51
|
Butyrophilins: an important new element of resistance. Cent Eur J Immunol 2017; 42:399-403. [PMID: 29472819 PMCID: PMC5820976 DOI: 10.5114/ceji.2017.72806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
Butyrophilins belonging to the immunoglobulin superfamily are new immune system regulators because they are present on lymphocytes, dendritic cells, monocytes, macrophages, neutrophils and eosinophils, and they exert a stimulatory and (or) inhibitory effect on them. The role of butyrophilins is associated and results from their similarity to the regulatory B7 protein family involved in the modulation of immune phenomena. Butyrophilins are glycoproteins built of two extracellular immunoglobulin domains, stabilized with disulfide bonds: constant IgC, and variable IgV and a transmembrane region. Most of these proteins contain a conserved domain encoded by a single exon – B30.2, also referred to as PRYSPRY. In humans, the family of butyrophilins includes 7 butyrophilin proteins, 5 butyrophilin-like proteins and the SKINT-like factor. Butyrophilins have been also demonstrated to play a role in various infections, e.g. tuberculosis or diseases that include sarcoidosis, systemic lupus erythematosus, rheumatoid arthritis, genetic metabolic diseases, ulcerative colitis, cancer and kidney disease.
Collapse
|
52
|
Franchini DM, Michelas M, Lanvin O, Poupot M, Fournié JJ. BTN3A1-antibodies and phosphoantigens: TCRVγ9Vδ2 "see" the difference. Eur J Immunol 2017; 47:954-957. [PMID: 28597565 DOI: 10.1002/eji.201747058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/11/2022]
Abstract
Human blood γδ T lymphocytes express TCRVγ9Vδ2 and respond to nonpeptide phosphoantigens (PAgs) by a mysterious mechanism involving the BTN3A1 (CD277) molecule . BTN3A1 is a butyrophilin-like protein related to CD80, PD-L1, and MHC, and is either a presenting or a co-stimulatory molecule for PAgs. Although the precise roles and molecular interactions with the TCRVγ9Vδ2 are currently not determined, it is commonly thought that all TCRVγ9Vδ2 lymphocytes 'see' PAg and BTN3A1 together, presumably in a single molecular recognition event. But whether this recognition event could be reproduced in a simplified model was not addressed in previous studies. In this issue, Starick et al. (Eur. J. Immunol. 2017. 47: 982-992) compared the response of three TCRVγ9Vδ2 pairs of murine and human cell transfectants to PAg and anti-BTN3A1 antibodies using IL-2 release as a readout. The authors found that although the two murine transfectants responded similarly to either stimuli, one murine TCRVγ9Vδ2 transfectant reacted to PAgs but not to anti-BTN3A1 (mAb 20.1). Human transductants behave in a similar fashion, demonstrating that TCRVγ9Vδ2 lymphocytes differentiate PAg and BTN3A1 signals, while species of the transductants unmask this differential sensitivity. Indeed, understanding the puzzling mode of antigen recognition by γδ T lymphocytes will be essential for developing γδ T-cell-based immunotherapies, and the authors of this study now demonstrate that TCRVγ9Vδ2 lymphocytes are able to differentiate the PAg and BTN3A1 stimuli.
