10.1186/s13023-021-01830-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rare diseases are ailments which impose a heavy burden on individual patients and global society as a whole. The rare disease management landscape is not a smooth one-a rare disease is quite often hard to diagnose, treat, and investigate. In China, the country's rapid economic rise and development has brought an increased focus on rare diseases. At present, there is a growing focus placed on the importance and public health priority of rare diseases and on improving awareness, definitions, and treatments. METHODS In this work we utilized clinical data from the Shanghai HIE System to characterize the status of 33 rare diseases with effective treatment in Shanghai for the time period of 2013-2016. RESULTS AND CONCLUSION First, we describe the total number of patients, year-to-year change in new patients with diagnosis in one of the target diseases and the distribution of gender and age for the top six (by patient number) diseases of the set of 33 rare diseases. Second, we describe the hospitalization burden in terms of in-hospital ratio, length of stay, and medical expenses during hospitalization. Finally, rare disease period prevalence is calculated for the rare diseases set.
Collapse
Affiliation(s)
- Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Ping He
- Shanghai Hospital Development Center, Shanghai, China
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
60
|
Neurological Involvement in Glycogen Storage Disease Type IXa due to PHKA2 Mutation. Can J Neurol Sci 2021; 47:400-403. [PMID: 31987065 DOI: 10.1017/cjn.2020.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycogen storage diseases (GSDs) result from the deficiency of enzymes involved in glycogen synthesis and breakdown into glucose. Mutations in the gene PHKA2 encoding phosphorylase kinase regulatory subunit alpha 2 have been linked to GSD type IXa. We describe a family with two adult brothers with neonatal hepatosplenomegaly and later onset of hearing loss, cognitive impairment, and cerebellar involvement. Whole-exome sequencing was performed on both subjects and revealed a shared hemizygous missense variant (c.A1561G; p.T521A) in exon 15 of PHKA2. The phenotype broadens the clinical and magnetic resonance imaging spectrum of GSD type IXa to include later onset neurological manifestations.
Collapse
|
61
|
Morales JA, Tise CG, Narang A, Grimm PC, Enns GM, Lee CU. Profound neonatal lactic acidosis and renal tubulopathy in a patient with glycogen storage disease type IXɑ2 secondary to a de novo pathogenic variant in PHKA2. Mol Genet Metab Rep 2021; 27:100765. [PMID: 34277355 PMCID: PMC8261893 DOI: 10.1016/j.ymgmr.2021.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/04/2022] Open
Abstract
The phenotype of individuals with glycogen storage disease (GSD) IX appears to be highly variable, even within subtypes. Features include short stature, fasting hypoglycemia with ketosis, hepatomegaly, and transaminitis. GSD IXɑ2 is caused by hemizygous pathogenic variants in PHKA2, and results in deficiency of the phosphorylase kinase enzyme, particularly in the liver. Like other GSDs, GSD IXɑ2 can present with hypoglycemia and post-prandial lactic acidosis, but has never been reported in a newborn, nor with lactic acidosis as the presenting feature. Here we describe the clinical presentation and course of a newborn boy with profound neonatal lactic and metabolic acidosis, renal tubulopathy, and sensorineural hearing loss (SNHL) diagnosed with GSD IXɑ2 through exome sequencing. Review of the literature suggests this case represents an atypical and severe presentation of GSD IXɑ2 and proposes expansion of the phenotype to include neonatal lactic acidosis and renal tubulopathy.
Collapse
Affiliation(s)
- J Andres Morales
- Department of Pediatrics, Division of Medical Genetics, Stanford University, United States of America
| | - Christina G Tise
- Department of Pediatrics, Division of Medical Genetics, Stanford University, United States of America
| | - Amrita Narang
- Department of Pediatrics, Division of Gastroenterology, Stanford University, United States of America
| | - Paul C Grimm
- Department of Pediatrics, Division of Nephrology, Stanford University, United States of America
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University, United States of America
| | - Chung U Lee
- Department of Pediatrics, Division of Medical Genetics, Stanford University, United States of America
| |
Collapse
|
62
|
Molares-Vila A, Corbalán-Rivas A, Carnero-Gregorio M, González-Cespón JL, Rodríguez-Cerdeira C. Biomarkers in Glycogen Storage Diseases: An Update. Int J Mol Sci 2021; 22:4381. [PMID: 33922238 PMCID: PMC8122709 DOI: 10.3390/ijms22094381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Glycogen storage diseases (GSDs) are a group of 19 hereditary diseases caused by a lack of one or more enzymes involved in the synthesis or degradation of glycogen and are characterized by deposits or abnormal types of glycogen in tissues. Their frequency is very low and they are considered rare diseases. Except for X-linked type IX, the different types are inherited in an autosomal recessive pattern. In this study we reviewed the literature from 1977 to 2020 concerning GSDs, biomarkers, and metabolic imbalances in the symptoms of some GSDs. Most of the reported studies were performed with very few patients. Classification of emerging biomarkers between different types of diseases (hepatics GSDs, McArdle and PDs and other possible biomarkers) was done for better understanding. Calprotectin for hepatics GSDs and urinary glucose tetrasaccharide for Pompe disease have been approved for clinical use, and most of the markers mentioned in this review only need clinical validation, as a final step for their routine use. Most of the possible biomarkers are implied in hepatocellular adenomas, cardiomyopathies, in malfunction of skeletal muscle, in growth retardation, neutropenia, osteopenia and bowel inflammation. However, a few markers have lost interest due to a great variability of results, which is the case of biotinidase, actin alpha 2, smooth muscle, aorta and fibroblast growth factor receptor 4. This is the first review published on emerging biomarkers with a potential application to GSDs.
Collapse
Affiliation(s)
- Alberto Molares-Vila
- Bioinformatics Platform, Health Research Institute in Santiago de Compostela (IDIS), SERGAS-USC, 15706 Santiago de Compostela, Spain;
| | - Alberte Corbalán-Rivas
- Local Office of Health Inspection, Health Ministry at Galician Autonomous Region, 27880 Burela, Spain;
| | - Miguel Carnero-Gregorio
- Department of Molecular Diagnosis (Arrays Division), Institute of Cellular and Molecular Studies (ICM), 27003 Lugo, Spain;
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
- Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Meixoeiro Hospital, SERGAS, 36213 Vigo, Spain
| |
Collapse
|
63
|
Jorge NB, Tommaso AMAD, Hessel G. ANTHROPOMETRIC AND DIETARY ASSESSMENT OF PATIENTS WITH GLYCOGENOSIS TYPE I. ACTA ACUST UNITED AC 2021; 39:e2020046. [PMID: 33566881 PMCID: PMC7875543 DOI: 10.1590/1984-0462/2021/39/2020046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Objective: To perform anthropometric and dietary evaluation of patients with glycogenosis type Ia and Ib. Methods: This cross-sectional study is composed of a sample of 11 patients with glycogenosis divided into two subgroups according to the classification of glycogenosis (type Ia=5 and type Ib=6), aged between 4 and 20 years. The analyzed anthropometric variables were weight, height, body mass index, and measures of lean and fat body mass, which were compared with reference values. For dietary assessment, a food frequency questionnaire was used to calculate energy and macronutrients intake as well as the amount of raw cornstarch consumed. Mann-Whitney U test and Fisher’s exact test were performed, considering a significance level of 5%. Results: Patients ingested raw cornstarch in the amount of 0.49 to 1.34 g/kg/dose at a frequency of six times a day, which is lower than recommended (1.75-2.50 g/kg/dose, four times a day). The amount of energy intake was, on average, 50% higher than energy requirements; however, carbohydrate intake was below the adequacy percentage in 5/11 patients. Short stature was found in 4/10 patients; obesity, in 3/11; and muscle mass deficit, in 7/11. There were no statistical differences between the subgroups. Conclusions: In patients with glycogenosis type I, there was deficit in growth and muscle mass, but no differences were found between the subgroups (Ia and Ib). Although the diet did not exceed the adequacy of carbohydrates, about 1/3 of the patients presented obesity, probably due to higher energy intake.
