51
|
Johnston CJC, Robertson E, Harcus Y, Grainger JR, Coakley G, Smyth DJ, McSorley HJ, Maizels R. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products. J Vis Exp 2015:e52412. [PMID: 25867600 PMCID: PMC4401400 DOI: 10.3791/52412] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heligmosomoides polygyrus (formerly known as Nematospiroides dubius, and also referred to by some as H. bakeri) is a gastrointestinal helminth that employs multiple immunomodulatory mechanisms to establish chronic infection in mice and closely resembles prevalent human helminth infections. H. polygyrus has been studied extensively in the field of helminth-derived immune regulation and has been found to potently suppress experimental models of allergy and autoimmunity (both with active infection and isolated secreted products). The protocol described in this paper outlines management of the H. polygyrus life cycle for consistent production of L3 larvae, recovery of adult parasites, and collection of their excretory-secretory products (HES).
Collapse
Affiliation(s)
| | - Elaine Robertson
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh
| | | | - Gillian Coakley
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Danielle J Smyth
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Henry J McSorley
- Institute of Immunology and Infection Research, University of Edinburgh
| | - Rick Maizels
- Institute of Immunology and Infection Research, University of Edinburgh;
| |
Collapse
|
52
|
Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants' and children's health? J Pediatr Gastroenterol Nutr 2015; 60:294-307. [PMID: 25313849 PMCID: PMC4340742 DOI: 10.1097/mpg.0000000000000597] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial colonization of the infant occurs during a critical time window for immune and gastrointestinal development. Infant colonization sets the stage for the adult microbiome. This review is a broad survey of the factors affecting infant colonization and the downstream effects on gastrointestinal health and disease. Major topics affecting colonization include initial inoculation dependent on birth mode, the impact of breast-feeding, and inside-out modulation of the developing microbiome by the immune system. Major outcomes of colonization include the timing-dependent education of the neonatal immune system, which is interconnected with barrier function and metabolism. These all engage in further continuing cross-talk with the microbiome, genetics, and nutrition. This review also briefly examines mechanisms of disease resulting from disrupted colonization as well as nutritional and microbial therapies.
Collapse
Affiliation(s)
- Pearl D. Houghteling
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16th Street (114-3505), Charlestown, MA02129-4404, USA
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16th Street (114-3505), Charlestown, MA02129-4404, USA
| |
Collapse
|
53
|
Reyes JL, Wang A, Fernando MR, Graepel R, Leung G, van Rooijen N, Sigvardsson M, McKay DM. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 194:364-78. [PMID: 25452561 DOI: 10.4049/jimmunol.1400738] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Helminth parasites provoke multicellular immune responses in their hosts that can suppress concomitant disease. The gut lumen-dwelling tapeworm Hymenolepis diminuta, unlike other parasites assessed as helminth therapy, causes no host tissue damage while potently suppressing murine colitis. With the goal of harnessing the immunomodulatory capacity of infection with H. diminuta, we assessed the putative generation of anti-colitic regulatory B cells following H. diminuta infection. Splenic CD19(+) B cells isolated from mice infected 7 [HdBc(7(d))] and 14 d (but not 3 d) previously with H. diminuta and transferred to naive mice significantly reduced the severity of dinitrobenzene sulfonic acid (DNBS)-, oxazolone-, and dextran-sodium sulfate-induced colitis. Mechanistic studies with the DNBS model, revealed the anti-colitic HdBc(7(d)) was within the follicular B cell population and its phenotype was not dependent on IL-4 or IL-10. The HdBc(7(d)) were not characterized by increased expression of CD1d, CD5, CD23, or IL-10 production, but did spontaneously, and upon LPS plus anti-CD40 stimulation, produce more TGF-β than CD19(+) B cells from controls. DNBS-induced colitis in RAG1(-/-) mice was inhibited by administration of HdBc(7(d)), indicating a lack of a requirement for T and B cells in the recipient; however, depletion of macrophages in recipient mice abrogated the anti-colitic effect of HdBc(7(d)). Thus, in response to H. diminuta, a putatively unique splenic CD19(+) B cell with a functional immunoregulatory program is generated that promotes the suppression of colitis dominated by TH1, TH2, or TH1-plus-TH2 events, and may do so via the synthesis of TGF-β and the generation of, or cooperation with, a regulatory macrophage.
