51
|
Shinoda K, Sun X, Oyamada A, Yamada H, Muta H, Podack ER, Kira JI, Yoshikai Y. CD30 ligand is a new therapeutic target for central nervous system autoimmunity. J Autoimmun 2014; 57:14-23. [PMID: 25533628 DOI: 10.1016/j.jaut.2014.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/02/2014] [Accepted: 11/26/2014] [Indexed: 01/13/2023]
Abstract
The CD30 ligand (CD30L)/CD30 axis plays a critical role in Th1 and Th17 cell differentiation. However, the role in the pathogenesis of central nervous system autoimmunity remains unknown. Here we show the resistance for experimental autoimmune encephalomyelitis (EAE) with markedly reduced induction of antigen-specific Th1 and Th17 cells in CD30L knockout mice. Bone marrow chimera experiments indicated that CD30L on bone marrow-derived cells were critical for the development of EAE and that CD30L reverse signaling in CD4 T cells was dispensable for the pathogenic Th17 cell differentiation at the induction phase. Adoptive transfer experiment revealed an additional role for CD30L in the environment at the effector phase. In vivo neutralization of CD30L by soluble murine CD30-Immunoglobulin fusion protein before disease onset or even after disease onset significantly ameliorated the clinical symptoms. These results indicate that CD30L/CD30 signaling is critically involved in antigen-specific CD4 T cell responses at both the induction and effector phase, thus could be a new target molecule for the treatment of central nervous system autoimmunity.
Collapse
Affiliation(s)
- Koji Shinoda
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang 110001, China
| | - Akiko Oyamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisakata Yamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiromi Muta
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33124, USA
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
52
|
Tseveleki V, Tselios T, Kanistras I, Koutsoni O, Karamita M, Vamvakas SS, Apostolopoulos V, Dotsika E, Matsoukas J, Lassmann H, Probert L. Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis. Exp Neurol 2014; 267:254-67. [PMID: 25447934 DOI: 10.1016/j.expneurol.2014.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
Abstract
Antigen presenting cells (APC) are critical for regulating immune responses. We tested mannan-peptide conjugates for targeting myelin peptides to APC to induce T cell tolerance and resistance to experimental autoimmune encephalomyelitis (EAE). Myelin peptides conjugated to mannan in oxidized (OM) or reduced (RM) forms protected mice against EAE in prophylactic and therapeutic protocols, with OM-conjugated peptides giving best results. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation, but not alterations in Th1, Th17 and Treg cell differentiation or T cell apoptosis compared to EAE controls. Bone marrow-derived dendritic cells (DC) loaded with OM-MOG showed up-regulated expression of co-stimulatory molecules, reduced PD-L1 expression and enhanced CD40-inducible IL-12 and IL-23 production compared to MOG DC, features consistent with immunogenic DC. OM-MOG induced active T cell tolerance because i.d. administration or passive transfer of OM-MOG DC suppressed ongoing EAE, while OM-MOG-vaccinated mice did not reduce the proliferation of transferred MOG-specific T cells. As in vivo, MOG-specific T cells cultured with OM-MOG DC showed reduced proliferation and equal Th1 and Th17 cell differentiation compared to those with MOG DC, but surprisingly cytokine production was unresponsive to CD40 engagement. Impaired effector T cell function was further evidenced in spinal cord sections from OM-MOG-vaccinated EAE mice, where markedly reduced numbers of CD3(+) T cells were present, restricted to leptomeninges and exceptional parenchymal lesions. Our results show that mannan-conjugated myelin peptides protect mice against EAE through the expansion of antigen-specific Th1 and Th17 cells with impaired proliferation responses and APC-induced co-stimulatory signals that are required for licensing them to become fully pathogenic T cells.
Collapse
Affiliation(s)
- Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rio Patras, Greece.
| | - Ioannis Kanistras
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Olga Koutsoni
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Karamita
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | | | - Vasso Apostolopoulos
- Centre for Chronic Disease Prevention & Management, Victoria University, Melbourne, Australia
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - John Matsoukas
- Department of Chemistry, University of Patras, Rio Patras, Greece
| | - Hans Lassmann
- Division of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
53
|
Fujita Y, Yamashita T. Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 2014; 8:338. [PMID: 25374504 PMCID: PMC4205828 DOI: 10.3389/fnins.2014.00338] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Osaka, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
54
|
Brod SA, Bauer VL. Ingested (oral) tocilizumab inhibits EAE. Cytokine 2014; 68:86-93. [PMID: 24845797 DOI: 10.1016/j.cyto.2014.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Blocking the activity of IL-6 can inhibit autoimmune diseases such as rheumatoid arthritis and Crohn's disease. OBJECTIVE We examined whether an antibody against IL-6, tocilizumab (TCZ) (Actemra®), used clinically in rheumatoid arthritis (RA) would have similar anti-inflammatory effects in EAE after oral administration. DESIGN/METHOD B6 mice were immunized with MOG peptide 35-55 and gavaged with control saline or TCZ during ongoing disease. Splenocytes, CD4(+) T cells or macrophages/monocyte lineage cells (CD11b(+)) from control fed or TCZ fed mice were adoptively transferred into active MOG peptide 35-55 immunized recipient mice during ongoing disease. Actively fed and recipient mice were examined for disease inhibition, inflammation, and cytokine responses. RESULTS Ingested (oral) TCZ inhibited ongoing disease and decreased inflammation. Adoptively transferred cells from TCZ fed donors protected against actively induced disease and decreased inflammation. There was a decrease in IL-6 in actively treated spleen, decrease in TNF-α, Th1-like cytokine IL-12 and increase in Th2-like cytokine IL-10 in active fed and adoptively treated recipients. CONCLUSIONS Ingested (orally administered) TCZ can inhibit disease, CNS inflammation, decrease pro-inflammatory Th1-like cytokines and increase Th2-like anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, University of Texas-Houston, Health Science Center, 6431 Fannin St, Houston, TX 77030, United States.
| | - Victoria L Bauer
- Department of Neurology, University of Texas-Houston, Health Science Center, 6431 Fannin St, Houston, TX 77030, United States
| |
Collapse
|
55
|
Shin S, Walz KA, Archambault AS, Sim J, Bollman BP, Koenigsknecht-Talboo J, Cross AH, Holtzman DM, Wu GF. Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis. J Neuroimmunol 2014; 271:8-17. [PMID: 24794230 DOI: 10.1016/j.jneuroim.2014.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
Apolipoprotein E (ApoE) functions as a ligand in receptor-mediated endocytosis of lipoprotein particles and has been demonstrated to play a role in antigen presentation. To explore the contribution of ApoE during autoimmune central nervous system (CNS) demyelination, we examined the clinical, cellular immune function, and pathologic consequences of experimental autoimmune encephalomyelitis (EAE) induction in ApoE knockout (ApoE(-/-)) mice. We observed reduced clinical severity of EAE in ApoE(-/-) mice in comparison to WT mice that was concomitant with an early reduction of dendritic cells (DCs) followed by a reduction of additional innate cells in the spinal cord at the peak of disease without any differences in axonal damage. While T cell priming was enhanced in ApoE(-/-) mice, reduced severity of EAE was also observed in ApoE(-/-) recipients of encephalitogenic wild type T cells. Expression of ApoE during EAE was elevated within the CNS of wild type mice, particularly by innate cells such as DCs. Overall, ApoE promotes clinical EAE, likely by mediation of inflammation localized within the CNS.