Collapse
Affiliation(s)
- Don-Marc Franchini
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Marie Michelas
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Olivia Lanvin
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| | - Jean Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR
| |
Collapse
|
53
|
Salim M, Knowles TJ, Baker AT, Davey MS, Jeeves M, Sridhar P, Wilkie J, Willcox CR, Kadri H, Taher TE, Vantourout P, Hayday A, Mehellou Y, Mohammed F, Willcox BE. BTN3A1 Discriminates γδ T Cell Phosphoantigens from Nonantigenic Small Molecules via a Conformational Sensor in Its B30.2 Domain. ACS Chem Biol 2017; 12:2631-2643. [PMID: 28862425 DOI: 10.1021/acschembio.7b00694] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human Vγ9/Vδ2 T-cells detect tumor cells and microbial infections by recognizing small phosphorylated prenyl metabolites termed phosphoantigens (P-Ag). The type-1 transmembrane protein Butyrophilin 3A1 (BTN3A1) is critical to the P-Ag-mediated activation of Vγ9/Vδ2 T-cells; however, the molecular mechanisms involved in BTN3A1-mediated metabolite sensing are unclear, including how P-Ag's are discriminated from nonantigenic small molecules. Here, we utilized NMR and X-ray crystallography to probe P-Ag sensing by BTN3A1. Whereas the BTN3A1 immunoglobulin variable domain failed to bind P-Ag, the intracellular B30.2 domain bound a range of negatively charged small molecules, including P-Ag, in a positively charged surface pocket. However, NMR chemical shift perturbations indicated BTN3A1 discriminated P-Ag from nonantigenic small molecules by their ability to induce a specific conformational change in the B30.2 domain that propagated from the P-Ag binding site to distal parts of the domain. These results suggest BTN3A1 selectively detects P-Ag intracellularly via a conformational antigenic sensor in its B30.2 domain and have implications for rational design of antigens for Vγ9/Vδ2-based T-cell immunotherapies.
Collapse
Affiliation(s)
- Mahboob Salim
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Timothy J Knowles
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Alfie T. Baker
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Martin S. Davey
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Mark Jeeves
- Institute
of Cancer and Genomics, Henry Wellcome Building for Biomolecular NMR, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Pooja Sridhar
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - John Wilkie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Carrie R. Willcox
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Hachemi Kadri
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Taher E. Taher
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Pierre Vantourout
- Peter
Gorer Department of Immunobiology, King’s College London, London SE1 9RT, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Adrian Hayday
- Peter
Gorer Department of Immunobiology, King’s College London, London SE1 9RT, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Youcef Mehellou
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Fiyaz Mohammed
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Benjamin E. Willcox
- Institute
of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| |
Collapse
|
54
|
Wood CW, Woolfson DN. CCBuilder 2.0: Powerful and accessible coiled-coil modeling. Protein Sci 2017; 27:103-111. [PMID: 28836317 PMCID: PMC5734305 DOI: 10.1002/pro.3279] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. LAY SUMMARY We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology.
Collapse
Affiliation(s)
- Christopher W Wood
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom.,BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
55
|
Anti-Tumor Activity and Immunotherapeutic Potential of a Bisphosphonate Prodrug. Sci Rep 2017; 7:5987. [PMID: 28729550 PMCID: PMC5519590 DOI: 10.1038/s41598-017-05553-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/31/2017] [Indexed: 01/20/2023] Open
Abstract
Bisphosphonates have benefits in breast cancer and multiple myeloma patients and have been used with adoptive immunotherapy with γδ T cells expressing Vγ2 Vδ2 TCRs. Although treatment with γδ T cells is safe, it has shown limited efficacy. Present bisphosphonates stimulate γδ T cells but were designed to inhibit bone resorption rather than treating cancer and have limited oral absorption, tumor cell entry, and cause bone side effects. The development of phosphate and phosphonate nucleotide prodrugs has led to important drugs for hepatitis C and HIV. Using a similar approach, we synthesized bisphosphonate prodrugs and found that they efficiently limit tumor cell growth. Pivoxil bisphosphonate esters enter cells where esterases convert them to their active acids. The bisphosphonate esters stimulated γδ T cells to secrete TNF-α in response to a variety of tumor cells more efficiently than their corresponding acids. The most active compound, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1- bisphosphonate (7), specifically expanded γδ T cells and stimulated them to secrete interferon-γ and kill tumor cells. In preclinical studies, combination therapy with compound 7 and γδ T cells prolonged survival of mice inoculated with either human bladder cancer or fibrosarcoma cells. Therefore, bisphosphonate prodrugs could enhance the effectiveness of adoptive cancer immunotherapy with γδ T cells.
