51
|
Kogan AN, von Andrian UH. Lymphocyte Trafficking. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
52
|
Yoshinaga K. Review of factors essential for blastocyst implantation for their modulating effects on the maternal immune system. Semin Cell Dev Biol 2007; 19:161-9. [PMID: 18054836 DOI: 10.1016/j.semcdb.2007.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 01/23/2023]
Abstract
Pituitary and ovarian hormones prepare the endometrium for successful blastocyst implantation and support its process directly or indirectly through the action of growth factors, cytokines and other molecules. Many of the blastocyst implantation essential factors (BIEFs) are modulators of the maternal immune system. Since little is known as to the action of these molecules on the uterine lymphocytes, its clarification is imperative to the understanding of the process of blastocyst implantation.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Reproductive Sciences Branch, Center for Population Research, National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892-7510, USA.
| |
Collapse
|
53
|
Nolte-’t Hoen ENM, Boot EPJ, Wagenaar-Hilbers JPA, van Bilsen JHM, Arkesteijn GJA, Storm G, Everse LA, van Eden W, Wauben MHM. Identification and monitoring of effector and regulatory T cells during experimental arthritis based on differential expression of CD25 and CD134. J Leukoc Biol 2007; 83:112-21. [DOI: 10.1189/jlb.0607436] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
54
|
Okusa MD, Lynch KR. Targeting sphingosine 1 phosphate receptor type 1 receptors in acute kidney injury. ACTA ACUST UNITED AC 2007; 4:55-59. [PMID: 19448841 DOI: 10.1016/j.ddmec.2007.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingosine 1-phosphate analogs have a multitude of effects with the best characterized one being mediated through sphingosine 1-phosphate type 1 receptors (S1P1 receptor). Currently, S1P1 receptor agonists are being developed and tested for human disease. Because of the potent effect of S1P1 agonists to modulate the immune system, these compounds are ideal for blocking immune mechanisms that mediate acute kidney injury (AKI). This disorder continues to remain an important disease that is characterized by high morbidity and mortality. Currently there are no FDA approved drugs for the treatment of AKI. This review summarizes current knowledge on the mechanism of AKI due to ischemia-reperfusion and early studies that target S1P1 receptors for the treatment and prevention of AKI.
Collapse
Affiliation(s)
- Mark D Okusa
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
55
|
Hashimoto D, Asakura S, Matsuoka KI, Sakoda Y, Koyama M, Aoyama K, Tanimoto M, Teshima T. FTY720 enhances the activation-induced apoptosis of donor T cells and modulates graft-versus-host disease. Eur J Immunol 2007; 37:271-81. [PMID: 17154260 DOI: 10.1002/eji.200636123] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
FTY720 is a novel immunosuppressant that improves the outcomes after solid organ and bone marrow transplantation (BMT) due to the sequestration of T cells into LN. We tested the hypothesis that the sequestration of donor T cells in LN by FTY720 would enhance their interaction with host APC, thus causing a greater degree of activation-induced apoptosis of alloreactive T cells, and thereby resulting in a reduction of graft-vs.-host disease (GVHD). The short-term administration of FTY720 improved the recipient survival after allogeneic BMT. FTY720 treatment facilitated a rapid contraction of the donor T cell pool in association with an increased degree of apoptosis of donor T cells. The donor T cell reactivity to host alloantigens was diminished in host's LN and adoptive transfer of donor T cells isolated from LN of FTY720-treated recipients of allogeneic BMT induced less severe GVHD in secondary recipients than the transfer from controls. Caspase-dependent apoptosis was involved in this mechanism because FTY720-induced protection was abrogated when a pan-caspase inhibitor was administered. These findings thus demonstrate the presence of a novel mechanism by which FTY720 modulates the allogeneic T cell responses: namely, by the induction of activation-induced apoptosis of alloreactive T cells in LN.
Collapse
Affiliation(s)
- Daigo Hashimoto
- Biopathological Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Yopp AC, Ledgerwood LG, Ochando JC, Bromberg JS. Sphingosine 1-phosphate receptor modulators: a new class of immunosuppressants. Clin Transplant 2007; 20:788-95. [PMID: 17100731 DOI: 10.1111/j.1399-0012.2006.00570.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this review, we summarize how FTY720 came from the lab bench to the bedside by examining its structural similarities to natural occurring sphingosine analogues, the mechanism of action, and clinical applicability to not only transplantation but also autoimmune, oncological, and neurobiological fields. FTY720, a sphingosine 1-phosphate (S1P) analogue, promotes the survival of human and animal allografts by sequestering T lymphocytes within peripheral lymphoid tissue. The mechanism of sequestration is three-fold: (1) T lymphocytes are driven into peripheral lymph nodes in a chemokine dependent manner by FTY720; (2) FTY720 downregulates sphingosine 1-phosphate receptors (S1PRs) on the T lymphocyte surface, rendering it unable to migrate along a S1P gradient; and (3) FTY720 closes stromal gates on the abluminal side of the lymphatic endothelium. Future areas of investigation include developing S1P analogues that have specific agonist binding to S1PRs avoiding side effects seen in non-specific binding.
Collapse
Affiliation(s)
- Adam C Yopp
- Department of Gene and Cell Medicine, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
57
|
Payne SG, Oskeritzian CA, Griffiths R, Subramanian P, Barbour SE, Chalfant CE, Milstien S, Spiegel S. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 2007; 109:1077-85. [PMID: 17008548 PMCID: PMC1785128 DOI: 10.1182/blood-2006-03-011437] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023] Open
Abstract
FTY720 is a potent immunomodulator drug that inhibits the egress of lymphocytes from secondary lymphoid tissues and thymus. FTY720 is phosphorylated in vivo by sphingosine kinase 2 to FTY720-phosphate, which acts as a potent sphingosine-1-phosphate (S1P) receptor agonist. However, in contrast to S1P, FTY720 has no effect on mast-cell degranulation, yet significantly reduces antigen-induced secretion of PGD2 and cysteinyl-leukotriene. Unexpectedly, this effect of FTY720 was independent of its phosphorylation and S1P receptor functions. The rate-limiting step in the biosynthesis of all eicosanoids is the phospholipase A2 (PLA2)-mediated release of arachidonic acid from glycerol phospholipids. Although FTY720 also reduced arachidonic acid release in response to antigen, it had no effect on translocation of cPLA2 or ERK1/2 activation, suggesting that it does not interfere with FcepsilonRI-mediated events leading to cPLA2 activation. Remarkably, however, FTY720 drastically inhibited recombinant cPLA2alpha activity, whereas FTY720-phosphate, sphingosine, or S1P had no effect. This study has uncovered a unique action of FTY720 as an inhibitor of cPLA2alpha and hence on production of all eicosanoids. Our results have important implications for the potential therapeutic mechanism of action of FTY720 in eicosanoid-driven inflammatory disorders such as asthma and multiple sclerosis.
Collapse
Affiliation(s)
- Shawn G Payne
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Deletions at chromosome 12p12-13 are observed in 26-47% of childhood pre-B acute lymphoblastic leukaemia (ALL) cases, suggesting the presence of a tumour suppressor gene (TSG). Accumulating genetic and functional evidence points to ETV6 as being the most probable TSG targeted by the deletions. ETV6 is a ubiquitously expressed transcription factor of the ETS family with very few known targets. To understand its function and to elucidate the impact of its absence in leukaemia, we conducted a study to identify targeted genes. Following the induction of ETV6 expression, global expression was evaluated at different time points. We identified 87 modulated genes, of which 10 (AKR1C1, AKR1C3, IL18, LUM, PHLDA1, PTGER4, PTGS2, SPHK1, TP53 and VEGF) were validated by real-time quantitative reverse transcription-polymerase chain reaction. To assess the significance of the validated candidate genes in leukaemia, their expression patterns were determined, as well as that of ETV6, in pre-B ALL patients. The expression of IL18, LUM, PTGER4, SPHK1 and TP53 was significantly correlated with that of ETV6, further suggesting that ETV6 could regulate the expression of these genes in leukaemia. This work constitutes another step towards the understanding of the functions of ETV6 and the impact of its inactivation in childhood leukaemia.