Collapse
|
64
|
Kahali B, Chen Y, Feitosa MF, Bielak LF, O’Connell JR, Musani SK, Hegde Y, Chen Y, Stetson LC, Guo X, Fu YP, Smith AV, Ryan KA, Eiriksdottir G, Cohain AT, Allison M, Bakshi A, Bowden DW, Budoff MJ, Carr JJ, Carskadon S, Chen YDI, Correa A, Crudup BF, Du X, Harris TB, Yang J, Kardia SLR, Launer LJ, Liu J, Mosley TH, Norris JM, Terry JG, Palanisamy N, Schadt EE, O’Donnell CJ, Yerges-Armstrong LM, Rotter JI, Wagenknecht LE, Handelman SK, Gudnason V, Province MA, Peyser PA, Halligan B, Palmer ND, Speliotes EK. A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction. J Clin Endocrinol Metab 2021; 106:372-387. [PMID: 33231259 PMCID: PMC7823249 DOI: 10.1210/clinem/dgaa855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 01/02/2023]
Abstract
CONTEXT Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation. OBJECTIVE Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease. DESIGN Genetics of Obesity-associated Liver Disease Consortium. SETTING Population-based. MAIN OUTCOME Computed tomography measured liver attenuation. RESULTS Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate. CONCLUSIONS These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
Collapse
Affiliation(s)
- Bratati Kahali
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Yue Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence F Bielak
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey R O’Connell
- Department of Endocrinology, Diabetes, and Nutrition, University of Maryland-Baltimore, Baltimore, MD, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yash Hegde
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yanhua Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - L C Stetson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA, Torrance, CA, USA
| | - Yi-ping Fu
- Framingham Heart Study, NHLBI, NIH, Framingham, MA, USA
- Office of Biostatistics Research, Division of Cardiovascular Diseases, NHLBI, NIH, Bethesda, MD, USA
| | - Albert Vernon Smith
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen A Ryan
- Department of Endocrinology, Diabetes, and Nutrition, University of Maryland-Baltimore, Baltimore, MD, USA
| | | | - Ariella T Cohain
- Department of Genetics and Genomics Sciences, Icahn School of Medicine, New York, NY, USA
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Andrew Bakshi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Budoff
- Department of Internal Medicine, LA Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - J Jeffrey Carr
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA, Torrance, CA, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Breland F Crudup
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiaomeng Du
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Jian Yang
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sharon L R Kardia
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Jiankang Liu
- Brigham and Women’s Hospital, Havard University, Boston, MA, USA
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jill M Norris
- Department of Preventive Medicine and Biometrics, University of Colorado at Denver Health Sciences Center, Aurora, CO, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Eric E Schadt
- Department of Genetics and Genomics Sciences, Icahn School of Medicine, New York, NY, USA
| | - Christopher J O’Donnell
- Framingham Heart Study, NHLBI, NIH, Framingham, MA, USA
- Cardiology Section, Department of Medicine, Boston Veteran’s Administration Healthcare, Boston, MA, USA
| | - Laura M Yerges-Armstrong
- Department of Endocrinology, Diabetes, and Nutrition, University of Maryland-Baltimore, Baltimore, MD, USA
- Target Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA, Torrance, CA, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel K Handelman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia A Peyser
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Brian Halligan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elizabeth K Speliotes
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
65
|
Laforêt P, Oldfors A, Malfatti E, Vissing J. 251st ENMC international workshop: Polyglucosan storage myopathies 13-15 December 2019, Hoofddorp, the Netherlands. Neuromuscul Disord 2021; 31:466-477. [PMID: 33602551 DOI: 10.1016/j.nmd.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Pascal Laforêt
- Neurology Unit, Raymond Poincaré Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Anders Oldfors
- Department of Laboratory Medicine, Sahlgrenska University Hospital, Institute of Biomedicine, University of Gothenburg, Sweden.
| | - Edoardo Malfatti
- Neuromuscular Reference Center, Henri Mondor University Hospital, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | | |
Collapse
|
66
|
Dababneh R, Shawabkeh A, Gharaibeh S, Khouri ZA, Amayreh W, Bissada NF. Periodontal Manifestation of Type Ib Glycogen Storage Disease: A Rare Case Report. Clin Adv Periodontics 2021; 10:150-154. [PMID: 33460318 DOI: 10.1002/cap.10112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glycogen storage diseases (GSD) are genetic metabolic disorders of glycogen metabolism. There are >15 types based on the enzyme deficiency and the affected organ. Glycogen storage disease Type Ib is the only type associated with neutropenia and periodontitis. This type is caused by a deficiency of glucose-6-phosphate (G6P) translocase which prevents the transport of G6P across the endoplasmic reticulum. As a result, glycogen cannot be metabolized into glucose with its subsequent accumulation in tissues. The affected organs involved in Type Ib are the liver, kidney, and intestine. CASE PRESENTATION A 5-year-old Jordanian boy from a consanguineous family referred to the periodontal clinic in February 2014 with an established diagnosis of GSD-Ib. The systemic manifestations include hepatomegaly, hypoglycemia, hyperprolactenemia, inflammatory bowel disease, osteoporosis, and neutropenia. Oral manifestations include severe gingival inflammation and recurrent oral ulceration disease. CONCLUSIONS The clinical signs and symptoms of periodontal disease in GSD Type Ib are similar to those found in patients diagnosed with neutropenia. Future studies are needed to clarify whether severe generalized inflammation of the gingiva in children is part of the GSD Type Ib or is a separate entity caused by neutrophil dysfunction.
Collapse
Affiliation(s)
- Reem Dababneh
- Department of Periodontics, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Ayman Shawabkeh
- Department of Periodontics, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Shatha Gharaibeh
- Department of Periodontics, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | | | - Wajdi Amayreh
- Department of Pediatrics and Metabolic Genetics, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Nabil F Bissada
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
67
|
Sieloff EM, Rutledge B, Huffman C, Vos D, Melgar T. National trends and outcomes of genetically inherited non-alcoholic chronic liver disease in the USA: estimates from the National Inpatient Sample (NIS) database. Gastroenterol Rep (Oxf) 2021; 9:38-48. [PMID: 33747525 PMCID: PMC7962742 DOI: 10.1093/gastro/goaa091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023] Open
Abstract
Background Medical literature on the prevalence of genetic liver disease is lacking. In this study, we investigated the in-hospital healthcare and economic burden from genetic causes of non-alcoholic chronic liver disease (NACLD) and non-alcoholic liver cirrhosis (NALC) in the USA. Methods Data were abstracted from the National Inpatient Sample database between 2002 and 2014 using ICD9 codes for patients discharged with NACLD and NALC secondary to genetic diseases including alpha-1 antitrypsin deficiency (A1ATd), cystic fibrosis (CF), Wilson disease (WD), hereditary hemochromatosis (HHC), glycogen storage disease, and disorders of aromatic amino-acid metabolism (DAAAM). Results Throughout the study period, there were 19,332 discharges for NACLD associated with the six genetic diseases including 14,368 for NALC. There were $1.09 billion in hospital charges, 790 in-hospital deaths, and 955 liver transplants performed. Overall, A1ATd was associated with 8,983 (62.52%) hospitalizations for NALC followed by WD, CF, and HHC. The highest in-hospital mortality was seen with HHC. The greatest frequency of liver transplants was seen with DAAAM. Conclusion The number of hospitalizations for genetic liver diseases continues to increase. With increased funding and directed research efforts, we can aim to improve medical treatments and the quality of life for patients at risk for liver deterioration.
