51
|
The nature of the lymphopenic environment dictates protective function of homeostatic-memory CD8+ T cells. Proc Natl Acad Sci U S A 2008; 105:18484-9. [PMID: 19020089 DOI: 10.1073/pnas.0806487105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A functional memory T cell pool is critical for resistance to pathogen reinfection. Lymphopenia produces memory-like CD8(+) T cells through homeostatic proliferation, and such "HP-memory" cells can control lethal bacterial infections similarly to conventional, antigen-experienced, memory T cells. These 2 pathways for memory T cell generation are quite distinct. We show here, however, that similar factors are required for production of protective memory CD8 T cells via both homeostatic and conventional pathways. Induction of protective HP-memory CD8 T cells requires CD4(+) T cell "help," which we show is antigen nonspecific yet requires CD40L-CD40 interactions with host cells. The functional competence of HP-memory CD8 T cells also requires release of endogenous bacterial components (which follows irradiation-induced lymphopenia), potentially mimicking the role of adjuvants in conventional immune responses. Lymphopenic environments lacking these key factors support similar CD8 T cell homeostatic proliferation and the acquisition of memory phenotype, yet the HP-memory cells generated are defective in pathogen elimination. These findings suggest unexpected parallels in the requirements for generating protective memory CD8 T cells by distinct pathways, and they suggest ways to bolster immune competence during recovery from lymphopenia.
Collapse
|
52
|
Choi HJ, Xu H, Geng Y, Colmone A, Cho H, Wang CR. Bacterial infection alters the kinetics and function of iNKT cell responses. J Leukoc Biol 2008; 84:1462-71. [PMID: 18772281 DOI: 10.1189/jlb.0108038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CD1d-restricted Valpha14 invariant NKT cells (iNKT) are innate-like, immunoregulatory lymphocytes that play critical roles in autoimmunity, tumor surveillance, and infectious disease. Although iNKT cells are activated during microbial infection, the impacts of infection on the function of iNKT cells have not been fully characterized. Using a Listeria monocytogenes (LM) infection model, we found that iNKT cells failed to expand after infection, resulting in prolonged loss in the spleen, in contrast to the typical expansion and contraction of conventional T cells. iNKT cells from LM-infected mice responded more rapidly to secondary LM infection; however, they became functionally hyporesponsive to antigenic challenge for at least 1 month. This infection-induced hyporesponsiveness was also induced by Mycobacteria infection and was more profound in LM-infected, thymectomized mice, suggesting that infection-primed iNKT cells might have altered functionality. Interestingly, activation with alpha-galactosylceramide-loaded dendritic cells was able to overcome infection-induced hyporesponsiveness of iNKT cells, suggesting a role for extrinsic factors in this functional deficit. Taken together, these findings suggest that infection affects iNKT cell responses quantitatively and qualitatively. As humans are under constant microbial insult, predictions of iNKT cell function based on naïve animal models may not accurately reflect iNKT cell behavior in a clinical setting.
Collapse
Affiliation(s)
- Hak-Jong Choi
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
53
|
Zhang JY, Zhang Z, Jin B, Zhang SY, Zhou CB, Fu JL, Wang FS. Cutting Edge: Programmed Death-1 Up-Regulation Is Involved in the Attrition of Cytomegalovirus-Specific CD8+ T Cells in Acute Self-Limited Hepatitis B Virus Infection. THE JOURNAL OF IMMUNOLOGY 2008; 181:3741-4. [DOI: 10.4049/jimmunol.181.6.3741] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
54
|
Carrero JA, Vivanco-Cid H, Unanue ER. Granzymes drive a rapid listeriolysin O-induced T cell apoptosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:1365-74. [PMID: 18606691 DOI: 10.4049/jimmunol.181.2.1365] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Listeria monocytogenes protein listeriolysin O (LLO) is a pore-forming protein essential for virulence. Although the major role for LLO is to allow L. monocytogenes entry into the cytosol, it also induces apoptosis of activated lymphocytes, an obligatory cellular response that modulates the infection. Induction of apoptosis by LLO proceeds through a fast, caspase-dependent pathway and a slow, caspase-independent pathway. Polyclonal T cell lines were generated from either normal mice or mice deficient in granzyme and perforin proteins, and then treated with apoptogenic doses of LLO. In this study we show that apoptosis of lymphocytes induced by LLO was characterized by activation of caspases as quickly as 30 min that was dependent on the expression of granzymes. In the absence of granzymes, all parameters of apoptosis such as caspase activation, phosphatidylserine exposure, mitochondrial depolarization, and DNA fragmentation were dramatically reduced in magnitude. Removal of perforin inhibited the apoptotic effect of LLO on cells by approximately 50%. Neutralization of intracellular acidification using chloroquine inhibited the rapid apoptotic death. In agreement with these findings granzyme-deficient mice harbored lower bacterial titers and decrease splenic pathology compared with normal mice following L. monocytogenes infection. Thus, LLO exploits apoptotic enzymes of the adaptive immune response to eliminate immune cells and increase its virulence.
Collapse
Affiliation(s)
- Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
55
|
Sakowicz-Burkiewicz M, Nishanth G, Helmuth U, Drögemüller K, Busch DH, Utermöhlen O, Naumann M, Deckert M, Schlüter D. Protein Kinase C-θ Critically Regulates the Proliferation and Survival of Pathogen-Specific T Cells in Murine Listeriosis. THE JOURNAL OF IMMUNOLOGY 2008; 180:5601-12. [DOI: 10.4049/jimmunol.180.8.5601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
56
|
Bradfute SB, Warfield KL, Bavari S. Functional CD8+ T Cell Responses in Lethal Ebola Virus Infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:4058-66. [DOI: 10.4049/jimmunol.180.6.4058] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
57
|
Stimulation of inducible nitric oxide synthase expression by beta interferon increases necrotic death of macrophages upon Listeria monocytogenes infection. Infect Immun 2008; 76:1649-56. [PMID: 18268032 DOI: 10.1128/iai.01251-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susceptible to death upon infection than wild-type cells. The production of nitric oxide correlated with increased death, while no role was seen for iNOS in control of Listeria numbers during infection of resting macrophages. This indicates that the induction of iNOS by beta interferon in cells infected with L. monocytogenes contributes to cell death. Based on morphology, the maintenance of mitochondrial membrane potential, and a lack of dependence on caspase 1, we characterize the type of cell death occurring and show that infected macrophages die by interferon-upregulated necrosis.