Collapse
Affiliation(s)
- Gino Boily
- Division of Hematology-oncology, Research Centre, Sainte-Justine Hospital, Montreal, QC, Canada
| | | | | | | |
Collapse
|
59
|
Valujskikh A. Memory T cells in allograft rejection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:247-56. [PMID: 17713012 DOI: 10.1007/978-0-387-72005-0_26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
T cell repertoire of many humans contains high frequencies of memory T cells specific for alloantigens. The increasing evidence implicates these cells as a barrier to allograft survival and to the induction of transplantation tolerance. This review discusses several aspects of memory T cell immunobiology pertinent to their role in transplantation.
Collapse
Affiliation(s)
- Anna Valujskikh
- The Cleveland Clinic Foundation, Department of Immunology, Cleveland, OH, USA.
| |
Collapse
|
60
|
Deng Q, Clemas JA, Chrebet G, Fischer P, Hale JJ, Li Z, Mills SG, Bergstrom J, Mandala S, Mosley R, Parent SA. Identification of Leu276 of the S1P1 receptor and Phe263 of the S1P3 receptor in interaction with receptor specific agonists by molecular modeling, site-directed mutagenesis, and affinity studies. Mol Pharmacol 2006; 71:724-35. [PMID: 17170199 DOI: 10.1124/mol.106.029223] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) receptor agonists are novel immunosuppressive agents. The selectivity of S1P1 against S1P3 is strongly correlated with lymphocyte sequestration and minimum acute toxicity and bradycardia. This study describes molecular modeling, site-directed mutagenesis, and affinity studies exploring the molecular basis for selectivity between S1P1 and S1P3 receptors. Computational models of human S1P1 and S1P3 receptors bound with two nonselective agonists or two S1P1-selective agonists were developed based on the X-ray crystal structure of bovine rhodopsin. The models predict that S1P1 Leu276 and S1P3 Phe263 contribute to the S1P1/S1P3 selectivity of the two S1P1-selective agonists. These residues were subjected to site-directed mutagenesis. The wild-type and mutant S1P receptors were expressed in Chinese hamster ovary cells and examined for their abilities to bind to and be activated by agonists in vitro. The results indicate that the mutations have minimal effects on the activities of the two nonselective agonists, although they have dramatic effects on the S1P1-selective agonists. These studies provide a fundamental understanding of how these two receptor-selective agonists bind to the S1P1 and S1P3 receptors, which should aid development of more selective S1P1 receptor agonists with immunosuppressive properties and improved safety profiles.
Collapse
Affiliation(s)
- Qiaolin Deng
- Department of Molecular Systems, Merck Research Laboratories, PO Box 2000, RY80Y-225, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML, Proia RL, Cyster JG. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. ACTA ACUST UNITED AC 2006; 203:2683-90. [PMID: 17101733 PMCID: PMC2118149 DOI: 10.1084/jem.20061289] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
After induction in secondary lymphoid organs, a subset of antibody-secreting cells (ASCs) homes to the bone marrow (BM) and contributes to long-term antibody production. The factors determining secondary lymphoid organ residence versus BM tropism have been unclear. Here we demonstrate that in mice treated with FTY720 or that lack sphingosine-1-phosphate (S1P) receptor-1 (S1P1) in B cells, IgG ASCs are induced and localize normally in secondary lymphoid organs but they are reduced in numbers in blood and BM. Many IgG ASCs home to BM on day 3 of the secondary response and day 3 splenic ASCs exhibit S1P responsiveness, whereas the cells remaining at day 5 are unable to respond. S1P1 mRNA abundance is higher in ASCs isolated from blood compared to spleen, whereas CXCR4 expression is lower. Blood ASCs also express higher amounts of Kruppel-like factor (KLF)2, a regulator of S1P1 gene expression. These findings establish an essential role for S1P1 in IgG plasma cell homing and they suggest that differential regulation of S1P1 expression in differentiating plasma cells may determine whether they remain in secondary lymphoid organs or home to BM.
Collapse
Affiliation(s)
- Kenji Kabashima
- Howard Hughes Medical Institute (HHMI) and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Morris MA, Gibb DR, Picard F, Brinkmann V, Straume M, Ley K. Transient T cell accumulation in lymph nodes and sustained lymphopenia in mice treated with FTY720. Eur J Immunol 2006; 35:3570-80. [PMID: 16285007 DOI: 10.1002/eji.200526218] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FTY720 (2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) is an orally available immunomodulatory agent that induces severe peripheral blood lymphopenia. Most studies of these lymphopenic effects have been limited to short-term exposure to FTY720. FTY720 alters the ability of lymphocytes to respond to sphingosine-1-phosphate (S1P) through S1P receptors, particularly S1P1. FTY720 affects different leukocyte populations and their trafficking through major lymphoid organs. We show the dynamics of CD4 T, CD8 T, and B lymphocyte recirculation in all major lymphoid compartments during 21-day FTY720 treatment of normal C57BL/6 mice. Following a transient increase in peripheral lymph nodes and Peyer's patches, lymphocyte recirculation reaches a new steady state. Other lymphoid organs show transient changes in lymphocyte composition with various patterns. At 21 days of FTY720 treatment, total body lymphocyte content is reduced by 20% and blood lymphocytes by 80%. Modeling suggests that the new steady state is due to a combination of reduced naive lymphocyte release from the thymus and a transient reduction of lymphocyte egress from lymph nodes. Our data indicate that the commonly held belief that FTY720 blocks lymphocyte egress from lymph nodes cannot fully explain the lymphocyte dynamics observed with prolonged treatment.
Collapse
Affiliation(s)
- Margaret A Morris
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
63
|
Anari MR, Creighton MD, Ngui JS, Tschirret-Guth RA, Teffera Y, Doss GA, Tang W, Yu NX, Ciccotto SL, Hobra DF, Coleman JB, Vincent SH, Evans DC. SPECIES DIFFERENCES IN METABOLISM AND PHARMACOKINETICS OF A SPHINGOSINE-1-PHOSPHATE RECEPTOR AGONIST IN RATS AND DOGS: FORMATION OF A UNIQUE GLUTATHIONE ADDUCT IN THE RAT. Drug Metab Dispos 2006; 34:1367-75. [PMID: 16698892 DOI: 10.1124/dmd.105.009027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pharmacokinetics and metabolism of 1-(4-((4-phenyl-5-trifluoromethyl-2-thienyl)methoxy)benzyl)azetidine-3-carboxylic acid (MRL-A), a selective agonist for the sphingosine-1-phosphate 1 (S1P1) receptor, were investigated in rats and dogs. In both species, more than 50% of the dose was excreted in bile. Specific to the rat, and observed in bile, were a taurine conjugate of MRL-A and a glucuronide conjugate of an azetidine lactam metabolite. In dogs, a smaller portion of the dose (54% of administered dose) was excreted intact in bile, and the major metabolites detected were an azetidine N-oxide of MRL-A and an acylglucuronide of an N-dealkylation product. This latter metabolite was also observed in rat bile. Stereoselective formation of the N-oxide isomer was observed in dogs, whereas the rat produced comparable amounts of both isomers. The formation of a unique glutathione adduct was observed in rat bile, which was proposed to occur via N-dealkylation, followed by reduction of the putative aldehyde product to form the alcohol, and dehydration of the alcohol to generate a reactive quinone methide intermediate. Incubation of a synthetic standard of this alcohol in rat microsomes fortified with reduced glutathione or rat hepatocytes resulted in formation of this unique glutathione adduct.