Collapse
|
56
|
Nguyen K, Li J, Puthenveetil R, Lin X, Poe MM, Hsiao CHC, Vinogradova O, Wiemer AJ. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB J 2017; 31:4697-4706. [PMID: 28705810 DOI: 10.1096/fj.201601370rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
Small isoprenoid diphosphates, such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), are ligands of the internal domain of BTN3A1. Ligand binding in target cells promotes activation of Vγ9Vδ2 T cells. We demonstrate by small-angle X-ray scattering (SAXS) that HMBPP binding to the internal domain of BTN3A1 induces a conformational change in the position of the B30.2 domain relative to the juxtamembrane (JM) region. To better understand the molecular details of this conformational rearrangement, NMR spectroscopy was used to discover that the JM region interacts with HMBPP, specifically at the diphosphate. The spectral location of the affected amide peaks, partial NMR assignments, and JM mutants (ST296AA or T304A) investigated, confirm that the backbone amide of at least one Thr (Thr304), adjacent to conserved Ser, comes close to the HMBPP diphosphate, whereas double mutation of nonconserved residues (Ser/Thr296/297) may perturb the local fold. Cellular mutation of either of the identified Thr residues reduces the activation of Vγ9Vδ2 T cells by HMBPP, zoledronate, and POM2-C-HMBP, but not by a partial agonist BTN3 antibody. Taken together, our results show that ligand binding to BTN3A1 induces a conformational change within the intracellular domain that involves the JM region and is required for full activation.-Nguyen, K., Li, J., Puthenveetil, R., Lin, X., Poe, M. M., Hsiao, C.-H. C., Vinogradova, O., Wiemer, A. J. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Robbins Puthenveetil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaochen Lin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Michael M Poe
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA; .,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
57
|
Chitadze G, Oberg HH, Wesch D, Kabelitz D. The Ambiguous Role of γδ T Lymphocytes in Antitumor Immunity. Trends Immunol 2017; 38:668-678. [PMID: 28709825 DOI: 10.1016/j.it.2017.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
γδ T cells play a role in immune surveillance because they recognize stress-induced surface molecules and metabolic intermediates that are frequently dysregulated in transformed cells. Hence, γδ T cells have attracted much interest as effector cells in cell-based immunotherapy. Recently, however, it has been realized that γδ T cells can also promote tumorigenesis through various mechanisms including regulatory activity and IL-17 production. In this review we outline both the pathways involved in cancer cell recognition and killing by γδ T cells as well as current evidence for their protumorigenic activity in various models. Finally, we discuss strategies to improve the tumor reactivity of γδ T cells and to counteract their protumorigenic activities, which should open improved perspectives for their clinical application.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany.
| |
Collapse
|
58
|
Zumwalde NA, Sharma A, Xu X, Ma S, Schneider CL, Romero-Masters JC, Hudson AW, Gendron-Fitzpatrick A, Kenney SC, Gumperz JE. Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model. JCI Insight 2017; 2:93179. [PMID: 28679955 DOI: 10.1172/jci.insight.93179] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
A central issue for adoptive cellular immunotherapy is overcoming immunosuppressive signals to achieve tumor clearance. While γδ T cells are known to be potent cytolytic effectors that can kill a variety of cancers, it is not clear whether they are inhibited by suppressive ligands expressed in tumor microenvironments. Here, we have used a powerful preclinical model where EBV infection drives the de novo generation of human B cell lymphomas in vivo, and autologous T lymphocytes are held in check by PD-1/CTLA-4-mediated inhibition. We show that a single dose of adoptively transferred Vδ2+ T cells has potent antitumor effects, even in the absence of checkpoint blockade or activating compounds. Vδ2+ T cell immunotherapy given within the first 5 days of EBV infection almost completely prevented the outgrowth of tumors. Vδ2+ T cell immunotherapy given more than 3 weeks after infection (after neoplastic transformation is evident) resulted in a dramatic reduction in tumor burden. The immunotherapeutic Vδ2+ T cells maintained low cell surface expression of PD-1 in vivo, and their recruitment to tumors was followed by a decrease in B cells expressing PD-L1 and PD-L2 inhibitory ligands. These results suggest that adoptively transferred PD-1lo Vδ2+ T cells circumvent the tumor checkpoint environment in vivo.