Collapse
|
58
|
Alsharifi M, Müllbacher A, Regner M. Interferon type I responses in primary and secondary infections. Immunol Cell Biol 2008; 86:239-45. [PMID: 18180794 DOI: 10.1038/sj.icb.7100159] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian host responds to a microbial infection with a rapid innate immune reaction that is dominated by type I interferon (IFN-I) release. Most cells of vertebrates can respond to microbial attack with IFN-I production, but the cell type responsible for most of the systemic IFN-I release is thought to be plasmacytoid dendritic cells (pDCs). Besides its anti-microbial and especially anti-viral properties IFN-I also exerts a regulatory role on many facets of the sequential adaptive immune response. One of these is being the recently described partial, systemic activation of the vast majority of B and T lymphocytes in mice, irrespective of antigen reactivity. The biological significance of this partial activation of lymphocytes is at present speculative. Secondary infections occurring within a short time span of a primary infection fail to elicit a similar lymphocyte activation response due to a refractory period in systemic IFN-I production. This period of exhaustion in IFN-I responses is associated with an increased susceptibility of the host to secondary infections. The latter correlates with well-established clinical observations of heightened susceptibility of patients to secondary microbial infections after viral episodes.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
59
|
Fang C, Miwa T, Shen H, Song WC. Complement-Dependent Enhancement of CD8+T Cell Immunity to Lymphocytic Choriomeningitis Virus Infection in Decay-Accelerating Factor-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:3178-86. [PMID: 17709533 DOI: 10.4049/jimmunol.179.5.3178] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Decay-accelerating factor (DAF, CD55) is a GPI-anchored membrane protein that regulates complement activation on autologous cells. In addition to protecting host tissues from complement attack, DAF has been shown to inhibit CD4+ T cell immunity in the setting of model Ag immunization. However, whether DAF regulates natural T cell immune response during pathogenic infection is not known. We describe in this study a striking regulatory effect of DAF on the CD8+ T cell response to lymphocytic choriomeningitis virus (LCMV) infection. Compared with wild-type mice, DAF knockout (Daf-1(-/-)) mice had markedly increased expansion in the spleen of total and viral Ag-specific CD8+ T cells after acute or chronic LCMV infection. Splenocytes from LCMV-infected Daf-1(-/-) mice also displayed significantly higher killing activity than cells from wild-type mice toward viral Ag-loaded target cells, and Daf-1(-/-) mice cleared LCMV more efficiently. Importantly, deletion of the complement protein C3 or the receptor for the anaphylatoxin C5a (C5aR) from Daf-1(-/-) mice reversed the enhanced CD8+ T cell immunity phenotype. These results demonstrate that DAF is an important regulator of CD8+ T cell immunity in viral infection and that it fulfills this role by acting as a complement inhibitor to prevent virus-triggered complement activation and C5aR signaling. This mode of action of DAF contrasts with that of CD59 in viral infection and suggests that GPI-anchored membrane complement inhibitors can regulate T cell immunity to viral infection via either a complement-dependent or -independent mechanism.
Collapse
Affiliation(s)
- Chongyun Fang
- Institute for Translational Medicine and Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
60
|
Jiang J, Gross D, Elbaum P, Murasko DM. Aging affects initiation and continuation of T cell proliferation. Mech Ageing Dev 2007; 128:332-9. [PMID: 17383712 DOI: 10.1016/j.mad.2007.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 02/09/2007] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Aging is associated with a decline in immune responses, particularly within the T cell compartment. While the expansion of specific T cells in response to virus infections is consistently decreased in aged mice, the differences in T cell activation between young and aged mice as demonstrated in each round of proliferation remain poorly defined. In the present study, we utilized the T cell mitogen, ConA, to explore if fewer T cells of aged mice initiate proliferation upon mitogen stimulation or if similar numbers of T cells of aged mice begin proliferation but undergo fewer rounds of division. We also examined whether these age-associated changes in proliferation are reflected by differences in T cell activation by comparing activation markers (CD25, CD69, CD44, and CD62L) on T cells of young and aged mice at each round of proliferation. Not only was the kinetics of the expression of these markers greatly different between young and aged mice on the entire CD8 T cell population, but also at each round of proliferation. Our results demonstrate that a larger percentage of CD8 T cells of aged mice do not proliferate at all upon stimulation. Of the CD8 T cells of aged mice that do proliferate, a larger percentage start later and stop sooner. These results suggest that multiple levels of alteration may need to be considered when trying to maximize the immune response of aged individuals.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
61
|
Jablonska J, Dittmar KE, Kleinke T, Buer J, Weiss S. Essential role of CCL2 in clustering of splenic ERTR-9+ macrophages during infection of BALB/c mice by Listeria monocytogenes. Infect Immun 2006; 75:462-70. [PMID: 17074847 PMCID: PMC1828389 DOI: 10.1128/iai.00443-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Early interactions between pathogens and host cells are often decisive for the subsequent course of infection. Here we investigated early events during infection by Listeria monocytogenes, a ubiquitously occurring facultative intracellular microorganism that exhibits severe pathogenicity, mainly in immunocompromised individuals. We show that the inflammatory chemokine CCL2 is highly up-regulated early after Listeria infection in spleens of BALB/c mice. ERTR-9+ macrophages of the marginal zone were identified as the only infected cells and exclusive producers of CCL2 at the early time point. Consequently, clusters of different cell types were formed around infected ERTR-9+ cells. Metallophilic MOMA-1+ marginal zone macrophages were, however, excluded from the clusters and migrated into the B-cell follicles. Depletion of CCL2 during infection resulted in a different composition of cell clusters in the spleen and increased the mortality rate of treated mice. Interestingly, ERTR-9+ macrophages no longer were part of clusters in such mice but remained at their original location in the marginal zone.