Collapse
Affiliation(s)
- M Reza Anari
- Drug Metabolism, Merck Research Laboratories, Sumneytown Pike, P.O. Box 4, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Vaessen LMB, van Besouw NM, Mol WM, Ijzermans JNM, Weimar W. FTY720 treatment of kidney transplant patients: A differential effect on B cells, naïve T cells, memory T cells and NK cells. Transpl Immunol 2006; 15:281-8. [PMID: 16635750 DOI: 10.1016/j.trim.2006.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 02/10/2006] [Accepted: 02/23/2006] [Indexed: 02/08/2023]
Abstract
FTY720 alters lymphocyte recirculation and homing by interfering with S1P receptors on lymphocytes, possibly in combination with chemokine receptors, and induces a decrease in PBL counts. In fresh, whole blood samples of 14 kidney transplant patients, we analyzed by flow cytometry the effect of FTY on the number of NK cells, monocytes, naïve (CCR7+) T cells, memory (CCR5+) T cells and B cells. Patients treated with 0.5, 2.5 or 5mg FTY/day showed a strong decrease in T and B cell numbers. NK cells and monocytes were not affected. FTY reduced primarily naïve T cells. From the memory T cells (CCR5+), predominantly CD8 cells, 40-60% remained in the circulation. The majority of the CCR7+ cells disappeared from the circulation within 3-6h, while a further reduction was achieved later. The more slowly decrease in naïve CCR7+ T cell numbers was also observed in the group treated with 0.25mg FTY/day. Elispot assays revealed no IL-4 producing cells and a low frequency of IFN-gamma producing cells. We suggest that both CCR7 dependent and independent mechanisms are involved in the depletion of T cells from peripheral blood.
Collapse
Affiliation(s)
- Leonard M B Vaessen
- Department of Internal Medicine-Transplantation, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Room Ee559, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
65
|
Habicht A, Clarkson MR, Yang J, Henderson J, Brinkmann V, Fernandes S, Jurewicz M, Yuan X, Sayegh MH. Novel insights into the mechanism of action of FTY720 in a transgenic model of allograft rejection: implications for therapy of chronic rejection. THE JOURNAL OF IMMUNOLOGY 2006; 176:36-42. [PMID: 16365393 DOI: 10.4049/jimmunol.176.1.36] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FTY720 is a high-affinity agonist at the sphingosine 1-phosphate receptor 1 that prevents lymphocyte egress from lymphoid tissue and prolongs allograft survival in several animal models of solid organ transplantation. In this study we used a recently developed adoptive transfer model of TCR transgenic T cells to track allospecific CD4+ T cell expansion and trafficking characteristics, cytokine secretion profiles, and surface phenotype in vivo in the setting of FTY720 administration. We report that FTY720 administration had no effect on alloantigen-driven T cell activation, proliferation, acquisition of effector-memory function, or T cell apoptosis. However, FTY720 caused a reversible sequestration of alloantigen-specific effector-memory T cells in regional lymphoid tissue associated with a decrease in T cell infiltration within the allograft and a subsequent prolongation in allograft survival. Furthermore, delayed administration of FTY720 in a cardiac model of chronic allograft rejection attenuated the progression of vasculopathy and tissue fibrosis consistent with the hypothesis that FTY720 interrupts the trafficking of activated effector-memory T cells. These data have important implications for targeting the sphingosine 1-phosphate receptor 1 in solid organ transplantation.
Collapse
Affiliation(s)
- Antje Habicht
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Yang J, Castle BE, Hanidu A, Stevens L, Yu Y, Li X, Stearns C, Papov V, Rajotte D, Li J. Sphingosine kinase 1 is a negative regulator of CD4+ Th1 cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:6580-8. [PMID: 16272312 DOI: 10.4049/jimmunol.175.10.6580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD4+ Th1 cells produce IFN-gamma, TNF-alpha, and IL-2. These Th1 cytokines play critical roles in both protective immunity and inflammatory responses. In this study we report that sphingosine kinase 1 (SPHK1), but not SPHK2, is highly expressed in DO11.10 Th1 cells. The expression of SPHK1 in Th1 cells requires TCR signaling and new protein synthesis. SPHK1 phosphorylates sphingosine to form sphingosine-1-phosphate. Sphingosine-1-phosphate plays important roles in inhibition of apoptosis, promotion of cell proliferation, cell migration, calcium mobilization, and activation of ERK1/2. When SPHK1 expression was knocked down by SPHK1 short interfering RNA, the production of IL-2, TNF-alpha, and IFN-gamma by Th1 cells in response to TCR stimulation was enhanced. Consistently, overexpression of dominant-negative SPHK1 increased the production of IL-2, TNF-alpha, and IFN-gamma in Th1 cells. Furthermore, overexpression of SPHK1 in Th1 and Th0 cells decreased the expression of IL-2, TNF-alpha, and IFN-gamma. Several chemokines, including Th2 chemokines CCL17 and CCL22, were up-regulated by SPHK1 short interfering RNA and down-regulated by overexpression of SPHK1. We also showed that Th2 cells themselves express CCL17 and CCL22. Finally, we conclude that SPHK1 negatively regulates the inflammatory responses of Th1 cells by inhibiting the production of proinflammatory cytokines and chemokines.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chemokine CCL17
- Chemokine CCL22
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Female
- Gene Expression
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/immunology
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th2 Cells/enzymology
- Th2 Cells/immunology
- Transfection
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Jianfei Yang
- R&D Center, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zhang Q, Chen Y, Fairchild RL, Heeger PS, Valujskikh A. Lymphoid Sequestration of Alloreactive Memory CD4 T Cells Promotes Cardiac Allograft Survival. THE JOURNAL OF IMMUNOLOGY 2006; 176:770-7. [PMID: 16393960 DOI: 10.4049/jimmunol.176.2.770] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory T cells specific for donor Ags present a unique challenge in transplantation. In addition to expressing robust immune responses to a transplanted organ, memory T cells may be resistant to the effects of immunosuppressive therapies used to prolong graft survival. In this study, we explore the possibility of controlling deleterious donor-reactive memory CD4 T cells through lymphoid sequestration. We showed that sphingosine 1-phosphate receptor-1 agonist FTY720 induces relocation of circulating memory CD4 T cells into secondary lymphoid organs. Lymphoid sequestration of these donor-reactive memory CD4 T cells prolonged survival of murine heterotopic cardiac allografts and synergizes with conventional costimulatory blockade to further increase graft survival. Despite limited trafficking, memory CD4 T cells remain capable of providing help for the induction of anti-donor CD8 T cell and alloantibody responses. Elimination of antidonor humoral immunity resulted in indefinite allograft survival proving the pathogenicity of alloantibody under these conditions. Overall, this is the first demonstration that FTY720 influences memory CD4 T cell trafficking and attenuates their contribution to allograft rejection. The data have important implications for guiding FTY720 therapy and for designing combinatorial strategies aimed at prolonging allograft survival in sensitized transplant patients with donor-specific memory T cells.
Collapse
Affiliation(s)
- Qiwei Zhang
- Department of Immunology, The Cleveland Clinic Foundation, Cleveland OH 44195, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Lysophospholipids (LPLs) are lipid-derived signaling molecules exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Originally identified as serum-associated growth factors, these mediators now are known to signal through a family of diverse G protein-coupled receptors (GPCRs). Virtually all cells that participate in the immune response express multiple receptors for LPLs. The development of antibody reagents that recognize the receptors for each LPL and the derivation of receptor-selective agonists and receptor-null mouse strains have provided insights into the widely diverse functions of LPLs in immune responses, particularly the role of S1P in lymphocyte trafficking. This review focuses on the biology of the LPLs as these molecules relate to functional regulation of immune cells in vitro and to the regulation of integrated immune responses in vivo.