Collapse
Affiliation(s)
| | | | - Xuequn Xu
- Department of Medical Microbiology and Immunology
| | - Shidong Ma
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christine L Schneider
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - James C Romero-Masters
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amy W Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Annette Gendron-Fitzpatrick
- Comparative Pathology Laboratory, Research Animal Resources Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shannon C Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
59
|
Abstract
In contrast to conventional T lymphocytes, which carry an αβ T-cell receptor and recognize antigens as peptides presented by major histocompatibility complex class I or class II molecules, human γδ T cells recognize different metabolites such as non-peptidic pyrophosphate molecules that are secreted by microbes or overproduced by tumor cells. Hence, γδ T cells play a role in immunosurveillance of infection and cellular transformation. Until recently, it has been unknown how the γδ T-cell receptor senses such pyrophosphates in the absence of known antigen-presenting molecules. Recent studies from several groups have identified a unique role of butyrophilin (BTN) protein family members in this process, notably of BTN3A1. BTNs are a large family of transmembrane proteins with diverse functions in lipid secretion and innate and adaptive immunity. Here we discuss current models of how BTN molecules regulate γδ T-cell activation. We also address the implications of these recent findings on the design of novel immunotherapeutic strategies based on the activation of γδ T cells.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| |
Collapse
|
60
|
Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N, Caruso D, Novelli F, Riganti C, Massaia M. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun 2017; 8:15663. [PMID: 28580927 PMCID: PMC5465356 DOI: 10.1038/ncomms15663] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Vγ9Vδ2 T cells are activated by phosphoantigens, such as isopentenyl pyrophosphate (IPP), which is generated in the mevalonate pathway of antigen-presenting cells. IPP is released in the extracellular microenvironment via unknown mechanisms. Here we show that the ATP-binding cassette transporter A1 (ABCA1) mediates extracellular IPP release from dendritic cells (DC) in cooperation with apolipoprotein A-I (apoA-I) and butyrophilin-3A1. IPP concentrations in the supernatants are sufficient to induce Vγ9Vδ2 T cell proliferation after DC mevalonate pathway inhibition with zoledronic acid (ZA). ZA treatment increases ABCA1 and apoA-I expression via IPP-dependent LXRα nuclear translocation and PI3K/Akt/mTOR pathway inhibition. These results close the mechanistic gap in our understanding of extracellular IPP release from DC and provide a framework to fine-tune Vγ9Vδ2 T cell activation via mevalonate and PI3K/Akt/mTOR pathway modulation. γδT cells are activated by phosphoantigens, and ABCA1 is involved in cholesterol transport. Here the authors link these ideas to show that ABCA1, apoA-I and BTN3A1 regulate extracellular phosphoantigen release by dendritic cells, and implicate ABCA1 in mevalonate-mediated activation of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Barbara Castella
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Joanna Kopecka
- Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, Torino 10126, Italy
| | - Patrizia Sciancalepore
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Giorgia Mandili
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy
| | - Myriam Foglietta
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milano 20133, Italy
| | - Francesco Novelli
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy
| | - Chiara Riganti
- Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy.,Dipartimento di Oncologia, Università degli Studi di Torino, Via Santena 5/bis, Torino 10126, Italy
| | - Massimo Massaia
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Via Nizza 52, Torino 10126, Italy.,Centro di Ricerca in Medicina Sperimentale (CeRMS), AOU Città della Salute e della Scienza di Torino, Via Santena 5, Torino 10126, Italy.,Centro Interdipartimentale di Ricerca per le Biotecnologie Molecolari (CIRBM), Via Nizza 52, Torino 10126, Italy.,SC. Ematologia, AO S. Croce e Carle, Via Michele Coppino 26, Cuneo 12100, Italy
| |
Collapse
|
61
|
