51
|
Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci U S A 2016; 113:10968-73. [PMID: 27621450 PMCID: PMC5047196 DOI: 10.1073/pnas.1608454113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Gerald N Presley
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Kenneth E Hammel
- Institute for Microbial and Biochemical Technology, US Forest Products Laboratory, Madison, WI 53726; Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Jae-San Ryu
- Eco-Friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, Republic of Korea
| | - Jon R Menke
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108
| | - Melania Figueroa
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108
| | - Dehong Hu
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Galya Orr
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jonathan S Schilling
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108;
| |
Collapse
|
52
|
Nekiunaite L, Petrović DM, Westereng B, Vaaje-Kolstad G, Hachem MA, Várnai A, Eijsink VG. Fg
LPMO9A from Fusarium graminearum
cleaves xyloglucan independently of the backbone substitution pattern. FEBS Lett 2016; 590:3346-3356. [DOI: 10.1002/1873-3468.12385] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Nekiunaite
- Enzyme and Protein Chemistry; Department of Systems Biology; Technical University of Denmark; Kongens Lyngby Denmark
| | - Dejan M. Petrović
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry; Department of Systems Biology; Technical University of Denmark; Kongens Lyngby Denmark
| | - Anikó Várnai
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Vincent G.H. Eijsink
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| |
Collapse
|
53
|
Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation. Appl Environ Microbiol 2016; 82:4387-4400. [PMID: 27208101 DOI: 10.1128/aem.00134-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi, Rhodonia placenta (formerly Postia placenta) and Phanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-old Populus trichocarpa (poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold, P < 0.05) in P. chrysosporium and P. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold, P < 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles of P. chrysosporium and P. placenta are influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode "proteins of unknown function," and determining their role in lignocellulose degradation presents opportunities and challenges for future research. IMPORTANCE This study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.
Collapse
|
54
|
Vasina DV, Pavlov AR, Koroleva OV. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol 2016; 16:106. [PMID: 27296712 PMCID: PMC4906887 DOI: 10.1186/s12866-016-0729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Fungi are organisms with the highest natural capacity to degrade lignocellulose substrates, which is enabled by complex systems of extracellular enzymes, whose expression and secretion depend on the characteristics of substrates and the environment. Results This study reports a secretome analysis for white-rot basidiomycete Trametes hirsuta cultivated on a synthetic media and a lignocellulose substrate. We demonstrate that T. hirsuta st. 072 produces multiple extracellular ligninolytic, cellulolytic, hemicellulolytic, peroxide generating, and proteolytic enzymes, as well as cerato-platanins. In contrast to other white rot species described earlier, which mostly secreted glucanases and mannosidases in response to the presence of the lignocellulose substrate, T. hirsuta expressed a spectrum of extracellular cellulolytic enzymes containing predominantly cellobiases and xylanases. As proteomic analysis could not detect lignin peroxidase (LiP) among the secreted lignin degrading enzymes, we attributed the observed extracellular LiP - like activity to the expressed versatile peroxidase (VP). An accessory enzyme, glyoxal oxidase, was found among the proteins secreted in the media during submerged cultivation of T. hirsuta both in the presence and in the absence of copper. However, aryl-alcohol oxidase (AAO) was not identified, despite the presence of AAO enzymatic activity secreted by the fungus. The spectra of the expressed enzymes dramatically changed depending on the growth conditions. Transfer from submerged cultivation to surface cultivation with the lignocellulose substrate switched off expression of exo-β-1,3-glucanase and α-amylase and turned on secretion of endo-β-1,3-glucanase and a range of glycosidases. In addition, an aspartic peptidase started being expressed instead of family S53 protease. For the first time, we report production of cerato-platanin proteins by Trametes species. The secretion of cerato-platanins was observed only in response to contact with lignocellulose, thus indicating a specific role of these proteins in degradation of the lignocellulose substrates. Conclusions Our results suggest a sequential mechanism of natural substrate degradation by T. hirsuta, in which the fungus produces different sets of enzymes to digest all main components of the substrate during cultivation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0729-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria V Vasina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia.