Collapse
Affiliation(s)
- Debby A Lin
- Department of Medicine, Harvard Medical School, and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
69
|
Neuringer IP, Chalermskulrat W, Aris R. Obliterative bronchiolitis or chronic lung allograft rejection: a basic science review. J Heart Lung Transplant 2005; 24:3-19. [PMID: 15653373 DOI: 10.1016/j.healun.2004.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/12/2003] [Accepted: 01/06/2004] [Indexed: 01/06/2023] Open
Affiliation(s)
- Isabel P Neuringer
- Division of Pulmonary and Critical Care Medicine and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
70
|
Jo E, Sanna MG, Gonzalez-Cabrera PJ, Thangada S, Tigyi G, Osborne DA, Hla T, Parrill AL, Rosen H. S1P1-selective in vivo-active agonists from high-throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. ACTA ACUST UNITED AC 2005; 12:703-15. [PMID: 15975516 DOI: 10.1016/j.chembiol.2005.04.019] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/16/2005] [Accepted: 04/26/2005] [Indexed: 01/18/2023]
Abstract
The essential role of the sphingosine 1-phosphate (S1P) receptor S1P(1) in regulating lymphocyte trafficking was demonstrated with the S1P(1)-selective nanomolar agonist, SEW2871. Despite its lack of charged headgroup, the tetraaromatic compound SEW2871 binds and activates S1P(1) through a combination of hydrophobic and ion-dipole interactions. Both S1P and SEW2871 activated ERK, Akt, and Rac signaling pathways and induced S1P(1) internalization and recycling, unlike FTY720-phosphate, which induces receptor degradation. Agonism with receptor recycling is sufficient for alteration of lymphocyte trafficking by S1P and SEW2871. S1P(1) modeling and mutagenesis studies revealed that residues binding the S1P headgroup are required for kinase activation by both S1P and SEW2871. Therefore, SEW2871 recapitulates the action of S1P in all the signaling pathways examined and overlaps in interactions with key headgroup binding receptor residues, presumably replacing salt-bridge interactions with ion-dipole interactions.
Collapse
Affiliation(s)
- Euijung Jo
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, ICND 118, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Bandhuvula P, Tam YY, Oskouian B, Saba JD. The immune modulator FTY720 inhibits sphingosine-1-phosphate lyase activity. J Biol Chem 2005; 280:33697-700. [PMID: 16118221 DOI: 10.1074/jbc.c500294200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FTY720 is a novel immunomodulatory agent that inhibits lymphocyte trafficking and prevents allograft rejection. FTY720 is phosphorylated in vivo, and the phosphorylated drug acts as agonist for a family of G protein-coupled receptors that recognize sphingosine 1-phosphate. Evidence suggests that FTY720-phosphate-induced activation of S1P1 is responsible for its mechanism of action. FTY720 was rationally designed by modification of myriocin, a naturally occurring sphingoid base analog that causes immunosuppression by interrupting sphingolipid metabolism. In this study, we examined interactions between FTY720, FTY720-phosphate, and sphingosine-1-phosphate lyase, the enzyme responsible for irreversible sphingosine 1-phosphate degradation. FTY720-phosphate was stable in the presence of active sphingosine-1-phosphate lyase, demonstrating that the lyase does not contribute to FTY720 catabolism. Conversely, FTY720 inhibited sphingosine-1-phosphate lyase activity in vitro. Treatment of mice with FTY720 inhibited tissue sphingosine-1-phosphate lyase activity within 12 h, whereas lyase gene and protein expression were not significantly affected. Tissue sphingosine 1-phosphate levels remained stable or increased throughout treatment. These studies raise the possibility that disruption of sphingosine 1-phosphate metabolism may account for some effects of FTY720 on immune function and that sphingosine-1-phosphate lyase may be a potential target for immunomodulatory therapy.
Collapse
|
72
|
Yopp AC, Ochando JC, Mao M, Ledgerwood L, Ding Y, Bromberg JS. Sphingosine 1-Phosphate Receptors Regulate Chemokine-Driven Transendothelial Migration of Lymph Node but Not Splenic T Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:2913-24. [PMID: 16116177 DOI: 10.4049/jimmunol.175.5.2913] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chemokines and chemokine receptors are required for T cell trafficking and migration. Recent evidence shows that sphingosine 1-phosphate (S1P) and S1PRs are also important for some aspects of T cell migration, but how these two important receptor-ligand systems are integrated and coregulated is not known. In this study, we have investigated CCL19-CCR7 and CXCL12-CXCR4-driven migration of both splenic and peripheral lymph node (PLN) nonactivated and naive T cells, and used both S1P and the S1PR ligand, FTY720, to probe these interactions. The results demonstrate that splenic T cell migration to CCL19 or CXCL12 is enhanced by, but does not require, S1PR stimulation. In contrast, PLN T cell migration to CXCL12, but not CCL19, requires both chemokine and S1PR stimulation, and the requirement for dual receptor stimulation is particularly important for steps involving transendothelial migration. The results also demonstrate that: 1) splenic and PLN nonactivated and naive T cells use different molecular migration mechanisms; 2) CCR7 and CXCR4 stimulation engage different migration mechanisms; and 3) S1P and FTY720 have distinct S1PR agonist and antagonist properties. The results have important implications for understanding naive T cell entry into and egress from peripheral lymphoid organs, and we present a model for how S1P and chemokine receptor signaling may be integrated within a T cell.
Collapse
Affiliation(s)
- Adam C Yopp
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
73
|
Martinez X, Kreuwel HTC, Redmond WL, Trenney R, Hunter K, Rosen H, Sarvetnick N, Wicker LS, Sherman LA. CD8+ T Cell Tolerance in Nonobese Diabetic Mice Is Restored by Insulin-Dependent Diabetes Resistance Alleles. THE JOURNAL OF IMMUNOLOGY 2005; 175:1677-85. [PMID: 16034108 DOI: 10.4049/jimmunol.175.3.1677] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although candidate genes controlling autoimmune disease can now be identified, a major challenge that remains is defining the resulting cellular events mediated by each locus. In the current study we have used NOD-InsHA transgenic mice that express the influenza hemagglutinin (HA) as an islet Ag to compare the fate of HA-specific CD8+ T cells in diabetes susceptible NOD-InsHA mice with that observed in diabetes-resistant congenic mice having protective alleles at insulin-dependent diabetes (Idd) 3, Idd5.1, and Idd5.2 (Idd3/5 strain) or at Idd9.1, Idd9.2, and Idd9.3 (Idd9 strain). We demonstrate that protection from diabetes in each case is correlated with functional tolerance of endogenous islet-specific CD8+ T cells. However, by following the fate of naive, CFSE-labeled, islet Ag-specific CD8+ (HA-specific clone-4) or CD4+ (BDC2.5) T cells, we observed that tolerance is achieved differently in each protected strain. In Idd3/5 mice, tolerance occurs during the initial activation of islet Ag-specific CD8+ and CD4+ T cells in the pancreatic lymph nodes where CD25+ regulatory T cells (Tregs) effectively prevent their accumulation. In contrast, resistance alleles in Idd9 mice do not prevent the accumulation of islet Ag-specific CD8+ and CD4+ T cells in the pancreatic lymph nodes, indicating that tolerance occurs at a later checkpoint. These results underscore the variety of ways that autoimmunity can be prevented and identify the elimination of islet-specific CD8+ T cells as a common indicator of high-level protection.
