51
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
52
|
Sharma P, Kranz DM. Subtle changes at the variable domain interface of the T-cell receptor can strongly increase affinity. J Biol Chem 2017; 293:1820-1834. [PMID: 29229779 DOI: 10.1074/jbc.m117.814152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/03/2017] [Indexed: 11/06/2022] Open
Abstract
Most affinity-maturation campaigns for antibodies and T-cell receptors (TCRs) operate on the residues at the binding site, located within the loops known as complementarity-determining regions (CDRs). Accordingly, mutations in contact residues, or so-called "second shell" residues, that increase affinity are typically identified by directed evolution involving combinatorial libraries. To determine the impact of residues located at a distance from the binding site, here we used single-codon libraries of both CDR and non-CDR residues to generate a deep mutational scan of a human TCR against the cancer antigen MART-1·HLA-A2. Non-CDR residues included those at the interface of the TCR variable domains (Vα and Vβ) and surface-exposed framework residues. Mutational analyses showed that both Vα/Vβ interface and CDR residues were important in maintaining binding to MART-1·HLA-A2, probably due to either structural requirements for proper Vα/Vβ association or direct contact with the ligand. More surprisingly, many Vα/Vβ interface substitutions yielded improved binding to MART-1·HLA-A2. To further explore this finding, we constructed interface libraries and selected them for improved stability or affinity. Among the variants identified, one conservative substitution (F45βY) was most prevalent. Further analysis of F45βY showed that it enhanced thermostability and increased affinity by 60-fold. Thus, introducing a single hydroxyl group at the Vα/Vβ interface, at a significant distance from the TCR·peptide·MHC-binding site, remarkably affected ligand binding. The variant retained a high degree of specificity for MART-1·HLA-A2, indicating that our approach provides a general strategy for engineering improvements in either soluble or cell-based TCRs for therapeutic purposes.
Collapse
Affiliation(s)
- Preeti Sharma
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - David M Kranz
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
53
|
Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. Emerging Concepts in TCR Specificity: Rationalizing and (Maybe) Predicting Outcomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2203-2213. [PMID: 28923982 DOI: 10.4049/jimmunol.1700744] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
T cell specificity emerges from a myriad of processes, ranging from the biological pathways that control T cell signaling to the structural and physical mechanisms that influence how TCRs bind peptides and MHC proteins. Of these processes, the binding specificity of the TCR is a key component. However, TCR specificity is enigmatic: TCRs are at once specific but also cross-reactive. Although long appreciated, this duality continues to puzzle immunologists and has implications for the development of TCR-based therapeutics. In this review, we discuss TCR specificity, emphasizing results that have emerged from structural and physical studies of TCR binding. We show how the TCR specificity/cross-reactivity duality can be rationalized from structural and biophysical principles. There is excellent agreement between predictions from these principles and classic predictions about the scope of TCR cross-reactivity. We demonstrate how these same principles can also explain amino acid preferences in immunogenic epitopes and highlight opportunities for structural considerations in predictive immunology.
Collapse
Affiliation(s)
- Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Sarah Catherine B Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
54
|
Conserved Vδ1 Binding Geometry in a Setting of Locus-Disparate pHLA Recognition by δ/αβ T Cell Receptors (TCRs): Insight into Recognition of HIV Peptides by TCRs. J Virol 2017; 91:JVI.00725-17. [PMID: 28615212 DOI: 10.1128/jvi.00725-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
Given the limited set of T cell receptor (TCR) V genes that are used to create TCRs that are reactive to different ligands, such as major histocompatibility complex (MHC) class I, MHC class II, and MHC-like proteins (for example, MIC molecules and CD1 molecules), the Vδ1 segment can be rearranged with Dδ-Jδ-Cδ or Jα-Cα segments to form classical γδTCRs or uncommon αβTCRs using a Vδ1 segment (δ/αβTCR). Here we have determined two complex structures of the δ/αβTCRs (S19-2 and TU55) bound to different locus-disparate MHC class I molecules with HIV peptides (HLA-A*2402-Nef138-10 and HLA-B*3501-Pol448-9). The overall binding modes resemble those of classical αβTCRs but display a strong tilt binding geometry of the Vδ1 domain toward the HLA α1 helix, due to a conserved extensive interaction between the CDR1δ loop and the N-terminal region of the α1 helix (mainly in position 62). The aromatic amino acids of the CDR1δ loop exploit different conformations ("aromatic ladder" or "aromatic hairpin") to accommodate distinct MHC helical scaffolds. This tolerance helps to explain how a particular TCR V region can similarly dock onto multiple MHC molecules and thus may potentially explain the nature of TCR cross-reactivity. In addition, the length of the CDR3δ loop could affect the extent of tilt binding of the Vδ1 domain, and adaptively, the pairing Vβ domains adjust their mass centers to generate differential MHC contacts, hence probably ensuring TCR specificity for a certain peptide-MHC class I (pMHC-I). Our data have provided further structural insights into the TCR recognition of classical pMHC-I molecules, unifying cross-reactivity and specificity.IMPORTANCE The specificity of αβ T cell recognition is determined by the CDR loops of the αβTCR, and the general mode of binding of αβTCRs to pMHC has been established over the last decade. Due to the intrinsic genomic structure of the TCR α/δ chain locus, some Vδ segments can rearrange with the Cα segment, forming a hybrid VδCαVβCβ TCR, the δ/αβTCR. However, the basis for the molecular recognition of such TCRs of their ligands is elusive. Here an αβTCR using the Vδ1 segment, S19-2, was isolated from an HIV-infected patient in an HLA-A*24:02-restricted manner. We then solved the crystal structures of the S19-2 TCR and another δ/αβTCR, TU55, bound to their respective ligands, revealing a conserved Vδ1 binding feature. Further binding kinetics analysis revealed that the S19-2 and TU55 TCRs bind pHLA very tightly and in a long-lasting manner. Our results illustrate the mode of binding of a TCR using the Vδ1 segment to its ligand, virus-derived pHLA.
Collapse
|
55
|
How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci U S A 2017; 114:E4792-E4801. [PMID: 28572406 DOI: 10.1073/pnas.1700459114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T-cell receptor (TCR) allorecognition is often presumed to be relatively nonspecific, attributable to either a TCR focus on exposed major histocompatibility complex (MHC) polymorphisms or the degenerate recognition of allopeptides. However, paradoxically, alloreactivity can proceed with high peptide and MHC specificity. Although the underlying mechanisms remain unclear, the existence of highly specific alloreactive TCRs has led to their use as immunotherapeutics that can circumvent central tolerance and limit graft-versus-host disease. Here, we show how an alloreactive TCR achieves peptide and MHC specificity. The HCV1406 TCR was cloned from T cells that expanded when a hepatitis C virus (HCV)-infected HLA-A2- individual received an HLA-A2+ liver allograft. HCV1406 was subsequently shown to recognize the HCV nonstructural protein 3 (NS3):1406-1415 epitope with high specificity when presented by HLA-A2. We show that NS3/HLA-A2 recognition by the HCV1406 TCR is critically dependent on features unique to both the allo-MHC and the NS3 epitope. We also find cooperativity between structural mimicry and a crucial peptide "hot spot" and demonstrate its role, along with the MHC, in directing the specificity of allorecognition. Our results help explain the paradox of specificity in alloreactive TCRs and have implications for their use in immunotherapy and related efforts to manipulate TCR recognition, as well as alloreactivity in general.