Collapse
Affiliation(s)
- Soomin Shin
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Katharine A Walz
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Angela S Archambault
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Julia Sim
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Bryan P Bollman
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Jessica Koenigsknecht-Talboo
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - David M Holtzman
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Department of Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States.
| |
Collapse
|
56
|
Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, Miller SD. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS NANO 2014; 8:2148-60. [PMID: 24559284 PMCID: PMC3990004 DOI: 10.1021/nn405033r] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Targeted immune tolerance is a coveted therapy for the treatment of a variety of autoimmune diseases, as current treatment options often involve nonspecific immunosuppression. Intravenous (iv) infusion of apoptotic syngeneic splenocytes linked with peptide or protein autoantigens using ethylene carbodiimide (ECDI) has been demonstrated to be an effective method for inducing peripheral, antigen-specific tolerance for treatment of autoimmune disease. Here, we show the ability of biodegradable poly(lactic-co-glycolic acid) (PLG) nanoparticles to function as a safe, cost-effective, and highly efficient alternative to cellular carriers for the induction of antigen-specific T cell tolerance. We describe the formulation of tolerogenic PLG particles and demonstrate that administration of myelin antigen-coupled particles both prevented and treated relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE), a CD4 T cell-mediated mouse model of multiple sclerosis (MS). PLG particles made on-site with surfactant modifications surpass the efficacy of commercially available particles in their ability to couple peptide and to prevent disease induction. Most importantly, myelin antigen-coupled PLG nanoparticles are able to significantly ameliorate ongoing disease and subsequent relapses when administered at onset or at peak of acute disease, and minimize epitope spreading when administered during disease remission. Therapeutic treatment results in significantly reduced CNS infiltration of encephalitogenic Th1 (IFN-γ) and Th17 (IL-17a) cells as well as inflammatory monocytes/macrophages. Together, these data describe a platform for antigen display that is safe, low-cost, and highly effective at inducing antigen-specific T cell tolerance. The development of such a platform carries broad implications for the treatment of a variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Zoe Hunter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Derrick P. McCarthy
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Woon Teck Yap
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher T. Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Daniel R. Getts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Address correspondence to
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
- Address correspondence to
| |
Collapse
|
57
|
Bosticardo M, Musio S, Fontana E, Angiari S, Draghici E, Constantin G, Poliani PL, Pedotti R, Villa A. Development of central nervous system autoimmunity is impaired in the absence of Wiskott-Aldrich syndrome protein. PLoS One 2014; 9:e86942. [PMID: 24466296 PMCID: PMC3900702 DOI: 10.1371/journal.pone.0086942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASP) is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was−/− mice. We describe here that Was−/− mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was−/− mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was−/− mice. However, adoptive transfer of MOG-activated T cells from Was−/− mice in WT mice failed to induce EAE. Was−/− mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was+/− heterozygous mice developed an intermediate clinical phenotype between WT and Was−/− mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.
Collapse
MESH Headings
- Animals
- Autoimmunity/immunology
- Blotting, Western
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Immunoenzyme Techniques
- Integrins/metabolism
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia
- Myelin Sheath
- Wiskott-Aldrich Syndrome Protein/physiology
Collapse
Affiliation(s)
| | - Silvia Musio
- Foundation IRCCS Neurological Institute “C.Besta”, Neuroimmunology and Neuromuscular Disorders Unit, Milan, Italy
| | - Elena Fontana
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Stefano Angiari
- Department of Pathology and Diagnosis, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Gabriela Constantin
- Department of Pathology and Diagnosis, Section of General Pathology, University of Verona, Verona, Italy
| | - Pietro L. Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Rosetta Pedotti
- Foundation IRCCS Neurological Institute “C.Besta”, Neuroimmunology and Neuromuscular Disorders Unit, Milan, Italy
- * E-mail: (AV); (RP)
| | - Anna Villa
- TIGET, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- * E-mail: (AV); (RP)
| |
Collapse
|
58
|
Schreiner B, Bailey SL, Miller SD. T-cell response dynamics in animal models of multiple sclerosis: implications for immunotherapies. Expert Rev Clin Immunol 2014; 3:57-72. [DOI: 10.1586/1744666x.3.1.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
59
|
Recks MS, Stormanns ER, Bader J, Arnhold S, Addicks K, Kuerten S. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Clin Immunol 2013; 149:32-45. [DOI: 10.1016/j.clim.2013.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022]
|
60
|
Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 2013; 45:31-9. [PMID: 23849779 DOI: 10.1016/j.jaut.2013.06.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which myelin becomes the target of attack by autoreactive T cells. The immune components of the disease are recapitulated in mice using the experimental autoimmune encephalomyelitis (EAE) model. EAE is classically induced by the immunization of mice with encephalitogenic antigens derived from CNS proteins such as proteolipid protein (PLP), myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG). Immunization of susceptible mouse strains with these antigens will induce autoreactive inflammatory T cell infiltration of the CNS. More recently, the advent of clonal T cell receptor transgenic mice has led to the development of adoptive transfer protocols in which myelin-specific T cells may induce disease upon transfer into naïve recipient animals. When used in concert with gene knockout strains, these protocols are powerful tools by which to dissect the molecular pathways that promote inflammatory T cells responses in the central nervous system (CNS). Further, myelin-antigen-specific transgenic T cells may be cultured in vitro under a variety of conditions prior to adoptive transfer, allowing one to study the effects of soluble factors or pharmacologic compounds on T cell pathogenicity. In this review, we describe many of the existing models of EAE, and discuss the contributions that use of these models has made in understanding both T helper cell differentiation and the function of inhibitory T cell receptors. We focus on the step-by-step elucidation of the network of signals required for T helper 17 (Th17) cell differentiation, as well as the molecular dissection of the Tim-3 negative regulatory signaling pathway in Th1 cells.
Collapse
|
61
|
Podda G, Nyirenda M, Crooks J, Gran B. Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J Neuroimmune Pharmacol 2013; 8:791-806. [PMID: 23812895 DOI: 10.1007/s11481-013-9483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), which is considered immune-mediated. Our knowledge of innate immune mechanisms in the CNS and their implications for pathogenesis and treatment of multiple sclerosis (MS) are limited, particularly if compared with the body of literature on adaptive immune mechanisms. There is, however, growing understanding of the workings of the innate immune system and accordingly, of its potential role in driving immune-mediated pathology. Such mechanisms will be discussed in this review along with potential therapeutic opportunities. These may require blocking pathogenic innate immunity and in some cases, promoting its protective effects.
Collapse
Affiliation(s)
- Giulio Podda
- Division of Clinical Neurology, University of Nottingham, C Floor, South Block, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
62
|
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS) in the Western world. The disease is characterized histologically by the infiltration of encephalitogenic TH1/TH17-polarized CD4+ T cells, B cells, and a plethora of myeloid cells, resulting in severe demyelination ultimately leading to a degeneration of neuronal structures. These pathological processes are substantially modulated by microglia, the resident immune competent cells of the CNS. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia during CNS autoimmunity in either promoting tissue injury or tissue repair. Hence, understanding microglia involvement in MS offers new exciting paths for therapeutic intervention.