Collapse
MESH Headings
- Alleles
- Animals
- Autoantigens/biosynthesis
- Autoantigens/genetics
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Movement/genetics
- Cell Movement/immunology
- Clone Cells
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Epitopes, T-Lymphocyte/immunology
- Immune Tolerance/genetics
- Immunity, Innate/genetics
- Insulin Resistance/genetics
- Insulin Resistance/immunology
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Congenic
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Pancreas/immunology
- Pancreas/pathology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Xavier Martinez
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Secondary lymphoid organs serve as hubs for the adaptive immune system, bringing together antigen, antigen-presenting cells, and lymphocytes. Two families of G protein-coupled receptors play essential roles in lymphocyte migration through these organs: chemokine receptors and sphingosine-1-phosphate (S1P) receptors. Chemokines expressed by lymphoid stromal cells guide lymphocyte and dendritic cell movements during antigen surveillance and the initiation of adaptive immune responses. S1P receptor-1 is required for lymphocyte egress from thymus and secondary lymphoid organs and is downregulated by the immunosuppressive drug FTY720. Here, we review the steps associated with the initiation of adaptive immune responses in secondary lymphoid organs, highlighting the roles of chemokines and S1P.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA.
| |
Collapse
|
75
|
Vora KA, Nichols E, Porter G, Cui Y, Keohane CA, Hajdu R, Hale J, Neway W, Zaller D, Mandala S. Sphingosine 1-phosphate receptor agonist FTY720-phosphate causes marginal zone B cell displacement. J Leukoc Biol 2005; 78:471-80. [PMID: 15894589 DOI: 10.1189/jlb.0904487] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
FTY720 is an immunosuppressive agent that modulates lymphocyte trafficking. It is phosphorylated in vivo to FTY720-phosphate (FTY-P) and binds to a family of G protein-coupled receptors recognizing sphingosine 1-phosphate (S1P) as the natural ligand. It has previously been reported that FTY-P blocks egress of lymphocytes from the thymus and lymph nodes, resulting in peripheral blood lymphopenia. We now report that FTY-P also causes displacement of marginal zone (MZ) B cells to the splenic follicles, an effect that is similar to that observed after in vivo administration of lipopolysaccharide. This effect is specific to B cells in the MZ, as treatment with FTY-P does not cause redistribution of the resident macrophage population. A small but statistically significant decrease in the expression of beta1 integrin on MZ B cells was observed with FTY-P treatment. The redistribution of MZ B cells from the MZ sinuses does not abolish the ability of these cells to respond to the T-independent antigen, trinitrophenol-Ficoll. It has been proposed that the displacement of MZ B cells to the follicles is an indication of cell activation. Consistent with this, FTY-P caused an increase in percentage of MZ B cells expressing activation markers CD9, CD1d, and CD24. These results suggest that S1P receptors on MZ B cells are responsible for their mobilization to follicles.
Collapse
Affiliation(s)
- Kalpit A Vora
- Department of Immunology, Merck Research Laboratories, 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Halin C, Scimone ML, Bonasio R, Gauguet JM, Mempel TR, Quackenbush E, Proia RL, Mandala S, von Andrian UH. The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood 2005; 106:1314-22. [PMID: 15870184 PMCID: PMC1895188 DOI: 10.1182/blood-2004-09-3687] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) and its receptor S1P1 control T-cell egress from thymus and secondary lymphoid organs (SLOs). To further define the role of S1P1 in lymphocyte trafficking, we performed adoptive transfer experiments and intravital microscopy (IVM) using both S1P1-/- lymphocytes and recipient wild-type (WT) mice treated with FTY720, an immunosuppressant that downmodulates S1P receptors. S1P1 deficiency and FTY720 caused rapid disappearance of T cells from blood, prolonged retention in SLOs, and accumulation in bone marrow, but did not alter interstitial T-cell motility in peripheral lymph nodes (PLNs) as assessed by multiphoton IVM. However, S1P1-/- lymphocytes displayed reduced short-term homing to PLNs due to attenuated integrin-mediated firm arrest in high endothelial venules (HEVs). By contrast, S1P1-/- T cells homed normally to Peyer patches (PPs), whereas S1P1-/- B cells had a marked defect in homing to PPs and arrested poorly in PP HEVs. Therefore, S1P1 not only controls lymphocyte egress from SLOs, but also facilitates in a tissue- and subset-specific fashion integrin activation during homing. Interestingly, FTY720 treatment enhanced accumulation of both S1P1 sufficient and S1P1-/- T cells in PPs by enhancing integrin-mediated arrest in HEVs. Thus, FTY720 exerts unique effects on T-cell traffic in PPs that are independent of T-cell-expressed S1P1.
Collapse
Affiliation(s)
- Cornelia Halin
- The CBR Institute for Biomedical Research, 200 Longwood Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bolick DT, Srinivasan S, Kim KW, Hatley ME, Clemens JJ, Whetzel A, Ferger N, Macdonald TL, Davis MD, Tsao PS, Lynch KR, Hedrick CC. Sphingosine-1-Phosphate Prevents Tumor Necrosis Factor-α–Mediated Monocyte Adhesion to Aortic Endothelium in Mice. Arterioscler Thromb Vasc Biol 2005; 25:976-81. [PMID: 15761190 DOI: 10.1161/01.atv.0000162171.30089.f6] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelial activation and monocyte adhesion to endothelium are key events in inflammation. Sphingosine-1-phosphate (S1P) is a sphingolipid that binds to G protein-coupled receptors on endothelial cells (ECs). We examined the role of S1P in modulating endothelial activation and monocyte-EC interactions in vivo. METHODS AND RESULTS We injected C57BL/6J mice intravenously with tumor necrosis factor (TNF)-alpha in the presence and absence of the S1P1 receptor agonist SEW2871 and examined monocyte adhesion. Aortas from TNF-alpha-injected mice had a 4-fold increase in the number of monocytes bound, whereas aortas from TNF-alpha plus SEW2871-treated mice had few monocytes bound (P<0.0001). Using siRNA, we found that inhibiting the S1P1 receptor in vascular ECs blocked the ability of S1P to prevent monocyte-EC interactions in response to TNF-alpha. We examined signaling pathways downstream of S1P1 and found that 100 nM S1P increased phosphorylation of Akt and decreased activation of c-jun. CONCLUSIONS Thus, we provide the first evidence that S1P signaling through the endothelial S1P1 receptor protects the vasculature against TNF-alpha-mediated monocyte-EC interactions in vivo.
Collapse
Affiliation(s)
- David T Bolick
- Division of Endocrinology & Metabolism and Cardiovascular Research Center, University of Virginia, Charlottesville, Va 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Oskouian B, Mendel J, Shocron E, Lee MA, Fyrst H, Saba JD. Regulation of sphingosine-1-phosphate lyase gene expression by members of the GATA family of transcription factors. J Biol Chem 2005; 280:18403-10. [PMID: 15734735 DOI: 10.1074/jbc.m410928200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine-1-phosphate is a bioactive sphingolipid that regulates proliferation, differentiation, migration, and apoptosis. Sphingosine-1-phosphate is irreversibly degraded by the highly conserved enzyme sphingosine-1-phosphate lyase. Recent studies have suggested that sphingosine-1-phosphate lyase expression affects animal development and cell fate decisions. Despite its crucial role, mechanisms affecting expression of sphingosine-1-phosphate lyase remain poorly understood. In this study, regulation of sphingosine-1-phosphate lyase gene expression was investigated in Caenorhabditis elegans, where lyase expression is spatially restricted to cells of the developing and adult gut and is essential for normal development. Deletion analysis and generation of transgenic worms combined with fluorescence microscopy identified a 350-nucleotide sequence upstream of the ATG start site necessary for maximal lyase expression in adult worms. Site-specific mutagenesis of a GATA transcription factor-binding motif in the promoter led to loss of reporter expression. Knockdown of the gut-specific GATA transcription factor ELT-2 by RNA interference similarly led to loss of reporter expression. ELT-2 interacted with the GATA factor-binding motif in vitro and was also capable of driving expression of a Caenorhabditis elegans lyase promoter-beta-galactosidase reporter in a heterologous yeast system. These studies demonstrate that ELT-2 regulates sphingosine-1-phosphate lyase expression in vivo. Additionally, we demonstrate that the human sphingosine-1-phosphate lyase gene is regulated by a GATA transcription factor. Overexpression of GATA-4 led to both an increase in activity of a reporter gene as well as an increase in endogenous sphingosine-1-phosphate lyase protein.
