51
|
Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat Rev Rheumatol 2018; 14:94-106. [PMID: 29323343 DOI: 10.1038/nrrheum.2017.205] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although clinical outcomes for patients with rheumatoid arthritis (RA) have greatly improved with the use of biologic and conventional DMARDs, approximately 40% of patients do not achieve primary clinical outcomes in randomized trials, and only a small proportion achieve lasting remission. Over the past decade, studies in murine models point to the critical role of the lymphatic system in the pathogenesis and therapy of inflammatory-erosive arthritis, presumably by the removal of catabolic factors, cytokines and inflammatory cells from the inflamed synovium. Murine studies demonstrate that lymphatic drainage increases at the onset of inflammatory-erosive arthritis but, as inflammation progresses to a more chronic phase, lymphatic clearance declines and both structural and cellular changes are observed in the draining lymph node. Specifically, chronic damage to the lymphatic vessel from persistent inflammation results in loss of lymphatic vessel contraction followed by lymph node collapse, reduced lymphatic drainage, and ultimately severe synovitis and joint erosion. Notably, clinical pilot studies in patients with RA report lymph node changes following treatment, and thus draining lymphatic vessels and nodes could represent a potential biomarker of arthritis activity and response to therapy. Most importantly, targeting lymphatics represents an innovative strategy for therapeutic intervention for RA.
Collapse
|
52
|
Regulatory T Cells Mediate Local Immunosuppression in Lymphedema. J Invest Dermatol 2017; 138:325-335. [PMID: 28942366 DOI: 10.1016/j.jid.2017.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 01/16/2023]
Abstract
Patients who suffer from lymphedema have impaired immunity and, as a result, are at an increased risk for infections. Furthermore, previous studies have shown that lymphadenectomy impairs acquisition of adaptive immune responses and antibody production in response to foreign antigens. Although it is clear that antigen presentation in lymph nodes plays a key role in adaptive immunity, the cellular mechanisms that regulate impaired immune responses in patients with lymphedema or following lymphatic injury remain unknown. We have previously found that axillary lymph node dissection, both clinically and in a mouse model, results in a marked increase in the number of regulatory T cells in the ipsilateral limb. In this study, we focus on the role of regulatory T cells in immunosuppression and show that regulatory T-cell proliferation in tissues distal to site of lymphatic injury contributes to impaired innate and adaptive immune responses. More importantly, using Foxp3-DTR transgenic mice, we show that depletion of regulatory T cells in the setting of lymphatic injury restores these critical immune-mediated responses. These findings provide additional evidence that immune responses following lymphatic injury play a key role in mediating the pathology of lymphedema.
Collapse
|
53
|
Francis DM, Thomas SN. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev 2017; 114:33-42. [PMID: 28455187 PMCID: PMC5581991 DOI: 10.1016/j.addr.2017.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Despite the advent of immune checkpoint blockade for effective treatment of advanced malignancies, only a minority of patients responds to therapy and significant immune-related adverse events remain to be minimized. Innovations in engineered drug delivery systems and controlled release strategies can improve drug accumulation at and retention within target cells and tissues in order to enhance therapeutic efficacy while simultaneously reducing drug exposure in off target tissues to minimize the potential for treatment-associated toxicities. This review will outline basic principles of the immune physiology of checkpoint signaling, the existing knowledge of dose-efficacy relationships in checkpoint inhibition, the influence of administration route on treatment efficacy, as well as the resulting checkpoint inhibitor antibody biodistribution profiles amongst target versus systemic tissues. It will also highlight recent successes in the application of drug delivery principles and technologies towards augmenting checkpoint blockade therapy in cancer. Delivery strategies that have been developed for other therapeutic and immunotherapy applications with as-of-yet underexplored potential in checkpoint inhibition therapy will also be discussed.
Collapse
Affiliation(s)
- David M Francis
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
54
|
Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv Drug Deliv Rev 2017; 114:43-59. [PMID: 28694027 PMCID: PMC6026542 DOI: 10.1016/j.addr.2017.07.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy.
Collapse
Affiliation(s)
- Katharina Maisel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Maria Stella Sasso
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lambert Potin
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
55
|
Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation's fire? Exp Biol Med (Maywood) 2017; 242:884-895. [PMID: 28346012 DOI: 10.1177/1535370217697385] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lymphangiogenesis is a recognized hallmark of inflammatory processes in tissues and organs as diverse as the skin, heart, bowel, and airways. In clinical and animal models wherein the signaling processes of lymphangiogenesis are manipulated, most studies demonstrate that an expanded lymphatic vasculature is necessary for the resolution of inflammation. The fundamental roles that lymphatics play in fluid clearance and immune cell trafficking from the periphery make these results seemingly obvious as a mechanism of alleviating locally inflamed environments: the lymphatics are simply providing a drain. Depending on the tissue site, lymphangiogenic mechanism, or induction timeframe, however, evidence shows that inflammation-associated lymphangiogenesis (IAL) may worsen the pathology. Recent studies have identified lymphatic endothelial cells themselves to be local regulators of immune cell activity and its consequential phenotypes - a more active role in inflammation regulation than previously thought. Indeed, results focusing on the immunocentric roles of peripheral lymphatic function have revealed that the basic drainage task of lymphatic vessels is a complex balance of locally processed and transported antigens as well as interstitial cytokine and immune cell signaling: an interplay that likely defines the function of IAL. This review will summarize the latest findings on how IAL impacts a series of disease states in various tissues in both preclinical models and clinical studies. This discussion will serve to highlight some emerging areas of lymphatic research in an attempt to answer the question relevant to an array of scientists and clinicians of whether IAL helps to fuel or extinguish inflammation. Impact statement Inflammatory progression is present in acute and chronic tissue pathologies throughout the body. Lymphatic vessels play physiological roles relevant to all medical fields as important regulators of fluid balance, immune cell trafficking, and immune identity. Lymphangiogenesis is often concurrent with inflammation and can potentially aide or worsen disease progression. How new lymphatic vessels impact inflammation and by which mechanism is an important consideration in current and future clinical therapies targeting inflammation and/or vasculogenesis. This review identifies, across a range of tissue-specific pathologies, the current understanding of inflammation-associated lymphangiogenesis in the progression or resolution of inflammation.
Collapse
Affiliation(s)
- Gabriella R Abouelkheir
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Bradley D Upchurch
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| | - Joseph M Rutkowski
- 1 Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX 77843, USA
| |
Collapse
|
56
|
Rohner NA, Thomas SN. Flexible Macromolecule versus Rigid Particle Retention in the Injected Skin and Accumulation in Draining Lymph Nodes Are Differentially Influenced by Hydrodynamic Size. ACS Biomater Sci Eng 2017; 3:153-159. [PMID: 29888321 PMCID: PMC5990040 DOI: 10.1021/acsbiomaterials.6b00438] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Therapeutic immunomodulation in the skin, its draining lymph nodes, or both tissues simultaneously using an intradermal administration scheme is desirable for a variety of therapeutic scenarios. To inform how drug carriers comprising engineered biomaterials can be leveraged to improve treatment efficacy by enhancing the selective accumulation or retention of payload within these target tissues, we analyzed the influence of particle versus macromolecule hydrodynamic size on profiles of retention in the site of dermal injection as well as the corresponding extent of accumulation in draining lymph nodes and systemic off-target tissues. Using a panel of fluorescently labeled tracers comprising inert polymers that are resistant to hydrolysis and proteolytic degradation that span a size range of widely used drug carrier systems, we find that macromolecule but not rigid particle retention within the skin is size-dependent, whereas the relative dermal enrichment compared to systemic tissues increases with size for both tracer types. Additionally, macromolecules 10 nm in hydrodynamic size and greater accumulate in draining lymph nodes more extensively and selectively than particles, suggesting that intra- versus extracellular availability of delivered payload within draining lymph nodes may be influenced by both the size and form of engineered drug carriers. Our results inform how biomaterial-based drug carriers can be designed to enhance the selective exposure of formulated drug in target tissues to improve the therapeutic efficacy as well as minimize off-target effects of locoregional immunotherapy.