Collapse
Affiliation(s)
- Eric M Sieloff
- Department of Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Brian Rutledge
- Department of Internal Medicine, Division of Gastroenterology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cuyler Huffman
- Department of Biostatistics, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Duncan Vos
- Department of Biostatistics, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Thomas Melgar
- Department of Pediatrics, Adolescent and Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
68
|
Kirby TO, Ochoa-Reparaz J, Roullet JB, Gibson KM. Dysbiosis of the intestinal microbiome as a component of pathophysiology in the inborn errors of metabolism. Mol Genet Metab 2021; 132:1-10. [PMID: 33358495 DOI: 10.1016/j.ymgme.2020.12.289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) represent monogenic disorders in which specific enzyme deficiencies, or a group of enzyme deficiencies (e.g., peroxisomal biogenesis disorders) result in either toxic accumulation of metabolic intermediates or deficiency in the production of key end-products (e.g., low cholesterol in Smith-Lemli-Opitz syndrome (Gedam et al., 2012 [1]); low creatine in guanidinoacetic acid methyltransferase deficiency (Stromberger, 2003 [2])). Some IEMs can be effectively treated by dietary restrictions (e.g., phenylketonuria (PKU), maple syrup urine disease (MSUD)), and/or dietary intervention to remove offending compounds (e.g., acylcarnitine excretion with the oral intake of l-carnitine in the disorders of fatty acid oxidation). While the IEMs are predominantly monogenic disorders, their phenotypic presentation is complex and pleiotropic, impacting multiple physiological systems (hepatic and neurological function, renal and musculoskeletal impairment, cardiovascular and pulmonary activity, etc.). The metabolic dysfunction induced by the IEMs, as well as the dietary interventions used to treat them, are predicted to impact the gut microbiome in patients, and it is highly likely that microbiome dysbiosis leads to further exacerbation of the clinical phenotype. That said, only recently has the gut microbiome been considered as a potential pathomechanistic consideration in the IEMs. In this review, we overview the function of the gut-brain axis, the crosstalk between these compartments, and the expanding reports of dysbiosis in the IEMs recently reported. The potential use of pre- and probiotics to improve clinical outcomes in IEMs is also highlighted.
Collapse
Affiliation(s)
- Trevor O Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Javier Ochoa-Reparaz
- Department of Biological Sciences, Eastern Washington University, Cheney, WA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
69
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
70
|
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv Cancer Res 2020; 149:1-61. [PMID: 33579421 PMCID: PMC8796122 DOI: 10.1016/bs.acr.2020.10.001] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the primary malignancy of hepatocytes, is a diagnosis with bleak outcome. According to National Cancer Institute's SEER database, the average five-year survival rate of HCC patients in the US is 19.6% but can be as low as 2.5% for advanced, metastatic disease. When diagnosed at early stages, it is treatable with locoregional treatments including surgical resection, Radio-Frequency Ablation, Trans-Arterial Chemoembolization or liver transplantation. However, HCC is usually diagnosed at advanced stages when the tumor is unresectable, making these treatments ineffective. In such instances, systemic therapy with tyrosine kinase inhibitors (TKIs) becomes the only viable option, even though it benefits only 30% of patients, provides only a modest (~3months) increase in overall survival and causes drug resistance within 6months. HCC, like many other cancers, is highly heterogeneous making a one-size fits all option problematic. The selection of liver transplantation, locoregional treatment, TKIs or immune checkpoint inhibitors as a treatment strategy depends on the disease stage and underlying condition(s). Additionally, patients with similar disease phenotype can have different molecular etiology making treatment responses different. Stratification of patients at the molecular level would facilitate development of the most effective treatment option. With the increase in efficiency and affordability of "omics"-level analysis, considerable effort has been expended in classifying HCC at the molecular, metabolic and immunologic levels. This review examines the results of these efforts and the ways they can be leveraged to develop targeted treatment options for HCC.
Collapse
Affiliation(s)
- Saranya Chidambaranathan-Reghupaty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
71
|
Daniel PV, Mondal P. Causative and Sanative dynamicity of ChREBP in Hepato-Metabolic disorders. Eur J Cell Biol 2020; 99:151128. [PMID: 33232883 DOI: 10.1016/j.ejcb.2020.151128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
ChREBP is the master regulator of carbohydrate dependent glycolytic and lipogenic flux within metabolic tissues. It plays a vital role in hyper-calorific milieu by activating glycolysis, lipogenesis along with pentose phosphate shunt and glycogen synthesis, fostering immediate reduction in the systemic glycemic levels. Liver being the primary organ to sense disproportionate dietary intake and linked physiological stress, stimulates ChREBP to perform the aforementioned processes. Activated ChREBP also inhibits lipolysis and encourages proper disposal of excessive triglycerides into adipocytes from the liver ablating hepatic intracellular lipid trafficking. Chronic overeating or onset of positive energy balance, hyper-activates ChREBP and signals development, intensification of hepato-metabolic disorders, and allied discrepancies in the whole-body metabolic functioning. ChREBP thus gets negatively connotated as the primary regulator of hepatic disorders, owing to its inherent features as the primary glycemic sensor and the only transcription factor that can transduce glucose-dependent glycolytic and lipogenic signals. Through this review, we - try to recapitulate and emphasize on the sanative events coordinated by ChREBP in several pathophysiological states. In totality, we aim to uncouple the disease-causing aspects of ChREBP from its positive attributes evoked during a metabolic crisis, in hepato-metabolic diseases.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| |
Collapse
|
72
|
Leao Filho H, de Oliveira CV, Horvat N. Other types of diffuse liver disease: is there a way to do it? Abdom Radiol (NY) 2020; 45:3425-3443. [PMID: 32306241 DOI: 10.1007/s00261-020-02530-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are a variety of less common diffuse liver diseases that can be asymptomatic or cause severe liver dysfunction. For the majority of them, the association of clinical, laboratory, and imaging findings are needed to narrow the differential diagnosis. In this article, we will review and describe the rarer diffuse liver diseases including drug-related liver disease, inflammatory and infectious diseases, and deposition disorders such as amyloidosis, glycogen storage disease, Wilson's disease, and alpha-1 antitrypsin deficiency. Abdominal radiologists should be familiar with the imaging features of different types of diffuse liver diseases to help the multidisciplinary team involved in the treatment of these patients. The data related to some of these conditions are scarce and sometimes experimental, but we want to demonstrate to the reader the value of imaging techniques in their analysis and introduce the potential of new imaging methods.
Collapse
|
73
|
Poojari V, Shah I, Shetty NS, Mirani S, Tolani D. Clinical profile and outcome of glycogen storage disease in Indian children. Trop Doct 2020; 51:189-192. [PMID: 33106122 DOI: 10.1177/0049475520961935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We aimed to determine the clinical profile and outcome of Indian children with glycogen storage disorders. Ours was a retrospective study from 2005 to 2018 in 36 children diagnosed on the basis of a liver biopsy. Most (77.7%) presented with abdominal swelling but a quarter with convulsion, four of whom had documented hypoglycaemia associated, doll-like facies or developmental delay. Diarrhoea was found in four patients, ascites in two and portal hypertension in one. One child died, and over half were unfortunately lost to follow-up, though the rest had recurrent seizures, three more developed neutropenia, two recurrent infections, one portal hypertension with epistaxis, one nephrocalcinosis and liver adenoma. Liver function improved in six (37.5%) with normalisation of triglycerides, and four of serum transaminases.