Peigné CM, Léger A, Gesnel MC, Konczak F, Olive D, Bonneville M, Breathnach R, Scotet E. The Juxtamembrane Domain of Butyrophilin BTN3A1 Controls Phosphoantigen-Mediated Activation of Human Vγ9Vδ2 T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4228-4234. [DOI: 10.4049/jimmunol.1601910] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
62
|
Starick L, Riano F, Karunakaran MM, Kunzmann V, Li J, Kreiss M, Amslinger S, Scotet E, Olive D, De Libero G, Herrmann T. Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur J Immunol 2017; 47:982-992. [DOI: 10.1002/eji.201646818] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Starick
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Felipe Riano
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | | | - Volker Kunzmann
- Medical Clinic and Policlinic II; University of Würzburg; Würzburg Germany
| | - Jianqiang Li
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Matthias Kreiss
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS; Université d'Angers; Université de Nantes; Nantes France
- Labex IGO “Immunotherapy, Graft, Oncology”; Nantes France
| | - Daniel Olive
- Centre de recherche en Cancérologie de Marseille; Inserm U1068 / CNRS U7258; Aix Marseille Université
- Institut Paoli-Calmettes; Marseille France
| | | | - Thomas Herrmann
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
63
|
Shippy RR, Lin X, Agabiti SS, Li J, Zangari BM, Foust BJ, Poe MM, Hsiao CHC, Vinogradova O, Wiemer DF, Wiemer AJ. Phosphinophosphonates and Their Tris-pivaloyloxymethyl Prodrugs Reveal a Negatively Cooperative Butyrophilin Activation Mechanism. J Med Chem 2017; 60:2373-2382. [PMID: 28218845 DOI: 10.1021/acs.jmedchem.6b00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Butyrophilin 3A1 (BTN3A1) binds small phosphorus-containing molecules, which initiates transmembrane signaling and activates butyrophilin-responsive cells. We synthesized several phosphinophosphonates and their corresponding tris-pivaloyloxymethyl (tris-POM) prodrugs and examined their effects on BTN3A1. An analog of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) bound to BTN3A1 with intermediate affinity, which was enthalpy-driven. Docking studies revealed binding to the basic surface pocket and interactions between the allylic hydroxyl group and the BTN3A1 backbone. The phosphinophosphonate stimulated proliferation of Vγ9Vδ2 T cells with moderate activity (EC50 = 26 μM). Cellular potency was enhanced >600-fold in the tris-POM prodrug (EC50 = 0.041 μM). The novel prodrug also induced T cell mediated leukemia cell lysis. Analysis of dose-response data reveals HMBPP-induced Hill coefficients of 0.69 for target cell lysis and 0.68 in interferon secretion. Together, tris-POM prodrugs enhance the cellular activity of phosphinophosphonates, reveal structure-activity relationships of butyrophilin ligands, and support a negatively cooperative model of cellular butyrophilin activation.
Collapse
Affiliation(s)
- Rebekah R Shippy
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Xiaochen Lin
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Sherry S Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Brendan M Zangari
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Benjamin J Foust
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Michael M Poe
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
64
|
Nada MH, Wang H, Workalemahu G, Tanaka Y, Morita CT. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation. J Immunother Cancer 2017; 5:9. [PMID: 28239463 PMCID: PMC5319075 DOI: 10.1186/s40425-017-0209-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
Background Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Methods Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Results Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those derived with IL-2. Conclusions Pulse zoledronate stimulation maximizes the purity, quantity, and quality of expanded Vγ2Vδ2 cells for adoptive immunotherapy but there is no advantage to using IL-15 over IL-2 in our humanized mouse model. Pulse zoledronate stimulation is a simple modification to existing protocols that will enhance the effectiveness of adoptively transferred Vγ2Vδ2 cells by increasing their numbers and anti-tumor activity. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0209-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
65
|
de Bruin RCG, Stam AGM, Vangone A, van Bergen En Henegouwen PMP, Verheul HMW, Sebestyén Z, Kuball J, Bonvin AMJJ, de Gruijl TD, van der Vliet HJ. Prevention of Vγ9Vδ2 T Cell Activation by a Vγ9Vδ2 TCR Nanobody. THE JOURNAL OF IMMUNOLOGY 2016; 198:308-317. [PMID: 27895170 DOI: 10.4049/jimmunol.1600948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023]