Collapse
Affiliation(s)
- Nathan Andrew Rohner
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Susan Napier Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
57
|
Humbert M, Hugues S, Dubrot J. Shaping of Peripheral T Cell Responses by Lymphatic Endothelial Cells. Front Immunol 2017; 7:684. [PMID: 28127298 PMCID: PMC5226940 DOI: 10.3389/fimmu.2016.00684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/22/2016] [Indexed: 12/03/2022] Open
Abstract
Lymph node stromal cells (LNSCs) have newly been promoted to the rank of new modulators of T cell responses. The different non-hematopoietic cell subsets in lymph node (LN) were considered for years as a simple scaffold, forming routes and proper environment for antigen (Ag)-lymphocyte encountering. Deeper characterization of those cells has recently clearly shown their impact on both dendritic cell and T cell functions. In particular, lymphatic endothelial cells (LECs) control lymphocyte trafficking and homeostasis in LNs and limit adaptive immune responses. Therefore, the new role of LECs in shaping immune responses has drawn the attention of immunologists. Striking is the discovery that LECs, among other LNSCs, ectopically express a large range of peripheral tissue-restricted Ags (PTAs), and further present PTA-derived peptides through major histocompatibility class I molecules to induce self-reactive CD8+ T cell deletional tolerance. In addition, both steady-state and tumor-associated LECs were described to be capable of exogenous Ag cross-presentation. Whether LECs can similarly impact CD4+ T cell responses through major histocompatibility class II restricted Ag presentation is still a matter of debate. Here, we review and discuss our current knowledge on the contribution of Ag-presenting LECs as regulators of peripheral T cell responses in different immunological contexts, including autoimmunity and cancer.
Collapse
Affiliation(s)
- Marion Humbert
- Department of Pathology and Immunology, University of Geneva Medical School , Geneva , Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva Medical School , Geneva , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva Medical School , Geneva , Switzerland
| |
Collapse
|
58
|
Ji RC. Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses. Int J Mol Sci 2016; 18:ijms18010051. [PMID: 28036019 PMCID: PMC5297686 DOI: 10.3390/ijms18010051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
59
|
Huang JJ, Gardenier JC, Hespe GE, García Nores GD, Kataru RP, Ly CL, Martínez-Corral I, Ortega S, Mehrara BJ. Lymph Node Transplantation Decreases Swelling and Restores Immune Responses in a Transgenic Model of Lymphedema. PLoS One 2016; 11:e0168259. [PMID: 27942023 PMCID: PMC5152898 DOI: 10.1371/journal.pone.0168259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Secondary lymphedema is a common complication of cancer treatment and recent studies have demonstrated that lymph node transplantation (LNT) can decrease swelling, as well as the incidence of infections. However, although these results are exciting, the mechanisms by which LNT improves these pathologic findings of lymphedema remain unknown. Using a transgenic mouse model of lymphedema, this study sought to analyze the effect of LNT on lymphatic regeneration and T cell-mediated immune responses. METHODS We used a mouse model in which the expression of the human diphtheria toxin receptor is driven by the FLT4 promoter to enable the local ablation of the lymphatic system through subdermal hindlimb diphtheria toxin injections. Popliteal lymph node dissection was subsequently performed after a two-week recovery period, followed by either orthotopic LNT or sham surgery after an additional two weeks. Hindlimb swelling, lymphatic vessel regeneration, immune cell trafficking, and T cell-mediated immune responses were analyzed 10 weeks later. RESULTS LNT resulted in a marked decrease in hindlimb swelling, fibroadipose tissue deposition, and decreased accumulation of perilymphatic inflammatory cells, as compared to controls. In addition, LNT induced a marked lymphangiogenic response in both capillary and collecting lymphatic vessels. Interestingly, the resultant regenerated lymphatics were abnormal in appearance on lymphangiography, but LNT also led to a notable increase in dendritic cell trafficking from the periphery to the inguinal lymph nodes and improved adaptive immune responses. CONCLUSIONS LNT decreases pathological changes of lymphedema and was shown to potently induce lymphangiogenesis. Lymphatic vessels induced by LNT were abnormal in appearance, but were functional and able to transport antigen-presenting cells. Animals treated with LNT have an increased ability to mount T cell-mediated immune responses when sensitized to antigens in the affected hindlimb.
Collapse
Affiliation(s)
- Jung-Ju Huang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Plastic and Reconstructive Surgery, Division of Reconstructive Microsurgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jason C. Gardenier
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Geoffrey E. Hespe
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Gabriela D. García Nores
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Raghu P. Kataru
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Catherine L. Ly
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Inés Martínez-Corral
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechology Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Babak J. Mehrara
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
60
|
Abstract
The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
61
|
Lund AW, Wagner M, Fankhauser M, Steinskog ES, Broggi MA, Spranger S, Gajewski TF, Alitalo K, Eikesdal HP, Wiig H, Swartz MA. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest 2016; 126:3389-402. [PMID: 27525437 DOI: 10.1172/jci79434] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2016] [Indexed: 12/28/2022] Open
Abstract
Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment.
Collapse
|
62
|
Weinkopff T, Konradt C, Christian DA, Discher DE, Hunter CA, Scott P. Leishmania major Infection-Induced VEGF-A/VEGFR-2 Signaling Promotes Lymphangiogenesis That Controls Disease. THE JOURNAL OF IMMUNOLOGY 2016; 197:1823-31. [PMID: 27474074 DOI: 10.4049/jimmunol.1600717] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Cutaneous leishmaniasis causes a spectrum of diseases from self-healing to severe nonhealing lesions. Defining the factors contributing to lesion resolution may help in developing new therapies for those patients with chronic disease. We found that infection with Leishmania major increases the expression of vascular endothelial growth factor-A and vascular endothelial growth factor receptor (VEGFR)-2 and is associated with significant changes in the blood and lymphatic vasculature at the site of infection. Ab blockade of VEGFR-2 during infection led to a reduction in lymphatic endothelial cell proliferation and simultaneously increased lesion size without altering the parasite burden. These data show that L. major infection initiates enhanced vascular endothelial growth factor-A/VEGFR-2 signaling and suggest that VEGFR-2-dependent lymphangiogenesis is a mechanism that restricts tissue inflammation in leishmaniasis.
Collapse
Affiliation(s)
- Tiffany Weinkopff
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Dennis E Discher
- Biophysical Eng'g Labs, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
63
|
Abstract
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- Aleksanteri Aspelund
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Marius R Robciuc
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Sinem Karaman
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Taija Makinen
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Kari Alitalo
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.).
| |
Collapse
|
64
|
Ulvmar MH, Mäkinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res 2016; 111:310-21. [PMID: 27357637 PMCID: PMC4996263 DOI: 10.1093/cvr/cvw175] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Lymphatic vessels have historically been viewed as passive conduits for fluid and immune cells, but this perspective is increasingly being revised as new functions of lymphatic vessels are revealed. Emerging evidence shows that lymphatic endothelium takes an active part in immune regulation both by antigen presentation and expression of immunomodulatory genes. In addition, lymphatic vessels play an important role in uptake of dietary fat and clearance of cholesterol from peripheral tissues, and they have been implicated in obesity and arteriosclerosis. Lymphatic vessels within different organs and in different physiological and pathological processes show a remarkable plasticity and heterogeneity, reflecting their functional specialization. In addition, lymphatic endothelial cells (LECs) of different organs were recently shown to have alternative developmental origins, which may contribute to the development of the diverse lymphatic vessel and endothelial functions seen in the adult. Here, we discuss recent developments in the understanding of heterogeneity within the lymphatic system considering the organ-specific functional and molecular specialization of LECs and their developmental origin.