Collapse
|
63
|
Murta V, Ferrari CC. Influence of Peripheral inflammation on the progression of multiple sclerosis: Evidence from the clinic and experimental animal models. Mol Cell Neurosci 2013; 53:6-13. [DOI: 10.1016/j.mcn.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 12/21/2022] Open
|
64
|
Ji Q, Castelli L, Goverman JM. MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8⁺ T cells. Nat Immunol 2013; 14:254-61. [PMID: 23291597 PMCID: PMC3581685 DOI: 10.1038/ni.2513] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022]
Abstract
Myelin presentation to T cells within the central nervous system (CNS) sustains inflammation in multiple sclerosis (MS). CD4+ and CD8+ T cells contribute to MS; however, only cells that present myelin to CD4+ T cells have been identified. We show that MHC class I-restricted myelin basic protein (MBP) was presented by oligodendrocytes and cross-presented by Tip-dendritic cells (DCs) during experimental autoimmune encephalomyelitis (EAE), an animal model of MS initiated by CD4+ T cells. Tip-DCs activated naïve and effector CD8+ T cells ex vivo, and naïve MBP-specific CD8+ T cells were activated within the CNS during CD4+ T cell-induced EAE. These results demonstrate that CD4+ T cell-mediated CNS autoimmunity leads to determinant spreading to myelin-specific CD8+ T cells that are capable of direct recognition of oligodendrocytes.
Collapse
Affiliation(s)
- Qingyong Ji
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
65
|
Ingested (oral) thyrotropin releasing factor (TRH) inhibits EAE. Cytokine 2012; 61:323-8. [PMID: 23148993 DOI: 10.1016/j.cyto.2012.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/26/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Ingested immunoactive proteins type I IFN, SIRS peptide 1-21, α-MSH, ACTH, SST inhibit clinical attacks and inflammation in acute EAE by decreasing Th1-like cytokines, increasing Th2-like cytokines or increasing T(reg) cell frequencies. OBJECTIVE We examined whether another protein, thyrotropin releasing factor (TRH), would have similar anti-inflammatory effects in EAE after oral administration. DESIGN/METHODS B6 mice were immunized with MOG peptide 35-55 and gavaged with control saline or TRH during ongoing disease. Splenocytes from mock fed or TRH fed mice were adoptively transferred into active MOG peptide 35-55 immunized recipient mice during ongoing disease. RESULTS Ingested (oral) TRH inhibited ongoing disease and decreased inflammation. Adoptively transferred cells from TRH fed donors protected against actively induced disease and decreased inflammation. In actively fed mice, oral TRH decreased IL-17 and TNF-α cytokines in both the spleen and the CNS. In recipients of donor cells from TRH fed mice there was a reduction of Th1 and Th17 and induction of Th2-like IL-13 cytokines in both the spleen and CNS. Oral TRH decreased clinical score and decreased inflammatory foci in both actively fed and recipients of actively fed mice. There was no significant increase in T(reg) cell frequencies in actively fed or recipients of TRH fed donor cells. CONCLUSIONS Ingested (orally administered) TRH can inhibit clinical disease, inhibit CNS inflammation by decreasing Th1-like, Th17 and TNF-α cytokines and increasing Th2-like cytokines (IL-13) in the CNS.
Collapse
|
66
|
Patel J, Balabanov R. Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 2012; 13:10647-10659. [PMID: 22949885 PMCID: PMC3431883 DOI: 10.3390/ijms130810647] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022] Open
Abstract
New evidence has emerged over the last decade indicating that oligodendrocyte injury in multiple sclerosis (MS) is not a single unified phenomenon but rather a spectrum of processes ranging from massive immune destruction to a subtle cell death in the absence of significant inflammation. Experimentally, protection of oligodendrocytes against inflammatory injury results in protection against experimental autoimmune encephalitis, the animal model of multiple sclerosis. In this review, we will discuss the molecular mechanisms regulating oligodendrocyte injury and inflammatory demyelination. We draw attention to the injurious role of IFN-γ signaling in oligodendrocytes and the pro-inflammatory effect of their death. In conclusion, studying the molecular mechanisms of oligodendrocyte injury is likely to provide new perspective on the pathogenesis of MS and a rationale for cell protective therapies.
Collapse
Affiliation(s)
| | - Roumen Balabanov
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-312-942-8011; Fax: +1-312-942-5523
| |
Collapse
|
67
|
Bergman CM, Marta CB, Maric M, Pfeiffer SE, Cresswell P, Ruddle NH. A switch in pathogenic mechanism in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in IFN-γ-inducible lysosomal thiol reductase-free mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:6001-9. [PMID: 22586035 PMCID: PMC4133136 DOI: 10.4049/jimmunol.1101898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IFN-γ-inducible lysosomal thiol reductase (GILT) is an enzyme located in the Lamp-2-positive compartments of APC. GILT(-/-) mice are phenotypically normal, but their T cells exhibit reduced proliferation to several exogenously administered Ags that include cysteine residues and disulfide bonds. We undertook the present studies to determine if GILT(-/-) mice would process exogenously administered myelin oligodendrocyte glycoprotein (MOG), which contains disulfide bonds, to generate experimental autoimmune encephalomyelitis (EAE) to the endogenous protein. One possibility was that MOG(35-55) peptide would induce EAE, but that MOG protein would not. GILT(-/-) mice were relatively resistant to MOG(35-55)-induced EAE but slightly more susceptible to rat MOG protein-induced EAE than wild-type (WT) mice. Even though MOG(35-55) was immunogenic in GILT(-/-) mice, GILT APCs could not generate MOG(35-55) from MOG protein in vitro, suggesting that the endogenous MOG protein was not processed to the MOG(35-55) peptide in vivo. Immunization of GILT(-/-) mice with rat MOG protein resulted in a switch in pathogenic mechanism from that seen in WT mice; the CNS infiltrate included large numbers of plasma cells; and GILT(-/-) T cells proliferated to peptides other than MOG(35-55). In contrast to WT rat MOG-immunized mice, rat MOG-immunized GILT(-/-) mice generated Abs that transferred EAE to MOG(35-55)-primed GILT(-/-) mice, and these Abs bound to oligodendrocytes. These studies, demonstrating the key role of a processing enzyme in autoimmunity, indicate that subtle phenotypic changes have profound influences on pathogenic mechanisms and are directly applicable to the outbred human population.
Collapse
Affiliation(s)
- Cheryl M. Bergman
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034
| | | | - Maja Maric
- DHHS/NIH/NIAID/DEA/SRP, Bethesda, MD 20892-7616
| | | | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011
| | - Nancy H. Ruddle
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011
| |
Collapse
|
68
|
Brod SA, Bauer VL. Ingested (oral) neuropeptide Y inhibits EAE. J Neuroimmunol 2012; 250:44-9. [PMID: 22703767 DOI: 10.1016/j.jneuroim.2012.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ingested immunoactive proteins, type I IFN, SIRS peptide 1-21, α-MSH, ACTH, and SST inhibit clinical attacks and inflammation in acute EAE by decreasing Th1-like cytokines, increasing Th2-like cytokines or increasing T(reg) cell frequencies. OBJECTIVE We examined whether another protein, neuropeptide Y, would have similar anti-inflammatory effects in EAE after oral administration. DESIGN/METHODS B6 mice were immunized with MOG peptide 35-55 and gavaged with control saline or NPY during ongoing disease. Splenocytes from mock fed or NPY fed mice were adoptively transferred into active MOG peptide 35-55 immunized recipient mice during ongoing disease. RESULTS Ingested (oral) NPY inhibited ongoing disease, and decreased inflammation. Adoptively transferred cells from NPY fed donors protected against actively induced disease and decreased inflammation. In actively fed mice, oral NPY decreased Th1-like cytokines and increased Th2-like IL-13 cytokines in both the spleen and the CNS. In recipients of donor cells from NPY fed mice there was a reduction of Th1 and Th17 and induction of Th2-like IL-13 cytokines in both the spleen and CNS. Oral NPY decreased clinical score and decreased inflammatory foci in both actively fed and recipients of actively fed mice. There was no significant increase in T(reg) cell frequencies in actively fed or recipients of NPY fed donor cells. CONCLUSIONS Ingested (orally administered) NPY can inhibit clinical disease, inhibit CNS inflammation by decreasing Th17 and Th1-like cytokines and increasing Th2-like cytokines in the CNS.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, University of Texas — Houston, Health Science Center, Houston, TX 77030, United States.