Collapse
|
56
|
Preparation of peptide-MHC and T-cell receptor dextramers by biotinylated dextran doping. Biotechniques 2017; 62:123-130. [PMID: 28298179 DOI: 10.2144/000114525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/25/2017] [Indexed: 11/23/2022] Open
Abstract
Peptide-major histocompatibility complex (pMHC) multimers enable the detection, characterization, and isolation of antigen-specific T-cell subsets at the single-cell level via flow cytometry and fluorescence microscopy. These labeling reagents exploit a multivalent scaffold to increase the avidity of individually weak T-cell receptor (TCR)-pMHC interactions. Dextramers are an improvement over the original streptavidin-based tetramer technology because they are more multivalent, improving sensitivity for rare, low-avidity T cells, including self/tumor-reactive clones. However, commercial pMHC dextramers are expensive, and in-house production is very involved for a typical biology research laboratory. Here, we present a simple, inexpensive protocol for preparing pMHC dextramers by doping in biotinylated dextran during conventional tetramer preparation. We use these pMHC dextramers to identify patient-derived, tumor-reactive T cells. We apply the same dextran doping technique to prepare TCR dextramers and use these novel reagents to yield new insight into MHC I-mediated antigen presentation.
Collapse
|
57
|
Abstract
Chimeric antigen receptor (CAR) gene-engineered T cell therapy holds the potential to make a meaningful difference in the lives of patients with terminal cancers. For decades, cancer therapy was based on biophysical parameters, with surgical resection to debulk, followed by radiation and chemotherapy to target the rapidly growing tumor cells, while mostly sparing quiescent normal tissues. One breakthrough occurred with allogeneic bone-marrow transplant for patients with leukemia, which provided a sometimes curative therapy. The field of adoptive cell therapy for solid tumors was established with the discovery that tumor-infiltrating lymphocytes could be expanded and used to treat and even cure patients with metastatic melanoma. Tumor-specific T-cell receptors (TCRs) were identified and engineered into patient peripheral blood lymphocytes, which were also found to treat tumors. However, these were limited by patient HLA-restriction. Close behind came generation of CAR, combining the exquisite recognition of an antibody with the effector function of a T cell. The advent of CD19-targeted CARs for treating patients with multiple forms of advanced B-cell malignancies met with great success, with up to 95% response rates. Applying CAR treatment to solid tumors, however, has just begun, but already certain factors have been made clear: the tumor target is of utmost importance for clinicians to do no harm; and solid tumors respond differently to CAR therapy compared with hematologic ones. Here we review the state of clinical gene-engineered T cell immunotherapy, its successes, challenges, and future.
Collapse
Affiliation(s)
- Laura A Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
58
|
Baker BM, Evavold BD. MHC Bias by T Cell Receptors: Genetic Evidence for MHC and TCR Coevolution. Trends Immunol 2016; 38:2-4. [PMID: 27939452 DOI: 10.1016/j.it.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023]
Abstract
Major histocompatibility complex (MHC) restriction is a fundamental tenet of T cell biology, but the underlying mechanisms have remained controversial. The extent to which T cell receptors (TCRs) are biased towards MHC proteins in particular has been widely discussed. In a recent paper, Sharon et al. report direct evidence for coevolution between TCR and MHC genes, helping to explain how MHC compatibility and bias can be encoded within TCRs.
Collapse
Affiliation(s)
- Brian M Baker
- Department of Chemistry and Biochemistry, and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
59
|
Riley TP, Ayres CM, Hellman LM, Singh NK, Cosiano M, Cimons JM, Anderson MJ, Piepenbrink KH, Pierce BG, Weng Z, Baker BM. A generalized framework for computational design and mutational scanning of T-cell receptor binding interfaces. Protein Eng Des Sel 2016; 29:595-606. [PMID: 27624308 PMCID: PMC5181382 DOI: 10.1093/protein/gzw050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
T-cell receptors (TCRs) have emerged as a new class of therapeutics, most prominently for cancer where they are the key components of new cellular therapies as well as soluble biologics. Many studies have generated high affinity TCRs in order to enhance sensitivity. Recent outcomes, however, have suggested that fine manipulation of TCR binding, with an emphasis on specificity may be more valuable than large affinity increments. Structure-guided design is ideally suited for this role, and here we studied the generality of structure-guided design as applied to TCRs. We found that a previous approach, which successfully optimized the binding of a therapeutic TCR, had poor accuracy when applied to a broader set of TCR interfaces. We thus sought to develop a more general purpose TCR design framework. After assembling a large dataset of experimental data spanning multiple interfaces, we trained a new scoring function that accounted for unique features of each interface. Together with other improvements, such as explicit inclusion of molecular flexibility, this permitted the design new affinity-enhancing mutations in multiple TCRs, including those not used in training. Our approach also captured the impacts of mutations and substitutions in the peptide/MHC ligand, and recapitulated recent findings regarding TCR specificity, indicating utility in more general mutational scanning of TCR-pMHC interfaces.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Lance M Hellman
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Nishant K Singh
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Michael Cosiano
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Jennifer M Cimons
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Michael J Anderson
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Kurt H Piepenbrink
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
60
|
Connelley TK, Li X, MacHugh N, Colau D, Graham SP, van der Bruggen P, Taracha EL, Gill A, Morrison WI. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes. Immunology 2016; 149:172-85. [PMID: 27317384 PMCID: PMC5011678 DOI: 10.1111/imm.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.
Collapse
Affiliation(s)
- Timothy K. Connelley
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Xiaoying Li
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
- Present address: School of Life Sciences and TechnologyXinxiang Medical UniversityLaboratory Building Room 232XinxiangHenanCN 453003China
| | - Niall MacHugh
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Didier Colau
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Simon P. Graham
- The International Livestock Research InstituteNairobiKenya
- Present address: The Pirbright InstituteAsh RoadPirbrightGU24 0NFUK
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Evans L. Taracha
- The International Livestock Research InstituteNairobiKenya
- Present address: Institute of Primate ResearchPO Box 24481‐00502KarenKenya
| | - Andy Gill
- Division of NeurobiologyThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - William Ivan Morrison
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| |
Collapse
|
61
|
Nauerth M, Stemberger C, Mohr F, Weißbrich B, Schiemann M, Germeroth L, Busch DH. Flow cytometry-based TCR-ligandKoff-rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo. Cytometry A 2016; 89:816-25. [DOI: 10.1002/cyto.a.22933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/20/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Magdalena Nauerth
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | - Christian Stemberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
- Juno Therapeutics; Munich Germany
| | - Fabian Mohr
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | | | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
- DZIF - National Centre for Infection Research; Munich Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”; Institute for Advanced Study, Technische Universität München; Munich Germany
| |
Collapse
|
62
|
Morita D, Sugita M. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules. Immunology 2016; 149:139-45. [PMID: 27402593 DOI: 10.1111/imm.12646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023] Open
Abstract
Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
63
|
Toughiri R, Wu X, Ruiz D, Huang F, Crissman JW, Dickey M, Froning K, Conner EM, Cujec TP, Demarest SJ. Comparing domain interactions within antibody Fabs with kappa and lambda light chains. MAbs 2016; 8:1276-1285. [PMID: 27454112 PMCID: PMC5058631 DOI: 10.1080/19420862.2016.1214785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.