Collapse
Affiliation(s)
- Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| |
Collapse
|
65
|
Lammoglia GM, Van Zandt CE, Galvan DX, Orozco JL, Dellinger MT, Rutkowski JM. Hyperplasia, de novo lymphangiogenesis, and lymphatic regression in mice with tissue-specific, inducible overexpression of murine VEGF-D. Am J Physiol Heart Circ Physiol 2016; 311:H384-94. [PMID: 27342876 DOI: 10.1152/ajpheart.00208.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
Lymphatic vessels modulate tissue fluid balance and inflammation and provide a conduit for endocrine and lipid transport. The growth of new lymphatic vessels in the adult, lymphangiogenesis, is predominantly mediated through vascular endothelial growth factor receptor-3 (VEGFR-3) signaling. We took advantage of the unique binding of murine VEGF-D specifically to VEGFR-3 and generated mice capable of inducible, tissue-specific expression of murine VEGF-D under a tightly-controlled tetracycline response element (TRE) promoter to stimulate adult tissue lymphangiogenesis. With doxycycline-activated expression, TRE-VEGF-D mouse crossed to mice with tissue-specific promoters for the lung [Clara cell secretory protein-reverse tetracycline transactivator (rtTA)] developed pulmonary lymphangiectasia. In the kidney, (kidney-specific protein-rtTA × TRE-VEGF-D) mice exhibited rapid lymphatic hyperplasia on induction of VEGF-D expression. Crossed with adipocyte-specific adiponectin-rtTA mice [Adipo-VEGF-D (VD)], chronic VEGF-D overexpression was capable of inducing de novo lymphangiogenesis in white adipose tissue and a massive expansion of brown adipose tissue lymphatics. VEGF-D expression in white adipose tissue also increased macrophage infiltration and tissue fibrosis in the tissue. Expression did not, however, measurably affect peripheral fluid transport, the blood vasculature, or basal metabolic parameters. On removal of the doxycycline stimulus, VEGF-D expression returned to normal, and the expanded adipose tissue lymphatics regressed in Adipo-VD mice. The inducible TRE-VEGF-D mouse thus provides a novel murine platform to study the adult mechanisms and therapies of an array of disease- and tissue-specific models of lymphangiogenesis.
Collapse
Affiliation(s)
- Gabriela M Lammoglia
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M Health Science Center School of Medicine, College Station, Texas
| | - Carolynn E Van Zandt
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M Health Science Center School of Medicine, College Station, Texas
| | - Daniel X Galvan
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M Health Science Center School of Medicine, College Station, Texas
| | - Jose L Orozco
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Michael T Dellinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M Health Science Center School of Medicine, College Station, Texas; Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
66
|
Kimura T, Sugaya M, Oka T, Blauvelt A, Okochi H, Sato S. Lymphatic dysfunction attenuates tumor immunity through impaired antigen presentation. Oncotarget 2016; 6:18081-93. [PMID: 26098776 PMCID: PMC4627236 DOI: 10.18632/oncotarget.4018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
Abstract
Tumor growth and metastasis of cancer involve autonomous tumor cell growth and host-tumor interactions. While tumor-specific immunity has been intensively studied in vitro, dynamic roles of lymphatic transport on tumor immunity in vivo have not been fully elucidated. In this study, we examined tumor growth and anti-tumor immune responses using kCYC mice, which demonstrate severe lymphatic dysfunction. Primary tumor growth was augmented in kCYC mice (compared to wild-type mice) when B16 melanoma or EL-4 lymphoma cells were subcutaneously injected. Expression of inflammatory cytokines such as IFN-γ, TNF-α, and IL-2 as well as IL-10 expression in draining lymph nodes (LNs) was significantly reduced in kCYC mice after tumor inoculation. Moreover, decreased levels of tumor-associated antigens were detected in draining LNs in kCYC mice, together with impaired antigen presentation. CD8+ T cells in draining LNs derived from kCYC mice bearing B16 melanoma also showed significantly decreased cytotoxic activity in vitro. Finally, tumor suppression activity of CD8+ T cells derived from kCYC mice bearing B16 melanoma was reduced when adoptively transferred to naive wild-type mice. In summary, these findings suggest that lymphatic transport is essential in generating optimal tumor-specific immune responses mediated by CD8+ T cells.
Collapse
Affiliation(s)
- Takayuki Kimura
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomonori Oka
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
67
|
Duval F, Cruz-Vega DE, González-Gamboa I, González-Garza MT, Ponz F, Sánchez F, Alarcón-Galván G, Moreno-Cuevas JE. Detection of Autoantibodies to Vascular Endothelial Growth Factor Receptor-3 in Bile Duct Ligated Rats and Correlations with a Panel of Traditional Markers of Liver Diseases. DISEASE MARKERS 2016; 2016:6597970. [PMID: 27212785 PMCID: PMC4860220 DOI: 10.1155/2016/6597970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022]
Abstract
There is a need for new noninvasive biomarkers (NIBMs) able to assess cholestasis and fibrosis in chronic cholestatic liver diseases (CCLDs). Tumorigenesis can arise from CCLDs. Therefore, autoantibodies to tumor-associated antigens (TAA) may be early produced in response to abnormal self-antigen expression caused by cholestatic injury. Vascular endothelial growth factor receptor-3 (VEGFR-3) has TAA potential since it is involved in cholangiocytes and lymphatic vessels proliferations during CCLDs. This study aims to detect autoantibodies directed at VEGFR-3 during bile duct ligation- (BDL-) induced cholestatic injury in rat sera and investigate whether they could be associated with traditional markers of liver damage, cholestasis, and fibrosis. An ELISA was performed to detect anti-VEGFR-3 autoantibodies in sera of rats with different degree of liver injury and results were correlated with aminotransferases, total bilirubin, and the relative fibrotic area. Mean absorbances of anti-VEGFR-3 autoantibodies were significantly increased from week one to week five after BDL. The highest correlation was observed with total bilirubin (R (2) = 0.8450, P = 3.04e - 12). In conclusion, anti-VEGFR-3 autoantibodies are early produced during BDL-induced cholestatic injury, and they are closely related to cholestasis, suggesting the potential of anti-VEGFR-3 autoantibodies as NIBMs of cholestasis in CCLDs and justifying the need for further investigations in patients with CCLD.
Collapse
Affiliation(s)
- Florent Duval
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Delia Elva Cruz-Vega
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Ivonne González-Gamboa
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Campus de Montegancedo, Autovía M40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - María Teresa González-Garza
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Campus de Montegancedo, Autovía M40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Campus de Montegancedo, Autovía M40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Gabriela Alarcón-Galván
- Servicio de Anatomía Patológica y Citopatología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño, 64460 Monterrey, NL, Mexico
| | - Jorge E. Moreno-Cuevas
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| |
Collapse
|
68
|
Hespe GE, Kataru RP, Savetsky IL, García Nores GD, Torrisi JS, Nitti MD, Gardenier JC, Zhou J, Yu JZ, Jones LW, Mehrara BJ. Exercise training improves obesity-related lymphatic dysfunction. J Physiol 2016; 594:4267-82. [PMID: 26931178 PMCID: PMC4967732 DOI: 10.1113/jp271757] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 01/04/2023] Open
Abstract
Key points Obesity results in perilymphatic inflammation and lymphatic dysfunction. Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells. Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells.
