51
|
Mei Y, Huang W, Di W, Wang X, Zhu Z, Zhou Y, Huo F, Wang W, Cao Y. Mechanochemical Lithography. J Am Chem Soc 2022; 144:9949-9958. [PMID: 35637174 DOI: 10.1021/jacs.2c02883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surfaces with patterned biomolecules have wide applications in biochips and biomedical diagnostics. However, most patterning methods are inapplicable to physiological conditions and incapable of creating complex structures. Here, we develop a mechanochemical lithography (MCL) method based on compressive force-triggered reactions. In this method, biomolecules containing a bioaffinity ligand and a mechanoactive group are used as mechanochemical inks (MCIs). The bioaffinity ligand facilitates concentrating MCIs from surrounding solutions to a molded surface, enabling direct and continuous printing in an aqueous environment. The mechanoactive group facilitates covalent immobilization of MCIs through force-triggered reactions, thus avoiding the broadening of printed features due to the diffusion of inks. We discovered that the ubiquitously presented amino groups in biomolecules can react with maleimide through a force-triggered Michael addition. The resulting covalent linkage is mechanically and chemically stable. As a proof-of-concept, we fabricate patterned surfaces of biotin and His-tagged proteins at nanoscale spatial resolution by MCL and verify the resulting patterns by fluorescence imaging. We further demonstrated the creation of multiplex protein patterns using this technique.
Collapse
Affiliation(s)
- Yuehai Mei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wenmao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Weishuai Di
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhenshu Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210093, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
52
|
Jakubczyk M, Mkrtchyan S, Shkoor M, Lanka S, Budzák Š, Iliaš M, Skoršepa M, Iaroshenko VO. Mechanochemical Conversion of Aromatic Amines to Aryl Trifluoromethyl Ethers. J Am Chem Soc 2022; 144:10438-10445. [PMID: 35652785 PMCID: PMC9204773 DOI: 10.1021/jacs.2c02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Increased interest
in the trifluoromethoxy group in organic synthesis
and medicinal chemistry has induced a demand for new, selective, general,
and faster methods applicable to natural products and highly functionalized
compounds at a later stage of hit-to-lead campaigns. Applying pyrylium
tetrafluoroborate, we have developed a mechanochemical protocol to
selectively substitute the aromatic amino group with the OCF3 functionality. The scope of our method includes 31 examples of ring-substituted
anilines, including amides and sulfonamides. Expected SNAr products were obtained in excellent yields. The presented concise
method opens a pathway to new chemical spaces for the pharmaceutical
industry.
Collapse
Affiliation(s)
- Michał Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łodź PL-90-363, Poland
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Suneel Lanka
- Lodz University of Technology, Stefana Żeromskiego 116, Lodz 90-924, Poland
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Marek Skoršepa
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia.,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 00014, Finland
| |
Collapse
|
53
|
Bera SK, Bhanja R, Mal P. DDQ in mechanochemical C-N coupling reactions. Beilstein J Org Chem 2022; 18:639-646. [PMID: 35706992 PMCID: PMC9174842 DOI: 10.3762/bjoc.18.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a commonly known oxidant. Herein, we report that DDQ can be used to synthesize 1,2-disubstituted benzimidazoles and quinazolin-4(3H)-ones via the intra- and intermolecular C-N coupling reaction under solvent-free mechanochemical (ball milling) conditions. In the presence of DDQ, the intramolecular C(sp2)-H amidation of N-(2-(arylideneamino)phenyl)-p-toluenesulfonamides leads to 1,2-disubstituted benzimidazoles and the one-pot coupling of 2-aminobenzamides with aryl/alkyl aldehydes resulted in substituted quinazolin-4(3H)-one derivatives in high yields.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
54
|
Ardila-Fierro KJ, Rubčić M, Hernández JG. Cocrystal Formation Precedes the Mechanochemically Acetate-Assisted C-H Activation with [Cp*RhCl 2 ] 2. Chemistry 2022; 28:e202200737. [PMID: 35274769 DOI: 10.1002/chem.202200737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/16/2022]
Abstract