Abstract
Vγ9Vδ2 T cell activation plays an important role in antitumor and antimicrobial immune responses. However, there are conditions in which Vγ9Vδ2 T cell activation can be considered inappropriate for the host. Patients treated with aminobisphosphonates for hypercalcemia or metastatic bone disease often present with a debilitating acute phase response as a result of Vγ9Vδ2 T cell activation. To date, no agents are available that can clinically inhibit Vγ9Vδ2 T cell activation. In this study, we describe the identification of a single domain Ab fragment directed to the TCR of Vγ9Vδ2 T cells with neutralizing properties. This variable domain of an H chain-only Ab (VHH or nanobody) significantly inhibited both phosphoantigen-dependent and -independent activation of Vγ9Vδ2 T cells and, importantly, strongly reduced the production of inflammatory cytokines upon stimulation with aminobisphosphonate-treated cells. Additionally, in silico modeling suggests that the neutralizing VHH binds the same residues on the Vγ9Vδ2 TCR as the Vγ9Vδ2 T cell Ag-presenting transmembrane protein butyrophilin 3A1, providing information on critical residues involved in this interaction. The neutralizing Vγ9Vδ2 TCR VHH identified in this study might provide a novel approach to inhibit the unintentional Vγ9Vδ2 T cell activation as a consequence of aminobisphosphonate administration.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Anita G M Stam
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Zsolt Sebestyén
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands;
| |
Collapse
|
66
|
Chen ZW. Protective immune responses of major Vγ2Vδ2 T-cell subset in M. tuberculosis infection. Curr Opin Immunol 2016; 42:105-112. [PMID: 27491008 DOI: 10.1016/j.coi.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023]
Abstract
Recent observation that prenyl pyrophosphates bind the Ig superfamily protein butyrophilin 3A1 (BTN3A1) suggests that modifying BTN3A1 activates major γδ T-cell subset, Vγ2Vδ2 T cells. Studies also show that microbial phosphoantigen HMBPP is required for expansion, pulmonary response, effector functions and memory polarization of Vγ2Vδ2 T cells during infections. Broad repertoires of cytokines involve expansion, recall-like expansion and effector functions of Vγ2Vδ2 T cells after Mtb infection or vaccination. Finally, mechanistic studies in nonhuman primate TB model demonstrate early expansion and differentiation of Vγ2Vδ2 T cells during Mtb infection can increase immune resistance to TB in macaques, with a potential mechanism of early/sustained IFN-γ production and CTL killing.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, 909 South Wolcott Avenue, MC790, E704, Chicago, IL 60612, United States.
| |
Collapse
|
67
|
Felley L, Gumperz JE. Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood? Immunogenetics 2016; 68:611-22. [PMID: 27393663 DOI: 10.1007/s00251-016-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 01/26/2023]
Abstract
The central paradigm of conventional MHC-restricted T cells is that they respond specifically to foreign peptides, while displaying tolerance to self-antigens. In contrast, it is now becoming clear that a number of innate-like T cell subsets-CD1-restricted T cells, Vγ9Vδ2 T cells, and MAIT cells-may operate by different rules: rather than focusing on the recognition of specific foreign antigens, these T cells all appear to respond to alterations to lipid-related pathways. By monitoring perturbations to the "lipidome," these T cells may be able to spring into action to deal with physiological situations that are of self as well as microbial origin. iNKT cells are a prime example of this type of lipidome-reactive T cell. As a result of their activation by self lyso-phospholipid species that are generated downstream of blood lipid oxidation, human iNKT cells in the vasculature may respond sensitively to a variety of oxidative stresses. Some of the cytokines produced by activated iNKT cells have angiogenic effects (e.g., GM-CSF, IL-8), whereas others (e.g., IFN-γ) are pro-inflammatory factors that can propagate vascular pathology by influencing the functions of macrophages and dendritic cells. Consistent with this, evidence is accumulating that iNKT cells contribute to atherosclerosis, which is one of the most common inflammatory pathologies, and one that is integrally related to characteristics of the lipidome.