Collapse
Affiliation(s)
- Babak Oskouian
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673 and California Institute of Technology, Division of Biology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
79
|
Davis MD, Clemens JJ, Macdonald TL, Lynch KR. Sphingosine 1-phosphate analogs as receptor antagonists. J Biol Chem 2004; 280:9833-41. [PMID: 15590668 DOI: 10.1074/jbc.m412356200] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator that evokes a variety of cell and tissue responses via a set of cell surface receptors. The recent development of S1P receptor agonists, led by the immunomodulatory pro-drug FTY720, has revealed that S1P signaling is an important regulator of lymphocyte trafficking. With the twin goals of understanding structure-activity relationships of S1P ligands and developing tool compounds to explore S1P biology, we synthesized and tested numerous S1P analogs. We report herein that a subset of our aryl amide-containing compounds are antagonists at the S1P(1) and S1P(3) receptors. The lead compound in series, VPC23019, was found in broken cell and whole cell assays to behave as a competitive antagonist at the S1P(1) and S1P(3) receptors. The structure-activity relationship of this series is steep; for example, a slight modification of the lead compound resulted in VPC25239, which was one log order more potent at the S1P(3) receptor. These new chemical entities will enable further understanding of S1P signaling and provide leads for further S1P receptor antagonist development.
Collapse
Affiliation(s)
- Michael D Davis
- Biochemistry and Molecular Genetics, Pharmacology, and Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
80
|
Goetzl EJ, Rosen H. Regulation of immunity by lysosphingolipids and their G protein–coupled receptors. J Clin Invest 2004. [DOI: 10.1172/jci200423704] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
81
|
Goetzl EJ, Rosen H. Regulation of immunity by lysosphingolipids and their G protein-coupled receptors. J Clin Invest 2004; 114:1531-7. [PMID: 15578083 PMCID: PMC529289 DOI: 10.1172/jci23704] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
T and B lymphocytes, as well as endothelial cells, express distinctive profiles of G protein-coupled receptors for sphingosine 1-phosphate, which is a major regulator of T cell development, B and T cell recirculation, tissue homing patterns, and chemotactic responses to chemokines. The capacity of drugs that act on type 1 sphingosine 1-phosphate receptors to suppress organ graft rejection in humans and autoimmunity in animal models without apparent impairment of host defenses against infections suggests that this system is a promising target for new forms of immunotherapy.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, UCSF, San Francisco, California, USA.
| | | |
Collapse
|
82
|
Abstract
Lysophospholipids (LPs), such as lysophosphatidic acid and sphingosine 1-phosphate, are membrane-derived bioactive lipid mediators. LPs can affect fundamental cellular functions, which include proliferation, differentiation, survival, migration, adhesion, invasion, and morphogenesis. These functions influence many biological processes that include neurogenesis, angiogenesis, wound healing, immunity, and carcinogenesis. In recent years, identification of multiple cognate G protein-coupled receptors has provided a mechanistic framework for understanding how LPs play such diverse roles. Generation of LP receptor-null animals has allowed rigorous examination of receptor-mediated physiological functions in vivo and has identified new functions for LP receptor signaling. Efforts to develop LP receptor subtype-specific agonists/antagonists are in progress and raise expectations for a growing collection of chemical tools and potential therapeutic compounds. The rapidly expanding literature on the LP receptors is herein reviewed.
Collapse
Affiliation(s)
- Isao Ishii
- Department of Molecular Genetics, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | |
Collapse
|
83
|
Yopp AC, Krieger NR, Ochando JC, Bromberg JS. Therapeutic manipulation of T cell chemotaxis in transplantation. Curr Opin Immunol 2004; 16:571-7. [PMID: 15342001 DOI: 10.1016/j.coi.2004.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
T cell migration and trafficking are regulated by the well defined cellular processes of rolling, activation, tight adhesion, arrest and diapedesis. These processes are, in turn, controlled by molecular events involving integrins, selectins, chemokines and chemokine receptors. Recent studies have shown that sphingosine 1-phosphate receptors and their ligands are also important molecular modulators of migration and trafficking. Many of these molecules are appropriate targets for preventing allograft rejection or for achieving tolerance. Studies of migration and trafficking have also shown that the anatomic choreography of alloantigen presentation and T cell encounter with alloantigen and immunosuppression, are over-riding determinants of T cell priming versus tolerization.
Collapse
Affiliation(s)
- Adam C Yopp
- Mount Sinai School of Medicine, One Gustave L Levy Place, Box 1104, New York, New York 10029-6574, USA
| | | | | | | |
Collapse
|
84
|
Abstract
A central feature of the immune response is the precise spatio-temporal convergence of T cells and antigen presenting cells (APC) in particular microenvironments within secondary lymphoid organs (SLO). CCR7 and its ligands CCL19 and CCL21 have been identified as the gatekeepers for both naïve T lymphocytes and dendritic cells (DC) to these defined anatomical compartments. A new perception on the regulation of lymphocyte traffic in lymph nodes (LN) has come from observations that sphingosine-1-phosphate (S1P) receptor agonists affect T cell entry and exit from these organs. Recent developments in intravital microscopy (IVM) techniques reveal unexpected autonomous random motion of lymphocytes within secondary lymphoid tissues, and provoke questions about the mechanisms that guide their compartmental navigation.
Collapse
Affiliation(s)
- Wolfgang Weninger
- CBR Institute for Biomedical Research and the Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
85
|
Han S, Zhang X, Wang G, Guan H, Garcia G, Li P, Feng L, Zheng B. FTY720 suppresses humoral immunity by inhibiting germinal center reaction. Blood 2004; 104:4129-33. [PMID: 15319278 DOI: 10.1182/blood-2004-06-2075] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
FTY720 is a novel immunosuppressant that is highly effective in inhibiting rejection of allografts and autoimmunity in various animal models. It has been shown that the sphingosine 1 phosphate (S1P) receptors are the direct molecular targets of FTY720. However, the mechanisms responsible for inhibiting specific immune responses by FTY720 are not well resolved. In particular, there is no available information on whether or how this compound affects humoral immunity. We have investigated the effect of FTY720 treatment on B-cell response during the immune response to a well-defined T-dependent antigen. Our data demonstrated that germinal center reaction was significantly reduced in peripheral lymphoid tissues of mice treated with FTY720. In addition, FTY720 treatment inhibited the production of high-affinity, class-switched antibodies, but not the production of low-affinity, immunoglobulin M (IgM) antibody. Consistently, FTY720 did not have a significant effect on antibody response to a T-independent antigen. Our results may have important implications in application of FTY720 in immune regulation.