This work reports the experimentally studied mechanochemical formation of rhodacycles by ball milling pyridine- and quinoline-derived substrates and [Cp*RhCl2 ]2 in the presence of NaOAc. Ex-situ analysis of the mechanochemical reactions using powder X-ray diffraction (PXRD), solid-state UV-vis spectroscopy and ATR-FTIR spectroscopy revealed the formation of unexpected cocrystals between the substrates and the rhodium dimer prior to the C-H activation step. This sequence of events differs from the generally accepted steps in solution in which cleavage of [Cp*RhCl2 ]2 is initiated by acetate ions. Additionally, the mechanochemical approach enabled the synthesis of the six-membered rhodacycle [Cp*Rh(2-benzilpyridine)Cl], a metal complex repeatedly reported as inaccessible in solution. Altogether, the results of this investigation clarify some of the fundamental aspects of mechanochemical cyclometallations.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Mirta Rubčić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia.,Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
55
|
Bhawani, Shinde VN, Sonam, Rangan K, Kumar A. Mechanochemical Ruthenium-Catalyzed O rtho-Alkenylation of N-Heteroaryl Arenes with Alkynes under Ball-Milling Conditions. J Org Chem 2022; 87:5994-6005. [PMID: 35472259 DOI: 10.1021/acs.joc.2c00257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanochemical, solvent-free Ru(II)-catalyzed alkenylation of N-heteroaryl arenes with alkynes has been successfully described. A wide spectrum of arenes bearing N-heteroaryl moieties such as imidazo[1,2-a]pyridine, imidazo[1,2-a]pyrimidine, benzo[d]imidazo[2,1-b]thiazole, imidazo[2,1-b]thiazole, 2H-indazole, 1H-indazole, 1H-pyrazole, and 1,2,4-oxadiazol-5(4H)-one as a directing group reacted with various substituted alkynes under ball milling in the presence of [Ru(p-cymene)Cl2]2, affording dialkenylated products in moderate to good yields. The reaction of 2,3-dihydrophthalazine-1,4-dione with 1-phenyl-1-propyne afforded a monoalkenylated product. Similarly, reaction of 2-phenylimidazo[1,2-a]pyridine with aliphatic terminal alkynes produced a monoalkenylated derivative as the major product along with minor amount of dialkenylated product. The developed method exhibited excellent functional group compatibility, broad substrate scope, shorter reaction times, and no external heating. Moreover, the method can be readily scaled-up as demonstrated by gram-scale synthesis of 2-(2,6-bis((E)1-phenylprop-1-en-2-yl)phenyl)imidazo[1,2-a]pyridine.
Collapse
Affiliation(s)
- Bhawani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
56
|
Light-Activated Hydroxyapatite Photocatalysts: New Environmentally-Friendly Materials to Mitigate Pollutants. MINERALS 2022. [DOI: 10.3390/min12050525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review focuses on a reasoned search for articles to treat contaminated water using hydroxyapatite (HAp)-based compounds. In addition, the fundamentals of heterogeneous photocatalysis were considered, combined with parameters that affect the pollutants’ degradation using hydroxyapatite-based photocatalyst design and strategies of this photocatalyst, and the challenges of and perspectives on the development of these materials. Many critical applications have been analyzed to degrade dyes, drugs, and pesticides using HAp-based photocatalysts. This systematic review highlights the recent state-of-the-art advances that enable new paths and good-quality preparations of HAp-derived photocatalysts for photocatalysis.
Collapse
|
57
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
58
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
59
|
Bal A, Dinda TK, Mal P. A Mechanochemical Aliphatic Iodination (and Bromination) by Cascaded Cyclization. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ankita Bal
- NISER: National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Tarun Kumar Dinda
- NISER: National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Prasenjit Mal
- NISER Bhubaneswar School of Chemical Sciences PO Bhimpur-PadanpurVia JatniDistrict Khurda 752050 Bhubaneswar INDIA
| |
Collapse
|
60
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
61
|
Mechanochemical Solvent‐Free Suzuki–Miyaura Cross‐Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
62
|
Hernández JG, Ardila-Fierro KJ, Barišić D, Geneste H. Multi-faceted reactivity of N-fluorobenzenesulfonimide (NFSI) under mechanochemical conditions: fluorination, fluorodemethylation, sulfonylation, and amidation reactions. Beilstein J Org Chem 2022; 18:182-189. [PMID: 35233257 PMCID: PMC8848345 DOI: 10.3762/bjoc.18.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
In the search for versatile reagents compatible with mechanochemical techniques, in this work we studied the reactivity of N-fluorobenzenesulfonimide (NFSI) by ball milling. We corroborated that, by mechanochemistry, NFSI can engage in a variety of reactions such as fluorinations, fluorodemethylations, sulfonylations, and amidations. In comparison to the protocols reported in solution, the mechanochemical reactions were accomplished in the absence of solvents, in short reaction times, and in yields comparable to or higher than their solvent-based counterparts.