| | - Andrey R Pavlov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| | - Olga V Koroleva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| |
Collapse
|
55
|
Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS. Appl Microbiol Biotechnol 2016; 100:8013-20. [DOI: 10.1007/s00253-016-7560-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/10/2016] [Accepted: 04/16/2016] [Indexed: 11/30/2022]
|
56
|
Oghenekaro AO, Raffaello T, Kovalchuk A, Asiegbu FO. De novo transcriptomic assembly and profiling of Rigidoporus microporus during saprotrophic growth on rubber wood. BMC Genomics 2016; 17:234. [PMID: 26980399 PMCID: PMC4791870 DOI: 10.1186/s12864-016-2574-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The basidiomycete Rigidoporus microporus is a fungus that causes the white rot disease of the tropical rubber tree, Hevea brasiliensis, the major source of commercial natural rubber. Besides its lifestyle as a pathogen, the fungus is known to switch to saprotrophic growth on wood with the ability to degrade both lignin and cellulose. There is almost no genomic or transcriptomic information on the saprotrophic abilities of this fungus. In this study, we present the fungal transcriptomic profiles during saprotrophic growth on rubber wood. RESULTS A total of 266.6 million RNA-Seq reads were generated from six libraries of the fungus growing either on rubber wood or without wood. De novo assembly produced 34, 518 unigenes with an average length of 2179 bp. Annotation of unigenes using public databases; GenBank, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups (COG) and Gene Ontology (GO) produced 25, 880 annotated unigenes. Transcriptomic profiling analysis revealed that the fungus expressed over 300 genes encoding lignocellulolytic enzymes. Among these, 175 genes were up-regulated in rubber wood. These include three members of the glycoside hydrolase family 43, as well as various glycosyl transferases, carbohydrate esterases and polysaccharide lyases. A large number of oxidoreductases which includes nine manganese peroxidases were also significantly up-regulated in rubber wood. Several genes involved in fatty acid metabolism and degradation as well as natural rubber degradation were expressed in the transcriptome. Four genes (acyl-CoA synthetase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA acetyltransferase) potentially involved in rubber latex degradation pathway were also induced. A number of ATP binding cassette (ABC) transporters and hydrophobin genes were significantly expressed in the transcriptome during saprotrophic growth. Some genes related to energy metabolism were also induced. CONCLUSIONS The analysed data gives an insight into the activation of lignocellulose breakdown machinery of R. microporus. This study also revealed genes with relevance in antibiotic metabolism (e.g. cephalosporin esterase) as well as those with potential applications in fatty acid degradation. This is the first study on the transcriptomic analysis of R. microporus on rubber wood and should serve as a pioneering resource for future studies of the fungus at the genomic or transcriptomic level.
Collapse
Affiliation(s)
- Abbot O Oghenekaro
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland.
| | - Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| |
Collapse
|
57
|
Álvarez C, Reyes-Sosa FM, Díez B. Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 2016; 9:149-56. [PMID: 26833542 PMCID: PMC4767290 DOI: 10.1111/1751-7915.12346] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023] Open
Abstract
Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta‐xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta‐mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2–20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood.