Collapse
Affiliation(s)
- José L Reyes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Maria R Fernando
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rabea Graepel
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gabriella Leung
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands; and
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 581-85, Sweden
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada;
| |
Collapse
|
54
|
Weinstock JV, Elliott DE. Helminth infections decrease host susceptibility to immune-mediated diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:3239-47. [PMID: 25240019 DOI: 10.4049/jimmunol.1400927] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helminthic infection has become rare in highly industrialized nations. Concurrent with the decline in helminthic infection has been an increase in the prevalence of inflammatory disease. Removal of helminths from our environment and their powerful effects on host immunity may have contributed to this increase. Several helminth species can abrogate disease in murine models of inflammatory bowel disease, type 1 diabetes, multiple sclerosis, and other conditions. Helminths evoke immune regulatory pathways often involving dendritic cells, regulatory T cells, and macrophages that help to control disease. Cytokines, such as IL-4, IL-10, and TGF-β, have a role. Notable is the helminthic modulatory effect on innate immunity, which impedes development of aberrant adaptive immunity. Investigators are identifying key helminth-derived immune modulatory molecules that may have therapeutic usefulness in the control of inflammatory disease.
Collapse
Affiliation(s)
- Joel V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111; and
| | - David E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
55
|
The mechanisms behind helminth's immunomodulation in autoimmunity. Autoimmun Rev 2014; 14:98-104. [PMID: 25449677 DOI: 10.1016/j.autrev.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Abstract
The incidence of autoimmune diseases has risen throughout the last half a century, mostly in the industrialized world. Helminths and their derivatives were found to have a protective role in autoimmunity and inflammatory conditions, as they manipulate the immune network, attenuating the host's cellular and humoral responses. Indeed, various helminth species used in several human and animal models were shown to limit inflammatory activity in a variety of diseases including inflammatory bowel disease, multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Our review will focus on the main mechanisms by which helminths and their secreted molecules modulate the host's immune system. The main pathways induce a shift from Th1 to Th2 phenotype, accelerate T regulatory and B regulatory phenotypes, and attenuate the levels of the inflammatory cytokines, leading to a tolerable scenario.
Collapse
|
56
|
Zaph C, Cooper PJ, Harris NL. Mucosal immune responses following intestinal nematode infection. Parasite Immunol 2014; 36:439-52. [PMID: 25201407 PMCID: PMC4312905 DOI: 10.1111/pim.12090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/05/2013] [Indexed: 12/12/2022]
Abstract
In most natural environments, the large majority of mammals harbour parasitic helminths that often live as adults within the intestine for prolonged periods (1-2 years). Although these organisms have been eradicated to a large extent within westernized human populations, those living within rural areas of developing countries continue to suffer from high infection rates. Indeed, recent estimates indicate that approximately 2.5 billion people worldwide, mainly children, currently suffer from infection with intestinal helminths (also known as geohelminths and soil-transmitted helminths) . Paradoxically, the eradication of helminths is thought to contribute to the increased incidence of autoimmune diseases and allergy observed in developed countries. In this review, we will summarize our current understanding of host-helminth interactions at the mucosal surface that result in parasite expulsion or permit the establishment of chronic infections with luminal dwelling adult worms. We will also provide insight into the adaptive immune mechanisms that provide immune protection against re-infection with helminth larvae, a process that is likely to be key to the future development of successful vaccination strategies. Lastly, the contribution of helminths to immune modulation and particularly to the treatment of allergy and inflammatory bowel disease will be discussed.
Collapse
Affiliation(s)
- C Zaph
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
57
|
Gu J, Lu L, Chen M, Xu L, Lan Q, Li Q, Liu Z, Chen G, Wang P, Wang X, Brand D, Olsen N, Zheng SG. TGF-β-induced CD4+Foxp3+ T cells attenuate acute graft-versus-host disease by suppressing expansion and killing of effector CD8+ cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:3388-97. [PMID: 25156367 DOI: 10.4049/jimmunol.1400207] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of TGF-β-induced CD4(+)Foxp3(+) T cells (induced regulatory T cells [iTregs]) is an important prevention and treatment strategy in autoimmune diseases and other disorders. However, the potential use of iTregs as a treatment modality for acute graft-versus-host disease (aGVHD) has not been realized because they may be unstable and less suppressive in this disease. We restudied the ability of iTregs to prevent and treat aGVHD in two mouse models. Our results showed that, as long as an appropriate iTreg-generation protocol is used, these iTregs consistently displayed a potent ability to control aGVHD development and reduce mortality in the aGVHD animal models. iTreg infusion markedly suppressed the engraftment of donor CD8(+) cells and CD4(+) cells, the expression of granzyme A and B, the cytotoxic effect of donor CD8(+) cells, and the production of T cell cytokines in aGVHD. Therefore, we conclude that as long as the correct methods for generating iTregs are used, they can prevent and even treat aGVHD.