Collapse
Affiliation(s)
- José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- current address Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| | - Karen J Ardila-Fierro
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Dajana Barišić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Hervé Geneste
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, D-67008 Ludwigshafen, Germany
| |
Collapse
|
63
|
Kubota K, Endo T, Uesugi M, Hayashi Y, Ito H. Solid-State C-N Cross-Coupling Reactions with Carbazoles as Nitrogen Nucleophiles Using Mechanochemistry. CHEMSUSCHEM 2022; 15:e202102132. [PMID: 34816600 DOI: 10.1002/cssc.202102132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The palladium-catalyzed solid-state C-N cross-coupling of carbazoles with aryl halides via a high-temperature ball-milling technique has been reported. This reaction allowed simple, fast, and efficient synthesis of N-arylcarbazole derivatives in good to excellent yields without the use of large amounts of organic solvents in air. Importantly, the developed solid-state coupling approach enabled the cross-coupling of poorly soluble aryl halides with large polyaromatic structures that are barely reactive under conventional solution-based conditions.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tsubura Endo
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Minami Uesugi
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuta Hayashi
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
64
|
Gao Y, Feng C, Seo T, Kubota K, Ito H. Efficient access to materials-oriented aromatic alkynes via the mechanochemical Sonogashira coupling of solid aryl halides with large polycyclic conjugated systems. Chem Sci 2022; 13:430-438. [PMID: 35126975 PMCID: PMC8729817 DOI: 10.1039/d1sc05257h] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 01/23/2023] Open
Abstract
Sonogashira coupling represents an indispensable tool for the preparation of organic materials that contain C(sp)-C(sp2) bonds. Improving the efficiency and generality of this methodology has long been an important research subject in materials science. Here, we show that a high-temperature ball-milling technique enables the highly efficient palladium-catalyzed Sonogashira coupling of solid aryl halides that bear large polyaromatic structures including sparingly soluble substrates and unactivated aryl chlorides. In fact, this new protocol provides various materials-oriented polyaromatic alkynes in excellent yield within short reaction times in the absence of bulk reaction solvents. Notably, we synthesized a new luminescent material via the mechanochemical Sonogashira coupling of poorly soluble Vat Red 1 in a much higher yield compared to those obtained using solution-based conditions. The utility of this method was further demonstrated by the rapid synthesis of a fluorescent metal-organic framework (MOF) precursor via two sequential mechanochemical Sonogashira cross-coupling reactions. The present study illustrates the great potential of Sonogashira coupling using ball milling for the preparation of materials-oriented alkynes and for the discovery of novel functional materials.
Collapse
Affiliation(s)
- Yunpeng Gao
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Chi Feng
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
65
|
Mamontova E, Favier I, Pla D, Gómez M. Organometallic interactions between metal nanoparticles and carbon-based molecules: A surface reactivity rationale. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
66
|
André V, Duarte MT, Gomes CSB, Sarraguça MC. Mechanochemistry in Portugal-A Step towards Sustainable Chemical Synthesis. Molecules 2021; 27:241. [PMID: 35011471 PMCID: PMC8746420 DOI: 10.3390/molecules27010241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry. The area with the most increased development is the synthesis of multicomponent crystal forms, with several groups synthesizing solvates, salts, and cocrystals in which the main objective was to improve physical properties of the active pharmaceutical ingredients. Recently, non-crystalline materials, such as ionic liquids and amorphous solid dispersions, have also been studied using mechanochemical methods. An area that is in expansion is the use of mechanochemical synthesis of bioinspired metal-organic frameworks with an emphasis in antibiotic coordination frameworks. The use of mechanochemistry for catalysis and organic and inorganic synthesis has also grown due to the synthetic advantages, ease of synthesis, scalability, sustainability, and, in the majority of cases, the superior properties of the synthesized materials. It can be easily concluded that mechanochemistry is expanding in Portugal in diverse research areas.