Collapse
Affiliation(s)
- Shuhua Han
- Department of Immunology, Baylor College of Medicine, M929, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Webb M, Tham CS, Lin FF, Lariosa-Willingham K, Yu N, Hale J, Mandala S, Chun J, Rao TS. Sphingosine 1-phosphate receptor agonists attenuate relapsing–remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol 2004; 153:108-21. [PMID: 15265669 DOI: 10.1016/j.jneuroim.2004.04.015] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/23/2004] [Accepted: 04/26/2004] [Indexed: 11/22/2022]
Abstract
FTY720 is a prodrug for FTY-phosphate, an agonist at four of the five known receptors for sphingosine-1-phosphate (S1P). We show that administration of either FTY720 or FTY-P to SJL mice with established relapsing-remitting experimental autoimmune encephalitis (EAE) results in a rapid and sustained improvement in their clinical status, and a reversal of changes in expression of mRNAs encoding some myelin proteins and inflammatory mediators. EAE produced by adoptively transferring lymph node cells from immunized mice to naïve hosts is similarly ameliorated by FTY-P. Treatment with FTY-P is accompanied by a dose-responsive peripheral lymphopoenia.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Fingolimod Hydrochloride
- Gene Expression Regulation/immunology
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Lymphocytes/drug effects
- Lymphocytes/physiology
- Lymphopenia/drug therapy
- Lymphopenia/etiology
- Mice
- Mice, Inbred Strains
- Mitoxantrone/therapeutic use
- Molecular Sequence Data
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Myelin Proteolipid Protein
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Peptide Fragments
- Propylene Glycols/pharmacology
- Propylene Glycols/therapeutic use
- RNA, Messenger/biosynthesis
- Receptors, G-Protein-Coupled/agonists
- Receptors, Lysophospholipid
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sphingosine/analogs & derivatives
- Time Factors
Collapse
Affiliation(s)
- Michael Webb
- Molecular Neuroscience Laboratory, Merck Research Laboratories, 3535 General Atomics Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
A cardinal feature of the adaptive immune response is its ability to generate long-lived populations of memory T lymphocytes. Memory T cells are specific to the antigen encountered during the primary immune response and react rapidly and vigorously upon re-encounter with the same antigen. Memory T cells that recognize microbial antigens provide the organism with long-lasting protection against potentially fatal infections. On the other hand, memory T cells that recognize donor alloantigens can jeopardize the survival of life-saving organ transplants. We review here the immunobiology of memory T cells and describe their role in the rejection of solid organ allografts.
Collapse
Affiliation(s)
- Anna Valujskikh
- Department of Immunology, The Cleveland Clinic Foundation, 9500 Euclid Avenue NB30, Cleveland, OH 44195, USA.
| | | |
Collapse
|
88
|
Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 2004; 4:1019-25. [PMID: 15196057 DOI: 10.1111/j.1600-6143.2004.00476.x] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The novel immunomodulator FTY720 is effective in experimental models of transplantation and autoimmunity, and is currently undergoing Phase III clinical trials for prevention of kidney graft rejection. In contrast to conventional immunosuppressants, FTY720 does not impair T- and B-cell activation, proliferation and effector function, but interferes with cell traffic between lymphoid organs and blood. The molecular basis for the mode of action of the drug has only recently been established. FTY720, after phosphorylation, acts as a high-affinity agonist at the G protein-coupled sphingosine 1-phosphate receptor-1 (S1P(1)) on thymocytes and lymphocytes, thereby inducing aberrant internalization of the receptor. This renders the cells unresponsive to the serum lipid sphingosine 1-phosphate (S1P), depriving them from an obligatory signal to egress from lymphoid organs. As a consequence, lymphocytes are unable to recirculate to peripheral inflammatory tissues and graft sites but remain functional in the lymphoid compartment. In addition to the effects on lymphocyte recirculation, the drug acts on endothelial cells and preserves vascular integrity by enhancing adherens junction assembly and endothelial barrier function. The available data establish S1P(1) as a key target for FTY720, and further point to therapeutically relevant effects of the drug on lymphocytes and vascular endothelium.
Collapse
Affiliation(s)
- Volker Brinkmann
- Transplantation and Immunology, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | |
Collapse
|
89
|
Kunzendorf U, Ziegler E, Kabelitz D. FTY720--the first compound of a new promising class of immunosuppressive drugs. Nephrol Dial Transplant 2004; 19:1677-81. [PMID: 15199193 DOI: 10.1093/ndt/gfh295] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ulrich Kunzendorf
- Division of Nephrology and Hypertension, University Hospital of Schleswig-Holstein, Campus Kiel, Germany.
| | | | | |
Collapse
|
90
|
Sawicka E, Zuany-Amorim C, Manlius C, Trifilieff A, Brinkmann V, Kemeny DM, Walker C. Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. THE JOURNAL OF IMMUNOLOGY 2004; 171:6206-14. [PMID: 14634137 DOI: 10.4049/jimmunol.171.11.6206] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sphingosine 1-phosphate receptor agonist FTY720 is a novel immunomodulator that sequesters lymphocytes in secondary lymphoid organs and thereby prevents their migration to sites of inflammation. However, there is currently no information available on whether this drug affects Th1 or Th2 cell-mediated lung-inflammatory responses. The effect of FTY720 was therefore investigated in a murine airway inflammation model using OVA-specific, in vitro differentiated, and adoptively transferred Th1 and Th2 cells. Both Th1 and Th2 cells express a similar pattern of FTY720-targeted sphingosine 1-phosphate receptors. The OVA-induced Th1-mediated airway inflammation characterized by increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid was significantly inhibited by oral FTY720 treatment. Similarly, FTY720 suppressed the Th2 cell-induced bronchoalveolar lavage fluid eosinophilia and the infiltration of T lymphocytes and eosinophils into the bronchial tissue. Moreover, the Ag-induced bronchial hyperresponsiveness to inhaled metacholine was almost completely blocked. The inhibitory effect of FTY720 on airway inflammation, induction of bronchial hyperresponsiveness, and goblet cell hyperplasia could be confirmed in an actively Ag-sensitized murine asthma model, clearly indicating that Th2 cell-driven allergic diseases such as asthma could benefit from such treatment.
Collapse
|
91
|
Forrest M, Sun SY, Hajdu R, Bergstrom J, Card D, Doherty G, Hale J, Keohane C, Meyers C, Milligan J, Mills S, Nomura N, Rosen H, Rosenbach M, Shei GJ, Singer II, Tian M, West S, White V, Xie J, Proia RL, Mandala S. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 2004; 309:758-68. [PMID: 14747617 DOI: 10.1124/jpet.103.062828] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lysolipid with pleiotropic functions mediated through a family of G protein-coupled receptors, S1P(1,2,3,4,5). Physiological effects of S1P receptor agonists include regulation of cardiovascular function and immunosuppression via redistribution of lymphocytes from blood to secondary lymphoid organs. The phosphorylated metabolite of the immunosuppressant agent FTY720 (2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol) and other phosphonate analogs with differential receptor selectivity were investigated. No significant species differences in compound potency or rank order of activity on receptors cloned from human, murine, and rat sources were observed. All synthetic analogs were high-affinity agonists on S1P(1), with IC(50) values for ligand binding between 0.3 and 14 nM. The correlation between S1P(1) receptor activation and the ED(50) for lymphocyte reduction was highly significant (p < 0.001) and lower for the other receptors. In contrast to S1P(1)-mediated effects on lymphocyte recirculation, three lines of evidence link S1P(3) receptor activity with acute toxicity and cardiovascular regulation: compound potency on S1P(3) correlated with toxicity and bradycardia; the shift in potency of phosphorylated-FTY720 for inducing lymphopenia versus bradycardia and hypertension was consistent with affinity for S1P(1) relative to S1P(3); and toxicity, bradycardia, and hypertension were absent in S1P(3)(-/-) mice. Blood pressure effects of agonists in anesthetized rats were complex, whereas hypertension was the predominant effect in conscious rats and mice. Immunolocalization of S1P(3) in rodent heart revealed abundant expression on myocytes and perivascular smooth muscle cells consistent with regulation of bradycardia and hypertension, whereas S1P(1) expression was restricted to the vascular endothelium.