Collapse
Affiliation(s)
- Consolación Álvarez
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar no. 1, Seville, 41014, Spain
| | - Francisco Manuel Reyes-Sosa
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar no. 1, Seville, 41014, Spain
| | - Bruno Díez
- Department of Biotechnology, Abengoa Research, Campus Palmas Altas, C/Energía Solar no. 1, Seville, 41014, Spain
| |
Collapse
|
58
|
Kuuskeri J, Häkkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen P, Kemell M, Auvinen P, Lundell T. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:192. [PMID: 27602055 PMCID: PMC5011852 DOI: 10.1186/s13068-016-0608-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/30/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate. RESULTS According to proteomics analyses, several CAZy oxidoreductase class-II peroxidases with glyoxal and alcohol oxidases were the most abundant proteins produced on wood together with enzymes important for cellulose utilization, such as GH7 and GH6 cellobiohydrolases. Transcriptome additionally displayed expression of multiple AA9 lytic polysaccharide monooxygenases indicative of oxidative cleavage of wood carbohydrate polymers. Large differences were observed for individual protein quantities at specific time points, with a tendency of enhanced production of specific peroxidases on the first 2 weeks of growth on wood. Among the 10 class-II peroxidases, new MnP1-long, characterized MnP2-long and LiP3 were produced in high protein abundances, while LiP2 and LiP1 were upregulated at highest level as transcripts on wood together with the oxidases and one acetyl xylan esterase, implying their necessity as primary enzymes to function against coniferous wood lignin to gain carbohydrate accessibility and fungal growth. Majority of the CAZy encoding transcripts upregulated on spruce wood represented activities against plant cell wall and were identified in the proteome, comprising main activities of white-rot decay. CONCLUSIONS Our data indicate significant changes in carbohydrate-active enzyme expression during the six-week surveillance of P. radiata growing on wood. Response to wood substrate is seen already during the first weeks. The immediate oxidative enzyme action on lignin and wood cell walls is supported by detected lignin substructure sidechain cleavages, release of phenolic units, and visual changes in xylem cell wall ultrastructure. This study contributes to increasing knowledge on fungal genetics and lignocellulose bioconversion pathways, allowing us to head for systems biology, development of biofuel production, and industrial applications on plant biomass utilizing wood-decay fungi.
Collapse
Affiliation(s)
- Jaana Kuuskeri
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| | - Mari Häkkinen
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| | - Pia Laine
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Olli-Pekka Smolander
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Fitsum Tamene
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sini Miettinen
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Marianna Kemell
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Taina Lundell
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| |
Collapse
|
59
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:49. [PMID: 26933449 PMCID: PMC4772462 DOI: 10.1186/s13068-016-0462-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/11/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Pleurotus ostreatus is the second edible mushroom worldwide, and a model fungus for delignification applications, with the advantage of growing on woody and nonwoody feedstocks. Its sequenced genome is available, and this gave us the opportunity to perform proteomic studies to identify the enzymes overproduced in lignocellulose cultures. RESULTS Monokaryotic P. ostreatus (PC9) was grown with poplar wood or wheat straw as the sole C/N source and the extracellular proteins were analyzed, together with those from glucose medium. Using nano-liquid chromatography coupled to tandem mass spectrometry of whole-protein hydrolyzate, over five-hundred proteins were identified. Thirty-four percent were unique of the straw cultures, while only 15 and 6 % were unique of the glucose and poplar cultures, respectively (20 % were produced under the three conditions, and additional 19 % were shared by the two lignocellulose cultures). Semi-quantitative analysis showed oxidoreductases as the main protein type both in the poplar (39 % total abundance) and straw (31 %) secretomes, while carbohydrate-active enzymes (CAZys) were only slightly overproduced (14-16 %). Laccase 10 (LACC10) was the main protein in the two lignocellulose secretomes (10-14 %) and, together with LACC2, LACC9, LACC6, versatile peroxidase 1 (VP1), and manganese peroxidase 3 (MnP3), were strongly overproduced in the lignocellulose cultures. Seven CAZys were also among the top-50 proteins, but only CE16 acetylesterase was overproduced on lignocellulose. When the woody and nonwoody secretomes were compared, GH1 and GH3 β-glycosidases were more abundant on poplar and straw, respectively and, among less abundant proteins, VP2 was overproduced on straw, while VP3 was only found on poplar. The treated lignocellulosic substrates were analyzed by two-dimensional nuclear magnetic resonance (2D NMR), and a decrease of lignin relative to carbohydrate signals was observed, together with the disappearance of some minor lignin substructures, and an increase of sugar reducing ends. CONCLUSIONS Oxidoreductases are strongly induced when P. ostreatus grows on woody and nonwoody lignocellulosic substrates. One laccase occupied the first position in both secretomes, and three more were overproduced together with one VP and one MnP, suggesting an important role in lignocellulose degradation. Preferential removal of lignin vs carbohydrates was shown by 2D NMR, in agreement with the above secretomic results.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- />Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | - Marta Pérez-Boada