| | | |
Collapse
|
69
|
McCarthy DP, Richards MH, Miller SD. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease. Methods Mol Biol 2012; 900:381-401. [PMID: 22933080 PMCID: PMC3583382 DOI: 10.1007/978-1-60761-720-4_19] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) and Theiler's Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD) are two clinically relevant murine models of multiple sclerosis (MS). Like MS, both are characterized by mononuclear cell infiltration into the CNS and demyelination. EAE is induced by either the administration of myelin protein or peptide in adjuvant or by the adoptive transfer of encephalitogenic T cell blasts into naïve recipients. The relative merits of each of these protocols are compared. Depending on the type of question being asked, different mouse strains and peptides are used. Different disease courses are observed with different strains and different peptides in active EAE. These variations are also addressed. Additionally, issues relevant to clinical grading of EAE in mice are discussed. In addition to EAE induction, useful references for other disease indicators such as DTH, in vitro proliferation, and immunohistochemistry are provided. TMEV-IDD is a useful model for understanding the possible viral etiology of MS. This section provides detailed information on the preparation of viral stocks and subsequent intracerebral infection of mice. Additionally, virus plaque assay and clinical disease assessment are discussed. Recently, recombinant TMEV strains have been created for the study of molecular mimicry which incorporate various 30 amino acid myelin epitopes within the leader region of TMEV.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
70
|
Kuerten S, Lehmann PV. The Immune Pathogenesis of Experimental Autoimmune Encephalomyelitis: Lessons Learned for Multiple Sclerosis? J Interferon Cytokine Res 2011; 31:907-16. [DOI: 10.1089/jir.2011.0072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Stefanie Kuerten
- Department of Anatomy I, University Hospitals of Cologne, Cologne, Germany
| | - Paul V. Lehmann
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Cellular Technology Limited, Shaker Heights, Cleveland, Ohio
| |
Collapse
|
71
|
Overexpression of the dominant-negative form of interferon regulatory factor 1 in oligodendrocytes protects against experimental autoimmune encephalomyelitis. J Neurosci 2011; 31:8329-41. [PMID: 21653838 DOI: 10.1523/jneurosci.1028-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interferon regulatory factor 1 (IRF-1) is a transcription factor that has been implicated in the pathogenesis of the human autoimmune demyelinating disease multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The goal of the present study was to directly examine the role of IRF-1 in oligodendrocyte injury and inflammatory demyelination. For the purpose of this study, we generated a transgenic mouse line (CNP/dnIRF-1) that overexpresses the dominant-negative form of IRF-1 (dnIRF1) specifically in oligodendrocytes. CNP/dnIRF-1 mice exhibited no phenotypic abnormalities but displayed suppressed IRF-1 signaling in oligodendrocytes. The major finding of our study was that the CNP/dnIRF-1 mice, compared with the wild-type mice, were protected against EAE, a phenomenon associated with significant reduction of inflammatory demyelination and with oligodendrocyte and axonal preservation. The observed protection was related to suppressed IRF-1 signaling and impaired expression of immune and proapoptotic genes in oligodendrocytes. No significant differences in the peripheral immune responses between the wild-type and the CNP/dnIRF-1 mice were identified throughout the experiments. This study indicates that IRF-1 plays a critical role in the pathogenesis of EAE by mediating oligodendrocyte response to inflammation and injury. It also suggests that oligodendrocytes are actively involved in the neuroimmune network, and that exploring oligodendrocyte-related pathogenic mechanisms, in addition to the conventional immune-based ones, may have important therapeutic implications in MS.
Collapse
|
72
|
Abstract
This review explores the principle features of the immunopathology of multiple sclerosis (MS), particularly relapsing-remitting MS. It highlights the emerging concepts in the pathogenesis of MS in the context of known features of pathology, including the characterization of cytokine networks promoting inflammatory damage of the central nervous system, B-cell involvement, and inflammatory damage of axons and neurons. This article preferentially focuses on MS rather than animal models of the disease, such as experimental autoimmune encephalomyelitis.
Collapse
|
73
|
Podojil JR, Padval MV, Miller SD. Combination treatment of mice with CRx-153 (nortriptyline and desloratadine) decreases the severity of experimental autoimmune encephalomyelitis. Cell Immunol 2011; 270:237-50. [PMID: 21696712 DOI: 10.1016/j.cellimm.2011.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 01/06/2023]
Abstract
Pro-inflammatory CD4(+) T cell-mediated autoimmune diseases, such as multiple sclerosis, are hypothesized to be initiated and maintained by self-reactive interferon-gamma (IFN-γ) and interleukin-17 (IL-17) producing CD4(+) T cells. Previous studies have shown moderate to significant alterations in inflammatory T cell responses and potentially treatment of autoimmune disease by administration of antihistamine or tricyclic antidepressants alone. The goal of the present study was to determine if treatment of PLP(139-151)-induced relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE) in SJL/J mice with a combination of two FDA approved drugs for other indications could decrease R-EAE disease. The findings show that combination treatment with desloratadine and nortriptyline decreases the mean clinical score, disease relapse frequency, and number of CD4(+) T cells infiltrating into the CNS. In addition, combination treatment of PLP(139-151) primed mice decreases the level of IFN-γ and IL-17 secreted via a decrease in both the number of cells secreting and the amount of cytokine secreted per cell following PLP(139-151) reactivation ex vivo. This is in contrast to an increase in the level of IL-4 produced and the number of IL-4 secreting cells. The data also show that combination treatment with desloratadine and nortriptyline inhibits the production of IFN-γ and IL-17 produced by naive CD4(+) T cells activated in the presence of Th1 cell- and Th17 cell-promoting conditions, while increasing the level of IL-4 produced by naive CD4(+) T cells activated in the presence of Th2 cell-promoting conditions. The present findings suggest a novel method for the development of a putative autoimmune therapy.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
74
|
Lyck R, Martinelli R. Mechanisms of T-cell migration across the BBB. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under physiological conditions, the highly specialized BBB strictly limits the entrance of immune cells into the CNS. By contrast, in the course of neuroinflammation such as that observed in multiple sclerosis, circulating T cells readily breach the BBB and initiate a cascade of events culminating in disease onset. Lymphocyte extravasation across the BBB occurs through a sequential multistep process, orchestrated by chemokines and cell adhesion molecules that precisely regulate the dynamic interaction of T cells with the endothelial cells forming the BBB. In this article, we will discuss the molecular players triggering the sophisticated process of T-cell migration across the BBB during pathological conditions.