Collapse
Affiliation(s)
- Raheleh Toughiri
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Xiufeng Wu
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Diana Ruiz
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Flora Huang
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - John W Crissman
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Mark Dickey
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Karen Froning
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Elaine M Conner
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Thomas P Cujec
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Stephen J Demarest
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| |
Collapse
|
64
|
An Engineered Switch in T Cell Receptor Specificity Leads to an Unusual but Functional Binding Geometry. Structure 2016; 24:1142-1154. [PMID: 27238970 DOI: 10.1016/j.str.2016.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022]
Abstract
Utilizing a diverse binding site, T cell receptors (TCRs) specifically recognize a composite ligand comprised of a foreign peptide and a major histocompatibility complex protein (MHC). To help understand the determinants of TCR specificity, we studied a parental and engineered receptor whose peptide specificity had been switched via molecular evolution. Altered specificity was associated with a significant change in TCR-binding geometry, but this did not impact the ability of the TCR to signal in an antigen-specific manner. The determinants of binding and specificity were distributed among contact and non-contact residues in germline and hypervariable loops, and included disruption of key TCR-MHC interactions that bias αβ TCRs toward particular binding modes. Sequence-fitness landscapes identified additional mutations that further enhanced specificity. Our results demonstrate that TCR specificity arises from the distributed action of numerous sites throughout the interface, with significant implications for engineering therapeutic TCRs with novel and functional recognition properties.
Collapse
|
65
|
Cole DK, Bulek AM, Dolton G, Schauenberg AJ, Szomolay B, Rittase W, Trimby A, Jothikumar P, Fuller A, Skowera A, Rossjohn J, Zhu C, Miles JJ, Peakman M, Wooldridge L, Rizkallah PJ, Sewell AK. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest 2016; 126:2191-204. [PMID: 27183389 PMCID: PMC4887163 DOI: 10.1172/jci85679] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease.
Collapse
Affiliation(s)
- David K. Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Anna M. Bulek
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrea J. Schauenberg
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - William Rittase
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrew Trimby
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Prithiviraj Jothikumar
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna Fuller
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ania Skowera
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Jamie Rossjohn
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John J. Miles
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Peakman
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Pierre J. Rizkallah
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
66
|
Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity. Sci Rep 2016; 6:25070. [PMID: 27118724 PMCID: PMC4846865 DOI: 10.1038/srep25070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/11/2016] [Indexed: 12/27/2022] Open
Abstract
Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling.
Collapse
|
67
|
Bianchi V, Bulek A, Fuller A, Lloyd A, Attaf M, Rizkallah PJ, Dolton G, Sewell AK, Cole DK. A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen. J Biol Chem 2016; 291:8951-9. [PMID: 26917722 PMCID: PMC4861463 DOI: 10.1074/jbc.m115.707414] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/09/2016] [Indexed: 11/06/2022] Open
Abstract
Human CD8(+) cytotoxic T lymphocytes can mediate tumor regression in melanoma through the specific recognition of HLA-restricted peptides. Because of the relatively weak affinity of most anti-cancer T-cell receptors (TCRs), there is growing emphasis on immunizing melanoma patients with altered peptide ligands in order to induce strong anti-tumor immunity capable of breaking tolerance toward these self-antigens. However, previous studies have shown that these immunogenic designer peptides are not always effective. The melanocyte differentiation protein, glycoprotein 100 (gp100), encodes a naturally processed epitope that is an attractive target for melanoma immunotherapies, in particular peptide-based vaccines. Previous studies have shown that substitutions at peptide residue Glu(3) have a broad negative impact on polyclonal T-cell responses. Here, we describe the first atomic structure of a natural cognate TCR in complex with this gp100 epitope and highlight the relatively high affinity of the interaction. Alanine scan mutagenesis performed across the gp100(280-288) peptide showed that Glu(3) was critically important for TCR binding. Unexpectedly, structural analysis demonstrated that the Glu(3) → Ala substitution resulted in a molecular switch that was transmitted to adjacent residues, abrogating TCR binding and T-cell recognition. These findings help to clarify the mechanism of T-cell recognition of gp100 during melanoma responses and could direct the development of altered peptides for vaccination.
Collapse
Affiliation(s)
- Valentina Bianchi
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Anna Bulek
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Anna Fuller
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Angharad Lloyd
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Meriem Attaf
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Pierre J Rizkallah
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Garry Dolton
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Andrew K Sewell
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - David K Cole
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
68
|
Spear TT, Riley TP, Lyons GE, Callender GG, Roszkowski JJ, Wang Y, Simms PE, Scurti GM, Foley KC, Murray DC, Hellman LM, McMahan RH, Iwashima M, Garrett-Mayer E, Rosen HR, Baker BM, Nishimura MI. Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability. J Leukoc Biol 2016; 100:545-57. [PMID: 26921345 DOI: 10.1189/jlb.2a1215-561r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
A major obstacle hindering the development of effective immunity against viral infections, their associated disease, and certain cancers is their inherent genomic instability. Accumulation of mutations can alter processing and presentation of antigens recognized by antibodies and T cells that can lead to immune escape variants. Use of an agent that can intrinsically combat rapidly mutating viral or cancer-associated antigens would be quite advantageous in developing effective immunity against such disease. We propose that T cells harboring cross-reactive TCRs could serve as a therapeutic agent in these instances. With the use of hepatitis C virus, known for its genomic instability as a model for mutated antigen recognition, we demonstrate cross-reactivity against immunogenic and mutagenic nonstructural protein 3:1406-1415 and nonstructural protein 3:1073-1081 epitopes in PBL-derived, TCR-gene-modified T cells. These single TCR-engineered T cells can CD8-independently recognize naturally occurring and epidemiologically relevant mutant variants. TCR-peptide MHC modeling data allow us to rationalize how TCR structural properties accommodate recognition of certain mutated epitopes and how these substitutions impact the requirement of CD8 affinity enhancement for recognition. A better understanding of such TCRs' promiscuous behavior may allow for exploitation of these properties to develop novel, adoptive T cell-based therapies for viral infections and cancers exhibiting similar genomic instability.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA;
| | - Timothy P Riley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gretchen E Lyons
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Glenda G Callender
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yuan Wang
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel H McMahan
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hugo R Rosen
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA; Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
69
|
How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire. Proc Natl Acad Sci U S A 2016; 113:E1276-85. [PMID: 26884163 DOI: 10.1073/pnas.1522069113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How T-cell receptors (TCRs) can be intrinsically biased toward MHC proteins while simultaneously display the structural adaptability required to engage diverse ligands remains a controversial puzzle. We addressed this by examining αβ TCR sequences and structures for evidence of physicochemical compatibility with MHC proteins. We found that human TCRs are enriched in the capacity to engage a polymorphic, positively charged "hot-spot" region that is almost exclusive to the α1-helix of the common human class I MHC protein, HLA-A*0201 (HLA-A2). TCR binding necessitates hot-spot burial, yielding high energetic penalties that must be offset via complementary electrostatic interactions. Enrichment of negative charges in TCR binding loops, particularly the germ-line loops encoded by the TCR Vα and Vβ genes, provides this capacity and is correlated with restricted positioning of TCRs over HLA-A2. Notably, this enrichment is absent from antibody genes. The data suggest a built-in TCR compatibility with HLA-A2 that biases receptors toward, but does not compel, particular binding modes. Our findings provide an instructional example for how structurally pliant MHC biases can be encoded within TCRs.
Collapse
|
70
|
Leisegang M, Kammertoens T, Uckert W, Blankenstein T. Targeting human melanoma neoantigens by T cell receptor gene therapy. J Clin Invest 2016; 126:854-8. [PMID: 26808500 DOI: 10.1172/jci83465] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022] Open
Abstract
In successful cancer immunotherapy, T cell responses appear to be directed toward neoantigens created by somatic mutations; however, direct evidence that neoantigen-specific T cells cause regression of established cancer is lacking. Here, we generated T cells expressing a mutation-specific transgenic T cell receptor (TCR) to target different immunogenic mutations in cyclin-dependent kinase 4 (CDK4) that naturally occur in human melanoma. Two mutant CDK4 isoforms (R24C, R24L) similarly stimulated T cell responses in vitro and were analyzed as therapeutic targets for TCR gene therapy. In a syngeneic HLA-A2-transgenic mouse model of large established tumors, we found that both mutations differed dramatically as targets for TCR-modified T cells in vivo. While T cells expanded efficiently and produced IFN-γ in response to R24L, R24C failed to induce an effective antitumor response. Such differences in neoantigen quality might explain why cancer immunotherapy induces tumor regression in some individuals, while others do not respond, despite similar mutational load. We confirmed the validity of the in vivo model by showing that the melan-A-specific (MART-1-specific) TCR DMF5 induces rejection of tumors expressing analog, but not native, MART-1 epitopes. The described model allows identification of those neoantigens in human cancer that serve as suitable T cell targets and may help to predict clinical efficacy.