Collapse
Affiliation(s)
- Jadwiga Jablonska
- Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
62
|
Jabbari A, Legge KL, Harty JT. T cell conditioning explains early disappearance of the memory CD8 T cell response to infection. THE JOURNAL OF IMMUNOLOGY 2006; 177:3012-8. [PMID: 16920937 DOI: 10.4049/jimmunol.177.5.3012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Memory CD8 T cells respond more rapidly to acute intracellular infections than naive CD8 T cells. An understanding of the biological processes involved in memory CD8 T cell recognition of Ag and up-regulation of effector mechanism necessitates analyzing memory CD8 T cells at early time points after infection. In the current study, we show that memory CD8 T cells ostensibly disappear from the spleens, blood, and peripheral organs of mice early after infection with Listeria monocytogenes. This disappearance is critically dependent on Ag, and cell-associated Ag alone can mediate this phenomenon. Further investigations, however, suggest that this disappearance is secondary to T cell-APC interactions, also known as T cell conditioning, and disruption of these putative interactions during splenic processing improves recovery of Ag-specific memory CD8 T cell populations after immunization. Conventional analyses of memory CD8 T cell populations early after infection and possibly in the presence of low levels of Ag (as during chronic infections) may exclude significant numbers of the responding CD8 T cell population.
Collapse
Affiliation(s)
- Ali Jabbari
- Interdisciplinary Graduate Program in Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
63
|
Alsharifi M, Regner M, Blanden R, Lobigs M, Lee E, Koskinen A, Müllbacher A. Exhaustion of type I interferon response following an acute viral infection. THE JOURNAL OF IMMUNOLOGY 2006; 177:3235-41. [PMID: 16920963 DOI: 10.4049/jimmunol.177.5.3235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral infections often cause a period of heightened susceptibility to a secondary infection but the cause of this phenomenon is unknown. We found that a primary viral infection in mice rapidly triggers an IFN-I-dependent partial activation state in the majority of B and T lymphocytes, which reverts to a resting phenotype within 5 days. When a secondary infection with an unrelated virus occurred 5 to 9 days after the primary infection, no recurrence of marked activation of lymphocytes was observed. This was not due to an inherent inability of the previously activated cells to undergo renewed partial activation, because they responded when challenged with virus after transfer into "naive" recipients. Instead, the failure to respond optimally resided in the original host's incapacity to mount an IFN-I response to the secondary infection during this time period. Thus, transient immunosuppression through exhaustion of IFN-I production during an acute viral infection creates a time period of enhanced susceptibility to secondary infection.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
64
|
Prlic M, Hernandez-Hoyos G, Bevan MJ. Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. ACTA ACUST UNITED AC 2006; 203:2135-43. [PMID: 16908626 PMCID: PMC2118397 DOI: 10.1084/jem.20060928] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD8+ T cells only require a brief stimulation with antigen in vitro to divide and differentiate into effector and memory cells upon transfer in vivo. The efficiency of clonal expansion and the functional characteristics of memory cells derived from briefly stimulated cells are poorly defined. We developed a system that allowed us to examine programming entirely in vivo. This was achieved by rapidly killing peptide-pulsed DCs carrying a diphtheria toxin receptor transgene with timed injections of diphtheria toxin without altering the course of an accompanying infection. The magnitude of clonal expansion, but not the functionality of the effector cells, correlated directly with the duration of antigen exposure. Furthermore, memory T cells were capable of mounting a secondary response, regardless of the length of antigen encounter during the primary response. These results indicate that the duration of initial antigen encounter influences the magnitude of the primary response, but does not program responsiveness during the secondary challenge.
Collapse
Affiliation(s)
- Martin Prlic
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
65
|
Overwijk WW, de Visser KE, Tirion FH, de Jong LA, Pols TWH, van der Velden YU, van den Boorn JG, Keller AM, Buurman WA, Theoret MR, Blom B, Restifo NP, Kruisbeek AM, Kastelein RA, Haanen JBAG. Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. THE JOURNAL OF IMMUNOLOGY 2006; 176:5213-22. [PMID: 16621986 PMCID: PMC2242845 DOI: 10.4049/jimmunol.176.9.5213] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The promising, but modest, clinical results of many human cancer vaccines indicate a need for vaccine adjuvants that can increase both the quantity and the quality of vaccine-induced, tumor-specific T cells. In this study we tested the immunological and antitumor effects of the proinflammatory cytokine, IL-23, in gp100 peptide vaccine therapy of established murine melanoma. Neither systemic nor local IL-23 alone had any impact on tumor growth or tumor-specific T cell numbers. Upon specific vaccination, however, systemic IL-23 greatly increased the relative and absolute numbers of vaccine-induced CD8(+) T cells and enhanced their effector function at the tumor site. Although IL-23 specifically increased IFN-gamma production by tumor-specific T cells, IFN-gamma itself was not a primary mediator of the vaccine adjuvant effect. The IL-23-induced antitumor effect and accompanying reversible weight loss were both partially mediated by TNF-alpha. In contrast, local expression of IL-23 at the tumor site maintained antitumor activity in the absence of weight loss. Under these conditions, it was also clear that enhanced effector function of vaccine-induced CD8(+) T cells, rather than increased T cell number, is a primary mechanism underlying the antitumor effect of IL-23. Collectively, these results suggest that IL-23 is a potent vaccine adjuvant for the induction of therapeutic, tumor-specific CD8(+) T cell responses.
Collapse
Affiliation(s)
- Willem W Overwijk
- Division of Immunology, The Netherlands Cancer Institute, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Selin LK, Brehm MA, Naumov YN, Cornberg M, Kim SK, Clute SC, Welsh RM. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol Rev 2006; 211:164-81. [PMID: 16824126 PMCID: PMC7165519 DOI: 10.1111/j.0105-2896.2006.00394.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The main functions of memory T cells are to provide protection upon re-exposure to a pathogen and to prevent the re-emergence of low-grade persistent pathogens. Memory T cells achieve these functions through their high frequency and elevated activation state, which lead to rapid responses upon antigenic challenge. The significance and characteristics of memory CD8+ T cells in viral infections have been studied extensively. In many of these studies of T-cell memory, experimental viral immunologists go to great lengths to assure that their animal colonies are free of endogenous pathogens in order to design reproducible experiments. These experimental results are then thought to provide the basis for our understanding of human immune responses to viruses. Although these findings can be enlightening, humans are not immunologically naïve, and they often have memory T-cell populations that can cross-react with and respond to a new infectious agent or cross-react with allo-antigens and influence the success of tissue transplantation. These cross-reactive T cells can become activated and modulate the immune response and outcome of subsequent heterologous infections, a phenomenon we have termed heterologous immunity. These large memory populations are also accommodated into a finite immune system, requiring that the host makes room for each new population of memory cell. It appears that memory cells are part of a continually evolving interactive network, where with each new infection there is an alteration in the frequencies, distributions, and activities of memory cells generated in response to previous infections and allo-antigens.