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Rencoret
- />Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, PO Box 1052, 41080 Seville, Spain
| | - Ana Gutiérrez
- />Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, PO Box 1052, 41080 Seville, Spain
| | - Antonio G. Pisabarro
- />Department of Agrarian Production, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Lucía Ramírez
- />Department of Agrarian Production, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Angel T. Martínez
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
60
|
Hori C, Cullen D. Prospects for Bioprocess Development Based on Recent Genome Advances in Lignocellulose Degrading Basidiomycetes. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
61
|
Rytioja J, Hildén K, Mäkinen S, Vehmaanperä J, Hatakka A, Mäkelä MR. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens. PLoS One 2015; 10:e0145166. [PMID: 26660105 PMCID: PMC4682842 DOI: 10.1371/journal.pone.0145166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Miia R. Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
62
|
Kuuskeri J, Mäkelä MR, Isotalo J, Oksanen I, Lundell T. Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota). BMC Microbiol 2015; 15:217. [PMID: 26482661 PMCID: PMC4610053 DOI: 10.1186/s12866-015-0538-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. METHODS Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. RESULTS Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. CONCLUSIONS Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.
Collapse
MESH Headings
- Basidiomycota/classification
- Basidiomycota/enzymology
- Basidiomycota/genetics
- Basidiomycota/metabolism
- Biotransformation
- Cluster Analysis
- Culture Media/chemistry
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics
- Lignin/metabolism
- Microbiological Techniques
- Molecular Sequence Data
- Phylogeny
- RNA Polymerase II/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5.8S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jaana Kuuskeri
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, P.O.B. 56, FIN-00014, Helsinki, Finland.
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, P.O.B. 56, FIN-00014, Helsinki, Finland.
| | - Jarkko Isotalo
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
| | - Ilona Oksanen
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, P.O.B. 56, FIN-00014, Helsinki, Finland.
| | - Taina Lundell
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, P.O.B. 56, FIN-00014, Helsinki, Finland.
| |
Collapse
|
63
|
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:162-72. [PMID: 26057089 PMCID: PMC4532548 DOI: 10.1016/j.pbi.2015.05.014] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 05/18/2023]
Abstract
Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
64
|
Nakagawa YS, Kudo M, Loose JSM, Ishikawa T, Totani K, Eijsink VGH, Vaaje-Kolstad G. A small lytic polysaccharide monooxygenase fromStreptomyces griseustargeting α- and β-chitin. FEBS J 2015; 282:1065-79. [DOI: 10.1111/febs.13203] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Yuko S. Nakagawa
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Madoka Kudo
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Jennifer S. M. Loose
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| | - Takahiro Ishikawa
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Kazuhide Totani
- Department of Chemical Engineering; National Institute of Technology; Ichinoseki College; Japan
| | - Vincent G. H. Eijsink
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry; Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| |
Collapse
|
65
|
Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
66
|
Couturier M, Navarro D, Chevret D, Henrissat B, Piumi F, Ruiz-Dueñas FJ, Martinez AT, Grigoriev IV, Riley R, Lipzen A, Berrin JG, Master ER, Rosso MN. Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:216. [PMID: 26692083 PMCID: PMC4683735 DOI: 10.1186/s13068-015-0407-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/03/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus BRFM310 grows well on both coniferous and deciduous wood. In the present study, we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks and tested the effect of the secreted enzymes on lignocellulose deconstruction. RESULTS Transcriptomic and proteomic analyses revealed that P. coccineus grown separately on pine and aspen displayed similar sets of transcripts and enzymes implicated in lignin and polysaccharide degradation. In particular, the expression of lignin-targeting oxidoreductases, such as manganese peroxidases, increased upon cultivation on both woods. The sets of enzymes secreted during growth on both pine and aspen were more efficient in saccharide release from pine than from aspen, and characterization of the residual solids revealed polysaccharide conversion on both pine and aspen fiber surfaces. CONCLUSION The combined analysis of soluble sugars and solid residues showed the suitability of P. coccineus secreted enzymes for softwood degradation. Analyses of solubilized products and residual surface chemistries of enzyme-treated wood samples pointed to differences in fiber penetration by different P. coccineus secretomes. Accordingly, beyond the variety of CAZymes identified in P. coccineus genome, transcriptome and secretome, we discuss several parameters such as the abundance of manganese peroxidases and the potential role of cytochrome P450s and pectin degradation on the efficacy of fungi for softwood conversion.