Collapse
Affiliation(s)
- Ruth Lyck
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Roberta Martinelli
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
75
|
Kuerten S, Gruppe TL, Laurentius LM, Kirch C, Tary-Lehmann M, Lehmann PV, Addicks K. Differential patterns of spinal cord pathology induced by MP4, MOG peptide 35-55, and PLP peptide 178-191 in C57BL/6 mice. APMIS 2011; 119:336-46. [PMID: 21569091 DOI: 10.1111/j.1600-0463.2011.02744.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study we demonstrate that experimental autoimmune encephalomyelitis (EAE) induced by the MBP-PLP fusion protein MP4, MOG peptide 35-55, or PLP peptide 178-191 in C57BL/6 mice, respectively, displays distinct features of CNS pathology. Major differences between the three models resided in (i) the region-/tract-specificity and disseminated nature of spinal cord degeneration, (ii) the extent and kinetics of demyelination, and (iii) the involvement of motoneurons in the disease. In contrast, axonal damage was present in all models and to a similar extent, proposing this feature as a possible morphological correlate for the comparable chronic clinical course of the disease induced by the three antigens. The data suggest that the antigen targeted in autoimmune encephalomyelitis is crucial to the induction of differential histopathological disease manifestations. The use of MP4-, MOG:35-55-, and PLP:178-191-induced EAE on the C57BL/6 background can be a valuable tool when it comes to reproducing and studying the structural-morphological diversity of multiple sclerosis.
Collapse
|
76
|
Li J, Zhao X, Skoff R, Shaw MK, Tse HY. Differential levels of resistance to disease induction and development of relapsing experimental autoimmune encephalomyelitis in two H-2b-restricted mouse strains. J Neuroimmunol 2011; 234:109-14. [PMID: 21482438 DOI: 10.1016/j.jneuroim.2011.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/13/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
Besides the major histocompatibility complex (MHC) genes, background genes are believed to influence the encephalitogenicity of SJL(H-2(s)) and B10.S (H-2(s)) mice responding to myelin basic protein (MBP). A new mouse strain was constructed to study the effects of the SJL genetic background in mice responding to H-2(b)-restricted neuroantigens. Although the SJL.B (H-2(b)) mouse remained resistant to MBP in active EAE induction, the disease severity was uniformly higher in MOG-induced active EAE and in MBP-induced adoptive EAE when compared to those of B6 (H-2(b)) mice. Treatment of mice with anti-CD25 antibodies prior to immunization caused 60% of SJL.B mice to become susceptible to MBP-induced EAE while only 14% of B6 mice were converted. In addition, MOG-induced EAE in SJL.B mice followed a remitting-relapsing disease course while B6 mice only exhibited monophasic or chronic episodes. The new SJL.B mouse strain provides a valuable tool for studying EAE resistance and remitting-relapsing disease in H-2(b) mice.
Collapse
Affiliation(s)
- Jinzhu Li
- Department of Immunology and Microbiology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
77
|
Chastain EML, Duncan DS, Rodgers JM, Miller SD. The role of antigen presenting cells in multiple sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:265-74. [PMID: 20637861 PMCID: PMC2970677 DOI: 10.1016/j.bbadis.2010.07.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a debilitating T cell mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity.
Collapse
Affiliation(s)
- Emily M L Chastain
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | |
Collapse
|
78
|
|
79
|
Wu GF, Shindler KS, Allenspach EJ, Stephen TL, Thomas HL, Mikesell RJ, Cross AH, Laufer TM. Limited sufficiency of antigen presentation by dendritic cells in models of central nervous system autoimmunity. J Autoimmun 2010; 36:56-64. [PMID: 21095100 DOI: 10.1016/j.jaut.2010.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 11/25/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE), a model for the human disease multiple sclerosis (MS), is dependent upon the activation and effector functions of autoreactive CD4 T cells. Multiple interactions between CD4 T cells and major histocompatibility class II (MHCII)+ antigen presenting cells (APCs) must occur in both the periphery and central nervous system (CNS) to elicit autoimmunity. The identity of the MHCII+ APCs involved throughout this process remains in question. We investigated which APC in the periphery and CNS mediates disease using transgenic mice with MHCII expression restricted to dendritic cells (DCs). MHCII expression restricted to DCs results in normal susceptibility to peptide-mediated EAE. Indeed, radiation-sensitive bone marrow-derived DCs were sufficient for all APC functions during peptide-induced disease. However, DCs alone were inefficient at promoting disease after immunization with the myelin protein myelin oligodendrocyte glycoprotein (MOG), even in the presence of MHCII-deficient B cells. Consistent with a defect in disease induction following protein immunization, antigen presentation by DCs alone was incapable of mediating spontaneous optic neuritis. These results indicate that DCs are capable of perpetuating CNS-targeted autoimmunity when antigens are readily available, but other APCs are required to efficiently initiate pathogenic cognate CD4 T cell responses.
Collapse
Affiliation(s)
- Gregory F Wu
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Brod SA, Hood ZM. Ingested (oral) ACTH inhibits EAE. J Neuroimmunol 2010; 232:131-5. [PMID: 21081248 DOI: 10.1016/j.jneuroim.2010.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/06/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
Ingested type I IFN and SIRS peptide inhibit EAE. We examined whether another immunoactive protein, ACTH, would have similar anti-inflammatory effects in EAE after oral administration. B6 mice were immunized and gavaged with control saline or ACTH starting on the onset of disease. ACTH decreased clinical score and decreased inflammatory foci. CNS lymphocytes showed decreases in IL-17 (T(eff)) and Th1-like encephalitogenic cytokines IL-2 and IFN-γ in the ACTH fed group compared to the mock fed group. Adoptive transfer of ACTH fed splenocytes into MOG immunized recipient mice with early clinical disease suppressed disease severity compared to splenocytes from mock fed donors. The protected recipients showed decreased splenic IL-17 (T(eff)) and Th1-like cytokine IFN-γ and increased CNS secretion of immunoregulatory IL-4 and chemokine M-CSF. Splenic CD4+CD25+ FoxP3+ frequency doubled in ACTH fed compared to control fed mice. Increased immuno-regulatory IL-4 and M-CSF secreting cell populations is the mechanism of protection in adoptively protected recipients and reflects the direct action of ACTH on the immune system.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, University of Texas-Houston, Health Science Center, 6431 Fannin St, Houston, TX 77030, United States.
| | | |
Collapse
|
81
|
Weber MS, Prod'homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, Danilenko DM, Eastham-Anderson J, Slavin AJ, Linington C, Bernard CCA, Martin F, Zamvil SS. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010; 68:369-83. [PMID: 20641064 DOI: 10.1002/ana.22081] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Clinical studies indicate that anti-CD20 B-cell depletion may be an effective multiple sclerosis (MS) therapy. We investigated mechanisms of anti-CD20-mediated immune modulation using 2 paradigms of experimental autoimmune encephalomyelitis (EAE). METHODS Murine EAE was induced by recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or MOG peptide (p)35-55, which does not require B cells. RESULTS In EAE induced by rMOG, B cells became activated and, when serving as antigen-presenting cells (APCs), promoted differentiation of proinflammatory MOG-specific Th1 and Th17 cells. B-cell depletion prevented or reversed established rMOG-induced EAE, which was associated with less central nervous system (CNS) inflammation, elimination of meningeal B cells, and reduction of MOG-specific Th1 and Th17 cells. In contrast, in MOG p35-55-induced EAE, B cells did not become activated or efficiently polarize proinflammatory MOG-specific T cells, similar to naive B cells. In this setting, anti-CD20 treatment exacerbated EAE, and did not impede development of Th1 or Th17 cells. Irrespective of the EAE model used, B-cell depletion reduced the frequency of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg), and increased the proinflammatory polarizing capacity of remaining myeloid APCs. INTERPRETATION Our study highlights distinct roles for B cells in CNS autoimmunity. Clinical benefit from anti-CD20 treatment may relate to inhibition of proinflammatory B cell APC function. In certain clinical settings, however, elimination of unactivated B cells, which participate in regulation of T cells and other APC, may be undesirable. Differences in immune responses to MOG protein and peptide may be important considerations when choosing an EAE model for testing novel B cell-targeting agents for MS.