Collapse
Affiliation(s)
- Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Ulett GC, Adderson EE. Regulation of Apoptosis by Gram-Positive Bacteria: Mechanistic Diversity and Consequences for Immunity. ACTA ACUST UNITED AC 2006; 2:119-141. [PMID: 19081777 DOI: 10.2174/157339506776843033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apoptosis, or programmed cell death (PCD), is an important physiological mechanism, through which the human immune system regulates homeostasis and responds to diverse forms of cellular damage. PCD may also be involved in immune counteraction to microbial infection. Over the past decade, the amount of research on bacteria-induced PCD has grown tremendously, and the implications of this mechanism on immunity are being elucidated. Some pathogenic bacteria actively trigger the suicide response in critical lineages of leukocytes that orchestrate both the innate and adaptive immune responses; other bacteria proactively prevent PCD to benefit their own survival and persistence. Currently, the microbial virulence factors, which represent the keys to unlocking the suicide response in host cells, are a primary focus of this field. In this review, we discuss these bacterial "apoptosis regulatory molecules" and the apoptotic events they either trigger or prevent, the host target cells of this regulatory activity, and the possible ramifications for immunity to infection. Gram-positive pathogens including Staphylococcus, Streptococcus, Bacillus, Listeria, and Clostridia species are discussed as important agents of human infection that modulate PCD pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Glen C Ulett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
68
|
Bahl K, Kim SK, Calcagno C, Ghersi D, Puzone R, Celada F, Selin LK, Welsh RM. IFN-induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections. THE JOURNAL OF IMMUNOLOGY 2006; 176:4284-95. [PMID: 16547266 DOI: 10.4049/jimmunol.176.7.4284] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Profound lymphopenia has been observed during many acute viral infections, and our laboratory has previously documented a type I IFN-dependent loss of CD8 T cells immediately preceding the development of the antiviral T cell response. Most memory (CD44(high)) and some naive (CD44(low)) CD8 T cells are susceptible to IFN-induced attrition, and we show in this study that the IFN-induced attrition of CD8(+)CD44(high) T cells is associated with elevated activation of caspase-3 and caspase-8. We questioned whether TCR engagement by Ag would render CD8 T cells resistant to attrition. We tested whether a high concentration of Ag (GP33 peptide) would protect lymphocytic choriomeningitis (LCMV)-specific naive CD8 T cells (TCR transgenic P14 cells specific for the GP33 epitope of LCMV) and memory CD8 T cells (GP33-specific LCMV-immune cells) from depletion. Both naive P14 and memory GP33-specific donor CD8 T cells decreased substantially 16 h after inoculation with the Toll receptor agonist and IFN inducer, poly(I:C), regardless of whether a high concentration of GP33 peptide was administered to host mice beforehand. Moreover, donor naive P14 and LCMV-specific memory cells were depleted from day 2 LCMV-infected hosts by 16 h posttransfer. These results indicate that Ag engagement does not protect CD8 T cells from the IFN-induced T cell attrition associated with viral infections. In addition, computer models indicated that early depletion of memory T cells may allow for the generation for a more diverse T cell response to infection by reducing the immunodomination caused by cross-reactive T cells.
Collapse
Affiliation(s)
- Kapil Bahl
- Department of Pathology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Foulds KE, Shen H. Clonal competition inhibits the proliferation and differentiation of adoptively transferred TCR transgenic CD4 T cells in response to infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:3037-43. [PMID: 16493062 DOI: 10.4049/jimmunol.176.5.3037] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 and CD8 T cells have been shown to proliferate and differentiate to different extents following antigenic stimulation. CD4 T cells form a heterogenous pool of effector cells in various stages of division and differentiation, while nearly all responding CD8 T cells divide and differentiate to the same extent. We examined CD4 and CD8 T cell responses during bacterial infection by adoptive transfer of CFSE-labeled monoclonal and polyclonal T cells. Monoclonal and polyclonal CD8 T cells both divided extensively, whereas monoclonal CD4 T cells underwent limited division in comparison with polyclonal CD4 T cells. Titration studies revealed that the limited proliferation of transferred monoclonal CD4 T cells was due to inhibition by a high precursor frequency of clonal T cells. This unusually high precursor frequency of clonal CD4 T cells also inhibited the differentiation of these cells. These results suggest that the adoptive transfer of TCR transgenic CD4 T cells significantly underestimates the extent of proliferation and differentiation of CD4 T cells following infection.
Collapse
Affiliation(s)
- Kathryn E Foulds
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
70
|
Carrero JA, Calderon B, Unanue ER. Lymphocytes are detrimental during the early innate immune response against Listeria monocytogenes. ACTA ACUST UNITED AC 2006; 203:933-40. [PMID: 16549598 PMCID: PMC2118284 DOI: 10.1084/jem.20060045] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mice deficient in lymphocytes are more resistant than normal mice to Listeria monocytogenes infection during the early innate immune response. This paradox remains unresolved: lymphocytes are required for sterilizing immunity, but their presence during the early stage of the infection is not an asset and may even be detrimental. We found that lymphocyte-deficient mice, which showed limited apoptosis in infected organs, were resistant during the first four days of infection but became susceptible when engrafted with lymphocytes. Engraftment with lymphocytes from type I interferon receptor–deficient (IFN-αβR−/−) mice, which had reduced apoptosis, did not confer increased susceptibility to infection, even when the phagocytes were IFN-αβR+/+. The attenuation of innate immunity was due, in part, to the production of the antiinflammatory cytokine interleukin 10 by phagocytic cells after the apoptotic phase of the infection. Thus, immunodeficient mice were more resistant relative to normal mice because the latter went through a stage of lymphocyte apoptosis that was detrimental to the innate immune response. This is an example of a bacterial pathogen creating a cascade of events that leads to a permissive infective niche early during infection.