Collapse
Affiliation(s)
- Vishrutha Poojari
- Pediatric Liver Clinic, B. J. Wadia Hospital for Children, Mumbai, India
| | - Ira Shah
- Pediatric Liver Clinic, B. J. Wadia Hospital for Children, Mumbai, India
| | - Naman S Shetty
- Pediatric Liver Clinic, B. J. Wadia Hospital for Children, Mumbai, India
| | - Sonal Mirani
- Pediatric Liver Clinic, B. J. Wadia Hospital for Children, Mumbai, India
| | - Drishti Tolani
- Pediatric Liver Clinic, B. J. Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
74
|
Saeed A, Hoogerland JA, Wessel H, Heegsma J, Derks TGJ, van der Veer E, Mithieux G, Rajas F, Oosterveer MH, Faber KN. Glycogen storage disease type 1a is associated with disturbed vitamin A metabolism and elevated serum retinol levels. Hum Mol Genet 2020; 29:264-273. [PMID: 31813960 PMCID: PMC7001719 DOI: 10.1093/hmg/ddz283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023] Open
Abstract
Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by mutations in the G6PC gene, encoding the catalytic subunit of glucose-6-phosphatase. Early symptoms include severe fasting intolerance, failure to thrive and hepatomegaly, biochemically associated with nonketotic hypoglycemia, fasting hyperlactidemia, hyperuricemia and hyperlipidemia. Dietary management is the cornerstone of treatment aiming at maintaining euglycemia, prevention of secondary metabolic perturbations and long-term complications, including liver (hepatocellular adenomas and carcinomas), kidney and bone disease (hypovitaminosis D and osteoporosis). As impaired vitamin A homeostasis also associates with similar symptoms and is coordinated by the liver, we here analysed whether vitamin A metabolism is affected in GSD Ia patients and liver-specific G6pc−/− knock-out mice. Serum levels of retinol and retinol binding protein 4 (RBP4) were significantly increased in both GSD Ia patients and L-G6pc−/− mice. In contrast, hepatic retinol levels were significantly reduced in L-G6pc−/− mice, while hepatic retinyl palmitate (vitamin A storage form) and RBP4 levels were not altered. Transcript and protein analyses indicate an enhanced production of retinol and reduced conversion the retinoic acids (unchanged LRAT, Pnpla2/ATGL and Pnpla3 up, Cyp26a1 down) in L-G6pc−/− mice. Aberrant expression of genes involved in vitamin A metabolism was associated with reduced basal messenger RNA levels of markers of inflammation (Cd68, Tnfα, Nos2, Il-6) and fibrosis (Col1a1, Acta2, Tgfβ, Timp1) in livers of L-G6pc−/− mice. In conclusion, GSD Ia is associated with elevated serum retinol and RBP4 levels, which may contribute to disease symptoms, including osteoporosis and hepatic steatosis.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Joanne A Hoogerland
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanna Wessel
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, Center for Liver Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eveline van der Veer
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008.,Universite de Lyon, Lyon F-69008, France.,Université Lyon 1, Villeurbanne F-69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon F-69008.,Universite de Lyon, Lyon F-69008, France.,Université Lyon 1, Villeurbanne F-69622, France
| | - Maaike H Oosterveer
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
75
|
Ai J, He W, Huang X, Wu Y, Lei Y, Yu C, Görgülü K, Diakopoulos KN, Lu N, Zhu Y. A case report of acute pancreatitis with glycogen storage disease type IA in an adult patient and review of the literature. Medicine (Baltimore) 2020; 99:e22644. [PMID: 33080702 PMCID: PMC7571931 DOI: 10.1097/md.0000000000022644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
RATIONALE Glycogen storage disease type IA (GSD IA) is an inherited disorder of glycogen metabolism characterized by fasting hypoglycemia, hyperuricemia, and hyperlipidemia including hypertriglyceridemia (HTG). Patients have a higher risk of developing acute pancreatitis (AP) because of HTG. AP is a potentially life-threatening disease with a wide spectrum severity. Nevertheless, almost no reports exist on GSD IA-induced AP in adult patients. PATIENT CONCERNS A 23-year-old male patient with GSD 1A is presented, who developed moderate severe AP due to HTG. DIAGNOSES The GSD 1A genetic background of this patient was confirmed by Sanger sequencing. Laboratory tests, along with abdominal enhanced-computed tomography, were used for the diagnosis of HTG and AP. INTERVENTIONS This patient was transferred to the intensive care unit and treated by reducing HTG, suppressing gastric acid, inhibiting trypsin activity, and relieving hyperuricemia and gout. OUTCOMES Fifteen days after hospital admission, the patient had no complaints about abdominal pain and distention. Follow-up of laboratory tests displayed almost normal values. Reexamination by computed tomography exhibited a reduction in peripancreatic necrotic fluid collection compared with the initial stage. LESSONS Fast and long-term reduction of triglycerides along with management of AP proved effective in relieving suffering of an adult GSD IA-patient and improving prognosis. Thus, therapeutic approaches have to be renewed and standardized to cope with all complications, especially AP, and enable a better outcome so that patients can master the disease.
Collapse
Affiliation(s)
| | | | | | - Yao Wu
- The Department of Gastroenterology
| | | | - Chen Yu
- The Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kivanc Görgülü
- Comprehensive Cancer Center Munich, Klinikum rechts der Isar, Technical University Munich, Munich Germany
| | - Kalliope N. Diakopoulos
- Comprehensive Cancer Center Munich, Klinikum rechts der Isar, Technical University Munich, Munich Germany
| | | | - Yin Zhu
- The Department of Gastroenterology
| |
Collapse
|
76
|
A Novel, Recurrent, 3.6-kb Deletion in the PYGL Gene Contributes to Glycogen Storage Disease Type VI. J Mol Diagn 2020; 22:1373-1382. [PMID: 32961316 DOI: 10.1016/j.jmoldx.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
The PYGL gene is the only established gene known to cause glycogen storage disease type VI (GSD6), which is a rare autosomal recessive disorder associated with hepatomegaly, elevated levels of hepatic transaminases, and hypoglycemia. Extended bioinformatics analysis was performed on the exome sequencing data of 5 patients who were clinically diagnosed as having or highly suspected of having GSD, and a single heterozygous pathogenic or likely pathogenic or rare variant of uncertain significance single-nucleotide variant was identified on the PYGL gene. A recurrent, novel, 3.6-kb deletion involving exons 14 to 17 of PYGL was identified in three of the five patients. Together with the two novel and one established stop-gain SNVs, they were diagnosed as compounds heterozygous of PYGL variants and confirmed as GSD6. The detected 3.6-kb deletion was further screened in a Chinese cohort of 31,317 individuals without hepatic abnormalities, and 10 carriers were identified, showing an allele frequency of 0.016%. Compared with the previously established 47 PYGL pathogenic or likely pathogenic SNVs, the novel pathogenic deletion had the second highest allele frequency among the population. This recurrent, novel, 3.6-kb deletion improved the molecular diagnostic rate of the GSD6. The relatively high frequency of the variant suggests that it is a potential mutation hotspot in patients with GSD6.
Collapse
|
77
|
Liang Y, Du C, Wei H, Zhang C, Zhang M, Hu M, Fang F, Luo X. Genotypic and clinical analysis of 49 Chinese children with hepatic glycogen storage diseases. Mol Genet Genomic Med 2020; 8:e1444. [PMID: 32772503 PMCID: PMC7549605 DOI: 10.1002/mgg3.1444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Glycogen storage disease (GSD) is a relatively rare inborn metabolic disorder, our study aims to investigate the genotypic and clinical feature of hepatic GSDs in China. METHODS The clinical and genotypic data of 49 patients with hepatic GSDs were collected retrospectively and analyzed. RESULTS After gene sequencing, 49 patients were diagnosed as GSDs, including GSD Ia (24 cases), GSD IIIa (11 cases), GSD IXa (8 cases), GSD VI (3 cases) and GSD Ib (3 cases). About 45 gene variants of G6PC, AGL, PHKA2, PYGL, and SLC37A4 were detected; among which, 22 variants were unreported previously. c.648G>T (p. Leu216Leu) of G6PC exon 5 is the most common variant for GSD Ia patients (20/24,83.33%), splice variant c.1735+1G>T of AGL exon 13 is relatively common among GSD IIIa, while novel variant accounts for the majority of GSD IXa and GSD VI patients. As for clinical features, there was no significant difference in the onset age among group GSD Ia, GSD IIIa, and GSD IXa, but the age at diagnosis and average disease duration from diagnosis of GSD Ia were significantly higher than GSD IIIa and GSD IXa. Body weight of GSD patients was basically normal, but growth retardation was relatively common among them, especially for GSD Ia patients; and renomegaly was only found in GSD Ia. Besides, serum cholesterol, triglyceride, lactic acid, and uric acid in GSD Ia were significantly higher than those with GSD IIIa and IXa (p < 0.05); but ALT, AST, CK, and LDH of GSD III and GSD IXa were significantly higher when compared to GSD Ia (p < 0.05). CONCLUSIONS All hepatic GSDs patients share similarity in clinical and biochemical spectrum, but delayed diagnosis and biochemical metabolic abnormalities were common in GSD Ia. For family with GSD proband, pedigree analysis and genetic testing is strongly recommended.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
78
|
Olgac A, İnci A, Okur İ, Biberoğlu G, Oğuz D, Ezgü FS, Kasapkara ÇS, Aktaş E, Tümer L. Beneficial Effects of Modified Atkins Diet in Glycogen Storage Disease Type IIIa. ANNALS OF NUTRITION AND METABOLISM 2020; 76:233-241. [DOI: 10.1159/000509335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
<b><i>Introduction:</i></b> Glycogen storage disease Type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme, encoded by the AGL gene. Two clinical types of the disease are most prevalent: GSD IIIa involves the liver and muscle, whereas IIIb affects only the liver. The classical dietetic management of GSD IIIa involves prevention of fasting, frequent feeds with high complex carbohydrates in small children, and a low-carb-high-protein diet in older children and adults. Recently, diets containing high amount of fat, including ketogenic and modified Atkins diet (MAD), have been suggested to have favorable outcome in GSD IIIa. <b><i>Methods:</i></b> Six patients, aged 3–31 years, with GSD IIIa received MAD for a duration of 3–7 months. Serum glucose, transaminases, creatine kinase (CK) levels, capillary ketone levels, and cardiac parameters were followed-up. <b><i>Results:</i></b> In all patients, transaminase levels dropped in response to MAD. Decrease in CK levels were detected in 5 out of 6 patients. Hypoglycemia was evident in 2 patients but was resolved by adding uncooked cornstarch to diet. <b><i>Conclusion:</i></b> Our study demonstrates that GSD IIIa may benefit from MAD both clinically and biochemically.