Collapse
|
71
|
Morita D, Yamamoto Y, Mizutani T, Ishikawa T, Suzuki J, Igarashi T, Mori N, Shiina T, Inoko H, Fujita H, Iwai K, Tanaka Y, Mikami B, Sugita M. Crystal structure of the N-myristoylated lipopeptide-bound MHC class I complex. Nat Commun 2016; 7:10356. [PMID: 26758274 PMCID: PMC4735555 DOI: 10.1038/ncomms10356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
The covalent conjugation of a 14-carbon saturated fatty acid (myristic acid) to the amino-terminal glycine residue is critical for some viral proteins to function. This protein lipidation modification, termed N-myristoylation, is targeted by host cytotoxic T lymphocytes (CTLs) that specifically recognize N-myristoylated short peptides; however, the molecular mechanisms underlying lipopeptide antigen (Ag) presentation remain elusive. Here we show that a primate major histocompatibility complex (MHC) class I-encoded protein is capable of binding N-myristoylated 5-mer peptides and presenting them to specific CTLs. A high-resolution X-ray crystallographic analysis of the MHC class I:lipopeptide complex reveals an Ag-binding groove that is elaborately constructed to bind N-myristoylated short peptides rather than prototypic 9-mer peptides. The identification of lipopeptide-specific, MHC class I-restricted CTLs indicates that the widely accepted concept of MHC class I-mediated presentation of long peptides to CTLs may need some modifications to incorporate a novel MHC class I function of lipopeptide Ag presentation. Lipid antigens have been added to the antigenic repertoire in recent years. Here, the authors have identified Mamu-B*098 as a lipopeptide antigen presenting molecule and using structural and biochemical analysis have shown that it has a different antigen binding pocket to previously analysed proteins.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukie Yamamoto
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tatsuhiko Igarashi
- Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hidetoshi Inoko
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
72
|
Abstract
T-cell receptor (TCR) binding to peptide/MHC determines specificity and initiates signaling in antigen-specific cellular immune responses. Structures of TCR-pMHC complexes have provided enormous insight to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, and led to the development of novel approaches for the design of vaccines and other therapeutics. As production, crystallization, and structure determination of TCR-pMHC complexes can be challenging, there is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR-pMHC modeling that takes advantage of structural features conserved in known complexes, such as the restricted TCR binding site and the generally conserved diagonal docking mode. The approach relies on the powerful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonetheless generates high-quality models that can be foundational for structure-based hypotheses regarding TCR recognition.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
73
|
Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat Immunol 2016; 17:87-94. [PMID: 26523866 PMCID: PMC4684756 DOI: 10.1038/ni.3310] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
The T cell antigen receptor (TCR)-peptide-major histocompatibility complex (MHC) interface is composed of conserved and diverse regions, yet the relative contribution of each in shaping recognition by T cells remains unclear. Here we isolated cross-reactive peptides with limited homology, which allowed us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR's cross-reactivity was rooted in highly similar recognition of an apical 'hot-spot' position in the peptide with tolerance of sequence variation at ancillary positions. Furthermore, we found a striking structural convergence onto a germline-mediated interaction between the TCR CDR1α region and the MHC α2 helix in twelve TCR-peptide-MHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hot spot, might place limits on peptide antigen cross-reactivity.
Collapse
|
74
|
Hesnard L, Legoux F, Gautreau L, Moyon M, Baron O, Devilder MC, Bonneville M, Saulquin X. Role of the MHC restriction during maturation of antigen-specific human T cells in the thymus. Eur J Immunol 2015; 46:560-9. [DOI: 10.1002/eji.201545951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/14/2015] [Accepted: 11/30/2015] [Indexed: 01/15/2023]
|
75
|
Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Front Immunol 2015; 6:582. [PMID: 26635796 PMCID: PMC4649060 DOI: 10.3389/fimmu.2015.00582] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Philippe O Gannon
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland ; TCMetrix Sàrl , Epalinges , Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| |
Collapse
|
76
|
Rödström KEJ, Regenthal P, Lindkvist-Petersson K. Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition. PLoS One 2015; 10:e0131988. [PMID: 26147596 PMCID: PMC4492778 DOI: 10.1371/journal.pone.0131988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
T cells are crucial players in cell-mediated immunity. The specificity of their receptor, the T cell receptor (TCR), is central for the immune system to distinguish foreign from host antigens. Superantigens are bacterial toxins capable of inducing a toxic immune response by cross-linking the TCR and the major histocompatibility complex (MHC) class II and circumventing the antigen specificity. Here, we present the structure of staphylococcal enterotoxin E (SEE) in complex with a human T cell receptor, as well as the unligated T cell receptor structure. There are clear structural changes in the TCR loops upon superantigen binding. In particular, the HV4 loop moves to circumvent steric clashes upon complex formation. In addition, a predicted ternary model of SEE in complex with both TCR and MHC class II displays intermolecular contacts between the TCR α-chain and the MHC, suggesting that the TCR α-chain is of importance for complex formation.
Collapse
Affiliation(s)
- Karin E. J. Rödström
- Department of Experimental Medical Science, Lund University, BMC C13, 22 184, Lund, Sweden
| | - Paulina Regenthal
- Department of Experimental Medical Science, Lund University, BMC C13, 22 184, Lund, Sweden
| | | |
Collapse
|
77
|
Unpredicted phenotypes of two mutants of the TcR DMF5. J Immunol Methods 2015; 425:37-44. [PMID: 26079729 DOI: 10.1016/j.jim.2015.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022]
Abstract
When a T-cell Receptor (TcR) interacts with its cognate peptide-MHC (pMHC), it triggers activation of a signaling cascade that results in the elicitation of a T cell effector function. Different models have been proposed to understand which parameters are needed to obtain an optimal activation of the signaling. It was speculated that improving the binding of a TcR could bring a stronger pMHC recognition, hence a stronger stimulation of the T cell. However, it was recently shown that an increase in affinity does not seem to be sufficient to guarantee improved functionality. A combination of factors is necessary to place the modified TcR in an optimal functional window. We here compared the binding parameters of two mutants of the melanoma antigen peptide MART-127-35 specific TcR DMF5. The first mutant was previously isolated by others in a screen for improved TcR. It was reported to have an increased CD8-independent activity. We confirmed these data and showed that the enhancement was neither due to change in half life (t1/2) nor Kd of the pMHC-TcR complex. The second mutant was designed based on a previous report claiming that a particular polymorphic residue in the TRAV12-2 chain was stabilizing the TcR. We created a DMF5 mutant for this residue and showed that, unexpectedly, this TcR had acquired a reduced overall activity although the TcR-pMHC complex was more stable when compared to the TcR wild type complex (increased t1/2). In addition, the soluble TcR form of this mutant bound target cells less efficiently. From this we concluded that kinetic parameters do not always predict the superior functionality of mutant TcRs.