Collapse
Affiliation(s)
- Marie Couturier
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - David Navarro
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| | - Didier Chevret
- />INRA, UMR1319 Micalis, Plateforme d’Analyse Protéomique de Paris Sud-Ouest, 78352 Jouy-En-Josas, France
| | - Bernard Henrissat
- />Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS, Université Aix-Marseille, 13288 Marseille, France
- />Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- />INRA, USC 1408 AFMB, 13288 Marseille, France
| | - François Piumi
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| | | | | | - Igor V. Grigoriev
- />US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Robert Riley
- />US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Anna Lipzen
- />US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Jean-Guy Berrin
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| | - Emma R. Master
- />Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - Marie-Noëlle Rosso
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| |
Collapse
|
67
|
Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, Ferreira P, Ruiz-Dueñas FJ, Held B, Canessa P, Larrondo LF, Schmoll M, Druzhinina IS, Kubicek CP, Gaskell JA, Kersten P, St. John F, Glasner J, Sabat G, Splinter BonDurant S, Syed K, Yadav J, Mgbeahuruike AC, Kovalchuk A, Asiegbu FO, Lackner G, Hoffmeister D, Rencoret J, Gutiérrez A, Sun H, Lindquist E, Barry K, Riley R, Grigoriev IV, Henrissat B, Kües U, Berka RM, Martínez AT, Covert SF, Blanchette RA, Cullen D. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. PLoS Genet 2014; 10:e1004759. [PMID: 25474575 PMCID: PMC4256170 DOI: 10.1371/journal.pgen.1004759] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. The wood decay fungus Phlebiopsis gigantea degrades all components of plant cell walls and is uniquely able to rapidly colonize freshly exposed conifer sapwood. However, mechanisms underlying its conversion of lignocellulose and resinous extractives have not been explored. We report here analyses of the genetic repertoire, transcriptome and secretome of P. gigantea. Numerous highly expressed hydrolases, together with lytic polysaccharide monooxygenases were implicated in P. gigantea's attack on cellulose, and an array of ligninolytic peroxidases and auxiliary enzymes were also identified. Comparisons of woody substrates with and without extractives revealed differentially expressed genes predicted to be involved in the transformation of resin. These expression patterns are likely key to the pioneer colonization of conifers by P. gigantea.