Collapse
Affiliation(s)
- Martin S Weber
- Department of Neurology and Program in Immunology, University of California, San Francisco, CA 94143-0114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Jin YH, Hou W, Kim SJ, Fuller AC, Kang B, Goings G, Miller SD, Kim BS. Type I interferon signals control Theiler's virus infection site, cellular infiltration and T cell stimulation in the CNS. J Neuroimmunol 2010; 226:27-37. [PMID: 20538350 PMCID: PMC2937062 DOI: 10.1016/j.jneuroim.2010.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 02/08/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) establishes a persistent infection in the central nervous system (CNS). To examine the role of type I interferon (IFN-I)-mediated signals in TMEV infection, mice lacking a subunit of the type I IFN receptor (IFN-IR KO mice) were utilized. In contrast to wild type mice, IFN-IR KO mice developed rapid fatal encephalitis accompanied with greater viral load and infiltration of immune cells to the CNS. The proportion of virus-specific CD4(+) and CD8(+) T cell responses in the CNS was significantly lower in IFN-IR KO mice during the early stage of infection. Levels of IFN-γ and IL-17 produced by isolated primed CD4(+) T cells in response to DCs from TMEV-infected IFN-IR KO mice were also lower than those stimulated by DCs from TMEV-infected wild type control mice. The less efficient stimulation of virus-specific T cells by virus-infected antigen-presenting cells is attributable in part to the low level expression of activation markers on TMEV-infected cells from IFN-IR KO mice. However, due to high levels of cellular infiltration and viral loads in the CNS, the overall numbers of virus-specific T cells are higher in IFN-IR KO mice during the later stage of viral infection. These results suggest that IFN-I-mediated signals play important roles in controlling cellular infiltration to the CNS and shaping local T cell immune responses.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Wanqiu Hou
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Seung Jae Kim
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Alyson C. Fuller
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Bongsu Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Gwen Goings
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Byung S. Kim
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| |
Collapse
|
83
|
Sapir Y, Vitenshtein A, Barsheshet Y, Zohar Y, Wildbaum G, Karin N. A Fusion Protein Encoding the Second Extracellular Domain of CCR5 Arrests Chemokine-Induced Cosignaling and Effectively Suppresses Ongoing Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2010; 185:2589-99. [DOI: 10.4049/jimmunol.1000666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
84
|
Sayed BA, Christy AL, Walker ME, Brown MA. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? THE JOURNAL OF IMMUNOLOGY 2010; 184:6891-900. [PMID: 20488789 DOI: 10.4049/jimmunol.1000126] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.
Collapse
Affiliation(s)
- Blayne A Sayed
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
85
|
Zhang H, Podojil JR, Chang J, Luo X, Miller SD. TGF-beta-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2010; 184:6629-36. [PMID: 20483764 DOI: 10.4049/jimmunol.0904044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The low number of natural regulatory T cells (nTregs) in the circulation specific for a particular Ag and concerns about the bystander suppressive capacity of expanded nTregs presents a major clinical challenge for nTreg-based therapeutic treatment of autoimmune diseases. In the current study, we demonstrate that naive CD4+CD25-Foxp3- T cells specific for the myelin proteolipid protein (PLP)139-151 peptide can be converted into CD25+Foxp3+ induced Treg cells (iTregs) when stimulated in the presence of TGF-beta, retinoic acid, and IL-2. These PLP139-151-specific iTregs (139-iTregs) have a phenotype similar to nTregs, but additionally express an intermediate level of CD62L and a high level of CD103. Upon transfer into SJL/J mice, 139-iTregs undergo Ag-driven proliferation and are effective at suppressing induction of experimental autoimmune encephalomyelitis induced by the cognate PLP139-151 peptide, but not PLP178-191 or a mixture of the two peptides. Furthermore, 139-iTregs inhibit delayed-type hypersensitivity responses to PLP139-151, but not PLP178-191, myelin oligodendrocyte glycoprotein (MOG)35-55, or OVA323-339 in mice primed with a mixture of PLP139-151 and the other respective peptides. Additionally, 139-iTregs suppress the proliferation and activation of PLP139-151-, but not MOG35-55-specific CD4+ T cells in SJL/B6 F1 mice primed with a combination of PLP139-151 and MOG35-55. These findings suggest that Ag-specific iTregs are amplified in vivo when exposed to cognate Ag under inflammatory conditions, and these activated iTregs suppress CD4+ responder T cells in an Ag-specific manner.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Interleukin-17 (IL-17) is crucial for the progression of experimental autoimmune encephalomyelitis. In this issue of Immunity, Kang et al. (2010) report that neuroectoderm-derived astrocytes are the critical cellular element that responds to IL-17.
Collapse
|
87
|
Wildbaum G, Zohar Y, Karin N. Antigen-specific CD25- Foxp3- IFN-gamma(high) CD4+ T cells restrain the development of experimental allergic encephalomyelitis by suppressing Th17. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2764-75. [PMID: 20382706 DOI: 10.2353/ajpath.2010.090855] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current study identifies within the Th1 subtype two distinct CD4(+) populations: those capable of transferring inflammatory autoimmunity and others that regulate its development by suppressing Th17 in an interferon (IFN)-gamma-dependent manner. These CD4(+)IFN-gamma(high)IL-4(low)IL-10(low)TGF-beta(low)FOXp3(-) cells in fact function as antigen-specific regulatory cells that restrain the development of autoimmunity by increasing the threshold of Th17 activation. We show that development of autoimmune conditions within the central nervous system is dependent on the Fas ligand-mediated apoptosis of these regulatory cells at early stages of disease. We also show that not only is the function of these cells IFN-gamma dependent but also that stable over expression of IFN-gamma in encephalitogenic CD4(+) T cells redirects their biological function to become antigen-specific regulatory cells. This may also explain, in part, the pleiotropic role of IFN-gamma in the regulation of autoimmunity, as previously observed by others.
Collapse
Affiliation(s)
- Gizi Wildbaum
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Haifa, Israel.
| | | | | |
Collapse
|
88
|
Getts MT, Richards MH, Miller SD. A critical role for virus-specific CD8(+) CTLs in protection from Theiler's virus-induced demyelination in disease-susceptible SJL mice. Virology 2010; 402:102-11. [PMID: 20381109 DOI: 10.1016/j.virol.2010.02.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/23/2009] [Accepted: 02/26/2010] [Indexed: 01/04/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a relevant mouse model of multiple sclerosis. Infection of susceptible SJL/J mice leads to life-long CNS virus persistence and development of a chronic T cell-mediated autoimmune demyelinating disease triggered via epitope spreading to endogenous myelin epitopes. Potent CNS-infiltrating CD8(+) T cell responses to TMEV epitopes have previously been shown to be induced in both disease-susceptible SJL/J and resistant C57BL/6 mice, in which the virus is rapidly cleared. Specific tolerization of SJL CD8(+) T cells specific for the immunodominant TMEV VP3(159)(-)(166) epitope has no effect on viral load or development of clinical TMEV-IDD, but adoptive transfer of activated CD8(+) VP3(159)(-)(166)-specific T cell blasts shortly after TMEV infection to boost the early anti-viral response leads to clearance of CNS virus and protection from subsequent TMEV-IDD. These studies have important implications for vaccine strategies and treatment of chronic infections in humans.