Collapse
Affiliation(s)
- Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais 1, 1049-003 Lisbon, Portugal
| | - M. Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Clara S. B. Gomes
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mafalda C. Sarraguça
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
67
|
Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical Solvent-Free Suzuki-Miyaura Cross-Coupling of Amides via Highly Chemoselective N-C Cleavage. Angew Chem Int Ed Engl 2021; 61:e202114146. [PMID: 34877756 DOI: 10.1002/anie.202114146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Although cross-coupling reactions of amides by selective N-C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N-C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N-C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N-C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Lei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102, United States
| |
Collapse
|
68
|
Bertolini V, Pallavicini M, Tibhe G, Roda G, Arnoldi S, Monguzzi L, Zoccola M, Di Nardo G, Gilardi G, Bolchi C. Synthesis of α-Hydroxy Fatty Acids from Fatty Acids by Intermediate α-Chlorination with TCCA under Solvent-Free Conditions: A Way to Valorization of Waste Fat Biomasses. ACS OMEGA 2021; 6:31901-31906. [PMID: 34870012 PMCID: PMC8637944 DOI: 10.1021/acsomega.1c04640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Within food wastes, including edible and inedible parts, fat biomasses represent a significant portion, often uneconomically used or improperly disposed causing pollution issues. Interesting perspectives for their management and valorization could be opened by conversion of fatty acids (FAs), which are their main constituents, into α-hydroxy FAs (α-HFAs), fine chemicals of great, but largely untapped potential, possibly due to current poor availability. Here, a simple and efficient procedure is reported to α-chlorinate FAs with trichloroisocyanuric acid (TCCA), a green halogenating agent, under solvent-free conditions and to directly convert the resultant α-chloro FAs, without previous purification, into α-HFAs. The procedure was applied to stearic, palmitic, and myristic acid and, with analogous success, to their mixture, ad hoc created to simulate a FAs mixture obtainable from a fat biomass.
Collapse
Affiliation(s)
- Valentina Bertolini
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Gaurao Tibhe
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Gabriella Roda
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Sebastiano Arnoldi
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Laura Monguzzi
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Marina Zoccola
- Italian
National Research Council, STIIMA, Corso Giuseppe Pella 16, I-13900 Biella, Italy
| | - Giovanna Di Nardo
- Dipartimento
di Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, I-10113 Torino, Italy
| | - Gianfranco Gilardi
- Dipartimento
di Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, I-10113 Torino, Italy
| | - Cristiano Bolchi
- Dipartimento
di Scienze Farmaceutiche, Università
degli Studi di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| |
Collapse
|
69
|
Piquero M, Font C, Gullón N, López-Alvarado P, Menéndez JC. One-Pot Mechanochemical Synthesis of Mono- and Bis-Indolylquinones via Solvent-Free Multiple Bond-Forming Processes. CHEMSUSCHEM 2021; 14:4764-4775. [PMID: 34409746 DOI: 10.1002/cssc.202101529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Bis-indolylquinones are fungal natural products endowed with interesting pharmacological properties. Most of the previously described methodologies in solution for the construction of the bis-indolylquinone framework show disadvantages associated with long reaction times and difficult, waste-generating purifications. A one-pot mechanochemical methodology for the synthesis of indolylquinones was developed, starting from indoles and dihaloquinones in the presence of FeCl3 or p-TsOH as catalysts and Fetizon's reagent as an oxidant. In contrast to solution chemistry, mechanochemical activation allowed the double addition of indole to a quinone substrate in one pot, leading to symmetrical or non-symmetrical bis-indolylquinones via a domino processes comprising up to six steps. In terms of sustainability, the method has several advantages over the solution protocol, including much shorter reaction times, no external heating, one-pot operation, and the absence of chromatography, leading to a drastically better performance in green metrics and demonstrating the application of several principles of green chemistry, in particular principles 2, 3, and 5.
Collapse
Affiliation(s)
- Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Cristina Font
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Natalia Gullón
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| |
Collapse
|
70
|
Moura A, Gaglieri C, Alarcon RT, Ferreira LT, Vecchi R, Sanches MLR, Oliveira RC, Venturini J, Silva‐Filho LC, Junior Caires F. A New Curcuminoids‐Coumarin Derivative: Mechanochemical Synthesis, Characterization and Evaluation of Its In Vitro Cytotoxicity and Antimicrobial Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aniele Moura
- School of Sciences Chemistry Department UNESP São Paulo State University Bauru 17033-260 SP Brazil
| | - Caroline Gaglieri
- School of Sciences Chemistry Department UNESP São Paulo State University Bauru 17033-260 SP Brazil
| | - Rafael Turra Alarcon
- School of Sciences Chemistry Department UNESP São Paulo State University Bauru 17033-260 SP Brazil
| | | | - Rafael Vecchi
- Medicine School Tropical Diseases and Imaging Diagnosis UNESP-São Paulo State University Botucatu 18618-687 SP Brazil
| | - Mariana Liessa Rovis Sanches
- Bauru School of Dentistry Department of Biological Sciences USP-University of São Paulo Bauru 17011-220 SP Brazil
