51
|
Rathmann S, Keck C, Kreutz C, Weit N, Müller M, Timmer J, Glatzel S, Follo M, Malkovsky M, Werner M, Handgretinger R, Finke J, Fisch P. Partial break in tolerance of NKG2A−/LIR-1− single KIR+ NK cells early in the course of HLA-matched, KIR-mismatched hematopoietic cell transplantation. Bone Marrow Transplant 2017; 52:1144-1155. [DOI: 10.1038/bmt.2017.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 02/03/2023]
|
52
|
van der Ploeg K, Chang C, Ivarsson MA, Moffett A, Wills MR, Trowsdale J. Modulation of Human Leukocyte Antigen-C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition by Natural Killer Cells. Front Immunol 2017; 8:298. [PMID: 28424684 PMCID: PMC5372792 DOI: 10.3389/fimmu.2017.00298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023] Open
Abstract
The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte antigen (HLA) class I molecules has been characterized in detail. By contrast, activating members of the KIR family, although closely related to inhibitory KIRs, appear to interact weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it interacts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells were not activated upon coculture with 721.221 cells transfected with different HLA-C molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression was required for activation of both cell types. Primary NKG2A-KIR2DS1+ NK cell subsets degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by HCMV is required for a potent KIR2DS1-mediated NK cell activation.
Collapse
Affiliation(s)
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| |
Collapse
|
53
|
Thiruchelvam-Kyle L, Hoelsbrekken SE, Saether PC, Bjørnsen EG, Pende D, Fossum S, Daws MR, Dissen E. The Activating Human NK Cell Receptor KIR2DS2 Recognizes a β 2-Microglobulin-Independent Ligand on Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2556-2567. [PMID: 28202613 DOI: 10.4049/jimmunol.1600930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023]
Abstract
The functions of activating members of the killer cell Ig-like receptor (KIR) family are not fully understood, as the ligands for these receptors are largely unidentified. In this study, we report that KIR2DS2 reporter cells recognize a ligand expressed by cancer cell lines. All cancer targets recognized by KIR2DS2 were also recognized by KIR2DL2 and KIR2DL3 reporters. Trogocytosis of membrane proteins from the cancer targets was observed with responding reporter cells, indicating the formation of KIR2DS2 ligand-specific immunological synapses. HLA-C typing of target cells showed that KIR2DS2 recognition was independent of the HLA C1 or C2 group, whereas targets cells that were only recognized by KIR2DL3 expressed C1 group alleles. Anti-HLA class I Abs blocked KIR2DL3 responses toward C1-expressing targets, but they did not block KIR2DS2 recognition of cancer cells. Small interfering RNA knockdown of β2-microglobulin reduced the expression of class I H chain on the cancer targets by >97%, but it did not reduce the KIR2DS2 reporter responses, indicating a β2-microglobulin-independent ligand for KIR2DS2. Importantly, KIR2DL3 responses toward some KIR2DS2 ligand-expressing cells were also undiminished after β2-microglobulin knockdown, and they were not blocked by anti-HLA class I Abs, suggesting that KIR2DL3, in addition to the traditional HLA-C ligands, can bind to the same β2-microglobulin-independent ligand as KIR2DS2. These observations indicate the existence of a novel, presently uncharacterized ligand for the activating NK cell receptor KIR2DS2. Molecular identification of this ligand may lead to improved KIR-HLA mismatching in hematopoietic stem cell transplantation therapy for leukemia and new, more specific NK cell-based cancer therapies.
Collapse
Affiliation(s)
- Lavanya Thiruchelvam-Kyle
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Sigurd E Hoelsbrekken
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Per C Saether
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Elisabeth Gyllensten Bjørnsen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Daniela Pende
- Laboratorio Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Sigbjørn Fossum
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Michael R Daws
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| | - Erik Dissen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; and
| |
Collapse
|
54
|
Neuchel C, Fürst D, Niederwieser D, Bunjes D, Tsamadou C, Wulf G, Pfreundschuh M, Wagner E, Stuhler G, Einsele H, Schrezenmeier H, Mytilineos J. Impact of Donor Activating KIR Genes on HSCT Outcome in C1-Ligand Negative Myeloid Disease Patients Transplanted with Unrelated Donors-A Retrospective Study. PLoS One 2017; 12:e0169512. [PMID: 28107369 PMCID: PMC5249182 DOI: 10.1371/journal.pone.0169512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/19/2016] [Indexed: 12/02/2022] Open
Abstract
Natural Killer cells (NK) are lymphocytes with the potential to recognize and lyse cells which escaped T-cell mediated lysis due to their aberrant HLA expression profiles. Killer cell immunoglobulin-like receptors (KIR) influence NK-cell activity by mediation of activating or inhibitory signals upon interaction with HLA-C (C1, C2) ligands. Therefore, absence of ligands for donor inhibitory KIRs following hematopoietic stem cell transplantation (HSCT) may have an influence on its outcome. Previous studies showed that C1 negative patients have a decreased HSCT outcome. Our study, based on a cohort of 200 C1-negative patients, confirmed these findings for the endpoints: overall survival (OS: HR = 1.41, CI = 1.14–1.74, p = 0.0012), disease free survival (DFS: HR = 1.27, CI = 1.05–1.53, p = 0.015), treatment related mortality (TRM: HR = 1.41, CI = 1.01–1.96, p = 0.04), and relapse incidence (RI: HR = 1.33, CI = 1.01–1.75, p = 0.04) all being inferior when compared to C1-positive patients (n = 1246). Subsequent analysis showed that these findings applied for patients with myeloid malignancies but not for patients with lymphoproliferative diseases (OS: myeloid: HR = 1.51, CI = 1.15–1.99, p = 0.003; lymphoblastic: HR = 1.26, CI = 0.91–1.75, p = 0.16; DFS: myeloid: HR = 1.31, CI = 1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21; RI: myeloid: HR = 1.31, CI = 1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21). Interestingly, within the C1-negative patient group, transplantation with KIR2DS2 resulted in better OS (9/10 matched: HR = 0.24, CI = 0.08–0.67, p = 0.007) as well as DFS (9/10 matched: HR = 0,26, CI = 0.11–0.60, p = 0.002), and transplantation with KIR2DS1 positive donors was associated with a decreased RI (HR = 0.30, CI = 0.13–0.69, p = 0.005). TRM was increased when the donor was positive for KIR2DS1 (HR = 2.61, CI = 1.26–5.41, p = 0.001). Our findings suggest that inclusion of KIR2DS1/2/5 and KIR3DS1-genotyping in the unrelated donor search algorithm of C1-ligand negative patients with myeloid malignancies may prove to be of clinical relevance.