Collapse
Affiliation(s)
- Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
71
|
Kim EY, Priatel JJ, Teh SJ, Teh HS. TNF Receptor Type 2 (p75) Functions as a Costimulator for Antigen-Driven T Cell Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2006; 176:1026-35. [PMID: 16393990 DOI: 10.4049/jimmunol.176.2.1026] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Naive T cells require costimulation for robust Ag-driven differentiation and survival. Members of the TNFR family have been shown to provide costimulatory signals conferring survival at distinct phases of the T cell response. In this study, we show that CD4 and CD8 T cells depend on TNFR type 2 (p75) for survival during clonal expansion, allowing larger accumulation of effector cells and conferring protection from apoptosis for a robust memory pool in vivo. We demonstrate using the MHC class I-restricted 2C TCR and MHC class II-restricted AND TCR transgenic systems that TNFR2 regulates the threshold for clonal expansion of CD4 and CD8 T cell subsets in response to cognate Ag. Using a novel recombinant Listeria monocytogenes (rLM) expressing a secreted form of the 2C agonist peptide (SIY) to investigate the role of TNFR2 for T cell immunity in vivo, we found that TNFR2 controls the survival and accumulation of effector cells during the primary response. TNFR2-/- CD8 T cells exhibit loss of protection from apoptosis that is correlated with diminished survivin and Bcl-2 expression. Null mutant mice were more susceptible to rLM-SIY challenge at high doses of primary infection, correlating with impaired LM-specific T cell response in the absence of TNFR2-mediated costimulation. Moreover, the resulting memory pools specific for SIY and listeriolysin O epitopes derived from rLM-SIY were diminished in TNFR2-/- mice. Thus, examination of Ag-driven T cell responses revealed a hitherto unknown costimulatory function for TNFR2 in regulating T cell survival during the differentiation program elicited by intracellular pathogen in vivo.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/administration & dosage
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Cell Survival
- Listeria monocytogenes/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Edward Y Kim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
72
|
Abstract
T cell responses to viral infections can mediate either protective immunity or damaging immunopathology. Viral infections induce the proliferation of T cells specific for viral antigens and cause a loss in the number of T cells with other specificities. In immunologically naive hosts, viruses will induce T cell responses that, dependent on the MHC, recognize a distinct hierarchy of virus-encoded T cell epitopes. This hierarchy can change if the host has previously encountered another pathogen that elicited a memory pool ofT cells specific to a cross-reactive epitope. This heterologous immunity can deviate the normal immune response and result in either beneficial or harmful effects on the host. Each host has a unique T cell repertoire caused by the random DNA rearrangement that created it, so the specific T cells that create the epitope hierarchy differ between individuals. This "private specificity" seems of little significance in the T cell response of a naive host to infection, but it is of profound importance under conditions of heterologous immunity, where a small subset of a cross-reactive memory pool may expand and dominate a response. Examples are given of how the private specificities of immune responses under conditions of heterologous immunity influence the pathogenesis of murine and human viral infections.
Collapse
Affiliation(s)
- Bali Pulendran
- Emory Vaccine Center, 954 Gatewood Road, Atlante, GA 30329 USA
| | - Rafi Ahmed
- Emory Vaccine Center, 954 Gatewood Road, Atlante, GA 30329 USA
| |
Collapse
|
73
|
Tebo AE, Fuller MJ, Gaddis DE, Kojima K, Rehani K, Zajac AJ. Rapid recruitment of virus-specific CD8 T cells restructures immunodominance during protective secondary responses. J Virol 2005; 79:12703-13. [PMID: 16188973 PMCID: PMC1235833 DOI: 10.1128/jvi.79.20.12703-12713.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we investigate the attributes of virus-specific memory CD8 T cells which most effectively control secondary infections. By rechallenging mice that had cleared primary lymphocytic choriomeningitis virus infections, we revealed that the secondary response is remarkably swift. Within 6 h following secondary infection, the production of gamma interferon becomes detectable directly ex vivo. During this protective phase of the secondary response, a very early elaboration of effector activities is preferentially exhibited by T cells specific for the viral NP396 epitope. This wave of activation contains the infection primarily before the initiation of the proliferative phase of the secondary response. Marked expansion is observed, but its magnitude differs depending on the epitope specificity of the responding cells; between 42 and 48 h following infection, approximately 70% of NP396-specific memory cells are in the S phase of the cell cycle, as assessed by bromodeoxyuridine incorporation studies. Epitope-dependent differences during the proliferative phase of the secondary response were confirmed by adoptive transfer studies with CFSE-labeled T cells. Although NP396-specific T cells typically dominate secondary responses, the broader multiepitope-specific population of antiviral T cells is beneficial for controlling a variant virus with an escape mutation in this epitope. These findings indicate that the induction and maintenance of a focused response contribute to the clearance of secondary infections; however, a more diverse pool of antiviral T cells facilitates long-term immunity to mutable pathogens.
Collapse
Affiliation(s)
- Anne E Tebo
- Department of Microbiology, University of Alabama at Birmingham, 35294-2170, USA
| | | | | | | | | | | |
Collapse
|
74
|
Berg RE, Crossley E, Murray S, Forman J. Relative contributions of NK and CD8 T cells to IFN-gamma mediated innate immune protection against Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2005; 175:1751-7. [PMID: 16034116 PMCID: PMC1615713 DOI: 10.4049/jimmunol.175.3.1751] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the innate immune response to Listeria monocytogenes (LM), the secretion of IFN-gamma is crucial in controlling bacterial numbers. We have shown recently that CD8 T cells have the ability to rapidly secrete IFN-gamma independent of Ag, in response to IL-12 and IL-18, during a LM infection. In the current study, we compared the relative abilities of NK and CD8 T cells to provide innate immune protection. Upon transfer of either NK or memory OT-I T cells (specific for the OVA protein) into IFN-gamma-deficient hosts that were infected subsequently with wild-type LM, both cell types were found in the spleen and had the ability to secrete IFN-gamma. However, the OT-I T cells were more effective at providing innate immune protection as determined by spleen and liver LM burdens. We used immunocytochemistry to demonstrate that upon infection with LM, marginal zone macrophages were localized to the T cell area of the splenic follicle. Transferred memory OT-I T cells were also found in the T cell area of the spleen, co-localizing with the LM and macrophages. In sharp contrast, NK cells were found predominantly in the red pulp region of the spleen. In addition, memory OT-I T cells were also found to be associated with LM lesions in the liver. These results highlight the importance of CD8 T cells in innate immune responses to LM and suggest that their increased protective ability compared with NK cells is the result of their colocalization with LM and macrophages.