| | - Rodrigo Cardoso Oliveira
- Bauru School of Dentistry Department of Biological Sciences USP-University of São Paulo Bauru 17011-220 SP Brazil
| | - James Venturini
- Medicine School Tropical Diseases and Imaging Diagnosis UNESP-São Paulo State University Botucatu 18618-687 SP Brazil
- Medicine School UFMS- Mato Grosso do Sul Federal University Campo Grande 79070-900 MS Brazil
| | - Luiz Carlos Silva‐Filho
- School of Sciences Chemistry Department UNESP São Paulo State University Bauru 17033-260 SP Brazil
| | - Flávio Junior Caires
- School of Sciences Chemistry Department UNESP São Paulo State University Bauru 17033-260 SP Brazil
- Institute of Chemistry UNESP-São Paulo State University Araraquara 14800-900 SP Brazil
| |
Collapse
|
71
|
Pickhardt W, Wohlgemuth M, Grätz S, Borchardt L. Mechanochemically Assisted Synthesis of Hexaazatriphenylenehexacarbonitrile. J Org Chem 2021; 86:14011-14015. [PMID: 34014673 PMCID: PMC8524413 DOI: 10.1021/acs.joc.1c00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 11/29/2022]
Abstract
1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT CN) was synthesized mechanochemically at room temperature. The coupling of hexaketocyclohexane and diaminomaleonitrile was conducted in 10 min by vibratory ball milling. The effects of milling parameters, acids, dehydrating agents, and liquid-assisted grinding were rationalized. With 67%, the yield of this mechanochemical approach exceeds that of state-of-the-art wet-chemical syntheses while being superior with respect to time-, resource-, and energy-efficiency as quantified via green metrics.
Collapse
Affiliation(s)
- Wilm Pickhardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Maximilian Wohlgemuth
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sven Grätz
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
72
|
Bera SK, Mal P. Mechanochemical-Cascaded C-N Cross-Coupling and Halogenation Using N-Bromo- and N-Chlorosuccinimide as Bifunctional Reagents. J Org Chem 2021; 86:14144-14159. [PMID: 34423985 DOI: 10.1021/acs.joc.1c01742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploration of alternative energy sources for chemical transformations has gained significant interest from chemists, and mechanochemistry is one of those sources. Herein, we report the use of N-bromosuccinimides (NBS) and N-chlorosuccinimides (NCS) as bifunctional reagents for a cascaded C-N bond formation and subsequent halogenation reactions. Under the solvent-free mechanochemical (ball-milling) conditions, the synthesis of a wide range of phenanthridinone derivatives from N-methoxy-[1,1'-biphenyl]-2-carboxamides is accomplished. During the reactions, NBS and NCS first assisted the oxidative C-N coupling reaction and subsequently promoted a halogenation reaction. Thus, the role of NBS and NCS was established to be bifunctional. Overall, a mild, solvent-free, convenient, one-pot, and direct synthesis of various bromo- and chloro-substituted phenanthridinone derivatives was achieved.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
73
|
Chatterjee T, Ranu BC. Synthesis of Organosulfur and Related Heterocycles under Mechanochemical Conditions. J Org Chem 2021; 86:13895-13910. [PMID: 34351760 DOI: 10.1021/acs.joc.1c01454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last few decades, ball-milling has received tremendous attention as a "green tool" for conducting various challenging organic transformations under transition-metal-free and solvent-free conditions. Organosulfur and related heterocycles are ubiquitous in numerous biologically active molecules with potential applications, and those molecules could be synthesized from readily available starting materials under mechanochemical conditions without using any hazardous chemical or solvent. This synopsis highlights the green strategies developed in recent times to synthesize organosulfur and related heterocycles under ball-milling conditions.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| | - Brindaban C Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
74
|
Naikoo RA, Singh P, Kumar R, Bhargava G. Solvent-free mechanochemical synthesis of bisthioglycolic acid derivatives: an efficient and versatile strategy for carbon–sulfur bond formation. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1983574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rayees Ahmad Naikoo
- Department of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, India
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu Natal, Durban, South Africa
| | - Rupesh Kumar
- Department of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, India
| | - Gaurav Bhargava
- Department of Chemical Sciences, I. K. Gujral Punjab Technical University, Kapurthala, India
| |
Collapse
|
75
|
Gonnet L, Baron M, Baltas M. Synthesis of Biologically Relevant 1,2,3- and 1,3,4-Triazoles: From Classical Pathway to Green Chemistry. Molecules 2021; 26:5667. [PMID: 34577138 PMCID: PMC8464795 DOI: 10.3390/molecules26185667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Green Chemistry has become in the last two decades an increasing part of research interest. Nonconventional «green» sources for chemical reactions include micro-wave, mechanical mixing, visible light and ultrasound. 1,2,3-triazoles have important applications in pharmaceutical chemistry while their 1,2,4 counterparts are developed to a lesser extent. In the review presented here we will focus on synthesis of 1,2,3 and 1,2,4-triazole systems by means of classical and « green chemistry » conditions involving ultrasound chemistry and mechanochemistry. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties. Finally, we will also present the formal cycloreversion of 1,2,3-triazole compounds under mechanical forces and its potential use in biological systems.