Collapse
Affiliation(s)
- M Forrest
- Merck Research Laboratories, Department of Immunology and Rheumatology, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY, Peterson MS, Webb B, Lefebvre S, Chun J, Gray N, Rosen H. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 2004; 279:13839-48. [PMID: 14732717 DOI: 10.1074/jbc.m311743200] [Citation(s) in RCA: 514] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) influences heart rate, coronary artery caliber, endothelial integrity, and lymphocyte recirculation through five related high affinity G-protein-coupled receptors. Inhibition of lymphocyte recirculation by non-selective S1P receptor agonists produces clinical immunosuppression preventing transplant rejection but is associated with transient bradycardia. Understanding the contribution of individual receptors has been limited by the embryonic lethality of the S1P(1) knock-out and the unavailability of selective agonists or antagonists. A potent, S1P(1)-receptor selective agonist structurally unrelated to S1P was found to activate multiple signals triggered by S1P, including guanosine 5'-3-O-(thio)triphosphate binding, calcium flux, Akt and ERK1/2 phosphorylation, and stimulation of migration of S1P(1)- but not S1P(3)-expressing cells in vitro. The agonist also alters lymphocyte trafficking in vivo. Use of selective agonism together with deletant mice lacking S1P(3) receptor reveals that agonism of S1P(1) receptor alone is sufficient to control lymphocyte recirculation. Moreover, S1P(1) receptor agonist plasma levels are causally associated with induction and maintenance of lymphopenia. S1P(3), and not S1P(1), is directly implicated in sinus bradycardia. The sustained bradycardia induced by S1P receptor non-selective immunosuppressive agonists in wild-type mice is abolished in S1P(3)-/- mice, whereas S1P(1)-selective agonist does not produce bradycardia. Separation of receptor subtype usage for control of lymphocyte recirculation and heart rate may allow the identification of selective immunosuppressive S1P(1) receptor agonists with an enhanced therapeutic window. S1P(1)-selective agonists will be of broad utility in understanding cell functions in vitro, and vascular physiology in vivo, and the success of the chemical approach for S1P(1) suggests that selective tools for the resolution of function across this broad lipid receptor family are now possible.
Collapse
Affiliation(s)
- M Germana Sanna
- Department of Immunology, The Center for Mass Spectrometry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Abstract
It has been approximately 50 years since the initial descriptions of acquired transplant tolerance, and our understanding of the immune response to a transplanted organ has progressed enormously during the ensuing years. Recent studies have shed new light on the molecular and cellular basis of transplant rejection, have better defined the mechanisms of allograft tolerance with particular emphasis on a role for regulatory T cells, have identified important new hurdles to overcome in order to prolong allograft survival, have brought xenotransplantation closer to becoming a clinical reality, and have led to the development of novel techniques that may permit analysis of immune responses to transplanted organs in vivo.
Collapse
Affiliation(s)
- Peter S Heeger
- Department of Immunology and The Glickman Urologic Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
95
|
Abstract
Blood lymphocyte numbers, which are maintained by recirculation through secondary lymphoid organs, are essential for the efficient development of immune responses. Recirculating populations of B and T lymphocytes are regulated by the sphingosine-1-phosphate (S1P) receptor-dependent control of lymphocyte egress. T-cell egress from thymus into blood, egress from lymph node and Peyer's patch into lymph, and B-cell egress into lymph are rapidly and completely inhibited by agonism of S1P receptors. Mesenteric lymph nodes show log-jamming of lymphocytes subjacent to sinus-lining endothelium. Agonism of S1P receptors produces rapid peripheral blood lymphopenia, which is maintained in the presence of receptor agonist. Effector CD4+ and CD8+ T cells, produced by clonal expansion in draining lymph node in response to antigen, are sequestered in lymph node and fail to reach the peripheral blood. The S1P receptor system may represent an early physiological link between the non-specific inflammatory response and the alteration of lymphocyte traffic through draining lymph nodes. Pharmacological subversion of the S1P receptor system, through systemic S1P agonist-induced inhibition of lymphocyte egress, suppresses antigenic responses to peripheral, but not to systemically, delivered antigen. This inhibition induces significant immunosuppression in models of transplantation and autoimmune tissue damage that may prove to be of clinical benefit.
Collapse
Affiliation(s)
- Hugh Rosen
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
96
|
Clemens JJ, Davis MD, Lynch KR, Macdonald TL. Synthesis of para-Alkyl aryl amide analogues of sphingosine-1-phosphate: discovery of potent S1P receptor agonists. Bioorg Med Chem Lett 2003; 13:3401-4. [PMID: 14505636 DOI: 10.1016/s0960-894x(03)00812-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active lysophospholipid with the capacity to induce a broad range of cellular responses via its interaction with the S1P family of G-protein coupled receptors. This report describes the synthesis of several potent S1P receptor agonists. For instance, compound 9c displayed an EC(50)=8.6 nM at the S1P(1) receptor using a [gamma-35S]GTP binding assay as compared to an EC(50)=4.5 nM for the endogenous ligand. We also report the effects associated with introduction of a phenyl ring between the 'linker' and 'lipophilic tail' regions of the analogues, for example total loss of activity at S1P(2) and increased agonism at S1P(5).
Collapse
Affiliation(s)
- Jeremy J Clemens
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
97
|
Rosen H, Alfonso C, Surh CD, McHeyzer-Williams MG. Rapid induction of medullary thymocyte phenotypic maturation and egress inhibition by nanomolar sphingosine 1-phosphate receptor agonist. Proc Natl Acad Sci U S A 2003; 100:10907-12. [PMID: 12954982 PMCID: PMC196901 DOI: 10.1073/pnas.1832725100] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Indexed: 11/18/2022] Open
Abstract
Only a small number of T cells generated in the thymus each day are selected to replenish the peripheral T cell pool. Much is known about thymic selection; however, little is known of the mechanisms regulating medullary maturation and the release of mature T cells into the blood. Here we demonstrate a rapid acceleration of medullary thymocyte phenotypic maturation through loss of CD69 induced by sphingosine 1-phosphate (S1P) receptor agonist. Low nanomolar agonist concentrations selectively induce changes in CD69(int) CD62L(high) single positive T cells, resulting in down-modulation of CD69 within 2 h. While CD69 loss is accelerated, egress of mature T cells into blood is inhibited >95% within 2 h. Both processes exhibit parallel sensitivities and dose-responses. Together, these data reveal a potent means for rapidly regulating thymic export where S1P receptor agonism alters both phenotypic maturation and egress of thymocytes into blood during late thymic maturation. The S1P system is now shown to acutely regulate both thymic and lymph node egress. Inhibition of lymphocyte egress from thymus and lymph node can contribute synergistically to clinically useful immunosupression by disrupting recirculation of peripheral T cells.
Collapse
Affiliation(s)
- Hugh Rosen
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
98
|
Abstract
New insights have been gained into the therapeutic relevance of the sphingosine 1-phosphate (S1P) pathway, on the basis of reverse pharmacological approaches to defining the mechanism of action of the immunosuppressive agent FTY720. Natural and synthetic sphingosine 1-phosphate receptor agonists can make picomolar interactions with their cognate G-protein-coupled receptors, and provide chemical approaches to defining the contribution of distinct receptor subtypes to pathology, physiology and treatment. The chemistry of S1P receptors and their synthetic ligands present a paradigm for the understanding of lipid-receptor interactions and their contribution to physiology and pathology. These approaches can potentially be extended to a broad, related family of G-protein-coupled receptors that share ligands and ligand similarities.
Collapse
Affiliation(s)
- Hugh Rosen
- Department of Immunology and Committee for Advanced Human Therapeutics, The Scripps Research Institute, ICND-118 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|