Collapse
Affiliation(s)
- Jian Gu
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033; Clinical Immunology Section, Third Affiliated Hospital at Sun Yat-Sen University, Guangzhou 510630, China
| | - Ling Lu
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Lili Xu
- Department of Molecular Biosciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - Qin Lan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; and
| | - Qiang Li
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; and
| | - Guihua Chen
- Clinical Immunology Section, Third Affiliated Hospital at Sun Yat-Sen University, Guangzhou 510630, China
| | - Ping Wang
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Xuehao Wang
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - David Brand
- Research Service, Veterans Affairs Medical Center, Memphis, TN 38104
| | - Nancy Olsen
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033; Clinical Immunology Section, Third Affiliated Hospital at Sun Yat-Sen University, Guangzhou 510630, China;
| |
Collapse
|
58
|
Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Of worms, mice and man: an overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Ther 2014; 143:153-167. [PMID: 24603369 DOI: 10.1016/j.pharmthera.2014.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The incidence of inflammatory and autoimmune disorders is highest in well-developed countries which is directly related to their higher hygienic standards: it is suggested that the lack of exposure to helminths contributes to the susceptibility for immune-related diseases. Epidemiological, experimental and clinical data support the idea that helminths provide protection against immune-mediated diseases such as inflammatory bowel disease (IBD). The most likely mechanism for the suppression of immune responses by helminths is the release of helminth-derived immunomodulatory molecules. This article reviews the experimental and clinical studies investigating the therapeutic potential of helminth-based therapy in IBD and also focuses on the current knowledge of its immunomodulatory mechanisms of action highlighting innate as well as adaptive immune mechanisms. Identifying the mechanisms by which these helminths and helminth-derived molecules modulate the immune system will help in creating novel drugs for the treatment of IBD and other disorders that result from an overactive immune response.
Collapse
Affiliation(s)
- Marthe Heylen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els M Gielis
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els Vanhomwegen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Paul A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Tom G Moreels
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
59
|
Maizels RM, McSorley HJ, Smyth DJ. Helminths in the hygiene hypothesis: sooner or later? Clin Exp Immunol 2014; 177:38-46. [PMID: 24749722 PMCID: PMC4089153 DOI: 10.1111/cei.12353] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
There is increasing recognition that exposures to infectious agents evoke fundamental effects on the development and behaviour of the immune system. Moreover, where infections (especially parasitic infections) have declined, immune responses appear to be increasingly prone to hyperactivity. For example, epidemiological studies of parasite-endemic areas indicate that prenatal or early-life experience of infections can imprint an individual's immunological reactivity. However, the ability of helminths to dampen pathology in established inflammatory diseases implies that they can have therapeutic effects even if the immune system has developed in a low-infection setting. With recent investigations of how parasites are able to modulate host immune pathology at the level of individual parasite molecules and host cell populations, we are now able to dissect the nature of the host-parasite interaction at both the initiation and recall phases of the immune response. Thus the question remains - is the influence of parasites on immunity one that acts primarily in early life, and at initiation of the immune response, or in adulthood and when recall responses occur? In short, parasite immunosuppression - sooner or later?
Collapse
Affiliation(s)
- R M Maizels
- Institute for Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
60
|
Mishra PK, Palma M, Bleich D, Loke P, Gause WC. Systemic impact of intestinal helminth infections. Mucosal Immunol 2014; 7:753-62. [PMID: 24736234 DOI: 10.1038/mi.2014.23] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 02/04/2023]
Abstract
In this review, we examine the evidence that intestinal helminths can control harmful inflammatory responses and promote homeostasis by triggering systemic immune responses. Induction of separable components of immunity by helminths, which includes type 2 and immune regulatory responses, can both contribute toward the reduction in harmful type 1 immune responses that drive certain inflammatory diseases. Despite inducing type 2 responses, intestinal helminths may also downregulate harmful type 2 immune responses including allergic responses. We consider the possibility that intestinal helminth infection may indirectly affect inflammation by influencing the composition of the intestinal microbiome. Taken together, the studies reviewed herein suggest that intestinal helminth-induced responses have potent systemic effects on the immune system, raising the possibility that whole parasites or specific molecules produced by these metazoans may be an important resource for the development of future immunotherapies to control inflammatory diseases.
Collapse
Affiliation(s)
- P K Mishra
- 1] Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA [2] Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - M Palma
- 1] Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA [2] Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - D Bleich
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - P Loke
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - W C Gause
- 1] Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA [2] Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
61
|
Redpath SA, Fonseca NM, Perona-Wright G. Protection and pathology during parasite infection: IL-10 strikes the balance. Parasite Immunol 2014; 36:233-52. [PMID: 24666543 DOI: 10.1111/pim.12113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 12/16/2022]
Abstract
The host response to infection requires an immune response to be strong enough to control the pathogen but also restrained, to minimize immune-mediated pathology. The conflicting pressures of immune activation and immune suppression are particularly apparent in parasite infections, where co-evolution of host and pathogen has selected many different compromises between protection and pathology. Cytokine signals are critical determinants of both protective immunity and immunopathology, and, in this review, we focus on the regulatory cytokine IL-10 and its role in protozoan and helminth infections. We discuss the sources and targets of IL-10 during parasite infection, the signals that initiate and reinforce its action, and its impact on the invading parasite, on the host tissue, and on coincident immune responses.
Collapse
Affiliation(s)
- S A Redpath
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|