Abstract Although previous studies have shown that obesity markedly decreases lymphatic function, the cellular mechanisms that regulate this response remain unknown. In addition, it is unclear whether the pathological effects of obesity on the lymphatic system are reversible with behavioural modifications. The purpose of this study, therefore, was to analyse lymphatic vascular changes in obese mice and to determine whether these pathological effects are reversible with aerobic exercise. We randomized obese mice to either aerobic exercise (treadmill running for 30 min per day, 5 days a week, for 6 weeks) or a sedentary group that was not exercised and analysed lymphatic function using a variety of outcomes. We found that sedentary obese mice had markedly decreased collecting lymphatic vessel pumping capacity, decreased lymphatic vessel density, decreased lymphatic migration of immune cells, increased lymphatic vessel leakiness and decreased expression of lymphatic specific markers compared with lean mice (all P < 0.01). Aerobic exercise did not cause weight loss but markedly improved lymphatic function compared with sedentary obese mice. Exercise had a significant anti‐inflammatory effect, resulting in decreased perilymphatic accumulation of inflammatory cells and inducible nitric oxide synthase expression. In addition, exercise normalized isolated lymphatic endothelial cell gene expression of lymphatic specific genes, including VEGFR‐3 and Prox1. Taken together, our findings suggest that obesity impairs lymphatic function via multiple mechanisms and that these pathological changes can be reversed, in part, with aerobic exercise, independent of weight loss. In addition, our study shows that obesity‐induced lymphatic endothelial cell gene expression changes are reversible with behavioural modifications. Obesity results in perilymphatic inflammation and lymphatic dysfunction. Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells. Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells.
Collapse
Affiliation(s)
- Geoffrey E Hespe
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raghu P Kataru
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ira L Savetsky
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela D García Nores
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy S Torrisi
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Nitti
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason C Gardenier
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie Zhou
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessie Z Yu
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lee W Jones
- The Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
69
|
Thomas SN, Rohner NA, Edwards EE. Implications of Lymphatic Transport to Lymph Nodes in Immunity and Immunotherapy. Annu Rev Biomed Eng 2016; 18:207-33. [PMID: 26928210 DOI: 10.1146/annurev-bioeng-101515-014413] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adaptive immune response consists of many highly regulated, multistep cascades that protect against infection while preserving the health of autologous tissue. The proper initiation, maintenance, and resolution of such responses require the precise coordination of molecular and cellular signaling over multiple time and length scales orchestrated by lymphatic transport. In order to investigate these functions and manipulate them for therapy, a comprehensive understanding of how lymphatics influence immune physiology is needed. This review presents the current mechanistic understanding of the role of the lymphatic vasculature in regulating biomolecule and cellular transport from the interstitium, peripheral tissue immune surveillance, the lymph node stroma and microvasculature, and circulating lymphocyte homing to lymph nodes. This review also discusses the ramifications of lymphatic transport in immunity as well as tolerance and concludes with examples of how lymphatic-mediated targeting of lymph nodes has been exploited for immunotherapy applications.
Collapse
Affiliation(s)
- Susan N Thomas
- George W. Woodruff School of Mechanical Engineering and.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332; .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Nathan A Rohner
- George W. Woodruff School of Mechanical Engineering and.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332;
| | - Erin E Edwards
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332; .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| |
Collapse
|
70
|
Rohner NA, Thomas SN. Melanoma growth effects on molecular clearance from tumors and biodistribution into systemic tissues versus draining lymph nodes. J Control Release 2015; 223:99-108. [PMID: 26721446 DOI: 10.1016/j.jconrel.2015.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Factors produced within or administered directly into the tumor interstitium, such as cytokines, chemokines, proteases, exosomes, microvesicles, or therapeutic agents, play important and multifaceted roles in the regulation of malignant disease progression. Their bioavailability to mediate signaling in distributed tissues outside of the tumor microenvironment, however, has not been well described. We therefore sought to elucidate the relative extent to which factors from within the primary tumor disseminate to systemic tissues as well as how these distribution profiles are influenced by both hydrodynamic size and the remodeling tumor vasculature. To accomplish this goal, we intratumorally co-infused into the dermal lesions of B16F10 melanoma-bearing mice at prescribed times post tumor implantation a near infrared fluorescent tracer panel ranging from 5 to 500nm in hydrodynamic diameter and compared the in vivo clearance and biodistribution profiles to that of naïve animals. Our results indicate that tumor growth reduces tumor-draining lymph node accumulation and alters the distribution of tumor-derived factors amongst systemic tissues. Despite these changes, previously developed principles of size-dependent lymph node drug targeting are conserved in melanomas, suggesting their applicability to sentinel lymph node-targeted drug delivery. Tumor progression was also found to result in a significant increase in the hydrodynamic size of factors originating from the tumor that accumulated within systemic tissues. This suggests that tumor vascular remodeling may redirect the organism-wide signaling activity of tumor-derived factors and may negatively contribute to disease progression by altering the bioavailability of molecules important to the regulation of pre-metastatic niche formation and the induction of anti-tumor immunity.
Collapse
Affiliation(s)
- Nathan Andrew Rohner
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Susan Napier Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States.
| |
Collapse
|
71
|
Abstract
The lymphatic system is a key component of tissue fluid homeostasis. In contrast to the closed and high-pressure blood vascular system, the lymphatic vascular system transports lymph in an open and low-pressure network. A prerequisite player in the transport of immune cells and cholesterol metabolism, it has been understudied until recently. Whereas defects in lymph circulation are mostly associated with pathologies such as congenital or acquired lymphedema, emerging significant developments are unraveling the role of lymphatic vessels in other pathological settings. In the last decade, discoveries of underlying genes responsible for developmental and postnatal lymphatic growth, combined with state-of-the-art lymphatic function imaging and quantification techniques, have matched the growing interest in understanding the role of the lymphatic system in atherosclerosis. With a historical perspective, this review highlights the current knowledge regarding interaction between the lymphatic vascular tree and atherosclerosis, with an emphasis on the physiological mechanisms of this multifaceted system throughout disease onset and progression. The blood and lymphatic vascular systems are parallel but interdependent networks. The lymphatic system governs the transport of superfluous interstitial fluids from peripheral tissues to the blood circulation, maintaining fluid balance throughout the body. Defects in lymphatic function have been broadly associated with pathologies such as congenital or acquired lymphedema. Although longstanding observations suggested that the lymphatic vasculature could be central in the development of chronic inflammatory diseases, recent publications specifically point out its potential implication in atherosclerosis. In this review, we highlight the current knowledge unraveling the interaction between the lymphatic network and atherosclerosis, with an emphasis on the physiological mechanisms of this intricate system.
Collapse
|
72
|
Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol 2015; 36:569-577. [PMID: 26431936 PMCID: PMC4593064 DOI: 10.1016/j.it.2015.08.006] [Citation(s) in RCA: 462] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022]
Abstract
Whereas the study of the interactions between the immune system and the central nervous system (CNS) has often focused on pathological conditions, the importance of neuroimmune communication in CNS homeostasis and function has become clear over that last two decades. Here we discuss the progression of our understanding of the interaction between the peripheral immune system and the CNS. We examine the notion of immune privilege of the CNS in light of both earlier findings and recent studies revealing a functional meningeal lymphatic system that drains cerebrospinal fluid (CSF) to the deep cervical lymph nodes, and consider the implications of a revised perspective on the immune privilege of the CNS on the etiology and pathology of different neurological disorders.