Collapse
Affiliation(s)
- Lori Gonnet
- IMT Mines Albi, UMR CNRS 5302, Centre Rapsodee, Campus Jarlard, Allée des Sciences, Université de Toulouse, CEDEX 09, 81013 Albi, France; (L.G.); (M.B.)
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Michel Baron
- IMT Mines Albi, UMR CNRS 5302, Centre Rapsodee, Campus Jarlard, Allée des Sciences, Université de Toulouse, CEDEX 09, 81013 Albi, France; (L.G.); (M.B.)
| | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France
| |
Collapse
|
76
|
Affiliation(s)
- Pramod N. Rakendu
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
- Advanced Molecular Materials Research centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| |
Collapse
|
77
|
Hosseinzadeh R, Narimani E, Mavvaji M. Pyridinium Chlorochromate Supported on Montmorillonite–KSF as a Versatile Oxidant under Ball Milling Conditions. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1944733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Erfan Narimani
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Mavvaji
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
78
|
Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, Jin M, Ito H. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angew Chem Int Ed Engl 2021; 60:16003-16008. [PMID: 33991023 DOI: 10.1002/anie.202105381] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a novel strategy for introducing a luminophore into generic polymers facilitated by mechanical stimulation. In this study, polymeric mechanoradicals were formed in situ under ball-milling conditions to undergo radical-radical coupling with a prefluorescent nitroxide-based reagent in order to incorporate a luminophore into the polymer main chains via a covalent bond. This method allowed the direct and conceptually simple preparation of luminescent polymeric materials from a wide range of generic polymers such as polystyrene, polymethyl methacrylate, and polyethylene. These results indicate that the present mechanoradical coupling strategy may help to transform existing commodity polymers into more valuable functional materials.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Daiyo Miura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Julong Jiang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Mingoo Jin
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
79
|
Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, Jin M, Ito H. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Daiyo Miura
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Julong Jiang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Mingoo Jin
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
80
|
Nugrahani I. Sustainable Pharmaceutical Preparation Methods and Solid-state Analysis Supporting Green Pharmacy. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200711150729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Every "entity" or compound has physical and chemical properties as references for the synthesis
and determination of the entity's structure. Thermodynamically, solid-state is the most stable
matter in the universe and to be the ideal form in structure elucidation of pharmaceutical. The dry
treatments, such as mechanochemistry, microwave heating, and the using of deep eutectic agent are
becoming popular. These techniques are viewed as futuristic methods for reducing environmental damage,
in line with "green pharmacy" concept. On the other hand, solid-state analysis methods from the
simplest to the most sophisticated one have been used in the long decades, but most are for qualitative
purposes. Recently many reports have proven that solid-state analysis instruments are reliable and prospective
for implementing in the quantitative measurement. Infrared spectroscopy, powder x-ray diffraction,
and differential scanning calorimetry have been employed in various kinetics and content determination
studies. A revolutionary method developed for structural elucidation is single-crystal diffraction,
which is capable of rapidly and accurately determining a three-dimensional chemical structure.
Hereby it is shown that the accurate, precise, economic, ease, rapid-speed, and reliability of solidstate
analysis methods are eco-benefits by reducing the reagent, catalyst, and organic solvent.
Collapse
Affiliation(s)
- Ilma Nugrahani
- Pharmacochemistry Department, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
81
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
82
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
83
|
Kubota K, Ito H. Development of Selective Reactions Using Ball Milling. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| |
Collapse
|
84
|
|
85
|
Krauskopf F, Truong KN, Rissanen K, Bolm C. 2,3-Dihydro-1,2,6-thiadiazine 1-Oxides by Biginelli-Type Reactions with Sulfonimidamides under Mechanochemical Conditions. Org Lett 2021; 23:2699-2703. [PMID: 33739844 DOI: 10.1021/acs.orglett.1c00596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biginelli-type multicomponent reactions (MCRs) with NH-free sulfonimidamides provide 2,3-dihydro-1,2,6-thiadiazine 1-oxides in high yields. The couplings are performed in a planetary ball mill under solvent-free mechanochemical conditions. Acetic acid or ytterbium triflate are used as catalysts. A representative product was characterized by X-ray single crystal structure analysis revealing molecular details of the highly functionalized three-dimensional heterocycle. Further product modifications lead to additional structural scaffolds.