Collapse
|
78
|
Soluble T-cell receptors produced in human cells for targeted delivery. PLoS One 2015; 10:e0119559. [PMID: 25875651 PMCID: PMC4395278 DOI: 10.1371/journal.pone.0119559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/14/2015] [Indexed: 12/15/2022] Open
Abstract
Recently, technology has become available to generate soluble T-cell receptors (sTCRs) that contain the antigen recognition part. In contrast to antibodies, sTCRs recognize intracellular in addition to extracellular epitopes, potentially increasing the number of applications as reagents for target detection and immunotherapy. Moreover, recent data show that they can be used for identification of their natural peptide ligands in disease. Here we describe a new and simplified expression method for sTCRs in human cells and show that these sTCRs can be used for antigen-specific labeling and elimination of human target cells. Four different TCRs were solubilized by expression of constructs encoding the TCR alpha (α) and beta (β) chains lacking the transmembrane and intracellular domains, linked by a ribosomal skipping 2A sequence that facilitates equimolar production of the chains. Cell supernatants containing sTCRs labeled target cells directly in a peptide (p)-human leukocyte antigen (HLA)-specific manner. We demonstrated that a MART-1p/HLA-A*02:01-specific sTCR fused to a fluorescent protein, or multimerized onto magnetic nanoparticles, could be internalized. Moreover, we showed that this sTCR and two sTCRs recognizing CD20p/HLA-A*02:01 could mediate selective elimination of target cells expressing the relevant pHLA complex when tetramerized to streptavidin-conjugated toxin, demonstrating the potential for specific delivery of cargo. This simple and efficient method can be utilized to generate a wide range of minimally modified sTCRs from the naturally occurring TCR repertoire for antigen-specific detection and targeting.
Collapse
|
79
|
Chen J, Guo XZ, Li HY, Wang D, Shao XD. Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell. Exp Biol Med (Maywood) 2015; 240:1310-8. [PMID: 25736302 DOI: 10.1177/1535370215571884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC-tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC-tumor RNA). The antitumor immune responses induced by DC-tumor hybrids and DC-tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC-tumor RNA triggered stronger autologous tumor cell lysis than DC-tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Hong-Yu Li
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Di Wang
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| | - Xiao-Dong Shao
- Department of Gastroenterology, Shenyang General Hospital of PLA, Shenyang City 110016, Liaoning, P.R. China
| |
Collapse
|
80
|
Madura F, Rizkallah PJ, Holland CJ, Fuller A, Bulek A, Godkin AJ, Schauenburg AJ, Cole DK, Sewell AK. Structural basis for ineffective T-cell responses to MHC anchor residue-improved "heteroclitic" peptides. Eur J Immunol 2015; 45:584-91. [PMID: 25471691 PMCID: PMC4357396 DOI: 10.1002/eji.201445114] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/03/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation.
Collapse
MESH Headings
- Alanine/chemistry
- Alanine/genetics
- Amino Acid Sequence
- Amino Acid Substitution
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Leucine/chemistry
- Leucine/genetics
- MART-1 Antigen/chemistry
- MART-1 Antigen/genetics
- MART-1 Antigen/immunology
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Florian Madura
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Bulek
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrea J Schauenburg
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| |
Collapse
|
81
|
Stone JD, Harris DT, Kranz DM. TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol 2015; 33:16-22. [PMID: 25618219 DOI: 10.1016/j.coi.2015.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/25/2014] [Accepted: 01/01/2015] [Indexed: 12/13/2022]
Abstract
Recent studies have shown that the range of affinities of T cell receptors (TCRs) against non-mutated cancer peptide/class I complexes are lower than TCR affinities for foreign antigens. Raising the affinity of TCRs for optimal activity of CD8 T cells, and for recruitment of CD4 T cell activity against a class I antigen, provides opportunities for more robust adoptive T cell therapies. However, TCRs with enhanced affinities also risk increased reactivity with structurally related self-peptides, and off-target toxicities. Careful selection of tumor peptide antigens, in silico proteome screens, and in vitro peptide specificity assays will be important in the development of the most effective, safe TCR-based adoptive therapies.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States
| | - Daniel T Harris
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States.
| |
Collapse
|
82
|
Miles JJ, McCluskey J, Rossjohn J, Gras S. Understanding the complexity and malleability of T-cell recognition. Immunol Cell Biol 2015; 93:433-41. [PMID: 25582337 DOI: 10.1038/icb.2014.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 12/15/2022]
Abstract
T cells are the master regulators of immune system function, continually walking the biological tightrope between adequate host defence and accidental host pathology. Tolerance is maintained or broken through an intricate structural interplay between the T-cell receptor (TCR) and major histocompatibility complex (MHC) molecule cradling peptide antigens (p). Recent advances in structural biology have shown that the TCR/pMHC interface is surprising precise and extraordinarily malleable. We have seen that seemingly minor changes in the TCR/pMHC interface can abrogate function, as well as substantial conformational changes before and after TCR docking. Our understanding of T-cell biology has also been altered with the knowledge that MHC molecules can bind not only peptides, but also an array of natural and synthetic compounds. Here, we review some examples of the precision and flexibility intrinsic to the TCR/p/MHCI axis.
Collapse
Affiliation(s)
- John J Miles
- 1] QIMR Berghofer Medical Research Institute and QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Brisbane, Queensland, Australia [2] School of Medicine, The University of Queensland, Brisbane, Queensland, Australia [3] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- 1] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK [2] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [3] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Stephanie Gras
- 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [2] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
83
|
Clemens EB, Doherty PC, La Gruta NL, Turner SJ. Fixed expression of single influenza virus-specific TCR chains demonstrates the capacity for TCR α- and β-chain diversity in the face of peptide-MHC class I specificity. THE JOURNAL OF IMMUNOLOGY 2014; 194:898-910. [PMID: 25535284 DOI: 10.4049/jimmunol.1401792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The characteristics of the TCR repertoire expressed by epitope-specific CD8(+) T cells can be an important determinant of the quality of immune protection against virus infection. Most studies of epitope-specific TCR repertoires focus solely on an analysis of TCR β-chains, rather than the combined TCRαβ heterodimers that confer specificity. Hence, the importance of complementary α- and β-chain pairing in determining TCR specificity and T cell function is not well understood. Our earlier study of influenza-specific TCR repertoires in a C57BL/6J mouse model described a structural basis for preferred TCRαβ pairing that determined exquisite specificity for the D(b)PA224 epitope from influenza A virus. We have now extended this analysis using retrogenic mice engineered to express single TCR α- or β-chains specific for the D(b)NP366 or D(b)PA224 epitopes derived from influenza A virus. We found that particular TCRαβ combinations were selected for recognition of these epitopes following infection, indicating that pairing of certain α- and β-chain sequences is key for determining TCR specificity. Furthermore, we demonstrated that some TCRαβ heterodimers were preferentially expanded from the naive repertoire in response to virus infection, suggesting that appropriate αβ pairing confers optimal T cell responsiveness to Ag.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
84
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
85
|
Reiser JB, Legoux F, Gras S, Trudel E, Chouquet A, Léger A, Le Gorrec M, Machillot P, Bonneville M, Saulquin X, Housset D. Analysis of relationships between peptide/MHC structural features and naive T cell frequency in humans. THE JOURNAL OF IMMUNOLOGY 2014; 193:5816-26. [PMID: 25392532 DOI: 10.4049/jimmunol.1303084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The structural rules governing peptide/MHC (pMHC) recognition by T cells remain unclear. To address this question, we performed a structural characterization of several HLA-A2/peptide complexes and assessed in parallel their antigenicity, by analyzing the frequency of the corresponding Ag-specific naive T cells in A2(+) and A2(-) individuals, as well as within CD4(+) and CD8(+) subsets. We were able to find a correlation between specific naive T cell frequency and peptide solvent accessibility and/or mobility for a subset of moderately prominent peptides. However, one single structural parameter of the pMHC complexes could not be identified to explain each peptide antigenicity. Enhanced pMHC antigenicity was associated with both highly biased TRAV usage, possibly reflecting favored interaction between particular pMHC complexes and germline TRAV loops, and peptide structural features allowing interactions with a broad range of permissive CDR3 loops. In this context of constrained TCR docking mode, an optimal peptide solvent exposed surface leading to an optimal complementarity with TCR interface may constitute one of the key features leading to high frequency of specific T cells. Altogether our results suggest that frequency of specific T cells depends on the fine-tuning of several parameters, the structural determinants governing TCR-pMHC interaction being just one of them.