Collapse
Affiliation(s)
- Meghann Teague Getts
- Department of Microbiology and Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, 303, E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
89
|
Kang Y, Zhao J, Liu Y, Chen A, Zheng G, Yu Y, Mi J, Zou Q, Wang B. FK506 as an adjuvant of tolerogenic DNA vaccination for the prevention of experimental autoimmune encephalomyelitis. J Gene Med 2010; 11:1064-70. [PMID: 19688809 DOI: 10.1002/jgm.1387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND DNA vaccination is a strategy that has been developed primarily to elicit protective immunity against infection and cancer. METHODS DNA vaccine was used, in conjunction with an immunosuppressant, to tolerize harmful autoimmunity. RESULTS Immunization of C57BL/6 mice with MOG(35-55), a myelin oligodendrocyte glycoprotein-derived peptide, and FK506 (Tacrolimus) as a tolerogenic adjuvant stimulated regulatory dendritic cells, induced antigen-specific regulatory T cells (Treg), and protected the animals from subsequent induction of experimental autoimmune encephalomyelitis (EAE). After EAE induction, there were fewer lymphocytes, including fewer T helper 17 cells, and more Treg infiltrating the spinal cord in the immunized mice compared to in control mice. Furthermore, at the peak of the EAE manifestation, CD4 T cells in the immunized mice showed decreased expression of interferon-gamma and interleukin (IL)-17, but not IL-4, in treated mice. CONCLUSIONS DNA vaccination, when applied with an immunosuppressant as adjuvant, can induce antigen-specific tolerance and prevent autoimmune disease.
Collapse
Affiliation(s)
- Youmin Kang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Kuerten S, Rodi M, Javeri S, Gruppe TL, Tary-Lehmann M, Lehmann PV, Addicks K. Delineating the impact of neuroantigen vs genetic diversity on MP4-induced EAE of C57BL/6 and B6.129 mice. APMIS 2010; 117:923-35. [PMID: 20078558 DOI: 10.1111/j.1600-0463.2009.02555.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MBP-PLP fusion protein (MP4)-induced experimental autoimmune encephalomyelitis (EAE) is a model for multiple sclerosis (MS) that encompasses both a time-dependent attack on central nervous system (CNS) regions and a B cell component, mirroring important features of human multiple sclerosis. Comparing C57BL/6 with B6.129 mice immunized with MP4, we point out similarities regarding these hallmarks and thus propose that they are largely dependent on the nature of the MP4 antigen itself, while differences between the two strains suggest that additional fine-tuning is brought about by the genetic repertoire of the animal. Overall, our data imply that (i) the interplay between both the antigenic trigger and genetic variables can define the outcome of MP4-induced autoimmune encephalomyelitis in C57BL/6 and B6.129 mice and (ii) that MP4 is not only a strong neuroantigen when it comes to reproducing the dynamics in effector mechanisms as is typical of the disease but also a promising agent for studying interindividual heterogeneity derived from genetic diversity in EAE/MS.
Collapse
Affiliation(s)
- Stefanie Kuerten
- Department of Anatomy I, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
91
|
Miller SD, Karpus WJ, Davidson TS. Experimental autoimmune encephalomyelitis in the mouse. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 15:15.1.1-15.1.20. [PMID: 20143314 DOI: 10.1002/0471142735.im1501s88] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit details the materials and methods required for both active induction and adoptive transfer of experimental autoimmune encephalomyelitis (EAE) in the SJL mouse strain using intact proteins or peptides from the two major myelin proteins: proteolipid protein (PLP) and myelin basic protein (MBP). Detailed materials and methods required for the purification of both PLP and MBP are also described. A protocol for isolating CNS-infiltrating lymphocytes in EAE mice is included. Modifications of the specified protocols may be necessary for efficient induction of active or adoptive EAE in other mouse strains.
Collapse
|
92
|
Bai B, Song W, Ji Y, Liu X, Tian L, Wang C, Chen D, Zhang X, Zhang M. Microglia and microglia-like cell differentiated from DC inhibit CD4 T cell proliferation. PLoS One 2009; 4:e7869. [PMID: 19924241 PMCID: PMC2773419 DOI: 10.1371/journal.pone.0007869] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/22/2009] [Indexed: 12/25/2022] Open
Abstract
The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function.
Collapse
Affiliation(s)
- Bo Bai
- Department of Neurobiology, Taishan Medical College, Taian, Shandong Province, People's Republic of China
| | - Wengang Song
- Department of Neurobiology, Taishan Medical College, Taian, Shandong Province, People's Republic of China
| | - Yewei Ji
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xi Liu
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Lei Tian
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Chao Wang
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Dongwei Chen
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaoning Zhang
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People's Republic of China
- * E-mail: (XZ); (MZ)
| | - Minghui Zhang
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, People's Republic of China
- * E-mail: (XZ); (MZ)
| |
Collapse
|
93
|
Schreiner B, Heppner FL, Becher B. Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 2009; 31:479-95. [PMID: 19802608 DOI: 10.1007/s00281-009-0181-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/13/2009] [Indexed: 12/18/2022]
Abstract
Inflammatory demyelinating disease of the central nervous system is one of the most frequent causes of neurological disability in young adults. While in situ analysis and in vitro models do shed some light onto the processes of tissue damage and cellular interactions, the development of neuroinflammation and demyelination is a far too complex process to be adequately modeled by simple test tube systems. Thus, animal models using primarily genetically modified mice have been proven to be of paramount importance. In this chapter, we discuss recent advances in modeling brain diseases focusing on murine models and report on new tools to study the pathogenesis of complex diseases such as multiple sclerosis.
Collapse
|
94
|
Baranzini SE. Systems-based medicine approaches to understand and treat complex diseases. The example of multiple sclerosis. Autoimmunity 2009; 39:651-62. [PMID: 17178562 DOI: 10.1080/08916930601061686] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Systems medicine is an emerging concept that acknowledges the complexity of a multitude of non-linear interactions among molecular and physiological variables. Under this new paradigm, rather than a collection of symptoms, diseases are seen as the product of deviations from a robust steady state compatible with life. This concept requires the incorporation of mathematics and physics to the more classical arsenal of physiology and molecular biology with which physicians are trained today. This review explores the diverse types of information that can be accumulated towards the understanding of multiple sclerosis (MS), a complex autoimmune disease that targets the central nervous system (CNS). The challenge of data integration and modeling of dynamical systems is discussed in the context of disease susceptibility and response to treatment. A theoretical framework that supports the use of combination therapy is also presented.
Collapse
Affiliation(s)
- Sergio E Baranzini
- Department of Neurology, School of Medicine, University of California, San Francisco, 513 Parnassus Avenue Room S-256, San Francisco, CA 94143-0435, USA.
| |
Collapse
|
95
|
Fitzgerald DC, Rostami A. Therapeutic potential of IL-27 in multiple sclerosis? Expert Opin Biol Ther 2009; 9:149-60. [PMID: 19236245 DOI: 10.1517/14712590802646936] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a debilitating neurological disease, characterized by inflammatory demyelination and axonal degeneration in the CNS. Currently approved therapies are partially effective, however safer and more effective treatments are needed. OBJECTIVE/METHODS To assess the therapeutic potential of the heterodimeric cytokine, IL-27 in MS, based on the current literature. RESULTS/CONCLUSIONS IL-27 exerts profound anti-inflammatory effects in several infectious and experimental autoimmune models. In particular, suppressive effects on helper T cells, which are implicated in the pathogenesis of MS, suggest that IL-27 may be therapeutically relevant in MS. However, while exciting discoveries have been made, further work is required particularly in human health and disease, to understand the diverse roles of IL-27 and its therapeutic potential.