Collapse
Affiliation(s)
- Felix Krauskopf
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Khai-Nghi Truong
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, FI-40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, FI-40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
86
|
Seo T, Toyoshima N, Kubota K, Ito H. Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides. J Am Chem Soc 2021; 143:6165-6175. [PMID: 33784464 DOI: 10.1021/jacs.1c00906] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conventional organic synthesis generally relies on the use of liquid organic solvents to dissolve the reactants. Therefore, reactions of sparingly soluble or insoluble substrates are challenging and often ineffective. The development of a solvent-independent solid-state approach that overcomes this longstanding solubility issue would provide innovative synthetic solutions and access to new areas of chemical space. Here, we report extremely fast and highly efficient solid-state palladium-catalyzed Suzuki-Miyaura cross-coupling reactions via a high-temperature ball-milling technique. This solid-state protocol enables the highly efficient cross-couplings of insoluble aryl halides with large polyaromatic structures that are barely reactive under conventional solution-based conditions. Notably, we discovered a new luminescent organic material with a strong red emission. This material was prepared via the solid-state coupling of Pigment violet 23, a compound that has so far not been involved in molecular transformations due to its extremely low solubility. This study thus provides a practical method for accessing unexplored areas of chemical space through molecular transformations of insoluble organic compounds that cannot be carried out by any other approach.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
87
|
Lapshin OV, Boldyreva EV, Boldyrev VV. Role of Mixing and Milling in Mechanochemical Synthesis (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621030116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
88
|
Clerigué J, Ramos MT, Menéndez JC. Mechanochemical Aza-Vinylogous Povarov Reactions for the Synthesis of Highly Functionalized 1,2,3,4-Tetrahydroquinolines and 1,2,3,4-Tetrahydro-1,5-Naphthyridines. Molecules 2021; 26:molecules26051330. [PMID: 33801330 PMCID: PMC7958332 DOI: 10.3390/molecules26051330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aza-vinylogous Povarov reaction between aromatic amines, α-ketoaldehydes or α-formylesters and α,β-unsaturated dimethylhydrazones was carried out in a sequential three-component fashion under mechanochemical conditions. Following extensive optimization work, the reaction was performed on a vibratory ball mill operating at 20 Hz and using zirconium oxide balls and milling jar, and afforded 1,2,3,4-tetrahydroquinolines and 1,2,3,4-tetrahydro- 1,5-naphthyridines functionalized at C-2, C-4 and also at C-6, in the latter case. This protocol generally afforded the target compounds in good to excellent yields and diastereoselectivities. A comparison of representative examples with the results obtained under conventional conditions revealed that the mechanochemical protocol affords faster Povarov reactions in comparable yields using a solvent-less environment.
Collapse
|
89
|
Buinevich V, Nepapushev A, Moskovskikh D, Trusov G, Kuskov K, Mukasyan A. Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Xu H, Zhang Z, Weng MY, Chen H. Liquid-Assisted Mechanosynthesis of trans-2,3-Dihydropyrroles from Chalcones and Enaminones. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
91
|
Wu S, Shi W, Zou G. Mechanical metal activation for Ni-catalyzed, Mn-mediated cross-electrophile coupling between aryl and alkyl bromides. NEW J CHEM 2021. [DOI: 10.1039/d1nj01732b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid-assisted grinding enables nickel-catalyzed, manganese-mediated cross-electrophile coupling between aryl and alkyl bromides under chemical activator-free and non-anhydrous conditions.
Collapse
Affiliation(s)
- Sisi Wu
- School of Chemistry & Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Weijia Shi
- School of Chemistry & Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Gang Zou
- School of Chemistry & Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| |
Collapse
|
92
|
Pang AL, Arsad A, Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ai Ling Pang
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Agus Arsad
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohsen Ahmadipour
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Penang Malaysia
| |
Collapse
|
93
|
Schöbel JH, Liang W, Wöll D, Bolm C. Mechanochemical Synthesis of 1,2,6-Thiadiazine 1-Oxides from Sulfonimidamides and the Fluorescence Properties of the Products. J Org Chem 2020; 85:15760-15766. [PMID: 33225705 DOI: 10.1021/acs.joc.0c02599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A solvent-free mechanochemical synthesis for 1,2,6-thiadiazine 1-oxides starting from NH-sulfonimidamides and propargyl ketones has been developed. Lewis acids affect these one-pot aza-Michael-addition/cyclization/dehydration reaction sequences. The photophysical properties of the resulting heterocyclic sulfonimidamide derivatives were characterized.