Collapse
Affiliation(s)
- Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttenberg–Hessen and University Hospital of Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttenberg–Hessen and University Hospital of Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | | | - Donald Bunjes
- Department of Hematology/Oncology, University Clinic Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttenberg–Hessen and University Hospital of Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Gerald Wulf
- Department of Hematology/Oncology, Georg-August-University Göttingen, Göttingen, Germany
| | - Michael Pfreundschuh
- Department of Internal Medicine I, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Eva Wagner
- Department of Medicine III, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gernot Stuhler
- Centre for Bone Marrow and Blood Stem Cell Transplantation, Deutsche Klinik für Diagnostik, Wiesbaden, Germany
| | - Hermann Einsele
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttenberg–Hessen and University Hospital of Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttenberg–Hessen and University Hospital of Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- DRST–German Registry for Stem Cell Transplantation, Essen, Germany
- * E-mail:
| |
Collapse
|
55
|
Hoff GA, Fischer JC, Hsu K, Cooley S, Miller JS, Wang T, Haagenson M, Spellman S, Lee SJ, Uhrberg M, Venstrom JM, Verneris MR. Recipient HLA-C Haplotypes and microRNA 148a/b Binding Sites Have No Impact on Allogeneic Hematopoietic Cell Transplantation Outcomes. Biol Blood Marrow Transplant 2016; 23:153-160. [PMID: 27746218 DOI: 10.1016/j.bbmt.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Natural killer cells are important in graft-versus-leukemia responses after hematopoietic cell transplantation (HCT). A variety of surface receptors dictates natural killer cell function, including killer cell immunoglobulin-like receptor recognition of HLA-C. Previous single-center studies show that HLA-C epitopes, designated C1 and C2, were associated with allogeneic HCT outcomes; specifically, recipients homozygous for the C1 epitope (C1/C1) experienced a survival benefit. Additionally, mismatching at HLA-C was beneficial in recipients possessing at least 1 C2 allele, whereas the opposite was true for homozygous C1 (C1/C1) recipients where HLA-C mismatching resulted in worse outcomes. In this analysis we aimed to validate these findings in a large multicenter study. We also set out to determine whether surface expression of recipient HLA-C, determined by polymorphism in a microRNA (miR-148a/b) binding site within the 3'-region of the HLA-C transcript, was associated with transplant outcomes. In this large registry cohort, we were unable to confirm the prior findings regarding recipient HLA-C epitope status and outcome. Additionally, HLA-C surface expression (ie, surface density), as predicted by the miR-148a/b binding single nucleotide polymorphism, was also not with associated transplant outcomes. Collectively, neither HLA-C surface expression, as determined by miR-148a/b, nor recipient HLA-C epitopes (C1, C2) are associated with allogeneic HCT outcomes.
Collapse
Affiliation(s)
- Gretchen A Hoff
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Johannes C Fischer
- Institute of Transplantation Diagnostics and Cell Therapeutics, Universitatklinikum Dusseldorf Klinik fur Kinder, Düsseldorf, Germany
| | - Katharine Hsu
- Blood and Marrow Transplantation, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Cooley
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephanie J Lee
- Blood and Marrow Transplantation, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markus Uhrberg
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Clinic of Düsseldorf, Düsseldorf, Germany
| | - Jeffrey M Venstrom
- Blood and Marrow Transplant, University of California San Francisco Medical Center, San Francisco, California
| | - Michael R Verneris
- University of Colorado, Pediatric BMT and Cell Therapy, Aurora, Colorado.
| |
Collapse
|
56
|
Wang W, Erbe AK, Alderson KA, Phillips E, Gallenberger M, Gan J, Campana D, Hank JA, Sondel PM. Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. Cancer Immunol Immunother 2016; 65:1047-59. [PMID: 27392940 PMCID: PMC5477646 DOI: 10.1007/s00262-016-1864-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/29/2016] [Indexed: 01/18/2023]
Abstract
Infusion of allogeneic NK cells is a potential immunotherapy for both hematopoietic malignancies and solid tumors. Interactions between killer immunoglobulin-like receptors (KIR) on human NK cells and KIR-ligands on tumor cells influence the magnitude of NK function. To obtain sufficient numbers of activated NK cells for infusion, one potent method uses cells from the K562 human erythroleukemia line that have been transfected to express activating 41BB ligand (41BBL) and membrane-bound interleukin 15 (mbIL15). The functional importance of KIRs on ex vivo expanded NK cells has not been studied in detail. We found that after a 12-day co-culture with K562-mbIL15-41BBL cells, expanded NK cells maintained inhibition specificity and prior in vivo licensing status determined by KIR/KIR-ligand interactions. Addition of an anti-CD20 antibody (rituximab) induced NK-mediated antibody-dependent cellular cytotoxicity and augmented killing of CD20+ target cells. However, partial inhibition induced by KIR/KIR-ligand interactions persisted. Finally, we found that extended co-cultures of NK cells with stimulatory cells transduced to express various KIR-ligands modified both the inhibitory and activating KIR repertoires of the expanded NK cell product. These studies demonstrate that the licensing interactions known to occur during NK ontogeny also influence NK cell function following NK expansion ex vivo with HLA-null stimulatory cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Kory A Alderson
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Emily Phillips
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Mikayla Gallenberger
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jacek Gan
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Dario Campana
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg. UW-Madison Campus, 1111 Highland Avenue, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
57
|
Stelma F, Jansen L, Sinnige MJ, van Dort KA, Takkenberg RB, Janssen HLA, Reesink HW, Kootstra NA. HLA-C and KIR combined genotype as new response marker for HBeAg-positive chronic hepatitis B patients treated with interferon-based combination therapy. J Viral Hepat 2016; 23:652-9. [PMID: 26945896 DOI: 10.1111/jvh.12525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/20/2016] [Indexed: 12/24/2022]
Abstract
Current treatment for chronic hepatitis B infection (CHB) consists of interferon-based therapy. However, for unknown reasons, a large proportion of patients with CHB do not respond to this treatment. Hence, there is a pressing need to establish response markers to select patients who will benefit from therapy and to spare potential nonresponders from unnecessary side effects of antiviral therapy. Here, we assessed whether HLA-C and KIR genotypes were associated with treatment outcome for CHB. Twelve SNPs in or near the HLA-C gene were genotyped in 86 CHB patients (41 HBeAg positive; 45 HBeAg negative) treated with peginterferon alfa-2a + adefovir. Genotyping of killer immunoglobin-like receptors (KIRs) was performed by SSP-PCR. One SNP in HLA-C (rs2308557) was significantly associated with combined response in HBeAg-positive CHB patients (P = 0.003). This SNP is linked to the HLA-C group C1 or C2 classification, which controls KIR binding. The combination of KIR2DL1 with its ligand HLA-C2 was observed significantly more often in HBeAg-positive patients with a combined response (13/14) than in nonresponders (11/27, P = 0.001). Patients with the KIR2DL1/C2 genotype had significantly higher baseline ALT levels (136 vs 50 U/L, P = 0.002) than patients without this combination. Furthermore, KIR2DL1-C2 predicted response independent of HBV genotype and ALT at baseline. HLA-C and KIR genotype is strongly associated with response in HBeAg-positive CHB patients treated with interferon-based therapy. In combination with other known response markers, HLA-C/KIR genotype could enable the selection of patients more likely to respond to interferon-based therapy.