Collapse
Affiliation(s)
| | | | | | - James Forman
- Address correspondence and reprint requests to Dr. James Forman, Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9093. E-mail address:
| |
Collapse
|
75
|
Jiang J, Gross D, Nogusa S, Elbaum P, Murasko DM. Depletion of T cells by type I interferon: differences between young and aged mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:1820-6. [PMID: 16034124 DOI: 10.4049/jimmunol.175.3.1820] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFN (IFN-I or IFN-alphabeta) plays an important role in the innate immune response against viral infection. Here we report that a potent inducer of IFN-alphabeta, polyinosinic-polycytidylic acid [poly(I:C)], led to the depletion of T cells in young, but not aged mice, and that this depletion was limited to central memory, but not effector memory, T cells. Although early activation of T cells in vivo by poly(I:C), as demonstrated by CD69, was not impaired with aging, the expression of active caspase-3 was higher in young compared with aged mice. This depletion of T cells and induction of active caspase-3 in young mice and of CD69 in both young and aged mice by poly(I:C) were blocked by anti-IFN-alphabeta Ab. Although poly(I:C) stimulated lower circulating levels of IFN-alphabeta in aged mice, administration of IFN-alphabeta after poly(I:C) did not induce depletion of T cells in aged mice. These results indicate that IFN-alphabeta plays a critical role in the depletion of T cells of young mice, and further suggest that the lower level of functional IFN-alphabeta and decreased induction of active caspase-3 in T cells of aged mice after poly(I:C) may be responsible for the increased resistance of T cells of aged mice to depletion.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
76
|
Belz GT, Shortman K, Bevan MJ, Heath WR. CD8alpha+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:196-200. [PMID: 15972648 PMCID: PMC2778481 DOI: 10.4049/jimmunol.175.1.196] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD8alpha(+) dendritic cells (DCs) have been shown to be the principal DC subset involved in priming MHC class I-restricted CTL immunity to a variety of cytolytic viruses, including HSV type 1, influenza, and vaccinia virus. Whether priming of CTLs by CD8alpha(+) DCs is limited to cytolytic viruses, which may provide dead cellular material for this DC subset, or whether these DCs selectively present intracellular Ags, is unknown. To address this question, we examined Ag presentation to a noncytolytic virus, lymphocytic choriomeningitis virus, and to an intracellular bacterium, Listeria monocytogenes. We show that regardless of the type of intracellular infection, CD8alpha(+) DCs are the principal DC subset that initiate CD8(+) T cell immunity.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology and Cooperative Research Centre for Vaccine Technology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
77
|
Feng H, Zhang D, Palliser D, Zhu P, Cai S, Schlesinger A, Maliszewski L, Lieberman J. Listeria-infected myeloid dendritic cells produce IFN-beta, priming T cell activation. THE JOURNAL OF IMMUNOLOGY 2005; 175:421-32. [PMID: 15972676 DOI: 10.4049/jimmunol.175.1.421] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The intracellular bacterium Listeria monocytogenes infects dendritic cells (DC) and other APCs and induces potent cell-mediated protective immunity. However, heat-killed bacteria fail to do so. This study explored whether DC differentially respond to live and killed Listeria and how this affects T cell activation. To control for bacterial number, a replication-deficient strain, Lmdd, defective in D-alanine biosynthesis, was used. We found that DC internalize both live and heat-killed Lmdd and similarly up-regulate the expression of costimulatory molecules, a necessary step for T cell activation. However, only live Lmdd-infected DC stimulate T cells to express the early activation marker CD69 and enhance T cell activation upon TCR engagement. Infection with live, but not heat-killed, Lmdd induces myeloid DC to secrete copious amounts of IFN-beta, which requires bacterial cytosolic invasion. Exposure to high concentrations of IFN-beta sensitizes naive T cells for Ag-dependent activation.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD3 Complex/immunology
- Dendritic Cells/immunology
- Hot Temperature
- In Vitro Techniques
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Lectins, C-Type
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Listeria monocytogenes/pathogenicity
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myeloid Cells/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Hanping Feng
- CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Grönlund U, Johannisson A, Persson Waller K. Changes in blood and milk lymphocyte sub-populations during acute and chronic phases of Staphylococcus aureus induced bovine mastitis. Res Vet Sci 2005; 80:147-54. [PMID: 15982680 DOI: 10.1016/j.rvsc.2005.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/15/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus (S. aureus) often causes long-lasting chronic sub-clinical udder infections in dairy cows. To investigate if this can be due to a negative impact of S. aureus on lymphocytes important for the immune defence, alterations in proportions and expression intensity of CD4+, CD8+, WC1+, B and IL-2R+ lymphocytes was studied in blood and milk, as S. aureus mastitis developed from acute clinical to chronic sub-clinical form. Six healthy dairy cows were inoculated with S. aureus in one udder quarter per cow, and one quarter per cow acted as an uninfected control. Blood samples, and milk samples from infected and non-infected quarters were collected before infection and for five weeks after infection. All infected quarters developed acute clinical mastitis, of which five turned into chronic sub-clinical mastitis. In infected quarters, the proportions of all lymphocyte sub-sets, except WC1+ cells, differed in acute phase compared to pre-infection, while the dominant finding in the chronic phase was increased expression intensities per cell. An impact on blood lymphocytes and milk lymphocytes in non-infected quarters also occurred, mainly during the chronic phase. The most prominent finding was the increased proportion and expression of B-lymphocytes in blood, infected and non-infected quarters during chronic sub-clinical mastitis. As S. aureus can invade and survive intracellularly, a preferential stimulation of B-cells, suggesting development of a humoral response, may not be sufficient to eliminate intracellular bacteria, which could explain the persistence of the infection.
Collapse
Affiliation(s)
- U Grönlund
- Department of Clinical Sciences, Division of Comparative Reproduction, Obstetrics and Udder Health, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, P.O. Box 7039, Uppsala, Sweden
| | | | | |
Collapse
|
79
|
Abstract
Aging is associated with an increased morbidity to virus infections as well as a delay in clearance of symptoms after infection. Studies of sublethal virus infections of aged mice closely mirror the human situation: there is a delay in clearance of virus. The delay in virus clearance is accompanied by a delay and a decrease in T-cell response, particularly of CD8(+) T cells. Intrinsic alterations of T cells of aged mice contribute to this decrease in virus-specific T-cell response; however, evidence suggests that environmental or innate components of the aged host also influence this age-associated decline in clearance of virus. While the changes in the adaptive immune response have been carefully described, the early events in the generation of the T-cell response after virus infection have received limited attention. Importantly, age-associated changes in the innate response to virus infection, particularly production of and response to interferon (IFN)-alpha/beta, cytotoxicity and IFN-gamma production by natural killer cells, interleukin-12 induction, and depletion of non-specific T cells early during virus infection need further evaluation.