Collapse
Affiliation(s)
- Jan-Hendrik Schöbel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
94
|
|
95
|
Menuel S, Saitzek S, Monflier E, Hapiot F. Particle size effect in the mechanically assisted synthesis of β-cyclodextrin mesitylene sulfonate. Beilstein J Org Chem 2020; 16:2598-2606. [PMID: 33133291 PMCID: PMC7590618 DOI: 10.3762/bjoc.16.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 11/23/2022] Open
Abstract
The mechanically assisted synthesis of organic compounds has recently focused considerable attention as it may be unique in features to selectively direct the reaction pathway. In the continuation of our work on the synthesis of modified cyclodextrins (CDs) via mechanochemical activation, we sought to discriminate the contribution of supramolecular effects and grinding during the course of a reaction in the solid state. As such, we recently investigated the influence of the particle size of β-CD in the synthesis of β-CD mesitylene sulfonate (β-CDMts) in the solid state using a vibrating ball-mill. We were particularly interested in the role of the particle size on the kinetics of the reaction. In this study, we show that grinding β-CD reduces the particles size over time down to a limit of 167 nm. The granulometric composition remains rather invariant for grinding times over 1 h. Each type of β-CD particles reacted with mesitylenesulfonyl chloride (MtsCl) to produce β-CDMts. Contrary to what could be intuitively anticipated, smaller particles did not lead to the highest conversions. The impact of grinding on the conversion was limited. Interestingly, the proportion of β-CDMts mono-substituted on the primary face significantly increased over time when the reaction was carried out in the presence of KOH as a base. The data series were confronted with kinetics models to get insight in the way the reactions proceeded. The diversity of possible models suggests that multiple mechanochemical processes can account for the formation of β-CDMts in the solid state. Throughout the study, we found that the reactivity depended more upon diffusion phenomena in the crystalline parts of the material than on the increase in the surface area of the CD particles resulting from grinding.
Collapse
Affiliation(s)
- Stéphane Menuel
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| | - Sébastien Saitzek
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| | - Eric Monflier
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| | - Frédéric Hapiot
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| |
Collapse
|
96
|
Pang Y, Lee JW, Kubota K, Ito H. Solid‐State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009844] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yadong Pang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Joo Won Lee
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
97
|
Pang Y, Lee JW, Kubota K, Ito H. Solid‐State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2020; 59:22570-22576. [DOI: 10.1002/anie.202009844] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yadong Pang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Joo Won Lee
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
98
|
Das D, Bhutia ZT, Panjikar PC, Chatterjee A, Banerjee M. A simple and efficient route to 2‐arylimidazo[1,2‐a]pyridines and zolimidine using automated grindstone chemistry. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dharmendra Das
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Zigmee T. Bhutia
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Padmini C. Panjikar
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
- Pravatibai Chowgule College of Arts and Science (Autonomus) Margao Goa India
| | - Amrita Chatterjee
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Mainak Banerjee
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| |
Collapse
|
99
|
Abstract
While reactions driven by mechanical force or stress can be labeled mechanochemical, those specifically occurring at a sliding interface inherit the name tribochemical, which stems from the study of friction and wear: tribology. Increased perception of tribochemical reactions has been gained through technological advancement, and the development of new applications remains on-going. This surprising physico-kinetic process offers great potential in novel reaction pathways for synthesis techniques and nanoparticle interactions, and it could prove to be a powerful cross-disciplinary research area among chemists, engineers, and physicists. In this review article, a survey of the history and recent usage of tribochemical reaction pathways is presented, with a focus on forging new compounds and materials with this sustainable synthesis methodology. In addition, an overview of tribochemistry’s current utility as a synthesis pathway is given and compared to that of traditional mechanochemistry.
Collapse
|
100
|
Broumidis E, Jones MC, Vilela F, Lloyd GO. Mechanochemical Synthesis of N‐Aryl Amides from O‐Protected Hydroxamic Acids. Chempluschem 2020; 85:1754-1761. [DOI: 10.1002/cplu.202000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Emmanouil Broumidis
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt University Edinburgh EH14 4AS United Kingdom
| | - Mary C. Jones
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt University Edinburgh EH14 4AS United Kingdom
| | - Filipe Vilela
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt University Edinburgh EH14 4AS United Kingdom
| | - Gareth O. Lloyd
- School of ChemistryJoseph Banks LaboratoriesUniversity of Lincoln Lincoln LN6 7TS United Kingdom
| |
Collapse
|