Collapse
Affiliation(s)
- F Stelma
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - L Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - M J Sinnige
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - K A van Dort
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - R B Takkenberg
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - H L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands.,Toronto Centre for Liver Disease, Toronto Western & General Hospital, University Health Network, Toronto, Canada
| | - H W Reesink
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - N A Kootstra
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
58
|
Liao J, Sylla G, He Y, Leung W, Liu X, Chen J, Peng Z, Pei F, Li N, Ren Y, Feng X, Wu X, Li C. Successful engraftment determined by the quality rather than quantity of the haematopoietic graft: a lesson from co-transplantation of unrelated cord blood and mobilized haploidentical peripheral blood in monozygotic twins. Br J Haematol 2016; 179:677-679. [PMID: 27448249 DOI: 10.1111/bjh.14239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianyun Liao
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Goundo Sylla
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Yuelin He
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | | | - Xiaoting Liu
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Jiaqi Chen
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Zhiyong Peng
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Fuyu Pei
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Na Li
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Yuqiong Ren
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Xiaoqin Feng
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Xuedong Wu
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | - Chunfu Li
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| |
Collapse
|
59
|
Impact of KIR/HLA genetic combinations on double umbilical cord blood transplantation outcomes. Results of a French multicentric retrospective study on behalf of the Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC) and the Société Francophone d'Histocompatibilité et d'Immunogénétique (SFHI). Bone Marrow Transplant 2016; 51:1499-1503. [PMID: 27272444 DOI: 10.1038/bmt.2016.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
60
|
Zhu L, Chen X, Kong X, Cai YD. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm. Biochim Biophys Acta Gen Subj 2016; 1860:2756-68. [PMID: 27208424 DOI: 10.1016/j.bbagen.2016.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. METHODS In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. RESULTS 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. CONCLUSIONS The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. GENERAL SIGNIFICANCE The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- LiuCun Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - XiJia Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiangyin Kong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
61
|
Kitpoka P, Tammakorn C, Chaisri S, Leelayuwat C, Mongkolsuk T, Thammanichanond D. Genetic profiles of killer-cell immunoglobulin-like receptors and HLA ligands in Thai blood donors. Hum Immunol 2016; 77:470-5. [PMID: 27131859 DOI: 10.1016/j.humimm.2016.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/13/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) play an important role in natural killer (NK) cell regulation. Interaction of KIRs with human leukocyte antigen (HLA) class I molecules can transmit signals to regulate the function of NK cells. In this study, the diversities of KIR genes and their ligands in 500 Thai blood donors were investigated. The coexistence of inhibitory KIRs (iKIR), activating KIRs (aKIR) and their ligands in the same individuals were also analyzed. Overall, 36 KIR genotypes were identified. The most common genotype was genotype AA1 (40.8%). All individuals carried at least one iKIR-HLA pair whereas 18% of the individuals lacked aKIR-HLA pair. The most common compound KIR-HLA profile was the presence of 3 iKIR-HLA pairs with 1 aKIR-HLA pair (21.4%). The most common compound gene profile of KIR-HLA pairs was the combined presence of KIR2DL3-C1, 3DL1-Bw4, 3DL2-A3/A11 and the full length KIR2DS4-its ligands (8%). This study provided a comprehensive analysis of the KIR-HLA profiles in Thai blood donors in regards to KIR genotypes, HLA ligands, KIR-HLA ligand pairs and compound gene profiles of both iKIRs and aKIRs and their ligands. These findings will be useful as baseline information for further studies in the associations of KIR genes and various diseases.
Collapse
Affiliation(s)
- Pimpun Kitpoka
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Chutima Tammakorn
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suwit Chaisri
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Chulabhorn International College of Medicine (CICM), Thammasat University Rangsit campus, Pathum Thani 12120, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tasanee Mongkolsuk
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Duangtawan Thammanichanond
- Histocompatibility and Immunogenetics Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
62
|
Rettman P, Willem C, David G, Riou R, Legrand N, Esbelin J, Cesbron A, Senitzer D, Gagne K, Retière C. New insights on the natural killer cell repertoire from a thorough analysis of cord blood cells. J Leukoc Biol 2016; 100:471-9. [DOI: 10.1189/jlb.1hi0116-036r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/10/2016] [Indexed: 11/24/2022] Open
|
63
|
Varbanova V, Naumova E, Mihaylova A. Killer-cell immunoglobulin-like receptor genes and ligands and their role in hematologic malignancies. Cancer Immunol Immunother 2016; 65:427-40. [PMID: 26874942 PMCID: PMC11029164 DOI: 10.1007/s00262-016-1806-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells are considered crucial for the elimination of emerging tumor cells. Effector NK-cell functions are controlled by interactions of inhibitory and activating killer-cell immunoglobulin-like receptors (KIRs) on NK cells with human leukocyte antigen (HLA) class I ligands on target cells. KIR and HLA are highly polymorphic genetic systems segregating independently, creating a great diversity in KIR/HLA gene profiles in different individuals. There is an increasing evidence supporting the relevance of KIR and HLA ligand gene background for the occurrence and outcome of certain cancers. However, the data are still controversial and the mechanisms of receptor-ligand mediated NK-cell action remain unclear. Here, the main characteristics and functions of KIRs and their HLA class I ligands are reviewed. In addition, we review the HLA and KIR correlations with different hematological malignancies and discuss our current understanding of the biological significance and mechanisms underlying these associations.