Collapse
Affiliation(s)
- Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
73
|
Hirosue S, Dubrot J. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications. Front Immunol 2015; 6:446. [PMID: 26441957 PMCID: PMC4561840 DOI: 10.3389/fimmu.2015.00446] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8+ T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4+ T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédéral de Lausanne , Lausanne , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, Université de Genève , Geneva , Switzerland
| |
Collapse
|
74
|
Savetsky IL, Albano NJ, Cuzzone DA, Gardenier JC, Torrisi JS, García Nores GD, Nitti MD, Hespe GE, Nelson TS, Kataru RP, Dixon JB, Mehrara BJ. Lymphatic Function Regulates Contact Hypersensitivity Dermatitis in Obesity. J Invest Dermatol 2015; 135:2742-2752. [PMID: 26176761 PMCID: PMC4641050 DOI: 10.1038/jid.2015.283] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ira L Savetsky
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicholas J Albano
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel A Cuzzone
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason C Gardenier
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeremy S Torrisi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gabriela D García Nores
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew D Nitti
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Geoffrey E Hespe
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tyler S Nelson
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
75
|
Rohner NA, McClain J, Tuell SL, Warner A, Smith B, Yun Y, Mohan A, Sushnitha M, Thomas SN. Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB J 2015; 29:4512-22. [PMID: 26178165 DOI: 10.1096/fj.15-274761] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Tissue remodeling is a characteristic of many solid tumor malignancies including melanoma. By virtue of tumor lymphatic transport, remodeling pathways active within the local tumor microenvironment have the potential to be operational within lymph nodes (LNs) draining the tumor interstitium. Here, we show that lymphatic drainage from murine B16 melanomas in syngeneic, immune-competent C57Bl/6 mice is associated with LN enlargement as well as nonuniform increases in bulk tissue elasticity and viscoelasticity, as measured by the response of whole LNs to compression. These remodeling responses, which quickly manifest in tumor-draining lymph nodes (TDLNs) after tumor inoculation and before apparent metastasis, were accompanied by changes in matrix composition, including up to 3-fold increases in the abundance of soluble collagen and hyaluronic acid. Intranodal pressures were also significantly increased in TDLNs (+1 cmH2O) relative to both non-tumor-draining LNs (-1 cmH2O) and LNs from naive animals (-1 to 2 cmH2O). These data suggest that the reorganization of matrix structure, composition, and fluid microenvironment within LNs associated with tumor lymphatic drainage parallels remodeling seen in primary malignancies and has the potential to regulate the adhesion, proliferation, and signaling function of LN-resident cells involved in directing melanoma disease progression.
Collapse
Affiliation(s)
- Nathan Andrew Rohner
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jacob McClain
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Sara Lydia Tuell
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Alex Warner
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Blair Smith
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Youngho Yun
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Abhinav Mohan
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Manuela Sushnitha
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Susan Napier Thomas
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
76
|
The role of pre-existing cross-reactive antibodies in determining the efficacy of vaccination in humans: study protocol for a randomized controlled trial. Trials 2015; 16:147. [PMID: 25872531 PMCID: PMC4404017 DOI: 10.1186/s13063-015-0651-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Epidemic viral diseases have become more prevalent.. Among the various strategies to prevent such epidemics, vaccination is the most cost-effective. However, populations that are immunized are typically already exposed to multiple previous vaccinations or natural infections. Studies from this and other laboratories have revealed that pre-existing dengue antibodies can either inhibit or enhance subsequent dengue infection depending on the pre-existing antibody levels. While cross-reactive antibody is potentially pathogenic in dengue, how it impacts immune response to vaccination is unclear. Aggregated at the site of vaccination and the respective draining lymph nodes are antigen-presenting and immune regulatory cells that express Fc receptors and play pivotal roles in determining the magnitude and polarity of the immune response. Vaccine uptake by these antigen-presenting cells may thus be either inhibited or enhanced when vaccines are opsonized with cross-reactive antibodies. DESIGN In view of the limited knowledge on how cross-reactive antibodies affect vaccination outcome, we propose a study that exploits the known cross reactivity between Japanese encephalitis (JE) virus antibody and yellow fever (YF) vaccine. We hypothesize that cross-reactive antibodies impact antibody response to YF at the point vaccination in a concentration-dependent manner by altering both vaccine uptake and the innate immune response by antigen presenting cells. We will structure an open-label clinical trial on sequential vaccination with JE and YF vaccines, with different time intervals between vaccinations. This would test immune response to YF vaccination in subjects with different titer of cross-reactive JE vaccine-derived antibodies. The clinical materials obtained in the trial will drive basic laboratory investigations directed at elucidating how heterologous antibody affect vaccination at the molecular level. YF neutralizing antibody titer will be measured using plaque reduction neutralization test against the vaccine strain YF17D. Innate immune response will be characterized genetically using either microarray or digital PCR (or both). The innate immune response will also be characterized at the protein and metabolite level using Luminex bead technology and lipidomic/metabolomic approaches. DISCUSSION This proposed study represents one of the first to examine the role of cross-reactive antibodies in modulating immune responses to vaccines, the findings of which may re-shape vaccination strategy. TRIAL REGISTRATION Clinical Trials.gov registration number: NCT01943305 (3 September 2013).
Collapse
|
77
|
Abstract
Lymphatic vessels in the tumor microenvironment are known to foster tumor metastasis in many cancers, and they can undergo activation, hyperplasia, and lymphangiogenesis in the tumor microenvironment and in the tumor-draining lymph node. The mechanism underlying this correlation was originally considered as lymphatic vessels providing a physical route for tumor cell dissemination, but recent studies have highlighted new roles of the lymphatic endothelium in regulating host immunity. These include indirectly suppressing T-cell function by secreting immunosuppressive factors and inhibiting dendritic cell (DC) maturation, as well as directly driving T-cell tolerance by antigen presentation in the presence of inhibitory ligands. Furthermore, lymphatic endothelium scavenges and regulates transendothelial transport actively, controlling the sustained delivery of lymph-borne antigens from chronically inflamed tissues to draining lymph nodes where immature DCs, in the absence of danger signals, along with lymph node stromal cells present these antigens to T cells for maintenance of peripheral tolerance to self-antigens, a mechanism that may be hijacked by some tumors. This Masters of Immunology primer aims to present an overview of research in this area and highlight emerging evidence that suggests lymphatic vessels, and lymphangiogenesis, play important immunomodulatory roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Melody A Swartz
- Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; and Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| |
Collapse
|
78
|
Lymph formation, composition and circulation: a proteomics perspective. Int Immunol 2015; 27:219-27. [DOI: 10.1093/intimm/dxv012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/16/2015] [Indexed: 12/25/2022] Open
|
79
|
Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr Opin Chem Eng 2015; 7:65-74. [PMID: 25745594 DOI: 10.1016/j.coche.2014.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Despite drug formulation improving circulation times and targeting, efficacy is stymied by inadequate penetration into and retention within target tissues. This review highlights the barriers restricting delivery to the connective tissue interstitium, lymphatics, and lymph nodes as well as advances in engineering drug carriers to overcome these delivery challenges. Three-dimensional tissue physiology is discussed in the context of providing material design principles for delivery to these tissues; in particular the influence of interstitial and lymphatic flows as well as differential permeabilities of the blood and lymphatic capillaries. Key examples of materials with different characteristics developed to overcome these transport barriers are discussed as well as potential areas for further development.
Collapse
Affiliation(s)
- Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA ; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Alex Schudel
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA ; School of Materials Science and Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
80
|
Munn LL. Mechanobiology of lymphatic contractions. Semin Cell Dev Biol 2015; 38:67-74. [PMID: 25636584 DOI: 10.1016/j.semcdb.2015.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/30/2023]
Abstract
The lymphatic system is responsible for controlling tissue fluid pressure by facilitating flow of lymph (i.e. the plasma and cells that enter the lymphatic system). Because lymph contains cells of the immune system, its transport is not only important for fluid homeostasis, but also immune function. Lymph drainage can occur via passive flow or active pumping, and much research has identified the key biochemical and mechanical factors that affect output. Although many studies and reviews have addressed how tissue properties and fluid mechanics (i.e. pressure gradients) affect lymph transport [1-3] there is less known about lymphatic mechanobiology. As opposed to passive mechanical properties, mechanobiology describes the active coupling of mechanical signals and biochemical pathways. Lymphatic vasomotion is the result of a fascinating system affected by mechanical forces exerted by the flowing lymph, including pressure-induced vessel stretch and flow-induced shear stresses. These forces can trigger or modulate biochemical pathways important for controlling the lymphatic contractions. Here, I review the current understanding of lymphatic vessel function, focusing on vessel mechanobiology, and summarize the prospects for a comprehensive understanding that integrates the mechanical and biomechanical control mechanisms in the lymphatic system.