Collapse
|
79
|
Okuda H, Okamoto K, Abe M, Ishizawa K, Makino S, Tanabe O, Sugawara J, Hozawa A, Tanno K, Sasaki M, Tamiya G, Yamamoto M, Ito S, Ishii T. Genome-wide association study identifies new loci for albuminuria in the Japanese population. Clin Exp Nephrol 2020; 24:1-9. [PMID: 32277301 PMCID: PMC7994224 DOI: 10.1007/s10157-020-01884-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Urinary albumin excretion (UAE) is a risk factor for cardiovascular diseases, metabolic syndrome, chronic kidney disease, etc. Only a few genome-wide association studies (GWAS) for UAE have been conducted in the European population, but not in the Asian population. Here we conducted GWAS and identified several candidate genes harboring single nucleotide polymorphisms (SNPs) responsible for UAE in the Japanese population. METHODS We conducted GWAS for UAE in 7805 individuals of Asian ancestry from health-survey data collected by Tohoku Medical Megabank Organization (ToMMo) and Iwate Tohoku Medical Megabank Organization (IMM). The SNP genotype data were obtained with a SNP microarray. After imputation using a haplotype panel consisting of 2000 genome sequencing, 4,962,728 SNP markers were used for the GWAS. RESULTS Eighteen SNPs at 14 loci (GRM7, EXOC1/NMU, LPA, STEAP1B/RAPGEF5, SEMA3D, PRKAG2, TRIQK, SERTM1, TPT1-AS1, OR5AU1, TSHR, FMN1/RYR3, COPRS, and BRD1) were associated with UAE in the Japanese individuals. A locus with particularly strong associations was observed on TSHR, chromosome 14 [rs116622332 (p = 3.99 × 10-10)]. CONCLUSION In this study, we successfully identified UAE-associated variant loci in the Japanese population. Further study is required to confirm this association.
Collapse
Affiliation(s)
- Hiroshi Okuda
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Koji Okamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan. .,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kota Ishizawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Satoshi Makino
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Osamu Tanabe
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima, Hiroshima, 732-0815, Japan
| | - Junichi Sugawara
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,RIKEN Center for Advanced Intelligence Project Nihonbashi, 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Sadayoshi Ito
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| |
Collapse
|
80
|
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020; 159:344-363. [PMID: 32622021 PMCID: PMC7329694 DOI: 10.1016/j.addr.2020.06.026] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Hereditary genetic disorders, cancer, and infectious diseases of the liver affect millions of people around the globe and are a major public health burden. Most contemporary treatments offer limited relief as they generally aim to alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However, employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanoparticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene therapies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters, production methods, preclinical development and clinical translation.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; Evonik Canada, Vancouver, BC, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Integrated Nanotherapeutics, Vancouver, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada.
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
81
|
Lyo S, Miles J, Meisner J, Guelfguat M. Case report: adult-onset manifesting heterozygous glycogen storage disease type IV with dilated cardiomyopathy and absent late gadolinium enhancement on cardiac magnetic resonance imaging. Eur Heart J Case Rep 2020; 4:1-6. [PMID: 32617483 PMCID: PMC7319828 DOI: 10.1093/ehjcr/ytaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
Background Glycogen storage disease type IV (GSD IV; Andersen’s disease) is a rare autosomal recessive disease caused by mutation in the GBE1 gene. Presentation of GSD IV varies on a continuum of severity and symptomatology ranging from neonatal death to mild adult-onset disease with variable involvement of hepatic, muscular, neurologic, dermatologic, and cardiac systems. Cardiomyopathy seen in GSD IV is also heterogeneous and its appearance on cardiac magnetic resonance imaging (CMR) is rarely described. Case summary A 29-year-old man without previous medical history was admitted to our facility multiple times over 2 years for focal sensorimotor deficits, gout arthropathy, chronic hyperlactataemia and hyperuricaemia, and severe decompensated non-ischaemic cardiomyopathy complicated by episodes of thromboembolic organ infarction. Echocardiography and CMR showed severe biventricular failure with the presence of intraventricular thrombi with increased right ventricular trabeculation and absent late gadolinium enhancement. He underwent muscle biopsy which showed prominent glycogen in skeletal muscle followed by genetic testing showing a single heterozygous splicing mutation c.993-1G>T found at the junction of intron 7 and exon 8 of the GBE1 gene which had not previously been reported and was predicted to be pathologic. He was referred to a tertiary care centre with glycogen storage disease specialists but expired prior to establishing care at that facility. Discussion Discovery of GSD IV in our patient was unexpected due to a highly variant clinical presentation. Our case stresses the clinical heterogeneity of GSD IV and the importance of genetic sequencing studies in the evaluation of potential glycogen storage disease.
Collapse
Affiliation(s)
- Shawn Lyo
- Department of Internal Medicine, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| | - Jeremy Miles
- Department of Internal Medicine, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| | - Jay Meisner
- Department of Cardiology, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| | - Mark Guelfguat
- Department of Radiology, Jacobi Medical Center, 1400 Pelham Pkwy S, Bronx, NY 10461, USA
| |
Collapse
|
82
|
Matei L, Teodorescu MI, Kozma A, Iordan Dumitru AD, Stoicescu SM, Carniciu S. PERSISTENT ASYMPTOMATIC SEVERE HYPOGLYCAEMIA DUE TO TYPE 0A GLYCOGENOSIS - GENERAL AND ORO-DENTAL ASPECTS. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 15:526-530. [PMID: 32377253 DOI: 10.4183/aeb.2019.526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Type 0 glycogenosis is a genetic metabolic disorder characterized by the absence of glycogen synthesis of hepatic synthase and hence of liver glycogen stores in normal amounts. It is an extremely rare condition. Case study This case is a 5-year and 11-month-old female child with asymptomatic severe hypoglycemia in the last two years. During the admission and afterwards, an extensive panel of paraclinical and imaging investigations was carried out to diagnose and document the case, which led to the specific genetic test. The result was positive for 2 heterozygous mutations in the GYS2 gene (hepatic glycogen synthase), the p.547C> T mutation was pathogenic (class 1) and c.465del, frameshift likely pathogenic (class 2). In order to integrate the clinical picture of patients with this condition and to establish potential correlations regarding the specific aspects with the general development and the phenotype, the oro-dental status was investigated. Conclusion The investigations showed a positive correlation with literature data in several respects: low stature, hypoglycemia with hyperketonemia but normal plasma lactate, postprandial and contradictory hyperglycemia, delayed bone development, etc. Oro-buco-maxillary aspects showed a slight delay in the dental eruption. Dietary therapy and stricter dental care and additional prophylaxis are required.