Collapse
Affiliation(s)
- Donna M Murasko
- Department of Bioscience and Biotechnology, College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
80
|
Selin LK, Cornberg M, Brehm MA, Kim SK, Calcagno C, Ghersi D, Puzone R, Celada F, Welsh RM. CD8 memory T cells: cross-reactivity and heterologous immunity. Semin Immunol 2005; 16:335-47. [PMID: 15528078 PMCID: PMC7128110 DOI: 10.1016/j.smim.2004.08.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Virus-specific memory T cell populations demonstrate plasticity in antigen recognition and in their ability to accommodate new memory T cell populations. The degeneracy of T cell antigen recognition and the flexibility of diverse antigen-specific repertoires allow the host to respond to a multitude of pathogens while accommodating these numerous large memory pools in a finite immune system. These cross-reactive memory T cells can be employed in immune responses and mediate protective immunity, but they can also induce life-threatening immunopathology or impede transplantation tolerance and graft survival. Here we discuss examples of altered viral pathogenesis occurring as a consequence of heterologous T cell immunity and propose models for the maintenance of a dynamic pool of memory cells.
Collapse
Affiliation(s)
- Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
O'Connor RA, Wittmer S, Dalton DK. Infection-induced apoptosis deletes bystander CD4+ T cells: a mechanism for suppression of autoimmunity during BCG infection. J Autoimmun 2005; 24:93-100. [PMID: 15829401 DOI: 10.1016/j.jaut.2005.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
Infection with Mycobacterium bovis Bacille Calmette Guérin (BCG) induces high levels of apoptosis among activated CD4+ T cells. We have investigated the specificity of this pro-apoptotic response and its influence on CD4+ T cell mediated autoimmunity. Apoptosis induced by BCG-infection is unrelated to antigenic specificity, as demonstrated by the increased apoptosis of activated TCR transgenic CD4+ T cells of unrelated specificity. Moreover, infection-induced apoptosis promoted the deletion of CD4+ T cells activated either by peptide or anti-CD3/anti-CD28 stimulation. Infection-induced apoptosis required IFN-gamma production by the infected host, and expression of the IFN-gamma receptor on donor CD4+ T cells. We used an adoptive transfer model of experimental autoimmune encephalomyelitis (EAE) to assess the influence of infection-induced apoptosis on a CD4+ T cell-mediated response. A significantly higher level of apoptosis was seen among sorted encephalitogenic CD4+ T cells transferred to BCG-infected versus uninfected hosts. BCG-infected mice displayed a milder course of clinical disease than their uninfected counterparts and a decreased recovery of donor cells from the CNS. The data suggest that mycobacterial infection attenuates the severity of EAE, at least in part, by promoting the apoptotic elimination of autoreactive CD4+ T cells.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens/immunology
- Apoptosis
- Autoimmunity/immunology
- Bystander Effect/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- CD4-Positive T-Lymphocytes/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Mice
- Mice, Knockout
- Mycobacterium bovis/immunology
- Mycobacterium bovis/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Tuberculosis/immunology
- Tuberculosis/metabolism
- Tuberculosis/microbiology
- Tuberculosis/pathology
Collapse
|
82
|
Kim SK, Cornberg M, Wang XZ, Chen HD, Selin LK, Welsh RM. Private specificities of CD8 T cell responses control patterns of heterologous immunity. ACTA ACUST UNITED AC 2005; 201:523-33. [PMID: 15710651 PMCID: PMC2213046 DOI: 10.1084/jem.20041337] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CD8 T cell cross-reactivity between viruses can play roles in protective heterologous immunity and damaging immunopathology. This cross-reactivity is sometimes predictable, such as between lymphocytic choriomeningitis virus (LCMV) and Pichinde virus, where cross-reactive epitopes share six out of eight amino acids. Here, however, we demonstrate more subtle and less predictable cross-reactivity between LCMV and the unrelated vaccinia virus (VV). Epitope-specific T cell receptor usage differed between individual LCMV-infected C57BL/6 mice, even though the mice had similar epitope-specific T cell hierarchies. LCMV-immune mice challenged with VV showed variations, albeit in a distinct hierarchy, in proliferative expansions of and down-regulation of IL-7Ralpha by T cells specific to different LCMV epitopes. T cell responses to a VV-encoded epitope that is cross-reactive with LCMV fluctuated greatly in VV-infected LCMV-immune mice. Adoptive transfers of splenocytes from individual LCMV-immune donors resulted in nearly identical VV-induced responses in each of several recipients, but responses differed depending on the donor. This indicates that the specificities of T cell responses that are not shared between individuals may influence cross-reactivity with other antigens and play roles in heterologous immunity upon encounter with another pathogen. This variability in cross-reactive T cell expansion that is unique to the individual may underlie variation in the pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Sung-Kwon Kim
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
CD8+ T-cell memory to viruses is stable in the absence but volatile in the presence of other infections. Apoptotic events that occur early in acute infections delete pre-existing memory T cells, leaving the host with reduced memory (except for cross-reactive responses) to previously encountered viruses. Apoptotic events also silence the acute immune response, leaving the host with a residual population of memory T cells. Persistent infections can induce apoptotic deletions of memory T cells that are specific to the persisting virus and to previously encountered pathogens.
Collapse
|
84
|
Zheng SJ, Jiang J, Shen H, Chen YH. Reduced Apoptosis and Ameliorated Listeriosis in TRAIL-Null Mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:5652-8. [PMID: 15494516 DOI: 10.4049/jimmunol.173.9.5652] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Listeriosis is an infectious disease caused by the bacterium Listeria monocytogenes. Although it is well recognized that apoptosis plays a critical role in the pathogenesis of the disease, the molecular mechanisms of cell death in listeriosis remain to be established. We report in this study that mice deficient in TRAIL were partially resistant to primary listeriosis, and blocking TRAIL with a soluble death receptor 5 markedly ameliorated the disease. The numbers of Listeria in the liver and spleen of TRAIL+/+ mice were 10-100 times greater than those in TRAIL-/- mice following primary Listeria infection. This was accompanied by a significant increase in the survival rate of TRAIL-/- mice. Lymphoid and myeloid cell death was significantly inhibited in TRAIL-/- mice, which led to marked enlargement of the spleen. These results establish a critical role for TRAIL in apoptosis during listeriosis.