Collapse
Affiliation(s)
- Lance L Munn
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
81
|
Liao S, von der Weid PY. Lymphatic system: an active pathway for immune protection. Semin Cell Dev Biol 2014; 38:83-9. [PMID: 25534659 DOI: 10.1016/j.semcdb.2014.11.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/19/2022]
Abstract
Lymphatic vessels are well known to participate in the immune response by providing the structural and functional support for the delivery of antigens and antigen presenting cells to draining lymph nodes. Recent advances have improved our understanding of how the lymphatic system works and how it participates to the development of immune responses. New findings suggest that the lymphatic system may control the ultimate immune response through a number of ways which may include guiding antigen/dendritic cells (DC) entry into initial lymphatics at the periphery; promoting antigen/DC trafficking through afferent lymphatic vessels by actively facilitating lymph and cell movement; enabling antigen presentation in lymph nodes via a network of lymphatic endothelial cells and lymph node stroma cell and finally by direct lymphocytes exit from lymph nodes. The same mechanisms are likely also important to maintain peripheral tolerance. In this review we will discuss how the morphology and gene expression profile of the lymphatic endothelial cells in lymphatic vessels and lymph nodes provides a highly efficient pathway to initiate immune responses. The fundamental understanding of how lymphatic system participates in immune regulation will guide the research on lymphatic function in various diseases.
Collapse
Affiliation(s)
- Shan Liao
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada; Department of Microbiology, Immunology and Infectious diseases, Cumming School of Medicine, Calgary, Alberta, Canada.
| | - P Y von der Weid
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
82
|
Berggreen E, Wiig H. Lymphatic function and responses in periodontal disease. Exp Cell Res 2014; 325:130-7. [DOI: 10.1016/j.yexcr.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 12/17/2022]
|
83
|
Dubrot J, Duraes FV, Potin L, Capotosti F, Brighouse D, Suter T, LeibundGut-Landmann S, Garbi N, Reith W, Swartz MA, Hugues S. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4⁺ T cell tolerance. ACTA ACUST UNITED AC 2014; 211:1153-66. [PMID: 24842370 PMCID: PMC4042642 DOI: 10.1084/jem.20132000] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
LNSCs present peptide–MHCII complexes acquired from DCs to CD4+ T cells and induce T cell dysfunction by preventing their proliferation and survival. Dendritic cells (DCs), and more recently lymph node stromal cells (LNSCs), have been described to tolerize self-reactive CD8+ T cells in LNs. Although LNSCs express MHCII, it is unknown whether they can also impact CD4+ T cell functions. We show that the promoter IV (pIV) of class II transactivator (CIITA), the master regulator of MHCII expression, controls endogenous MHCII expression by LNSCs. Unexpectedly, LNSCs also acquire peptide–MHCII complexes from DCs and induce CD4+ T cell dysfunction by presenting transferred complexes to naive CD4+ T cells and preventing their proliferation and survival. Our data reveals a novel, alternative mechanism where LN-resident stromal cells tolerize CD4+ T cells through the presentation of self-antigens via transferred peptide–MHCII complexes of DC origin.
Collapse
Affiliation(s)
- Juan Dubrot
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Fernanda V Duraes
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Lambert Potin
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesca Capotosti
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Tobias Suter
- Department of Neurology, Section of Neuroimmunology and MS Research, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Natalio Garbi
- Institute of Molecular Medicine and Institute of Experimental Immunology, University of Bonn, 53105 Bonn, Germany Institute of Molecular Medicine and Institute of Experimental Immunology, University of Bonn, 53105 Bonn, Germany
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Melody A Swartz
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland ISREC, SV, EPFL, 1015 Lausanne, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| |
Collapse
|
84
|
Hirosue S, Vokali E, Raghavan VR, Rincon-Restrepo M, Lund AW, Corthésy-Henrioud P, Capotosti F, Halin Winter C, Hugues S, Swartz MA. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5002-11. [PMID: 24795456 DOI: 10.4049/jimmunol.1302492] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Until recently, the known roles of lymphatic endothelial cells (LECs) in immune modulation were limited to directing immune cell trafficking and passively transporting peripheral Ags to lymph nodes. Recent studies demonstrated that LECs can directly suppress dendritic cell maturation and present peripheral tissue and tumor Ags for autoreactive T cell deletion. We asked whether LECs play a constitutive role in T cell deletion under homeostatic conditions. In this study, we demonstrate that murine LECs under noninflamed conditions actively scavenge and cross-present foreign exogenous Ags to cognate CD8(+) T cells. This cross-presentation was sensitive to inhibitors of lysosomal acidification and endoplasmic reticulum-golgi transport and was TAP1 dependent. Furthermore, LECs upregulated MHC class I and the PD-1 ligand PD-L1, but not the costimulatory molecules CD40, CD80, or CD86, upon Ag-specific interactions with CD8(+) T cells. Finally, Ag-specific CD8(+) T cells that were activated by LECs underwent proliferation, with early-generation apoptosis and dysfunctionally activated phenotypes that could not be reversed by exogenous IL-2. These findings help to establish LECs as APCs that are capable of scavenging and cross-presenting exogenous Ags, in turn causing dysfunctional activation of CD8(+) T cells under homeostatic conditions. Thus, we suggest that steady-state lymphatic drainage may contribute to peripheral tolerance by delivering self-Ags to lymph node-resident leukocytes, as well as by providing constant exposure of draining peripheral Ags to LECs, which maintain tolerogenic cross-presentation of such Ags.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Efthymia Vokali
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vidya R Raghavan
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marcela Rincon-Restrepo
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amanda W Lund
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Francesca Capotosti
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cornelia Halin Winter
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zürich (ETHZ), Zürich, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire, Université de Genève, Geneva, Switzerland; and
| | - Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
85
|
Vuorio T, Nurmi H, Moulton K, Kurkipuro J, Robciuc MR, Ohman M, Heinonen SE, Samaranayake H, Heikura T, Alitalo K, Ylä-Herttuala S. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34:1162-70. [PMID: 24723556 DOI: 10.1161/atvbaha.114.302528] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Lymphatic vessels collect extravasated fluid and proteins from tissues to blood circulation as well as play an essential role in lipid metabolism by taking up intestinal chylomicrons. Previous studies have shown that impairment of lymphatic vessel function causes lymphedema and fat accumulation, but clear connections between arterial pathologies and lymphatic vessels have not been described. APPROACH AND RESULTS Two transgenic mouse strains with lymphatic insufficiency (soluble vascular endothelial growth factor 3 [sVEGFR3] and Chy) were crossed with atherosclerotic mice deficient of low-density lipoprotein receptor and apolipoprotein B48 (LDLR(-/-)/ApoB(100/100)) to study the effects of insufficient lymphatic vessel transport on lipoprotein metabolism and atherosclerosis. Both sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had higher plasma cholesterol levels compared with LDLR(-/-)/ApoB(100/100) control mice during both normal chow diet (16.3 and 13.7 versus 8.2 mmol/L, respectively) and Western-type high-fat diet (eg, after 2 weeks of fat diet, 45.9 and 42.6 versus 30.2 mmol/L, respectively). Cholesterol and triglyceride levels in very-low-density lipoprotein and low-density lipoprotein fractions were increased. Atherosclerotic lesions in young and intermediate cohorts of sVEGFR3×LDLR(-/-)/ApoB(100/100) mice progressed faster than in control mice (eg, intermediate cohort mice at 6 weeks, 18.3% versus 7.7% of the whole aorta, respectively). In addition, lesions in sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had much less lymphatic vessels than lesions in control mice (0.33% and 1.07% versus 7.45% of podoplanin-positive vessels, respectively). CONCLUSIONS We show a novel finding linking impaired lymphatic vessels to lipoprotein metabolism, increased plasma cholesterol levels, and enhanced atherogenesis.