Collapse
Affiliation(s)
- Viktoria Varbanova
- National Specialized Hospital for Active Treatment of Haematological Diseases, Sofia, Bulgaria
| | - Elissaveta Naumova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital "Alexandrovska", Medical University, 1, Georgi Sofiiski Str., 1431, Sofia, Bulgaria
| | - Anastasiya Mihaylova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital "Alexandrovska", Medical University, 1, Georgi Sofiiski Str., 1431, Sofia, Bulgaria.
| |
Collapse
|
64
|
Exploring the Role of Killer Cell Immunoglobulin-Like Receptors and Their HLA Class I Ligands in Autoimmune Hepatitis. PLoS One 2016; 11:e0146086. [PMID: 26744892 PMCID: PMC4712907 DOI: 10.1371/journal.pone.0146086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023] Open
Abstract
Background Natural killer cells are involved in the complex mechanisms underlying autoimmune diseases but few studies have investigated their role in autoimmune hepatitis. Killer immunoglobulin-like receptors are key regulators of natural killer cell-mediated immune responses. Methods and Findings KIR gene frequencies, KIR haplotypes, KIR ligands and combinations of KIRs and their HLA Class I ligands were investigated in 114 patients diagnosed with type 1 autoimmune hepatitis and compared with a group of 221 healthy controls. HLA Class I and Class II antigen frequencies were compared to those of 551 healthy unrelated families representative of the Sardinian population. In our cohort, type 1 autoimmune hepatitis was strongly associated with the HLA-B18, Cw5, DR3 haplotype. The KIR2DS1 activating KIR gene and the high affinity HLA-C2 ligands were significantly higher in patients compared to controls. Patients also had a reduced frequency of HLA-Bw4 ligands for KIR3DL1 and HLA-C1 ligands for KIR2DL3. Age at onset was significantly associated with the KIR2DS1 activating gene but not with HLA-C1 or HLA-C2 ligand groups. Conclusions The activating KIR gene KIR2DS1 resulted to have an important predictive potential for early onset of type 1 autoimmune hepatitis. Additionally, the low frequency of the KIR-ligand combinations KIR3DL1/HLA-Bw4 and KIR2DL3/HLA-C1 coupled to the high frequency of the HLA-C2 high affinity ligands for KIR2DS1 could contribute to unwanted NK cell autoreactivity in AIH-1.
Collapse
|
65
|
Dambaeva SV, Lee DH, Sung N, Chen CY, Bao S, Gilman-Sachs A, Kwak-Kim J, Beaman KD. Recurrent Pregnancy Loss in Women with Killer Cell Immunoglobulin-Like Receptor KIR2DS1 is Associated with an Increased HLA-C2 Allelic Frequency. Am J Reprod Immunol 2015; 75:94-103. [PMID: 26589762 DOI: 10.1111/aji.12453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
PROBLEM During human pregnancy, the uterine lining is highly populated with killer-immunoglobulin-like receptor (KIR)-expressing NK cells that recognize HLA-C molecules on trophoblast cells. The goal of this study was to analyze the KIR gene contents and frequencies in a N. American cohort of women with RPL of unknown etiology to evaluate whether there is a genetic susceptibility to RPL based on a woman's KIR repertoire and her HLA-C group, as well as the HLA-C group of the partner. METHOD OF STUDY The frequencies of KIR and HLA-C1 and HLA-C2 genes were evaluated in 139 Caucasian women with RPL; HLA-C1, and HLA-C2 group genes were analyzed in their partners (n = 42). The gene frequencies were compared with data reported from corresponding populations. RESULTS Overall, the frequencies of HLA-C groups and KIR genes and genotypes in RPL cohort resembled the frequencies for US Caucasians. The HLA-C1 and HLA-C2 group distribution was significantly different between women with or without KIR2DS1. Women positive for KIR2DS1 (45.3% of the study cohort) had an increased frequency of its ligand, HLA-C2 (0.5159 versus 0.3684 in KIR2DS1 negative women, P = 0.014). CONCLUSION Our results indicate that among KIR2DS1 pos women, the co-expression of HLA-C2 is associated with RPL.
Collapse
Affiliation(s)
- Svetlana V Dambaeva
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Dong Hyung Lee
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nayoung Sung
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Chi-Yao Chen
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Shihua Bao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alice Gilman-Sachs
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Clinical Immunology Laboratory, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
66
|
Della Chiesa M, Sivori S, Carlomagno S, Moretta L, Moretta A. Activating KIRs and NKG2C in Viral Infections: Toward NK Cell Memory? Front Immunol 2015; 6:573. [PMID: 26617607 PMCID: PMC4638145 DOI: 10.3389/fimmu.2015.00573] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 01/27/2023] Open
Abstract
Natural killer (NK) cells are important players in the immune defense against viral infections. The contribution of activating killer immunoglobulin-like receptors (KIRs) and CD94/NKG2C in regulating anti-viral responses has recently emerged. Thus, in the hematopoietic stem cell transplantation setting, the presence of donor activating KIRs (aKIRs) may protect against viral infections, while in HIV-infected individuals, KIR3DS1, in combination with HLA-Bw4-I80, results in reduction of viral progression. Since, studies have been performed mainly at the genetic or transcriptional level, the effective size, the function, and the "licensing" status of NK cells expressing aKIRs, as well as the nature of their viral ligands, require further investigation. Certain viral infections, mainly due to Human cytomegalovirus (HCMV), can deeply influence the NK cell development and function by inducing a marked expansion of mature NKG2C(+) NK cells expressing self-activating KIRs. This suggests that NKG2C and/or aKIRs are involved in the selective proliferation of this subset. The persistent, HCMV-induced, imprinting suggests that NK cells may display unexpected adaptive immune traits. The role of aKIRs and NKG2C in regulating NK cell responses and promoting a memory-like response to certain viruses is discussed.