Collapse
Affiliation(s)
- Jean-Baptiste Reiser
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - François Legoux
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Stéphanie Gras
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Eric Trudel
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Anne Chouquet
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Alexandra Léger
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Madalen Le Gorrec
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Paul Machillot
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Marc Bonneville
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Xavier Saulquin
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and Université de Nantes, F-44000 Nantes, France
| | - Dominique Housset
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France;
| |
Collapse
|
86
|
Smith SN, Wang Y, Baylon JL, Singh NK, Baker BM, Tajkhorshid E, Kranz DM. Changing the peptide specificity of a human T-cell receptor by directed evolution. Nat Commun 2014; 5:5223. [PMID: 25376839 PMCID: PMC4225554 DOI: 10.1038/ncomms6223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022] Open
Abstract
Binding of a T-cell receptor (TCR) to a peptide/major histocompatibility complex is the key interaction involved in antigen specificity of T cells. The recognition involves up to six complementarity determining regions (CDR) of the TCR. Efforts to examine the structural basis of these interactions and to exploit them in adoptive T-cell therapies has required the isolation of specific T-cell clones and their clonotypic TCRs. Here we describe a strategy using in vitro-directed evolution of a single TCR to change its peptide specificity, thereby avoiding the need to isolate T-cell clones. The human TCR A6, which recognizes the viral peptide Tax/HLA-A2, was converted to TCR variants that recognized the cancer peptide MART1/HLA-A2. Mutational studies and molecular dynamics simulations identified CDR residues that were predicted to be important in the specificity switch. Thus, in vitro engineering strategies alone can be used to discover TCRs with desired specificities.
Collapse
Affiliation(s)
- Sheena N. Smith
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| | - Yuhang Wang
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Javier L. Baylon
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Nishant K. Singh
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| |
Collapse
|
87
|
Rangarajan S, Mariuzza RA. T cell receptor bias for MHC: co-evolution or co-receptors? Cell Mol Life Sci 2014; 71:3059-68. [PMID: 24633202 PMCID: PMC11113676 DOI: 10.1007/s00018-014-1600-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
In contrast to antibodies, which recognize antigens in native form, αβ T cell receptors (TCRs) only recognize antigens as peptide fragments bound to MHC molecules, a feature known as MHC restriction. The mechanism by which MHC restriction is imposed on the TCR repertoire is an unsolved problem that has generated considerable debate. Two principal models have been advanced to explain TCR bias for MHC. According to the germline model, MHC restriction is intrinsic to TCR structure because TCR and MHC molecules have co-evolved to conserve germline-encoded TCR sequences with the ability to bind MHC, while eliminating TCR sequences lacking MHC reactivity. According to the selection model, MHC restriction is not intrinsic to TCR structure, but is imposed by the CD4 and CD8 co-receptors that promote signaling by delivering the Src tyrosine kinase Lck to TCR-MHC complexes through co-receptor binding to MHC during positive selection. Here, we review the evidence for and against each model and conclude that both contribute to determining TCR specificity, although their relative contributions remain to be defined. Thus, TCR bias for MHC reflects not only germline-encoded TCR-MHC interactions but also the requirement to form a ternary complex with the CD4 or CD8 co-receptor that is geometrically competent to deliver a maturation signal to double-positive thymocytes during T cell selection.
Collapse
Affiliation(s)
- Sneha Rangarajan
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850 USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850 USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
88
|
Malecek K, Grigoryan A, Zhong S, Gu WJ, Johnson LA, Rosenberg SA, Cardozo T, Krogsgaard M. Specific increase in potency via structure-based design of a TCR. THE JOURNAL OF IMMUNOLOGY 2014; 193:2587-99. [PMID: 25070852 DOI: 10.4049/jimmunol.1302344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adoptive immunotherapy with Ag-specific T lymphocytes is a powerful strategy for cancer treatment. However, most tumor Ags are nonreactive "self" proteins, which presents an immunotherapy design challenge. Recent studies have shown that tumor-specific TCRs can be transduced into normal PBLs, which persist after transfer in ∼30% of patients and effectively destroy tumor cells in vivo. Although encouraging, the limited clinical responses underscore the need for enrichment of T cells with desirable antitumor capabilities prior to patient transfer. In this study, we used structure-based design to predict point mutations of a TCR (DMF5) that enhance its binding affinity for an agonist tumor Ag-MHC (peptide-MHC [pMHC]), Mart-1 (27L)-HLA-A2, which elicits full T cell activation to trigger immune responses. We analyzed the effects of selected TCR point mutations on T cell activation potency and analyzed cross-reactivity with related Ags. Our results showed that the mutated TCRs had improved T cell activation potency while retaining a high degree of specificity. Such affinity-optimized TCRs have demonstrated to be very specific for Mart-1 (27L), the epitope for which they were structurally designed. Although of somewhat limited clinical relevance, these studies open the possibility for future structural-based studies that could potentially be used in adoptive immunotherapy to treat melanoma while avoiding adverse autoimmunity-derived effects.
Collapse
Affiliation(s)
- Karolina Malecek
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Program in Structural Biology, New York University School of Medicine, New York, NY 10016
| | - Arsen Grigoryan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Shi Zhong
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Wei Jun Gu
- Department of Chemistry, New York University, New York, NY 10012
| | - Laura A Johnson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Steven A Rosenberg
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Timothy Cardozo
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Michelle Krogsgaard
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Program in Structural Biology, New York University School of Medicine, New York, NY 10016; Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
89
|
Impact of sequence variation in a dominant HLA-A*02-restricted epitope in hepatitis C virus on priming and cross-reactivity of CD8+ T cells. J Virol 2014; 88:11080-90. [PMID: 25008925 DOI: 10.1128/jvi.01590-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED CD8+ T cells are an essential component of successful adaptive immune responses against hepatitis C virus (HCV). A major obstacle to vaccine design against HCV is its inherent viral sequence diversity. Here, we test the hypothesis that different sequence variants of an immunodominant CD8+ T cell epitope, all binding with high affinity to HLA class I, target different T cell receptor repertoires and thereby influence the quality of the CD8+ T cell response. The impacts of sequence differences in the HLA-A*02-restricted HCV NS31406-1415 epitope on in vitro priming of naive CD8+ T cells from seronegative donors and cross-reactivity of primed T cells with other epitope variants were characterized. Although the six epitope variants tested were all high-affinity binders to HLA-A*02:01, substantial differences in priming and cross-reactivity of CD8+ T cells were observed. The variant associated with the most reproducible priming and induction of T cells with broad cross-reactivity was a genotype 1b variant (KLSALGLNAV) that is more common in HCV isolates collected in Asia but is rare in sequences from Europe and North America. The superior immunogenicity and cross-reactivity of this relatively rare epitope variant were confirmed by using HCV-specific memory CD8+ T cells from people who inject drugs, who are frequently exposed to HCV. Collectively, the data suggest that sequence differences at the epitope level between HCV isolates substantially impact CD8+ T cell priming and the degree of cross-reactivity with other epitope variants. IMPORTANCE The results have important implications for vaccine design against highly variable pathogens and suggest that evidence-based selection of the vaccine antigen sequence may improve immunogenicity and T cell cross-reactivity. Cross-reactive CD8+ T cells are likely beneficial for immune control of transmitted viruses carrying epitope variants and for prevention of immune escape during acute infection. To this end, rare epitope variants and potentially even altered epitope sequences associated with priming of broadly cross-reactive T cell receptors should be considered for vaccine design and need further testing.