Collapse
Affiliation(s)
- Chiaki Hori
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Takuya Ishida
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Masahiro Samejima
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Emma Master
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Francisco J. Ruiz-Dueñas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Benjamin Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Paulo Canessa
- Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F. Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Monika Schmoll
- Health and Environment Department, Austrian Institute of Technology GmbH, Tulin, Austria
| | - Irina S. Druzhinina
- Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Christian P. Kubicek
- Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Jill A. Gaskell
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Phil Kersten
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Franz St. John
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Jeremy Glasner
- University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America
| | - Grzegorz Sabat
- University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America
| | | | - Khajamohiddin Syed
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jagjit Yadav
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Gerald Lackner
- Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | - Hui Sun
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August University Göttingen, Göttingen, Germany
| | - Randy M. Berka
- Novozymes, Inc., Davis, California, United States of America
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Sarah F. Covert
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Daniel Cullen
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
68
|
Busk PK, Lange M, Pilgaard B, Lange L. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature. PLoS One 2014; 9:e114138. [PMID: 25461894 PMCID: PMC4252092 DOI: 10.1371/journal.pone.0114138] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022] Open
Abstract
The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.
Collapse
Affiliation(s)
- Peter K. Busk
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
- * E-mail:
| | - Mette Lange
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Bo Pilgaard
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Lene Lange
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, A.C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| |
Collapse
|
69
|
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 2014; 78:614-49. [PMID: 25428937 PMCID: PMC4248655 DOI: 10.1128/mmbr.00035-14] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jennifer Yuzon
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
70
|
Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol 2014; 72:124-130. [DOI: 10.1016/j.fgb.2014.05.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/20/2022]
|
71
|
Ye Z, Zheng Y, Li B, Borrusch MS, Storms R, Walton JD. Enhancement of synthetic Trichoderma-based enzyme mixtures for biomass conversion with an alternative family 5 glycosyl hydrolase from Sporotrichum thermophile. PLoS One 2014; 9:e109885. [PMID: 25295862 PMCID: PMC4190410 DOI: 10.1371/journal.pone.0109885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/01/2014] [Indexed: 11/24/2022] Open
Abstract
Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei. The S. thermophile extracts were fractionated and an enhancing factor identified as endo-β1,4-glucanase (StCel5A or EG2) of subfamily 5 of Glycosyl Hydrolase family 5 (GH5_5). In multi-component optimization experiments using a standard set of enzymes and either StCel5A or the ortholog from T. reesei (TrCel5A), reactions containing StCel5A yielded more Glc and Xyl. In a five-component optimization experiment (i.e., varying four core enzymes and the source of Cel5A), the optimal proportions for TrCel5A vs. StCel5A were similar for Glc yields, but markedly different for Xyl yields. Both enzymes were active on lichenan, glucomannan, and oat β-glucan; however, StCel5A but not TrCel5A was also active on β1,4-mannan, two types of galactomannan, and β1,4-xylan. Phylogenetically, fungal enzymes in GH5_5 sorted into two clades, with StCel5A and TrCel5A belonging to different clades. Structural differences with the potential to account for the differences in performance were deduced based on the known structure of TrCel5A and a homology-based model of StCel5A, including a loop near the active site of TrCel5A and the presence of four additional Trp residues in the active cleft of StCel5A. The results indicate that superior biomass-degrading enzymes can be identified by exploring taxonomic diversity combined with assays in the context of realistic enzyme combinations and realistic substrates. Substrate range may be a key factor contributing to superior performance within GH5_5.
Collapse
Affiliation(s)
- Zhuoliang Ye
- Department of Energy Great Lakes Bioenergy Research Center and Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Yun Zheng
- Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada
| | - Bingyao Li
- Department of Energy Great Lakes Bioenergy Research Center and Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Melissa S. Borrusch
- Department of Energy Great Lakes Bioenergy Research Center and Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Reginald Storms
- Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada
| | - Jonathan D. Walton
- Department of Energy Great Lakes Bioenergy Research Center and Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
72
|
Morgenstern I, Powlowski J, Tsang A. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief Funct Genomics 2014; 13:471-81. [PMID: 25217478 PMCID: PMC4239789 DOI: 10.1093/bfgp/elu032] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our understanding of fungal cellulose degradation has shifted dramatically in the past few years with the characterization of a new class of secreted enzymes, the lytic polysaccharide monooxygenases (LPMO). After a period of intense research covering structural, biochemical, theoretical and evolutionary aspects, we have a picture of them as wedge-like copper-dependent metalloenzymes that on reduction generate a radical copper-oxyl species, which cleaves mainly crystalline cellulose. The main biological function lies in the synergism of fungal LPMOs with canonical hydrolytic cellulases in achieving efficient cellulose degradation. Their important role in cellulose degradation is highlighted by the wide distribution and often numerous occurrences in the genomes of almost all plant cell-wall degrading fungi. In this review, we provide an overview of the latest achievements in LPMO research and consider the open questions and challenges that undoubtedly will continue to stimulate interest in this new and exciting group of enzymes.