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| | - Lorenzo Moretta
- Dipartimento di Immunologia, IRCCS Ospedale Bambin Gesù , Roma , Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| |
Collapse
|
67
|
Zhen J, He L, Xu Y, Zhao J, Yu Q, Zou H, Sun G, Deng Z. Allelic polymorphism of KIR2DL2/2DL3 in a southern Chinese population. ACTA ACUST UNITED AC 2015; 86:362-7. [PMID: 26423800 DOI: 10.1111/tan.12681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022]
Abstract
KIR2DL2 and KIR2DL3 segregate as alleles of the same killer cell immunoglobulin-like receptor (KIR) gene locus. They have been associated with viral infectious diseases and certain cancers and their allelic information may help to better comprehend mechanisms. The allelic polymorphism of KIR2DL2/2DL3 has been shown to influence their binding specificity and affinity to the HLA-C1 ligands. The present study aims to investigate the distribution of the allelic polymorphism of KIR2DL2/2DL3 in a southern Chinese population using sequence-specific primer polymerase chain reaction (PCR-SSP) and PCR-sequence-based typing (SBT) at the entire coding sequence. Of the 306 tested individuals, 1.96% were positive for KIR2DL2 only, 78.10% for KIR2DL3 only, and 19.93% for both KIR2DL2 and 2DL3. KIR2DL3 showed a high degree of diversity in the study population with 15 alleles detected including 8 novel ones. The predominant 2DL3 allele in the study population is 2DL3*00101 (92.81%) followed by 2DL3*00201 (24.18%), 2DL3*023 (4.25%), and 2DL3*00109 (1.31%). The remaining 11 2DL3 alleles all had a frequency below 1%. Three detected 2DL2 alleles were 2DL2*00301 (18.95%), 2DL2*00101 (3.59%), and the novel 2DL2*013 (0.33%). These results provide further insight into the KIR gene diversity in Southern Chinese and may help to better understand the role played by KIR genes in associated diseases.
Collapse
Affiliation(s)
- J Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - L He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Y Xu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - J Zhao
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Q Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - H Zou
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - G Sun
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Z Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| |
Collapse
|
68
|
Roquilly A, David G, Cinotti R, Vourc'h M, Morin H, Rozec B, Retière C, Asehnoune K. Role of IL-12 in overcoming the low responsiveness of NK cells to missing self after traumatic brain injury. Clin Immunol 2015; 177:87-94. [PMID: 26387630 DOI: 10.1016/j.clim.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023]
Abstract
Blood samples from 32 patients with severe Traumatic brain injury (TBI) were studied and compared with 11 cardiac surgery patients, and 29 healthy controls. A dramatic decreased expression of HLA class I molecules on monocytes was associated with increased KIR+ NK cell frequency in TBI patients. Overall, the phenotype of TBI NK cells marked by KIR and CD57 expression and lower level of NKp46 and DNAM-1 reflected a differentiated state. The NK-cell response to missing self was marked by lower degranulation and lower IFN-γ production after stimulation with HLA class I deficient cell line. In contrast, the NK-cell ADCC was not altered. IL-12 was able to restore both IFN-γ production and the cytotoxicity capacities of NK cells. This study provides the first extensive description of the phenotype and functions of NK cells in TBI patients. Further evaluation of IL-12 treatment to overcome immunosuppression-induced nosocomial infections is warranted.
Collapse
Affiliation(s)
- Antoine Roquilly
- Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu - HME, University Hospital of Nantes, France
| | - Gaëlle David
- Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu - HME, University Hospital of Nantes, France; Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826 Nantes, France; Etablissement Français du Sang, Nantes, France; Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, France
| | - Raphael Cinotti
- Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu - HME, University Hospital of Nantes, France; Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826 Nantes, France
| | - Mickaël Vourc'h
- Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu - HME, University Hospital of Nantes, France; Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826 Nantes, France
| | - Helene Morin
- Intensive Care Unit, Anesthesia and Critical Care Department, Laennec, University Hospital of Nantes,Nantes, France
| | - Bertrand Rozec
- Intensive Care Unit, Anesthesia and Critical Care Department, Laennec, University Hospital of Nantes,Nantes, France
| | - Christelle Retière
- Etablissement Français du Sang, Nantes, France; Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, France
| | - Karim Asehnoune
- Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu - HME, University Hospital of Nantes, France; Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826 Nantes, France.
| |
Collapse
|
69
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
70
|
Manser AR, Weinhold S, Uhrberg M. Human KIR repertoires: shaped by genetic diversity and evolution. Immunol Rev 2015; 267:178-96. [DOI: 10.1111/imr.12316] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angela R. Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics; Heinrich-Heine University Düsseldorf; Medical Faculty; Düsseldorf Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics; Heinrich-Heine University Düsseldorf; Medical Faculty; Düsseldorf Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics; Heinrich-Heine University Düsseldorf; Medical Faculty; Düsseldorf Germany
| |
Collapse
|
71
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
72
|
Grosso DA, Hess RC, Weiss MA. Immunotherapy in acute myeloid leukemia. Cancer 2015; 121:2689-704. [PMID: 26095886 DOI: 10.1002/cncr.29378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Abstract
Despite the remarkable progress made in some leukemias such as CML and CLL, cytotoxic treatment for AML remains essentially unchanged over the last 4 decades. Several lines of evidence, including the graft versus leukemia effect associated with allogeneic hematopoietic stem cell transplantation (HSCT), suggest that immunotherapy is an active modality in AML. Given the lack of progress for chemotherapy in this disease, many novel immunologic treatment approaches have been explored. The goals of non-transplant-based immune approaches have largely consisted of the stimulation or restoration of endogenous immune responses or the targeting of specific tumor antigens by immune cells. These strategies have been associated with less toxicity than allogeneic HSCT but typically have inferior efficacy. Allogeneic HSCT exploits major and minor histocompatibility differences between the donor and recipient in order to recognize and eradicate malignancy. With the recognition that the immune system itself provides a basis for treating AML, immunotherapy continues to be an attractive modality to exploit in the treatment of this disease.