Collapse
Affiliation(s)
- L Matei
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Research Department in Social Pediatrics and Obstetrics, Bucharest, Romania
| | - M I Teodorescu
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Research Department in Social Pediatrics and Obstetrics, Bucharest, Romania
| | - A Kozma
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Research Department in Social Pediatrics and Obstetrics, Bucharest, Romania
| | - A D Iordan Dumitru
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - "Titu Maiorescu" University - Faculty of Dental Medicine, Bucharest, Romania
| | - S M Stoicescu
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Neonatology, Bucharest, Romania.,"Alessandrescu-Rusescu" National Institute for Mother and Child Health - "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S Carniciu
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Romanian Medical Association - Research, Bucharest, Romania
| |
Collapse
|
83
|
Korula S, Danda S, Paul PG, Mathai S, Simon A. Hepatic Glycogenoses Among Children-Clinical and Biochemical Characterization: Single-Center Study. J Clin Exp Hepatol 2020; 10:222-227. [PMID: 32405178 PMCID: PMC7212290 DOI: 10.1016/j.jceh.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glycogen storage disease (GSD) is typified by early morning seizures. Absence of this results in delayed diagnosis, especially the non-GSD 1 group. Data are limited to few patients with unclear outcome. OBJECTIVES 1. Study the common presentation and types of GSD. 2. Study the clinical and biochemical outcome. 3. Review genetic mutations. METHODS Observational study from May 2016-April 2019 at metabolic clinic at our center. RESULTS Total of 30 patients were diagnosed with GSD. Ten were excluded-Fanconi-Bickel (3) and <4 months follow-up (7). Data were analyzed for 20 patients (16 males). Mean age at presentation was 4.3 yrs. All had hepatomegaly, 90% had short stature, and 40% had early morning seizures. Mean follow-up was 22 months. There was a statistically significant improvement in metabolic parameters on treatment (mean)-fasting glucose from 50.4 to 79.5 mg/dl, SGPT from 416 to 199 U/L. Lipid profile showed reduction in triglycerides (318-225 mg/dl) but minimal increase in cholesterol (178-188 mg/dl). Mean weight centile improved from 14.1 to 20.3 and height centile from 2.3 to 7.9. Genetic testing confirmed types VI (3), III (3), IXa (1), IXc (1), and Ia (1). Liver biopsy confirmed GSD in 15/20. All were managed with uncooked corn starch. In addition, omega-3 fatty acid was used in 8/20 and high protein diet in 2 with GSD type III. CONCLUSION Awareness of GSD needs to improve among pediatricians and hepatologists. The most common symptoms are asymptomatic hepatomegaly and short stature. Dietary therapy with uncooked corn starch remains mainstay of treatment. Mixed hyperlipidemia is difficult to control despite good metabolic improvement. Role of omega-3 fatty acid needs to be explored further. Genetic mutation analysis can assist with tailoring treatment and should get precedence over liver biopsy.
Collapse
Affiliation(s)
- Sophy Korula
- Paediatric Endocrinology and Metabolism Unit, Christian Medical College and Hospital, Vellore, India
| | - Sumita Danda
- Clinical Genetics Department, Christian Medical College and Hospital, Vellore, India
| | - Praveen G. Paul
- Paediatric Endocrinology and Metabolism Unit, Christian Medical College and Hospital, Vellore, India
| | - Sarah Mathai
- Paediatric Endocrinology and Metabolism Unit, Christian Medical College and Hospital, Vellore, India
| | - Anna Simon
- Paediatric Endocrinology and Metabolism Unit, Christian Medical College and Hospital, Vellore, India
| |
Collapse
|
84
|
Ozaki K, Kozaka K, Kosaka Y, Kimura H, Gabata T. Morphometric changes and imaging findings of diffuse liver disease in relation to intrahepatic hemodynamics. Jpn J Radiol 2020; 38:833-852. [PMID: 32347423 DOI: 10.1007/s11604-020-00978-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/13/2020] [Indexed: 01/20/2023]
Abstract
Diffuse hepatic diseases have a variety of etiologies, with each showing characteristic morphometric changes. These changes are closely related to micro- and macro-level intrahepatic hemodynamics, in addition to the specific underlying pathophysiology. Short-term disorders in intrahepatic hemodynamics caused by each pathophysiological condition are compensated for by the balance of blood perfusion systems using potential trans-sinusoidal, transversal, and transplexal routes of communication (micro-hemodynamics), while long-term alterations to the intrahepatic hemodynamics result in an increase in total hepatic vascular resistance. Blood flow disorders induced by this increased vascular resistance elicit hepatic cellular necrosis and fibrosis. These changes should be uniformly widespread throughout the whole liver. However, morphometric changes do not occur uniformly, with shrinkage or enlargement not occurring homogeneously. Against this background, several macro-intrahepatic hemodynamic effects arise, such as asymmetrical and complicating morphometric structures of the liver, intricate anatomy of portal venous flow and hepatic venous drainage, and zonal differentiation between central and peripheral zones. These hemodynamic factors and pathophysiological changes are related to characteristic morphometric changes in a complicated manner, based on the combination of selective atrophy and compensatory hypertrophy (atrophy-hypertrophy complex). These changes can be clearly depicted on CT and MR imaging.
Collapse
Affiliation(s)
- Kumi Ozaki
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yasuo Kosaka
- Department of Radiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
85
|
Luo X, Hu J, Gao X, Fan Y, Sun Y, Gu X, Qiu W. Novel PYGL mutations in Chinese children leading to glycogen storage disease type VI: two case reports. BMC MEDICAL GENETICS 2020; 21:74. [PMID: 32268899 PMCID: PMC7140494 DOI: 10.1186/s12881-020-01010-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/24/2020] [Indexed: 12/02/2022]
Abstract
Background PYGL mutations can cause liver phosphorylase deficiency, resulting in a glycogenolysis disorder, namely, glycogen storage disease (GSD) VI. The disease is rarely reported in the Chinese population. GSD VI is mainly characterized in untreated children by hepatomegaly, growth retardation and elevated liver transaminases. Case presentation In this study, we report two GSD VI patients with growth retardation and abnormal liver function. There was no obvious hepatomegaly for one of them. Whole exome sequencing (WES) combined with copy number variation analysis was performed. We found a novel homozygous gross deletion, c.1621-258_2178-23del, including exons 14–17 of PYGL in patient 1. The exons 14–17 deletion of PYGL resulted in an in-frame deletion of 186 amino acids. Compound heterozygous mutations of PYGL were identified in patient 2, including a novel missense mutation c.1832C > T/p.A611V and a recurrent nonsense mutation c.280C > T/p.R94X. After treatment with uncooked cornstarch (UCS) 8 months for patient 1 and 13 months for patient 2, the liver transaminases of both patients decreased to a normal range and their stature was improved. However, patient 1 still showed mild hypertriglyceridemia. Conclusions We describe two GSD VI patients and expand the spectrum of PYGL mutations. Patient 1 in this study is the first GSD VI case that showed increased transaminases without obvious hepatomegaly due to a novel homozygous gross deletion of PYGL identified through WES.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Jiacheng Hu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xueren Gao
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yu Sun
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
| |
Collapse
|
86
|
Proteobacteria Overgrowth and Butyrate-Producing Taxa Depletion in the Gut Microbiota of Glycogen Storage Disease Type 1 Patients. Metabolites 2020; 10:metabo10040133. [PMID: 32235604 PMCID: PMC7240959 DOI: 10.3390/metabo10040133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
A life-long dietary intervention can affect the substrates’ availability for gut fermentation in metabolic diseases such as the glycogen-storage diseases (GSD). Besides drug consumption, the main treatment of types GSD-Ia and Ib to prevent metabolic complications is a specific diet with definite nutrient intakes. In order to evaluate how deeply this dietary treatment affects gut bacteria, we compared the gut microbiota of nine GSD-I subjects and 12 healthy controls (HC) through 16S rRNA gene sequencing; we assessed their dietary intake and nutrients, their microbial short chain fatty acids (SCFAs) via gas chromatography and their hematic values. Both alpha-diversity and phylogenetic analysis revealed a significant biodiversity reduction in the GSD group compared to the HC group, and highlighted profound differences of their gut microbiota. GSD subjects were characterized by an increase in the relative abundance of Enterobacteriaceae and Veillonellaceae families, while the beneficial genera Faecalibacterium and Oscillospira were significantly reduced. SCFA quantification revealed a significant increase of fecal acetate and propionate in GSD subjects, but with a beneficial role probably reduced due to unbalanced bacterial interactions; nutritional values correlated to bacterial genera were significantly different between experimental groups, with nearly opposite cohort trends.