Collapse
Affiliation(s)
- Laura Felley
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| |
Collapse
|
68
|
Kilcollins AM, Li J, Hsiao CHC, Wiemer AJ. HMBPP Analog Prodrugs Bypass Energy-Dependent Uptake To Promote Efficient BTN3A1-Mediated Malignant Cell Lysis by Vγ9Vδ2 T Lymphocyte Effectors. THE JOURNAL OF IMMUNOLOGY 2016; 197:419-28. [PMID: 27271567 DOI: 10.4049/jimmunol.1501833] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/04/2016] [Indexed: 01/05/2023]
Abstract
Vγ9Vδ2 effector T cells lyse cells in response to phosphorus-containing small molecules, providing primates a unique route to remove infected or malignant cells. Yet, the triggering mechanisms remain ill defined. We examined lysis mediated by human Vγ9Vδ2 effector T cells in response to the naturally occurring (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) or a synthetic cell-permeable prodrug, bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. CD27(+)/CD45RA(-) Th1-like effector cells killed K562 target cells through a mechanism that could be enhanced by either compound or TCR Ab and blocked by Src inhibition or butyrophilin 3 isoform A1 (BTN3A1) disruption. Pretreatment at 4 °: C decreased HMBPP-induced lysis but did not reduce lysis induced by bis (pivaloyloxymethyl) (E)-4-hydroxy-3-methyl-but-2-enyl phosphonate. Together, our results show that internalization of HMBPP into target cells is required for BTN3A1-dependent lysis by Vγ9Vδ2 effector T cells. The enhanced activity of the prodrug analog is due to its ability to bypass the pathways required for entry of HMBPP. These findings support an inside-out model of T cell triggering driven by small-molecule induction of BTN3A1.
Collapse
Affiliation(s)
- Ashley M Kilcollins
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269; and
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269; and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
69
|
Benyamine A, Le Roy A, Mamessier E, Gertner-Dardenne J, Castanier C, Orlanducci F, Pouyet L, Goubard A, Collette Y, Vey N, Scotet E, Castellano R, Olive D. BTN3A molecules considerably improve Vγ9Vδ2T cells-based immunotherapy in acute myeloid leukemia. Oncoimmunology 2016; 5:e1146843. [PMID: 27853633 DOI: 10.1080/2162402x.2016.1146843] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Given their recognized ability to kill acute myeloid leukemia (AML) blasts both in vitro and in vivo, Vγ9Vδ2 T cells are of growing interest in the design of new strategies of immunotherapy. We show that the Butyrophilin3A (BTN3A, CD277) subfamily is a critical determinant of Vγ9Vδ2 TCR-mediated recognition of human primary AML blasts ex vivo. Moreover, anti-BTN3A 20.1 agonist monoclonal antibodies (mAbs) can trigger BTN3A on AML blasts leading to further enhanced Vγ9Vδ2 T cell-mediated killing, but this mAb had no enhancing effect upon NK cell-mediated killing. We show that monocytic differentiation of primary AML blasts accounts for their AminoBisphosphonate (N-BP)-mediated sensitization to Vγ9Vδ2 T cells. In addition, anti-BTN3A 20.1 mAbs could specifically sensitize resistant blasts to Vγ9Vδ2 T cells lysis and overcome the poor effect of N-BP treatment on those blasts. We confirmed the enhancement of Vγ9Vδ2 T cells activity by anti-BTN3A 20.1 mAb using a human AML xenotransplantation mouse model. We showed that anti-BTN3A 20.1 mAb combined with Vγ9Vδ2 T cells immunotherapy could increase animal survival and decrease the leukemic burden in blood and bone marrow. These findings could be of great interest in the design of new immunotherapeutic strategies for treating AML.
Collapse
Affiliation(s)
- Audrey Benyamine
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Aude Le Roy
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Emilie Mamessier
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), molecular Oncology, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Julie Gertner-Dardenne
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Céline Castanier
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Florence Orlanducci
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Laurent Pouyet
- Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Armelle Goubard
- Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Yves Collette
- Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Norbert Vey
- Aix-Marseille Univ, Marseilles, France; Institut Paoli Calmettes, Marseilles, France
| | | | - Remy Castellano
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105 , CNRS UMR 7258 , Marseilles, France
| | - Daniel Olive
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes, Aix-Marseille Université UM 105, CNRS UMR 7258, Marseilles, France; Inserm, U1068, CRCM, TrGET Plateforme d'Essais Précliniques, Institut Paoli-Calmettes, Aix-Marseille Université UM 105, CNRS UMR 7258, Marseilles, France; Aix-Marseille Univ, Marseilles, France
| |
Collapse
|