Collapse
|
73
|
Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:103-65. [PMID: 24767427 DOI: 10.1016/b978-0-12-800260-5.00004-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.
Collapse
|
74
|
Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 2014; 111:9923-8. [PMID: 24958869 PMCID: PMC4103376 DOI: 10.1073/pnas.1400592111] [Citation(s) in RCA: 430] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.
Collapse
Affiliation(s)
- Robert Riley
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Asaf A Salamov
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Daren W Brown
- US Department of Agriculture (USDA), Peoria, IL 61604
| | - Laszlo G Nagy
- Department of Biology, Clark University, Worcester, MA 01610
| | | | | | - Anthony Levasseur
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1163, Aix-Marseille Université, 13288 Marseille, France
| | - Vincent Lombard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Aix-Marseille Université, 13288 Marseille, France
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136, Institut National de la Recherche Agronomique-Université de Lorraine, Interactions Arbres/Micro-organismes, 54280 Champenoux, France
| | - Robert Otillar
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Erika A Lindquist
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Hui Sun
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Kurt M LaButti
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Jeremy Schmutz
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598;HudsonAlpha Institute of Biotechnology, Huntsville, AL 35806
| | - Dina Jabbour
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | - Hong Luo
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Antonio G Pisabarro
- Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain; and
| | - Jonathan D Walton
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | | | - Bernard Henrissat
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Aix-Marseille Université, 13288 Marseille, France
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136, Institut National de la Recherche Agronomique-Université de Lorraine, Interactions Arbres/Micro-organismes, 54280 Champenoux, France
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, WI 53726
| | - David S Hibbett
- Department of Biology, Clark University, Worcester, MA 01610;
| | - Igor V Grigoriev
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598;
| |
Collapse
|
75
|
Xie S, Syrenne R, Sun S, Yuan JS. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel--from systems biology to synthetic design. Curr Opin Biotechnol 2014; 27:195-203. [PMID: 24657913 DOI: 10.1016/j.copbio.2014.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/24/2022]
Abstract
Efficient degradation and utilization of lignocellulosic biomass remains a challenge for sustainable and affordable biofuels. Various natural biomass utilization systems (NBUS) evolved the capacity to combat the recalcitrance of plant cell walls. The study of these NBUS could enable the development of efficient and cost-effective biocatalysts, microorganisms, and bioprocesses for biofuels and bioproducts. Here, we reviewed the recent research progresses for several NBUS, ranging from single cell microorganisms to consortiums such as cattle rumen and insect guts. These studies aided the discovery of biomass-degrading enzymes and the elucidation of the evolutionary and functional relevance in these systems. In particular, advances in the next generation 'omics' technologies offered new opportunities to explore NBUS in a high-throughput manner. Systems biology helped to facilitate the rapid biocatalyst discovery and detailed mechanism analysis, which could in turn guide the reverse design of engineered microorganisms and bioprocesses for cost-effective and efficient biomass conversion.