Collapse
Affiliation(s)
- Dolores A Grosso
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rosemary C Hess
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark A Weiss
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
73
|
Ayo CM, Reis PG, Dalalio MMDO, Visentainer JEL, Oliveira CDF, de Araújo SM, de Oliveira Marques DS, Sell AM. Killer Cell Immunoglobulin-like Receptors and Their HLA Ligands are Related with the Immunopathology of Chagas Disease. PLoS Negl Trop Dis 2015; 9:e0003753. [PMID: 25978047 PMCID: PMC4433128 DOI: 10.1371/journal.pntd.0003753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/11/2015] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the influence of killer cell immunoglobulin-like receptor (KIR) genes and their human leucocyte antigen (HLA) ligands in the susceptibility of chronic Chagas disease. This case-control study enrolled 131 serologically-diagnosed Chagas disease patients (59 men and 72 women, mean age of 60.4 ± 9.8 years) treated at the University Hospital of Londrina and the Chagas Disease Laboratory of the State University of Maringa. A control group was formed of 165 healthy individuals - spouses of patients or blood donors from the Regional Blood Bank in Maringa (84 men and 81 women, with a mean age of 59.0 ± 11.4 years). Genotyping of HLA and KIR was performed by PCR-SSOP. KIR2DS2-C1 in the absence of KIR2DL2 (KIR2DS2+/2DL2-/C1+) was more frequent in Chagas patients (P = 0.020; Pc = 0.040; OR = 2.14) and, in particular, those who manifested chronic chagasic cardiopathy—CCC (P = 0.0002; Pc = 0.0004; OR = 6.64; 95% CI = 2.30–18.60) when compared to the control group, and when CCC group was compared to the patients without heart involvement (P = 0.010; Pc = 0.020; OR = 3.97). The combination pair KIR2DS2+/2DL2-/KIR2DL3+/C1+ was also positively associated with chronic chagasic cardiopathy. KIR2DL2 and KIR2DS2 were related to immunopathogenesis in Chagas disease. The combination of KIR2DS2 activating receptor with C1 ligand, in the absence of KIR2DL2, may be related to a risk factor in the chronic Chagas disease and chronic chagasic cardiopathy. Chagas disease is an infection caused by the haemoflagellate protozoan Trypanosoma cruzi. It is one of the most important public health problems in Latin America, and was first described by Carlos Justiniano Ribeiro das Chagas, a Brazilian physician and scientist, in 1909. It is mostly vector-borne transmitted to humans by contact with faeces of triatomine bugs. The World Health Organization estimates that about 6 to 7 million people are currently infected with T. cruzi worldwide. The disease is characterised by acute and chronic phases. The immune response during disease development is crucial for protection because immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. In this work we analysed the role of receptors of immune cells known as Natural Killer cells (killer cell immunoglobulin-like receptor—KIR) and their ligands (Human leukocyte antigens—HLA) in chagasic patients compared to healthy individuals. The uncontrolled activation of NK cells can lead to tissue damage, which, in turn, leads to the development of serious chronic illness. We found that KIR-HLA complex may be related to a risk factor in the chronic Chagas disease and chronic chagasic cardiopathy.
Collapse
Affiliation(s)
- Christiane Maria Ayo
- Post Graduation Program of Biosciences Applied to Pharmacy, Department of Analysis Clinical and Biomedicine, Maringa State University, Maringa, Parana, Brazil
| | - Pâmela Guimarães Reis
- Post Graduation Program of Biosciences Applied to Pharmacy, Department of Analysis Clinical and Biomedicine, Maringa State University, Maringa, Parana, Brazil
| | | | | | - Camila de Freitas Oliveira
- Post Graduation Program of Biosciences Applied to Pharmacy, Department of Analysis Clinical and Biomedicine, Maringa State University, Maringa, Parana, Brazil
| | | | | | - Ana Maria Sell
- Basic Health Sciences, Maringa State University, Maringa, Parana, Brazil
- * E-mail: ,
| |
Collapse
|
74
|
Marra J, Greene J, Hwang J, Du J, Damon L, Martin T, Venstrom JM. KIR and HLA genotypes predictive of low-affinity interactions are associated with lower relapse in autologous hematopoietic cell transplantation for acute myeloid leukemia. THE JOURNAL OF IMMUNOLOGY 2015; 194:4222-30. [PMID: 25810393 DOI: 10.4049/jimmunol.1402124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
Killer cell Ig-like receptors (KIRs) bind cognate HLA class I ligands with distinct affinities, affecting NK cell licensing and inhibition. We hypothesized that differences in KIR and HLA class I genotypes predictive of varying degrees of receptor-ligand binding affinities influence clinical outcomes in autologous hematopoietic cell transplantation (AHCT) for acute myeloid leukemia (AML). Using genomic DNA from a homogeneous cohort of 125 AML patients treated with AHCT, we performed KIR and HLA class I genotyping and found that patients with a compound KIR3DL1(+) and HLA-Bw4-80Thr(+), HLA-Bw4-80Ile(-) genotype, predictive of low-affinity interactions, had a low incidence of relapse, compared with patients with a KIR3DL1(+) and HLA-Bw4-80Ile(+) genotype, predictive of high-affinity interactions (hazard ratio [HR], 0.22; 95% confidence interval [CI], 0.06-0.78; p = 0.02). This effect was influenced by HLA-Bw4 copy number, such that relapse progressively increased with one copy of HLA-Bw4-80Ile (HR, 1.6; 95% CI, 0.84-3.1; p = 0.15) to two to three copies (HR, 3.0; 95% CI, 1.4-6.5; p = 0.005) and progressively decreased with one to two copies of HLA-Bw4-80Thr (p = 0.13). Among KIR3DL1(+) and HLA-Bw4-80Ile(+) patients, a predicted low-affinity KIR2DL2/3(+) and HLA-C1/C1 genotype was associated with lower relapse than a predicted high-affinity KIR2DL1(+) and HLA-C2/C2 genotype (HR, 0.25; 95% CI, 0.09-0.73; p = 0.01). Similarly, a KIR3DL1(+) and HLA-Bw4-80Thr(+), HLA-Bw4-80Ile(-) genotype, or lack of KIR3DL1(+) and HLA-Bw4-80Ile(+) genotype, rescued KIR2DL1(+) and HLA-C2/C2 patients from high relapse (p = 0.007). These findings support a role for NK cell graft-versus-leukemia activity modulated by NK cell receptor-ligand affinities in AHCT for AML.