Collapse
|
90
|
Stadinski BD, Trenh P, Duke B, Huseby PG, Li G, Stern LJ, Huseby ES. Effect of CDR3 sequences and distal V gene residues in regulating TCR-MHC contacts and ligand specificity. THE JOURNAL OF IMMUNOLOGY 2014; 192:6071-82. [PMID: 24813203 DOI: 10.4049/jimmunol.1303209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mature T cell repertoire has the ability to orchestrate immunity to a wide range of potential pathogen challenges. This ability stems from thymic development producing individual T cell clonotypes that express TCRs with unique patterns of Ag reactivity. The Ag specificity of TCRs is created from the combinatorial pairing of one of a set of germline encoded TCR Vα and Vβ gene segments with randomly created CDR3 sequences. How the amalgamation of germline encoded and randomly created TCR sequences results in Ag receptors with unique patterns of ligand specificity is not fully understood. Using cellular, biophysical, and structural analyses, we show that CDR3α residues can modulate the geometry in which TCRs bind peptide-MHC (pMHC), governing whether and how germline encoded TCR Vα and Vβ residues interact with MHC. In addition, a CDR1α residue that is positioned distal to the TCR-pMHC binding interface is shown to contribute to the peptide specificity of T cells. These findings demonstrate that the specificity of individual T cell clonotypes arises not only from TCR residues that create direct contacts with the pMHC, but also from a collection of indirect effects that modulate how TCR residues are used to bind pMHC.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Peter Trenh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Brian Duke
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Guoqi Li
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
91
|
Hawse WF, De S, Greenwood AI, Nicholson LK, Zajicek J, Kovrigin EL, Kranz DM, Garcia KC, Baker BM. TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2885-91. [PMID: 24523505 PMCID: PMC3992338 DOI: 10.4049/jimmunol.1302953] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although conformational changes in TCRs and peptide Ags presented by MHC protein (pMHC) molecules often occur upon binding, their relationship to intrinsic flexibility and role in ligand selectivity are poorly understood. In this study, we used nuclear magnetic resonance to study TCR-pMHC binding, examining recognition of the QL9/H-2L(d) complex by the 2C TCR. Although the majority of the CDR loops of the 2C TCR rigidify upon binding, the CDR3β loop remains mobile within the TCR-pMHC interface. Remarkably, the region of the QL9 peptide that interfaces with CDR3β is also mobile in the free pMHC and in the TCR-pMHC complex. Determination of conformational exchange kinetics revealed that the motions of CDR3β and QL9 are closely matched. The matching of conformational exchange in the free proteins and its persistence in the complex enhances the thermodynamic and kinetic stability of the TCR-pMHC complex and provides a mechanism for facile binding. We thus propose that matching of structural fluctuations is a component of how TCRs scan among potential ligands for those that can bind with sufficient stability to enable T cell signaling.
Collapse
Affiliation(s)
- William F. Hawse
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46530, USA
| | - Soumya De
- Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alex I. Greenwood
- Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Linda K. Nicholson
- Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jaroslav Zajicek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46530, USA
| | | | - David M. Kranz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
| | - K. Christopher Garcia
- Departments of Molecular & Cellular Physiology and Structural Biology, Program in Immunology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46530, USA
| |
Collapse
|
92
|
Pierce BG, Hellman LM, Hossain M, Singh NK, Vander Kooi CW, Weng Z, Baker BM. Computational design of the affinity and specificity of a therapeutic T cell receptor. PLoS Comput Biol 2014; 10:e1003478. [PMID: 24550723 PMCID: PMC3923660 DOI: 10.1371/journal.pcbi.1003478] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/02/2014] [Indexed: 01/15/2023] Open
Abstract
T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities.
Collapse
Affiliation(s)
- Brian G. Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lance M. Hellman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Moushumi Hossain
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nishant K. Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
93
|
The basis for limited specificity and MHC restriction in a T cell receptor interface. Nat Commun 2013; 4:1948. [PMID: 23736024 PMCID: PMC3708045 DOI: 10.1038/ncomms2948] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/30/2013] [Indexed: 02/03/2023] Open
Abstract
αβ T cell receptors (TCRs) recognize peptides presented by major histocompatibility complex (MHC) proteins using multiple complementarity determining region (CDR) loops. TCRs display an array of poorly understood recognition properties, including specificity, cross-reactivity, and MHC restriction. Here we report a comprehensive thermodynamic deconstruction of the interaction between the A6 TCR and the Tax peptide presented by the class I MHC HLA-A*0201, uncovering the physical basis for the receptor's recognition properties. Broadly, our findings are in conflict with widely-held generalities regarding TCR recognition, such as the relative contributions of central and peripheral peptide residues and the roles of the hypervariable and germline CDR loops in engaging peptide and MHC. Instead we find that the recognition properties of the receptor emerge from the need to engage the composite peptide/MHC surface, with the receptor utilizing its CDR loops in a cooperative fashion such that specificity, cross-reactivity, and MHC restriction are inextricably linked.
Collapse
|
94
|
T cell avidity and tumor immunity: problems and solutions. CANCER MICROENVIRONMENT 2013; 7:1-9. [PMID: 24357332 DOI: 10.1007/s12307-013-0143-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022]
Abstract
A potent T cell response is an important component of durable anti-tumor immunity. The quality of the T cell response can, in-part, be measured by the avidity of the T cell for its tumor antigen-expressing target. While convention suggests that raising the avidity of the responding T cells may make for a more potent anti-tumor immune response, the threshold for effective tumor immunity remains unclear, as do some of the adverse effects of an inappropriately high avidity response. In this review, we discuss the relationship between T cell avidity and anti-tumor immunity, considering both experimental model systems as well as human clinical trials.
Collapse
|
95
|
Shen ZT, Nguyen TT, Daniels KA, Welsh RM, Stern LJ. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share peptide-MHC structural features recognized by cross-reactive T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:5139-52. [PMID: 24127554 DOI: 10.4049/jimmunol.1300852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Closely related peptide epitopes can be recognized by the same T cells and contribute to the immune response against pathogens encoding those epitopes, but sometimes cross-reactive epitopes share little homology. The degree of structural homology required for such disparate ligands to be recognized by cross-reactive TCRs remains unclear. In this study, we examined the mechanistic basis for cross-reactive T cell responses between epitopes from unrelated and pathogenic viruses, lymphocytic choriomeningitis virus (LCMV) and vaccinia virus. Our results show that the LCMV cross-reactive T cell response toward vaccinia virus is dominated by a shared asparagine residue, together with other shared structural elements conserved in the crystal structures of K(b)-VV-A11R and K(b)-LCMV-gp34. Based on analysis of the crystal structures and the specificity determinants for the cross-reactive T cell response, we were able to manipulate the degree of cross-reactivity of the T cell response, and to predict and generate a LCMV cross-reactive response toward a variant of a null OVA-derived peptide. These results indicate that protective heterologous immune responses can occur for disparate epitopes from unrelated viruses.