Collapse
Affiliation(s)
- Shangxian Xie
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | - Ryan Syrenne
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States; Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Su Sun
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | - Joshua S Yuan
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
76
|
Enzymatic synthesis of model substrates recognized by glucuronoyl esterases from Podospora anserina and Myceliophthora thermophila. Appl Microbiol Biotechnol 2014; 98:5507-16. [DOI: 10.1007/s00253-014-5542-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 11/25/2022]
|
77
|
Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism's strategy for degrading lignocellulose. Appl Environ Microbiol 2014; 80:2062-70. [PMID: 24441164 DOI: 10.1128/aem.03652-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about the mechanism of selective ligninolysis. To address this issue, C. subvermispora was grown in liquid medium containing ball-milled aspen, and nano-liquid chromatography-tandem mass spectrometry was used to identify and estimate extracellular protein abundance over time. Several manganese peroxidases and an aryl alcohol oxidase, both associated with lignin degradation, were identified after 3 days of incubation. A glycoside hydrolase (GH) family 51 arabinofuranosidase was also identified after 3 days but then successively decreased in later samples. Several enzymes related to cellulose and xylan degradation, such as GH10 endoxylanase, GH5_5 endoglucanase, and GH7 cellobiohydrolase, were detected after 5 days. Peptides corresponding to potential cellulose-degrading enzymes GH12, GH45, lytic polysaccharide monooxygenase, and cellobiose dehydrogenase were most abundant after 7 days. This sequential production of enzymes provides a mechanism consistent with selective ligninolysis by C. subvermispora.
Collapse
|
78
|
Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN, Fox BG. Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:109. [PMID: 25161697 PMCID: PMC4144037 DOI: 10.1186/1754-6834-7-109] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/07/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequences, structures, and evolution of LPMOs to understand the factors that may influence substrate specificity both within and between these enzyme families. RESULTS Comparative analysis of sequences, solved structures, and homology models from AA9 and AA10 LPMO families demonstrated that, although these two LPMO families are highly conserved, structurally they have minimal sequence similarity outside the active site residues. Phylogenetic analysis of the AA10 family identified clades with putative chitinolytic and cellulolytic activities. Estimation of the rate of synonymous versus non-synonymous substitutions (dN/dS) within two major AA10 subclades showed distinct selective pressures between putative cellulolytic genes (subclade A) and CBP21-like chitinolytic genes (subclade D). Estimation of site-specific selection demonstrated that changes in the active sites were strongly negatively selected in all subclades. Furthermore, all codons in the subclade D had dN/dS values of less than 0.7, whereas codons in the cellulolytic subclade had dN/dS values of greater than 1.5. Positively selected codons were enriched at sites localized on the surface of the protein adjacent to the active site. CONCLUSIONS The structural similarity but absence of significant sequence similarity between AA9 and AA10 families suggests that these enzyme families share an ancient ancestral protein. Combined analysis of amino acid sites under Darwinian selection and structural homology modeling identified a subclade of AA10 with diversifying selection at different surfaces, potentially used for cellulose-binding and protein-protein interactions. Together, these data indicate that AA10 LPMOs are under selection to change their function, which may optimize cellulolytic activity. This work provides a phylogenetic basis for identifying and classifying additional cellulolytic or chitinolytic LPMOs.
Collapse
Affiliation(s)
- Adam J Book
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706 USA
| | - Ragothaman M Yennamalli
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
- />Biosciences at Rice, Rice University, George R. Brown Hall, Houston, TX 77005 USA
| | - Taichi E Takasuka
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
| | - Cameron R Currie
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706 USA
| | - George N Phillips
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
- />Biosciences at Rice, Rice University, George R. Brown Hall, Houston, TX 77005 USA
| | - Brian G Fox
- />Department of Energy, Great Lakes Bioenergy Research Center, Madison, 1552 University Avenue, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706 USA
| |
Collapse
|
79
|
Arantes V, Goodell B. Current Understanding of Brown-Rot Fungal Biodegradation Mechanisms: A Review. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1158.ch001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Valdeir Arantes
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| | - Barry Goodell
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| |
Collapse
|
80
|
Abstract
Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.
Collapse
Affiliation(s)
- David S Hibbett
- Biology Department, Clark University, Worcester, Massachusetts 01610
| | | | | |
Collapse
|