Collapse
Affiliation(s)
- Taina Vuorio
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Harri Nurmi
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Karen Moulton
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Jere Kurkipuro
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Marius R Robciuc
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Miina Ohman
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Suvi E Heinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Haritha Samaranayake
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Tommi Heikura
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Kari Alitalo
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
86
|
Card CM, Yu SS, Swartz MA. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest 2014; 124:943-52. [PMID: 24590280 DOI: 10.1172/jci73316] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Emerging research on the roles of stromal cells in modulating adaptive immune responses has included a new focus on lymphatic endothelial cells (LECs). LECs are presumably the first cells that come into direct contact with peripheral antigens, cytokines, danger signals, and immune cells travelling from peripheral tissues to lymph nodes. LECs can modulate dendritic cell function, present antigens to T cells on MHC class I and MHC class II molecules, and express immunomodulatory cytokines and receptors, which suggests that their roles in adaptive immunity are far more extensive than previously realized. This Review summarizes the emergent evidence that LECs are important in maintaining peripheral tolerance, limiting and resolving effector T cell responses, and modulating leukocyte function.
Collapse
|
87
|
Abstract
The lymphatic system is fundamentally important to cardiovascular disease, infection and immunity, cancer, and probably obesity--the four major challenges in healthcare in the 21st century. This Review will consider the manner in which new knowledge of lymphatic genes and molecular mechanisms has demonstrated that lymphatic dysfunction should no longer be considered a passive bystander in disease but rather an active player in many pathological processes and, therefore, a genuine target for future therapeutic developments. The specific roles of the lymphatic system in edema, genetic aspects of primary lymphedema, infection (cellulitis/erysipelas), Crohn's disease, obesity, cancer, and cancer-related lymphedema are highlighted.
Collapse
|
88
|
Aebischer D, Iolyeva M, Halin C. The inflammatory response of lymphatic endothelium. Angiogenesis 2013; 17:383-93. [PMID: 24154862 DOI: 10.1007/s10456-013-9404-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Lymphatic vessels have traditionally been regarded as a rather inert drainage system, which just passively transports fluids, leukocytes and antigen. However, it is becoming increasingly clear that the lymphatic vasculature is highly dynamic and plays a much more active role in inflammatory and immune processes. Tissue inflammation induces a rapid, stimulus-specific upregulation of chemokines and adhesion molecules in lymphatic endothelial cells and a proliferative expansion of the lymphatic network in the inflamed tissue and in draining lymph nodes. Moreover, increasing evidence suggests that inflammation-induced changes in the lymphatic vasculature have a profound impact on the course of inflammatory and immune responses, by modulating fluid drainage, leukocyte migration or the removal of inflammatory mediators from tissues. In this review we will summarize and discuss current knowledge of the inflammatory response of lymphatic endothelium and of inflammation-induced lymphangiogenesis and the current perspective on the overall functional significance of these processes.
Collapse
Affiliation(s)
- David Aebischer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli Str. 10, HCI H413, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
89
|
Conditional ablation of LYVE-1+ cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes. Blood 2013; 122:2151-61. [DOI: 10.1182/blood-2013-01-478941] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Key Points
Intact lymphatic vessels are required for structural and functional maintenance of surrounding tissues in the intestine and lymph nodes.
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW The mechanisms of tolerance induction and maintenance remain incompletely understood and have yet to be translated to clinical practice. Advances in imaging techniques have allowed precise examination of cell interactions in the lymph node, often in real time. Herein we review evidence that lymph node structure is dynamic and controls the character of the immune response in a multistep, multiplayer dance. T-cell responses in particular can be initiated or influenced in regions beyond the canonical T-cell zone. We propose that the cortical ridge is one such region required for induction and maintenance of tolerance. RECENT FINDINGS Lymph node domains are more complex than T-cell and B-cell zones. Different domains are important for different types of immune responses. These domains are in part defined by dynamic, malleable physical structures that guide cell interactions and influence immune outcomes. SUMMARY Further probing as to how lymph node stromal cells and fibers interact with and determine the character of immune responses should yield fundamental insights into tolerance and immunity. Manipulation of lymph node structure and associated unique cell types and molecules may allow therapeutic interventions in the tolerogenic process.
Collapse
|
91
|
Berggreen E, Wiig H. Lymphangiogenesis and Lymphatic Function in Periodontal Disease. J Dent Res 2013; 92:1074-80. [DOI: 10.1177/0022034513504589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lymphatic vessels return extravasated fluid, proteins, and cells back into the circulation and are important in immune cell trafficking. In the gingiva, lymphatic vessels are located in the lamina propria and travel over the external surface of the alveolar bone. The gingival lymphatics are important for fluid drainage, since lack of lymphatics has been shown to increase interstitial fluid pressure and fluid volume. Maintenance of gingival lymphatic vessels requires continuous signaling by the growth factors VEGF-C and -D via their receptor VEGFR-3. The growth factors are expressed in the gingival epithelium and also in immune cells in the lamina propria. VEGF-C seems to be crucial for lymphangiogenesis induced during periodontal disease development. The lymphatic vessels protect against periodontitis in mice, probably by clearing bacteria and bacterial products and by promoting humoral immune responses. Down-regulation of CCL21, a ligand important for dendritic cell migration, has been demonstrated in lymphatics from patients with periodontitis. High enzymatic activity in the gingiva of these patients may also contribute to impaired lymphatic function, due to the loss of structural components in the interstitium influencing lymphatic function. So far, knowledge is limited in this field because of the dearth of studies on the role of lymphatic vessels in periodontal disease.
Collapse
Affiliation(s)
- E. Berggreen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Oral Health Centre, Hordaland, Western Norway
| | - H. Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
92
|
Santambrogio L, Stern LJ. Carrying yourself: self antigen composition of the lymphatic fluid. Lymphat Res Biol 2013; 11:149-54. [PMID: 24024574 DOI: 10.1089/lrb.2013.0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in proteomics methodology and instrumentation have allowed detailed characterization of the composition of lymph. Far from being a simple ultrafiltrate of blood plasma, lymph has been shown to carry a rich repertoire of proteins and peptides reflecting the tissue of origin and its physiological state. Peptides derived from lymph can be loaded on the MHCII proteins, particularly those present on immature and/or inactivated antigen presenting cells, and may play an important role in maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Laura Santambrogio
- 1 Department of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine , New York, New York
| | | |
Collapse
|
93
|
Weitman ES, Aschen SZ, Farias-Eisner G, Albano N, Cuzzone DA, Ghanta S, Zampell JC, Thorek D, Mehrara BJ. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS One 2013; 8:e70703. [PMID: 23950984 PMCID: PMC3741281 DOI: 10.1371/journal.pone.0070703] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/21/2013] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Obesity is a major cause of morbidity and mortality resulting in pathologic changes in virtually every organ system. Although the cardiovascular system has been a focus of intense study, the effects of obesity on the lymphatic system remain essentially unknown. The purpose of this study was to identify the pathologic consequences of diet induced obesity (DIO) on the lymphatic system. METHODS Adult male wild-type or RAG C57B6-6J mice were fed a high fat (60%) or normal chow diet for 8-10 weeks followed by analysis of lymphatic transport capacity. In addition, we assessed migration of dendritic cells (DCs) to local lymph nodes, lymph node architecture, and lymph node cellular make up. RESULTS High fat diet resulted in obesity in both wild-type and RAG mice and significantly impaired lymphatic fluid transport and lymph node uptake; interestingly, obese wild-type but not obese RAG mice had significantly impaired migration of DCs to the peripheral lymph nodes. Obesity also resulted in significant changes in the macro and microscopic anatomy of lymph nodes as reflected by a marked decrease in size of inguinal lymph nodes (3.4-fold), decreased number of lymph node lymphatics (1.6-fold), loss of follicular pattern of B cells, and dysregulation of CCL21 expression gradients. Finally, obesity resulted in a significant decrease in the number of lymph node T cells and increased number of B cells and macrophages. CONCLUSIONS Obesity has significant negative effects on lymphatic transport, DC cell migration, and lymph node architecture. Loss of T and B cell inflammatory reactions does not protect from impaired lymphatic fluid transport but preserves DC migration capacity. Future studies are needed to determine how the interplay between diet, obesity, and the lymphatic system modulate systemic complications of obesity.