Collapse
|
87
|
Ruth ND, Drury NE, Bennett J, Kelly DA. Cardiac and Liver Disease in Children: Implications for Management Before and After Liver Transplantation. Liver Transpl 2020; 26:437-449. [PMID: 31872564 DOI: 10.1002/lt.25666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
There is close interaction between the functions of the liver and heart affecting the presentation, diagnosis, and outcome of acute and chronic cardiac and liver disease. Conditions affecting both organ systems should be considered when proposing transplantation because the interaction between cardiac disease and liver disease has implications for diagnosis, management, selection for transplantation, and, ultimately, for longterm outcomes after liver transplantation (LT). The combination of cardiac and liver disease is well recognized in adults but is less appreciated in pediatric patients. The focus of this review is to describe conditions affecting both the liver and heart and how they affect selection and management of LT in the pediatric population.
Collapse
Affiliation(s)
- Nicola D Ruth
- Liver Unit, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Institute of Infection and Immunity, University of Birmingham, Birmingham, United Kingdom
| | - Nigel E Drury
- Department of Paediatric Cardiac Surgery, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Bennett
- Department of Anaesthesia, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Department of Anaesthesia, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Deirdre A Kelly
- Liver Unit, Birmingham Women's & Children's Hospital, Birmingham, United Kingdom.,Institute of Infection and Immunity, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
88
|
Yıldız Y, Sivri HS. Inborn errors of metabolism in the differential diagnosis of fatty liver disease. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:3-16. [PMID: 32009609 DOI: 10.5152/tjg.2019.19367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease across all age groups. Obesity, diabetes, and metabolic syndrome, are the primary causes that are closely linked with the development of NAFLD. However, in young children, rare inborn errors of metabolism are predominant secondary causes of NAFLD. Furthermore, inborn errors of metabolism causing hepatosteatosis are often misdiagnosed as NAFLD in adolescents and adults. Many inborn errors of metabolism are treatable disorders and therefore require special consideration. This review aims to summarize the basic characteristics and diagnostic clues of inborn errors of metabolism associated with fatty liver disease. A suggested clinical and laboratory diagnostic approach is also discussed.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Pediatric Metabolic Diseases Unit, Dr. Sami Ulus Training and Research Hospital for Maternity and Children's Health and Diseases, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Metabolic Diseases, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
89
|
Prevalence and clinical profile of glycogen storage diseases in children from Western India. Clin Exp Hepatol 2020; 6:9-12. [PMID: 32166118 PMCID: PMC7062124 DOI: 10.5114/ceh.2020.93050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Aim of the study To determine the prevalence and clinical profile of glycogen storage diseases (GSD) in children in western India. Material and methods This retrospective analysis was conducted over a period of 7 years from 2006 to 2012. All children diagnosed with GSD on liver biopsy were included in the study. Their clinical history, examination, biochemical profile and outcome were noted. Results Of 751 children, 18 (2.4%) were clinically diagnosed with GSD. Mean age at presentation was 2.3 ±1.3 years. Male : female ratio was 1 : 1. The main presenting features were abdominal distension in 15 (83.3%) patients, hepatomegaly in all 18 (100%), splenomegaly in 11 (61.1%) and jaundice in 2 (11.1%) patients. Four (22.2%) patients had delayed development. Four (22.2%) patients were siblings to an older affected child. Only 1 (5.6%) patient had portal hypertension and 2 (11.1%) had ascites. Only 1 (5.6%) patient had elevated bilirubin levels, 17 (94.4%) had elevated serum glutamic-oxaloacetic transaminase (SGOT) and all 18 (100%) patients had elevated serum glutamic-pyruvic transaminase (SGPT) levels. Nine (69.3%) patients of the 13 tested had acidosis, 1 (9.1%) had elevated uric acid, 2 (11.1%) had neutropenia, 8 (44.4%) experienced hypoglycemia, 4 (22.2%) patients had nephromegaly and only 1 patient showed evidence of cirrhosis in the liver biopsy. Fifteen (83.3%) patients were short. Three out of 6 patients tested had hypertriglyceridemia (50%). One (5.6%) patient died, 9 (50%) patients were lost to followup and the remaining 8 (44.4%) patients continued regular follow-up. Conclusions Metabolic acidosis, hypertriglyceridemia, short stature, and hypoglycemia are major problems in children with GSD. Most of the patients are referred late at the time of presentation.
Collapse
|
90
|
Exome sequencing revealed DNA variants in NCOR1, IGF2BP1, SGLT2 and NEK11 as potential novel causes of ketotic hypoglycemia in children. Sci Rep 2020; 10:2114. [PMID: 32034166 PMCID: PMC7005888 DOI: 10.1038/s41598-020-58845-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Unexplained or idiopathic ketotic hypoglycemia (KH) is the most common type of hypoglycemia in children. The diagnosis is based on the exclusion of routine hormonal and metabolic causes of hypoglycemia. We aimed to identify novel genes that cause KH, as this may lead to a more targeted treatment. Deep phenotyping of ten preschool age at onset KH patients (boys, n = 5; girls, n = 5) was performed followed by trio exome sequencing and comprehensive bioinformatics analysis. Data analysis revealed four novel candidate genes: (1) NCOR1 in a patient with KH, iron deficiency and loose stools; (2) IGF2BP1 in a proband with KH, short stature and delayed bone age; (3) SLC5A2 in a proband with KH, intermittent glucosuria and extremely elevated p-GLP-1; and (4) NEK11 in a proband with ketotic hypoglycemia and liver affliction. These genes are associated with different metabolic processes, such as gluconeogenesis, translational regulation, and glucose transport. In conclusion, WES identified DNA variants in four different genes as potential novel causes of IKH, suggesting that IKH is a heterogeneous disorder that can be split into several novel diseases: NCOR1-KH, IGF2BP1-KH, SGLT2-KH or familial renal glucosuria KH, and NEK11-KH. Precision medicine treatment based on exome sequencing may lead to advances in the management of IKH.
Collapse
|
91
|
Hekselman I, Yeger-Lotem E. Mechanisms of tissue and cell-type specificity in heritable traits and diseases. Nat Rev Genet 2020; 21:137-150. [DOI: 10.1038/s41576-019-0200-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
|
92
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
93
|
Gumede NM, Lembede BW, Nkomozepi P, Brooksbank RL, Erlwanger KH, Chivandi E. β-Sitosterol mitigates the development of high-fructose diet-induced nonalcoholic fatty liver disease in growing male Sprague–Dawley rats. Can J Physiol Pharmacol 2020; 98:44-50. [PMID: 31560861 DOI: 10.1139/cjpp-2019-0295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fructose contributes to the development of nonalcoholic fatty liver disease (NAFLD). β-Sitosterol (Bst), a naturally occurring phytosterol, has antihyperlipidaemic and hepatoprotective properties. This study interrogated the potential protective effect of β-sitosterol against NAFLD in growing rats fed a high-fructose diet, modelling children fed obesogenic diets. Forty-four 21 day old male rat pups were randomly allocated to and administered the following treatments for 12 weeks: group I, standard rat chow (SRC) + plain drinking water (PW) + plain gelatine cube (PC); group II, SRC + 20% w/v fructose solution (FS) as drinking fluid + PC; group III, SRC + FS + 100 mg/kg fenofibrate in a gelatine cube; group IV, SRC + FS + 20 mg/kg β-sitosterol gelatine cube (Bst); group V, SRC + PW + Bst. Terminally, the livers were dissected out, weighed, total liver lipid content determined, and histological analyses done. Harvested plasma was used to determine the surrogate biomarkers of liver function. The high-fructose diet caused increased (p < 0.05) hepatic lipid (total) accretion (>10% liver mass), micro- and macrovesicular hepatic steatosis, and hepatic inflammation. β-Sitosterol and fenofibrate prevented the high-fructose diet-induced macrovesicular steatosis and prevented the progression of NAFLD to steatohepatitis. β-Sitosterol can prospectively be used to mitigate diet-induced NAFLD.