Collapse
Affiliation(s)
- John Marra
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Justin Greene
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Jimmy Hwang
- Biostatistics Core, University of California, San Francisco, Helen Diller Comprehensive Cancer Center, San Francisco, CA 94115
| | - Juan Du
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Lloyd Damon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Tom Martin
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Jeffrey M Venstrom
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| |
Collapse
|
75
|
The story of CD4+ CD28- T cells revisited: solved or still ongoing? J Immunol Res 2015; 2015:348746. [PMID: 25834833 PMCID: PMC4365319 DOI: 10.1155/2015/348746] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023] Open
Abstract
CD4+CD28− T cells are a unique type of proinflammatory T cells characterised by blockade of costimulatory CD28 receptor expression at the transcriptional level, which is still reversible by IL-12. In healthy individuals older than 65 years, these cells may accumulate to up to 50% of total CD4+ T lymphocytes as in many immune-mediated diseases, immunodeficiency, and specific infectious diseases. Here we focus on CD4+CD28− T cells in chronic immune-mediated diseases, summarizing various phenotypic and functional characteristics, which vary depending on the underlying disease, disease activity, and concurrent treatment. CD4+CD28− T cells present as effector/memory cells with increased replicative history and oligoclonality but reduced apoptosis. As an alternative costimulatory signal instead of CD28, not only natural killer cell receptors and Toll-like receptors, but also CD47, CTLA-4, OX40, and 4-1BB have to be considered. The proinflammatory and cytotoxic capacities of these cells indicate an involvement in progression and maintenance of chronic immune-mediated disease. So far it has been shown that treatment with TNF-α blockers, abatacept, statins, and polyclonal antilymphocyte globulins (ATG) mediates reduction of the CD4+CD28− T cell level. The clinical relevance of targeting CD4+CD28− T cells as a therapeutic option has not been examined so far.
Collapse
|
76
|
Role of Donor Activating KIR-HLA Ligand-Mediated NK Cell Education Status in Control of Malignancy in Hematopoietic Cell Transplant Recipients. Biol Blood Marrow Transplant 2015; 21:829-39. [PMID: 25617806 DOI: 10.1016/j.bbmt.2015.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/19/2015] [Indexed: 11/21/2022]
Abstract
Some cancers treated with allogeneic hematopoietic stem cell transplantation (HSCT) are sensitive to natural killer cell (NK) reactivity. NK function depends on activating and inhibitory receptors and is modified by NK education/licensing effect and mediated by coexpression of inhibitory killer-cell immunoglobulin-like receptor (KIR) and its corresponding HLA I ligand. We assessed activating KIR (aKIR)-based HLA I-dependent education capacity in donor NKs in 285 patients with hematological malignancies after HSCT from unrelated donors. We found significantly adverse progression-free survival (PFS) and time to progression (TTP) in patients who received transplant from donors with NKs educated by C1:KIR2DS2/3, C2:KIR2DS1, or Bw4:KIR3DS1 pairs (for PFS: hazard ratio [HR], 1.70; P = .0020, Pcorr = .0039; HR, 1.54; P = .020, Pcorr = .039; HR, 1.51; P = .020, Pcorr = .040; and for TTP: HR, 1.82; P = .049, Pcorr = .096; HR, 1.72; P = .096, Pcorr = .18; and HR, 1.65; P = .11, Pcorr = .20, respectively). Reduced PFS and TTP were significantly dependent on the number of aKIR-based education systems in donors (HR, 1.36; P = .00031, Pcorr = .00062; and HR, 1.43; P = .019, Pcorr = .038). Furthermore, the PFS and TTP were strongly adverse in patients with missing HLA ligand cognate with educating aKIR-HLA pair in donor (HR, 3.25; P = .00022, Pcorr = .00045; and HR, 3.82; P = .027, Pcorr = .054). Together, these data suggest important qualitative and quantitative role of donor NK education via aKIR-cognate HLA ligand pairs in the outcome of HSCT. Avoiding the selection of transplant donors with high numbers of aKIR-HLA-based education systems, especially for recipients with missing cognate ligand, is advisable.
Collapse
|
77
|
A KIR B centromeric region present in Africans but not Europeans protects pregnant women from pre-eclampsia. Proc Natl Acad Sci U S A 2015; 112:845-50. [PMID: 25561558 DOI: 10.1073/pnas.1413453112] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In sub-Saharan Africans, maternal mortality is unacceptably high, with >400 deaths per 100,000 births compared with <10 deaths per 100,000 births in Europeans. One-third of the deaths are caused by pre-eclampsia, a syndrome arising from defective placentation. Controlling placentation are maternal natural killer (NK) cells that use killer-cell immunoglobulin-like receptor (KIR) to recognize the fetal HLA-C molecules on invading trophoblast. We analyzed genetic polymorphisms of maternal KIR and fetal HLA-C in 484 normal and 254 pre-eclamptic pregnancies at Mulago Hospital, Kampala, Uganda. The combination of maternal KIR AA genotypes and fetal HLA-C alleles encoding the C2 epitope associates with pre-eclampsia [P = 0.0318, odds ratio (OR) = 1.49]. The KIR genes associated with protection are located in centromeric KIR B regions that are unique to sub-Saharan African populations and contain the KIR2DS5 and KIR2DL1 genes (P = 0.0095, OR = 0.59). By contrast, telomeric KIR B genes protect Europeans against pre-eclampsia. Thus, different KIR B regions protect sub-Saharan Africans and Europeans from pre-eclampsia, whereas in both populations, the KIR AA genotype is a risk factor for the syndrome. These results emphasize the importance of undertaking genetic studies of pregnancy disorders in African populations with the potential to provide biological insights not available from studies restricted to European populations.