Collapse
Affiliation(s)
- Denise C Fitzgerald
- Thomas Jefferson University, Suite 200 Jefferson Hospital for Neuroscience, 900 Walnut Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
96
|
Zhang H, Podojil JR, Luo X, Miller SD. Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2008; 181:4638-47. [PMID: 18802066 DOI: 10.4049/jimmunol.181.7.4638] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis is characterized by perivascular CNS infiltration of myelin-specific CD4(+) T cells and activated mononuclear cells. TCR transgenic mice on the SJL background specific for proteolipid protein (PLP)(139-151) develop a high incidence of spontaneous experimental autoimmune encephalomyelitis (sEAE). We examined the intrinsic mechanisms regulating onset and severity of sEAE. CD4(+) T cells isolated from the cervical lymph nodes, but not spleens, of diseased 5B6 transgenic mice are hyperactivated when compared with age-matched healthy mice and produce both IFN-gamma and IL-17, indicating that the cervical lymph node is the initial peripheral activation site. The age-associated development of sEAE correlates with a decline in both the functional capacity of natural regulatory T cells (nTregs) and in PLP(139-151)-induced IL-10 production and a concomitant increase in IL-17 production. Anti-CD25-induced inactivation of nTregs increased the incidence and severity of sEAE. Conversely, induction of peripheral tolerance via the i.v. injection of PLP(139-151)-pulsed, ethylcarbodiimide-fixed APCs (PLP(139-151)-SP) inhibited the development of clinical disease concomitant with increased production of IL-10 and conversion of Foxp3(+) Tregs from CD4(+)CD25(-) progenitors. These data indicate that heterogeneous populations of Tregs regulate onset of sEAE, and that induction of peripheral tolerance can be exploited to prevent/treat spontaneous autoimmune disease.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Microbiology-Immunology and the Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
97
|
Schreiner B, Bailey SL, Shin T, Chen L, Miller SD. PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur J Immunol 2008; 38:2706-17. [PMID: 18825752 DOI: 10.1002/eji.200838137] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disease progression in experimental autoimmune encephalomyelitis (EAE) is regulated by programmed death receptor 1 (PD-1) and its ligands, B7-H1 (programmed death ligand 1 (PD-L1)) and B7-DC (PD-L2). B7-H1 and B7-DC have negative regulatory effects upon binding PD-1 on activated T cells and B7-H1 deficiency increases severity of both diabetes and EAE. However, the role of PD-L expression on different APC in the CNS in regulating local T-cell function during relapsing EAE has not been examined. Our data show that the majority of CNS CD4+ T cells isolated during acute EAE are PD-1+, and T cells specific for relapse-associated epitopes express PD-1 upon antigen stimulation in the CNS. B7-H1 and B7-DC are differentially expressed on discrete APC populations in the inflamed CNS. B7-H1 and PD-1 have mainly inhibitory functions on CNS T cells. B7-H1 negatively regulates the stimulation of activated PD-1+ T(H) cells, in co-cultures with microglia and different CNS-infiltrating APC presenting endogenously processed peptides. The preponderance of IFN-gamma+ versus IL-17+ T cells in the CNS of B7-H1(-/-) mice suggests that B7-H1 more selectively suppresses T(H)-1 than T(H)-17 responses in vivo. In contrast, blockade of B7-DC has less pronounced regulatory effects. Overall, the results demonstrate that B7-H1 expressed by CNS myeloid APC negatively regulates T-cell activation during acute relapsing EAE.
Collapse
Affiliation(s)
- Bettina Schreiner
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
98
|
Greer JM, Pender MP. Myelin proteolipid protein: An effective autoantigen and target of autoimmunity in multiple sclerosis. J Autoimmun 2008; 31:281-7. [DOI: 10.1016/j.jaut.2008.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
99
|
Meiron M, Zohar Y, Anunu R, Wildbaum G, Karin N. CXCL12 (SDF-1alpha) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells. ACTA ACUST UNITED AC 2008; 205:2643-55. [PMID: 18852294 PMCID: PMC2571938 DOI: 10.1084/jem.20080730] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T cell–mediated autoimmune disease of the central nervous system induced by antigen-specific effector Th17 and Th1 cells. We show that a key chemokine, CXCL12 (stromal cell–derived factor 1α), redirects the polarization of effector Th1 cells into CD4+CD25−Foxp3−interleukin (IL) 10high antigen-specific regulatory T cells in a CXCR4-dependent manner, and by doing so acts as a regulatory mediator restraining the autoimmune inflammatory process. In an attempt to explore the therapeutic implication of these findings, we have generated a CXCL12-immunoglobulin (Ig) fusion protein that, when administered during ongoing EAE, rapidly suppresses the disease in wild-type but not IL-10–deficient mice. Anti–IL-10 neutralizing antibodies could reverse this suppression. The beneficial effect included selection of antigen-specific T cells that were CD4+CD25−Foxp3−IL-10high, which could adoptively transfer disease resistance, and suppression of Th17 selection. However, in vitro functional analysis of these cells suggested that, even though CXCL12-Ig–induced tolerance is IL-10 dependent, IL-10–independent mechanisms may also contribute to their regulatory function. Collectively, our results not only demonstrate, for the first time, that a chemokine functions as a regulatory mediator, but also suggest a novel way for treating multiple sclerosis and possibly other inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Moran Meiron
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
100
|
Mars LT, Gautron AS, Novak J, Beaudoin L, Diana J, Liblau RS, Lehuen A. Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. THE JOURNAL OF IMMUNOLOGY 2008; 181:2321-9. [PMID: 18684921 DOI: 10.4049/jimmunol.181.4.2321] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NKT cells are CD1d-restricted T cells specific for glycolipid Ags. Their activation or transgenic enrichment abrogates the development of experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate that in NKT-enriched mice the protection from EAE is associated with the infiltration of NKT cells in the CNS and the local expression of CD1d. This indicates that the CNS acquires the potential for local glycolipid presentation when exposed to inflammatory stress, permitting the triggering of NKT cells. To address the importance of CD1d-mediated Ag presentation, we used transgenic mice that express CD1d solely in the thymus. Interestingly, enrichment of NKT cells in these mice also conferred resistance to EAE, with an efficacy indistinguishable from that of NKT-enriched CD1d-sufficient mice. This protection was due to an abrogation of the encephalitogenic Th1 and Th17 response in the spleen, revealing that endogenous glycolipid presentation is dispensable for the regulatory function of NKT cells in EAE. Moreover, abrogating extrathymic CD1d expression failed to affect both the recruitment of NKT cells and their effector phenotype. CNS-infiltrating NKT cells were characterized by a cytotoxic IFN-gamma(high)IL-4(low)IL-10(low)granzyme B(high) profile, irrespective of the local expression of CD1d. Glycolipid Ag presentation is therefore dispensable for the control of autoimmune demyelination by NKT cells, underlining the importance of alternative cognate and/or soluble factors in the control of NKT cell function.
Collapse
Affiliation(s)
- Lennart T Mars
- Institut National de la Santé et de la Recherche Médicale, U-563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|