Collapse
Affiliation(s)
- Zu T Shen
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | | | | | | | | |
Collapse
|
96
|
Stone JD, Kranz DM. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 2013; 4:244. [PMID: 23970885 PMCID: PMC3748443 DOI: 10.3389/fimmu.2013.00244] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023] Open
Abstract
Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional αβ T cell receptor (TCR) against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR) consisting of a single-chain antibody as an Fv fragment linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the αβ TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher-affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher-affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois , Urbana, IL , USA
| | | |
Collapse
|
97
|
Smith SN, Sommermeyer D, Piepenbrink KH, Blevins SJ, Bernhard H, Uckert W, Baker BM, Kranz DM. Plasticity in the contribution of T cell receptor variable region residues to binding of peptide-HLA-A2 complexes. J Mol Biol 2013; 425:4496-507. [PMID: 23954306 DOI: 10.1016/j.jmb.2013.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
One hypothesis accounting for major histocompatibility complex (MHC) restriction by T cell receptors (TCRs) holds that there are several evolutionary conserved residues in TCR variable regions that contact MHC. While this "germline codon" hypothesis is supported by various lines of evidence, it has been difficult to test. The difficulty stems in part from the fact that TCRs exhibit low affinities for pep/MHC, thus limiting the range of binding energies that can be assigned to these key interactions using mutational analyses. To measure the magnitude of binding energies involved, here we used high-affinity TCRs engineered by mutagenesis of CDR3. The TCRs included a high-affinity, MART-1/HLA-A2-specific single-chain TCR and two other high-affinity TCRs that all contain the same Vα region and recognize the same MHC allele (HLA-A2), with different peptides and Vβ regions. Mutational analysis of residues in CDR1 and CDR2 of the three Vα2 regions showed the importance of the key germline codon residue Y51. However, two other proposed key residues showed significant differences among the TCRs in their relative contributions to binding. With the use of single-position, yeast-display libraries in two of the key residues, MART-1/HLA-A2 selections also revealed strong preferences for wild-type germline codon residues, but several alternative residues could also accommodate binding and, hence, MHC restriction. Thus, although a single residue (Y51) could account for a proportion of the energy associated with positive selection (i.e., MHC restriction), there is significant plasticity in requirements for particular side chains in CDR1 and CDR2 and in their relative binding contributions among different TCRs.
Collapse
Affiliation(s)
- Sheena N Smith
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Hawse WF, Gloor BE, Ayres CM, Kho K, Nuter E, Baker BM. Peptide modulation of class I major histocompatibility complex protein molecular flexibility and the implications for immune recognition. J Biol Chem 2013; 288:24372-81. [PMID: 23836912 DOI: 10.1074/jbc.m113.490664] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cells use the αβ T cell receptor (TCR) to recognize antigenic peptides presented by class I major histocompatibility complex proteins (pMHCs) on the surfaces of antigen-presenting cells. Flexibility in both TCRs and peptides plays an important role in antigen recognition and discrimination. Less clear is the role of flexibility in the MHC protein; although recent observations have indicated that mobility in the MHC can impact TCR recognition in a peptide-dependent fashion, the extent of this behavior is unknown. Here, using hydrogen/deuterium exchange, fluorescence anisotropy, and structural analyses, we show that the flexibility of the peptide binding groove of the class I MHC protein HLA-A*0201 varies significantly with different peptides. The variations extend throughout the binding groove, impacting regions contacted by TCRs as well as other activating and inhibitory receptors of the immune system. Our results are consistent with statistical mechanical models of protein structure and dynamics, in which the binding of different peptides alters the populations and exchange kinetics of substates in the MHC conformational ensemble. Altered MHC flexibility will influence receptor engagement, impacting conformational adaptations, entropic penalties associated with receptor recognition, and the populations of binding-competent states. Our results highlight a previously unrecognized aspect of the "altered self" mechanism of immune recognition and have implications for specificity, cross-reactivity, and antigenicity in cellular immunity.
Collapse
Affiliation(s)
- William F Hawse
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
99
|
Cole DK, Sami M, Scott DR, Rizkallah PJ, Borbulevych OY, Todorov PT, Moysey RK, Jakobsen BK, Boulter JM, Baker BM, Yi Li. Increased Peptide Contacts Govern High Affinity Binding of a Modified TCR Whilst Maintaining a Native pMHC Docking Mode. Front Immunol 2013; 4:168. [PMID: 23805144 PMCID: PMC3693486 DOI: 10.3389/fimmu.2013.00168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/12/2013] [Indexed: 12/15/2022] Open
Abstract
Natural T cell receptors (TCRs) generally bind to their cognate pMHC molecules with weak affinity and fast kinetics, limiting their use as therapeutic agents. Using phage display, we have engineered a high affinity version of the A6 wild-type TCR (A6wt), specific for the human leukocyte antigen (HLA-A∗0201) complexed with human T cell lymphotropic virus type 111–19 peptide (A2-Tax). Mutations in just 4 residues in the CDR3β loop region of the A6wt TCR were selected that improved binding to A2-Tax by nearly 1000-fold. Biophysical measurements of this mutant TCR (A6c134) demonstrated that the enhanced binding was derived through favorable enthalpy and a slower off-rate. The structure of the free A6c134 TCR and the A6c134/A2-Tax complex revealed a native binding mode, similar to the A6wt/A2-Tax complex. However, concordant with the more favorable binding enthalpy, the A6c134 TCR made increased contacts with the Tax peptide compared with the A6wt/A2-Tax complex, demonstrating a peptide-focused mechanism for the enhanced affinity that directly involved the mutated residues in the A6c134 TCR CDR3β loop. This peptide-focused enhanced TCR binding may represent an important approach for developing antigen specific high affinity TCR reagents for use in T cell based therapies.
Collapse
Affiliation(s)
- David K Cole
- Cardiff University School of Medicine, Heath Park , Cardiff , UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Tapryal S, Gaur V, Kaur KJ, Salunke DM. Structural evaluation of a mimicry-recognizing paratope: plasticity in antigen-antibody interactions manifests in molecular mimicry. THE JOURNAL OF IMMUNOLOGY 2013; 191:456-63. [PMID: 23733869 DOI: 10.4049/jimmunol.1203260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecular mimicry manifests antagonistically with respect to the specificity of immune recognition. However, it often occurs because different Ags share surface topologies in terms of shape or chemical nature. It also occurs when a flexible paratope accommodates dissimilar Ags by adjusting structural features according to the antigenic epitopes or differential positioning in the Ag combining site. Toward deciphering the structural basis of molecular mimicry, mAb 2D10 was isolated from a maturing immune response elicited against methyl α-d-mannopyranoside and also bound equivalently to a dodecapeptide. The physicochemical evidence of this carbohydrate-peptide mimicry in the case of mAb 2D10 had been established earlier. These studies had strongly suggested direct involvement of a flexible paratope in the observed mimicry. Surprisingly, comparison of the Ag-free structure of single-chain variable fragment 2D10 with those bound to sugar and peptide Ags revealed a conformationally invariant state of the Ab while binding to chemically and structurally disparate Ags. This equivalent binding of the two dissimilar Ags was through mutually independent interactions, demonstrating functional equivalence in the absence of structural correlation. Thus, existence of a multispecific, mature Ab in the secondary immune response was evident, as was the plasticity in the interactions while accommodating topologically diverse Ags. Although our data highlight the structural basis of receptor multispecificity, they also illustrate mechanisms adopted by the immune system to neutralize the escape mutants generated during pathogenic insult.
Collapse
Affiliation(s)
- Suman Tapryal
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | |
Collapse
|