Collapse
|
78
|
Cassidy S, Mukherjee S, Myint TM, Mbiribindi B, North H, Traherne J, Mulder A, Claas FHJ, Purbhoo MA, Das J, Khakoo SI. Peptide selectivity discriminates NK cells from KIR2DL2- and KIR2DL3-positive individuals. Eur J Immunol 2014; 45:492-500. [PMID: 25359276 PMCID: PMC4324016 DOI: 10.1002/eji.201444613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/26/2014] [Accepted: 10/24/2014] [Indexed: 11/11/2022]
Abstract
Natural killer cells are controlled by peptide selective inhibitory receptors for MHC class I, including the killer cell immunoglobulin‐like receptors (KIRs). Despite having similar ligands, KIR2DL2 and KIR2DL3 confer different levels of protection to infectious disease. To investigate how changes in peptide repertoire may differentially affect NK cell reactivity, NK cells from KIR2DL2 and KIR2DL3 homozygous donors were tested for activity against different combinations of strong inhibitory (VAPWNSFAL), weak inhibitory (VAPWNSRAL), and antagonist peptide (VAPWNSDAL). KIR2DL3‐positive NK cells were more sensitive to changes in the peptide content of MHC class I than KIR2DL2‐positive NK cells. These differences were observed for the weakly inhibitory peptide VAPWNSRAL in single peptide and double peptide experiments (p < 0.01 and p < 0.03, respectively). More significant differences were observed in experiments using all three peptides (p < 0.0001). Mathematical modeling of the experimental data demonstrated that VAPWNSRAL was dominant over VAPWNSFAL in distinguishing KIR2DL3‐ from KIR2DL2‐positive donors. Donors with different KIR genotypes have different responses to changes in the peptide bound by MHC class I. Differences in the response to the peptide content of MHC class I may be one mechanism underlying the protective effects of different KIR genes against infectious disease.
Collapse
Affiliation(s)
- Sorcha Cassidy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK; Division of Medicine, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kraemer T, Blasczyk R, Bade-Doeding C. HLA-E: a novel player for histocompatibility. J Immunol Res 2014; 2014:352160. [PMID: 25401109 PMCID: PMC4221882 DOI: 10.1155/2014/352160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022] Open
Abstract
The classical class I human leukocyte antigens (HLA-A, -B, and -C) present allele-specific self- or pathogenic peptides originated by intracellular processing to CD8(+) immune effector cells. Even a single mismatch in the heavy chain (hc) of an HLA class I molecule can impact on the peptide binding profile. Since HLA class I molecules are highly polymorphic and most of their polymorphisms affect the peptide binding region (PBR), it becomes obvious that systematic HLA matching is crucial in determining the outcome of transplantation. The opposite holds true for the nonclassical HLA class I molecule HLA-E. HLA-E polymorphism is restricted to two functional versions and is thought to present a limited set of highly conserved peptides derived from class I leader sequences. However, HLA-E appears to be a ligand for the innate and adaptive immune system, where the immunological response to peptide-HLA-E complexes is dictated through the sequence of the bound peptide. Structural investigations clearly demonstrate how subtle amino acid differences impact the strength and response of the cognate CD94/NKG2 or T cell receptor.
Collapse
Affiliation(s)
- Thomas Kraemer
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| | - Christina Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| |
Collapse
|
80
|
Future directions of clinical laboratory evaluation of pregnancy. Cell Mol Immunol 2014; 11:582-8. [PMID: 25042633 DOI: 10.1038/cmi.2014.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/23/2023] Open
Abstract
In recent years, our understanding of how the immune system interacts with the developing fetus and placenta has greatly expanded. There are many laboratories that provide tests for diagnosis of pregnancy outcome in women who have recurrent pregnancy loss (RPL) or pre-eclampsia. These tests are based on the premise that immune response to the fetus is equivalent to the adaptive immune response to a transplant. New understanding leads to the concept that the activated innate response is vital for pregnancy and this can result in more effective testing and treatment to prevent an abnormal pregnancy in the future. We describe here only three such areas for future testing: one area involves sperm and semen and factors necessary for successful fertilization; another area would determine conditions for production of growth factors necessary for implantation in the uterus; finally, the last area would be to determine conditions necessary for the vascularization of the placenta and growing fetus by activated natural killer (NK) cells (combinations of killer cell immunoglobulin-like receptor (KIR) family genes with HLA-C haplotypes) that lead to capability of secreting angiogenic growth factors. These areas are novel but understanding their role in pregnancy can lead to insight into how to maintain and treat pregnancies with complicating factors.
Collapse
|
81
|
Ivarsson MA, Michaëlsson J, Fauriat C. Activating killer cell Ig-like receptors in health and disease. Front Immunol 2014; 5:184. [PMID: 24795726 PMCID: PMC4001058 DOI: 10.3389/fimmu.2014.00184] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/07/2014] [Indexed: 01/08/2023] Open
Abstract
Expression of non-rearranged HLA class I-binding receptors characterizes human and mouse NK cells. The postulation of the missing-self hypothesis some 30 years ago triggered the subsequent search and discovery of inhibitory MHC-receptors, both in humans and mice. These receptors have two functions: (i) to control the threshold for NK cell activation, a process termed “licensing” or “education,” and (ii) to inhibit NK cell activation during interactions with healthy HLA class I-expressing cells. The discovery of activating forms of KIRs (aKIR) challenged the concept of NK cell tolerance in steady state, as well as during immune challenge: what is the biological role of the activating KIR, in particular when NK cells express aKIRs in the absence of inhibitory receptors? Recently it was shown that aKIRs also participate in the education of NK cells. However, instead of lowering the threshold of activation like iKIRs, the expression of aKIRs has the opposite effect, i.e., rendering NK cells hyporesponsive. These findings may have consequences during NK cell response to viral infection, in cancer development, and in the initial stages of pregnancy. Here we review the current knowledge of activating KIRs, including the biological concept of aKIR-dependent NK cell education, and their impact in health and disease.
Collapse
Affiliation(s)
- Martin A Ivarsson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Cyril Fauriat
- U1068, CRCM, Immunity and Cancer, INSERM , Marseille , France ; Institut Paoli-Calmettes , Marseille , France ; UM 105, Aix-Marseille Université , Marseille , France ; UMR 7258, CNRS , Marseille , France ; U1068, CRCM, Plateforme d'Immunomonitoring en Cancérologie, INSERM , Marseille , France
| |
Collapse
|