Collapse
Affiliation(s)
- Evan S. Weitman
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Seth Z. Aschen
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Gina Farias-Eisner
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nicholas Albano
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Daniel A. Cuzzone
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Swapna Ghanta
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jamie C. Zampell
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Daniel Thorek
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Babak J. Mehrara
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
94
|
Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS One 2013; 8:e61646. [PMID: 23626707 PMCID: PMC3633981 DOI: 10.1371/journal.pone.0061646] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/12/2013] [Indexed: 01/05/2023] Open
Abstract
Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.
Collapse
|
95
|
Platt AM, Rutkowski JM, Martel C, Kuan EL, Ivanov S, Swartz MA, Randolph GJ. Normal dendritic cell mobilization to lymph nodes under conditions of severe lymphatic hypoplasia. THE JOURNAL OF IMMUNOLOGY 2013; 190:4608-20. [PMID: 23530147 DOI: 10.4049/jimmunol.1202600] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To address the requirement for lymphatic capillaries in dendritic cell (DC) mobilization from skin to lymph nodes (LNs), we used mice bearing one inactivated allele of vascular endothelial growth factor receptor 3 (VEGFR3) where skin lymphatic capillaries are reported absent. Unexpectedly, DC mobilization from the back skin to draining LNs was similar in magnitude, and kinetics to control mice and humoral immunity appeared intact. By contrast, DC migration from body extremities, including ear and forepaws, was ablated. An evaluation in different regions of skin revealed rare patches of lymphatic capillaries only in body trunk areas where migration was intact. That is, whereas the ear skin was totally devoid of lymphatic capillaries, residual capillaries in the back skin were present though retained only at ∼10% normal density. This reduction in density markedly reduced the clearance of soluble tracers, indicating that normal cell migration was spared under conditions when lymphatic transport function was poor. Residual lymphatic capillaries expressed slightly higher levels of CCL21 and migration of skin DCs to LNs remained dependent on CCR7 in Chy mice. DC migration from the ear could be rescued by the introduction of a limited number of lymphatic capillaries through skin transplantation. Thus, the development of lymphatic capillaries in the skin of body extremities was more severely impacted by a mutant copy of VEGFR3 than trunk skin, but lymphatic transport function was markedly reduced throughout the skin, demonstrating that even under conditions when a marked loss in lymphatic capillary density reduces lymph transport, DC migration from skin to LNs remains normal.
Collapse
Affiliation(s)
- Andrew M Platt
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Scallan JP, Davis MJ. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels. J Physiol 2013; 591:2139-56. [PMID: 23420659 DOI: 10.1113/jphysiol.2012.250662] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The role of nitric oxide (NO) in regulating lymphatic contractile function and, consequently, lymph flow has been the subject of intense study. Despite this, the precise effects of NO on lymphatic contractile activity remain unclear. Recent hypotheses posit that basal levels of endogenous NO increase lymphatic contraction strength as a consequence of lowering frequency (i.e. positive lusitropy), whereas higher agonist-evoked concentrations of NO exert purely inhibitory effects on contractile function. We tested both hypotheses directly by isolating and cannulating collecting lymphatic vessels from genetically modified mice for ex vivo study. The effects of basal NO and agonist-evoked NO were evaluated, respectively, by exposing wild-type (WT), endothelial NO synthase (eNOS)(-/-) and inducible NO synthase (iNOS)(-/-) lymphatic vessels to controlled pressure steps followed by ACh doses. To compare with pharmacological inhibition of eNOS, we repeated both tests in the presence of l-NAME. Surprisingly, genetic removal of basal NO enhanced contraction amplitude significantly without increasing contraction frequency. Higher levels of NO production stimulated by ACh evoked dilation, decreased tone, slowed contraction frequency and reduced fractional pump flow. We conclude that basal NO specifically depresses contraction amplitude, and that greater NO production then inhibits all other aspects of contractile function. Further, this work demonstrates definitively that mouse collecting lymphatic vessels exhibit autonomous, large-amplitude contractions that respond to pressure similarly to collecting lymphatics of other mammalian species. At least in the peripheral lymphatic vasculature, NO production depresses contractile function, which influences lymph flow needed for fluid regulation, humoral immunity and cancer metastasis.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | |
Collapse
|
97
|
Markhus C, Karlsen T, Wagner M, Svendsen Ø, Tenstad O, Alitalo K, Wiig H. Increased Interstitial Protein Because of Impaired Lymph Drainage Does Not Induce Fibrosis and Inflammation in Lymphedema. Arterioscler Thromb Vasc Biol 2013; 33:266-74. [DOI: 10.1161/atvbaha.112.300384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- C.E. Markhus
- From the Department of Biomedicine, University of Bergen, Norway (C.E.M., T.V.K., M.W., O.T., Ø.S.S., H.W.); Department of Anesthesia and Intensive Care, Haukeland University Hospital, Norway (Ø.S.S.); and Molecular/Cancer Biology Laboratory, University of Helsinki, Finland (K.A.)
| | - T.V. Karlsen
- From the Department of Biomedicine, University of Bergen, Norway (C.E.M., T.V.K., M.W., O.T., Ø.S.S., H.W.); Department of Anesthesia and Intensive Care, Haukeland University Hospital, Norway (Ø.S.S.); and Molecular/Cancer Biology Laboratory, University of Helsinki, Finland (K.A.)
| | - M. Wagner
- From the Department of Biomedicine, University of Bergen, Norway (C.E.M., T.V.K., M.W., O.T., Ø.S.S., H.W.); Department of Anesthesia and Intensive Care, Haukeland University Hospital, Norway (Ø.S.S.); and Molecular/Cancer Biology Laboratory, University of Helsinki, Finland (K.A.)
| | - Ø.S. Svendsen
- From the Department of Biomedicine, University of Bergen, Norway (C.E.M., T.V.K., M.W., O.T., Ø.S.S., H.W.); Department of Anesthesia and Intensive Care, Haukeland University Hospital, Norway (Ø.S.S.); and Molecular/Cancer Biology Laboratory, University of Helsinki, Finland (K.A.)
| | - O. Tenstad
- From the Department of Biomedicine, University of Bergen, Norway (C.E.M., T.V.K., M.W., O.T., Ø.S.S., H.W.); Department of Anesthesia and Intensive Care, Haukeland University Hospital, Norway (Ø.S.S.); and Molecular/Cancer Biology Laboratory, University of Helsinki, Finland (K.A.)
| | - K. Alitalo
- From the Department of Biomedicine, University of Bergen, Norway (C.E.M., T.V.K., M.W., O.T., Ø.S.S., H.W.); Department of Anesthesia and Intensive Care, Haukeland University Hospital, Norway (Ø.S.S.); and Molecular/Cancer Biology Laboratory, University of Helsinki, Finland (K.A.)
| | - H. Wiig
- From the Department of Biomedicine, University of Bergen, Norway (C.E.M., T.V.K., M.W., O.T., Ø.S.S., H.W.); Department of Anesthesia and Intensive Care, Haukeland University Hospital, Norway (Ø.S.S.); and Molecular/Cancer Biology Laboratory, University of Helsinki, Finland (K.A.)
| |
Collapse
|
98
|
Abstract
The mobilization of antigen-presenting dendritic cells (DCs) from peripheral tissues to draining lymph nodes drives the initiation of adaptive immune responses. Recent advances have been made in understanding how and where DCs enter the lymphatic vasculature and what mechanisms control this process. In this chapter, we highlight these advances. Delineating DC-lymphatic vessel interactions is critical for our fundamental understanding of DC trafficking in states of health and disease and for efforts to manipulate DC mobilization for immunotherapy and vaccination.
Collapse
Affiliation(s)
- Andrew M Platt
- Institute of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
99
|
Blei F. Update December 2012. Lymphat Res Biol 2012. [DOI: 10.1089/lrb.2012.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|