Collapse
Affiliation(s)
- Nontobeko M. Gumede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, Republic of South Africa
| | - Busisani W. Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, Republic of South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, Republic of South Africa
| | - Richard L. Brooksbank
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, Republic of South Africa
| | - Kennedy H. Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, Republic of South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, Republic of South Africa
| |
Collapse
|
94
|
Ahmed S, Afroze B. Glycogen storage diseases-time to flip the outdated diagnostic approach centered on liver biopsy with the molecular testing. Pak J Med Sci 2019; 36:290-292. [PMID: 32063977 PMCID: PMC6994867 DOI: 10.12669/pjms.36.2.1310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The glycogen storage diseases (GSDs) are a group of inherited metabolic disorders that result from a defect in any one of several enzymes required for either glycogen synthesis or glycogen degradation. The traditional diagnostic approach is based on the invasive hepatic or muscle biopsies, which are neither cost effective nor convenient. Molecular (gene testing) has emerged over the course of past few years as a robust alternative diagnostic tool, which not only confirms the diagnosis of GSDs but also clearly differentiates the types of GSDs allowing the initiation of the type-specific appropriate treatment for the particular type of GSDs. The aim of this update is to highlight the limitations of undertaking a liver biopsy for the diagnosis of GSDs; and to further describe the pros of the molecular testing for better patient centered care.
Collapse
Affiliation(s)
- Sibtain Ahmed
- Dr. Sibtain Ahmed, FCPS. Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Bushra Afroze
- Dr. Bushra Afroze, FCPS. Department of Paediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
95
|
Rajas F, Gautier-Stein A, Mithieux G. Glucose-6 Phosphate, A Central Hub for Liver Carbohydrate Metabolism. Metabolites 2019; 9:metabo9120282. [PMID: 31756997 PMCID: PMC6950410 DOI: 10.3390/metabo9120282] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Cells efficiently adjust their metabolism according to the abundance of nutrients and energy. The ability to switch cellular metabolism between anabolic and catabolic processes is critical for cell growth. Glucose-6 phosphate is the first intermediate of glucose metabolism and plays a central role in the energy metabolism of the liver. It acts as a hub to metabolically connect glycolysis, the pentose phosphate pathway, glycogen synthesis, de novo lipogenesis, and the hexosamine pathway. In this review, we describe the metabolic fate of glucose-6 phosphate in a healthy liver and the metabolic reprogramming occurring in two pathologies characterized by a deregulation of glucose homeostasis, namely type 2 diabetes, which is characterized by fasting hyperglycemia; and glycogen storage disease type I, where patients develop severe hypoglycemia during short fasting periods. In these two conditions, dysfunction of glucose metabolism results in non-alcoholic fatty liver disease, which may possibly lead to the development of hepatic tumors. Moreover, we also emphasize the role of the transcription factor carbohydrate response element-binding protein (ChREBP), known to link glucose and lipid metabolisms. In this regard, comparing these two metabolic diseases is a fruitful approach to better understand the key role of glucose-6 phosphate in liver metabolism in health and disease.
Collapse
Affiliation(s)
- Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, F-69008 Lyon, France; (A.G.-S.); (G.M.)
- Université de Lyon, F-69008 Lyon, France
- Université Lyon 1, F-69622 Villeurbanne, France
- Correspondence:
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, F-69008 Lyon, France; (A.G.-S.); (G.M.)
- Université de Lyon, F-69008 Lyon, France
- Université Lyon 1, F-69622 Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, F-69008 Lyon, France; (A.G.-S.); (G.M.)
- Université de Lyon, F-69008 Lyon, France
- Université Lyon 1, F-69622 Villeurbanne, France
| |
Collapse
|
96
|
Sasaki Y, Leclerc É, Hamedpour V, Kubota R, Takizawa SY, Sakai Y, Minami T. Simplest Chemosensor Array for Phosphorylated Saccharides. Anal Chem 2019; 91:15570-15576. [DOI: 10.1021/acs.analchem.9b03578] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Éric Leclerc
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Vahid Hamedpour
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shin-ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yasuyuki Sakai
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
97
|
Sperb-Ludwig F, Pinheiro FC, Bettio Soares M, Nalin T, Ribeiro EM, Steiner CE, Ribeiro Valadares E, Porta G, Fishinger Moura de Souza C, Schwartz IVD. Glycogen storage diseases: Twenty-seven new variants in a cohort of 125 patients. Mol Genet Genomic Med 2019; 7:e877. [PMID: 31508908 PMCID: PMC6825860 DOI: 10.1002/mgg3.877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatic glycogen storage diseases (GSDs) are a group of rare genetic disorders in which glycogen cannot be metabolized to glucose in the liver because of enzyme deficiencies along the glycogenolytic pathway. GSDs are well-recognized diseases that can occur without the full spectrum, and with overlapping in symptoms. METHODS We analyzed a cohort of 125 patients with suspected hepatic GSD through a next-generation sequencing (NGS) gene panel in Ion Torrent platform. New variants were analyzed by pathogenicity prediction tools. RESULTS Twenty-seven new variants predicted as pathogenic were found between 63 variants identified. The most frequent GSD was type Ia (n = 53), followed by Ib (n = 23). The most frequent variants were p.Arg83Cys (39 alleles) and p.Gln347* (14 alleles) in G6PC gene, and p.Leu348Valfs (21 alleles) in SLC37A4 gene. CONCLUSIONS The study presents the largest cohort ever analyzed in Brazilian patients with hepatic glycogenosis. We determined the clinical utility of NGS for diagnosis. The molecular diagnosis of hepatic GSDs enables the characterization of diseases with similar clinical symptoms, avoiding hepatic biopsy and having faster results.
Collapse
Affiliation(s)
- Fernanda Sperb-Ludwig
- Post‐Graduation Program in Genetics and Molecular BiologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN)Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Franciele Cabral Pinheiro
- Post‐Graduation Program in Genetics and Molecular BiologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN)Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Malu Bettio Soares
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN)Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Tatiele Nalin
- Post‐Graduation Program in Genetics and Molecular BiologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | | | | | - Eugênia Ribeiro Valadares
- Departamento de Propedêutica ComplementarFaculdade de Medicina da Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Gilda Porta
- Hospital Infantil Menino JesusSão PauloBrazil
| | | | - Ida Vanessa Doederlein Schwartz
- Post‐Graduation Program in Genetics and Molecular BiologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN)Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Medical Genetics ServiceHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| |
Collapse
|
98
|
Dornbos P, Jurgelewicz A, Fader KA, Williams K, Zacharewski TR, LaPres JJ. Characterizing the Role of HMG-CoA Reductase in Aryl Hydrocarbon Receptor-Mediated Liver Injury in C57BL/6 Mice. Sci Rep 2019; 9:15828. [PMID: 31676775 PMCID: PMC6825130 DOI: 10.1038/s41598-019-52001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. The prototypical ligand of the AHR is an environmental contaminant called 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD exposure is associated with many adverse health outcomes in humans including non-alcoholic fatty liver disease (NAFLD). Previous studies suggest that AHR ligands alter cholesterol homeostasis in mice through repression of genes involved in cholesterol biosynthesis, such as Hmgcr, which encodes the rate-limiting enzyme of cholesterol biosynthesis called 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR). In this study, we sought to characterize the impact of HMGCR repression in TCDD-induced liver injury. C57BL/6 mice were exposed to TCDD in the presence or absence of simvastatin, a competitive inhibitor of HMGCR. Simvastatin exposure decreased TCDD-induced hepatic lipid accumulation in both sexes, but was most prominent in females. Simvastatin and TCDD (S + T) co-treatment increased hepatic AHR-battery gene expression and liver injury in male, but not female, mice. In addition, the S + T co-treatment led to an increase in hepatic glycogen content that coincides with heavier liver in female mice. Results from this study suggest that statins, which are amongst the most prescribed pharmaceuticals, may protect from AHR-mediated steatosis, but alter glycogen metabolism and increase the risk of TCDD-elicited liver damage in a sex-specific manner.
Collapse
Affiliation(s)
- Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amanda Jurgelewicz
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Pharmacology and Toxicology, Michigan State, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kurt Williams
- Department of Pathobiology and Diagnostic Investigation, Michigan State, East Lansing, MI, 48824, USA
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
99
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
100
|
Abstract
Glycogenic hepatopathy is excessive intrahepatic glycogen accumulation. It is a rare complication of long-standing, poorly controlled type 1 diabetes mellitus. We report a case of a 19-year-old woman with a history of poorly controlled diabetes mellitus and frequent admissions for diabetic ketoacidosis, who presented with abdominal pain, nausea, vomiting, and hepatomegaly. She was found to have diabetic ketoacidosis with persistently elevated serum lactate that did not improve with insulin infusions. She eventually underwent a liver biopsy, which showed excessive intracytoplasmic glycogen accumulation consistent with glycogenic hepatopathy.
Collapse
|