Collapse
Affiliation(s)
- Shi-Jun Zheng
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
85
|
Abstract
Listeria monocytogenes is a Gram-positive bacterium that is often used to study the mammalian immune response to infection because it is easy to culture, is relatively safe to work with and causes a highly predictable infection in laboratory mice. The broad application of this mouse model has resulted in a torrent of studies characterizing the contributions of different cytokines, receptors, adaptors and effector molecules to resistance against infection with Listeria monocytogenes. These studies, which are yielding one of the most comprehensive pictures of the 'battle' between host and microorganism, are reviewed here.
Collapse
Affiliation(s)
- Eric G Pamer
- Infectious Disease Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Immunology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
86
|
O'Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA, Zarnegar B, Perry AK, Nguyen BO, Lane TF, Taniguchi T, Miller JF, Cheng G. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 2004; 200:437-45. [PMID: 15302901 PMCID: PMC2211937 DOI: 10.1084/jem.20040712] [Citation(s) in RCA: 397] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 07/06/2004] [Indexed: 11/04/2022] Open
Abstract
Numerous bacterial products such as lipopolysaccharide potently induce type I interferons (IFNs); however, the contribution of this innate response to host defense against bacterial infection remains unclear. Although mice deficient in either IFN regulatory factor (IRF)3 or the type I IFN receptor (IFNAR)1 are highly susceptible to viral infection, we show that these mice exhibit a profound resistance to infection caused by the Gram-positive intracellular bacterium Listeria monocytogenes compared with wild-type controls. Furthermore, this enhanced bacterial clearance is accompanied by a block in L. monocytogenes-induced splenic apoptosis in IRF3- and IFNAR1-deficient mice. Thus, our results highlight the disparate roles of type I IFNs during bacterial versus viral infections and stress the importance of proper IFN modulation in host defense.
Collapse
Affiliation(s)
- Ryan M O'Connell
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 8-240 Factor Bldg., 10833 Le Conte Ave., 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Carrero JA, Calderon B, Unanue ER. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. ACTA ACUST UNITED AC 2004; 200:535-40. [PMID: 15302900 PMCID: PMC2211931 DOI: 10.1084/jem.20040769] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Infection with Listeria monocytogenes causes lymphocyte apoptosis that is mediated by the actions of the pore-forming virulence factor listeriolysin O (LLO). Previous work showed that activated lymphocytes were highly sensitive to LLO-induced apoptosis, whereas resting lymphocytes were less susceptible. We now show that mice deficient in the type I interferon (IFN) receptor were more resistant to Listeria infection and had less apoptotic lesions than wild-type counterparts. Furthermore, treatment of resting splenic lymphocytes with recombinant IFN-αA enhanced their susceptibility to LLO-induced apoptosis. Together, these data suggest that type I IFN signaling is detrimental to handling of a bacterial pathogen and may enhance the susceptibility of lymphocytes undergoing apoptosis in response to bacterial pore-forming toxins.
Collapse
Affiliation(s)
- Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
88
|
Auerbuch V, Brockstedt DG, Meyer-Morse N, O'Riordan M, Portnoy DA. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. ACTA ACUST UNITED AC 2004; 200:527-33. [PMID: 15302899 PMCID: PMC2211930 DOI: 10.1084/jem.20040976] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Listeria monocytogenes is a facultative intracellular pathogen that induces a cytosolic signaling cascade resulting in expression of interferon (IFN)-β. Although type I IFNs are critical in viral defense, their role in immunity to bacterial pathogens is much less clear. In this study, we addressed the role of type I IFNs by examining the infection of L. monocytogenes in BALB/c mice lacking the type I IFN receptor (IFN-α/βR−/−). During the first 24 h of infection in vivo, IFN-α/βR−/− and wild-type mice were similar in terms of L. monocytogenes survival. In addition, the intracellular fate of L. monocytogenes in macrophages cultured from IFN-α/βR−/− and wild-type mice was indistinguishable. However, by 72 h after inoculation in vivo, IFN-α/βR−/− mice were ∼1,000-fold more resistant to a high dose L. monocytogenes infection. Resistance was correlated with elevated levels of interleukin 12p70 in the blood and increased numbers of CD11b+ macrophages producing tumor necrosis factor α in the spleen of IFN-α/βR−/− mice. The results of this study suggest that L. monocytogenes might be exploiting an innate antiviral response to promote its pathogenesis.
Collapse
Affiliation(s)
- Victoria Auerbuch
- Department of Molecular and Cell Biology, 508 Barker Hall, University of California, Berkeley, 94720, USA
| | | | | | | | | |
Collapse
|
89
|
Dhanji S, Teh SJ, Oble D, Priatel JJ, Teh HS. Self-reactive memory-phenotype CD8 T cells exhibit both MHC-restricted and non-MHC-restricted cytotoxicity: a role for the T-cell receptor and natural killer cell receptors. Blood 2004; 104:2116-23. [PMID: 15178577 DOI: 10.1182/blood-2004-01-0150] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently shown that interleukin-2 (IL-2)-activated CD8(+)CD44(hi) cells from normal mice express both adaptive and innate immune system receptors and specifically kill syngeneic tumor cells, particularly those that express NKG2D ligands. Here we show that CD8+ T cells from antigen-expressing H-Y T-cell receptor (TCR) transgenic mice also exhibit characteristics of both T cells and natural killer (NK) cells. Interaction with cognate self-antigen was required for the optimal expansion of these cells in peripheral lymphoid tissues. Although these cells possess a higher activation threshold relative to naive T cells, they can be activated by cytokine alone in vitro. They also undergo bystander proliferation in response to a bacterial infection in vivo. Interestingly, upon activation, the cells express the NKG2D receptor as well as the DNAX activation protein 12 (DAP12) adaptor protein. We provide evidence that NKG2D can act additively with the TCR in the killing of target cells, and it can also function as a directly activating receptor in non-major histocompatibility complex (MHC)-restricted killing of target cells. These properties of CD8+ T cells from H-Y TCR transgenic mice are remarkably similar to CD8(+)CD44(hi) cells that are found in normal mice. The H-Y TCR transgenic mice provide a well-defined system for characterizing the developmental biology and function of these cells.
Collapse
Affiliation(s)
- Salim Dhanji
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
90
|
Abstract
Specificity and memory are the defining characteristics of adaptive immune responses. Vaccines are predicated on the existence of immune memory, and the robustness of immune memory is a primary determinant of vaccine efficacy. How is immune memory maintained? Much progress has been made in this area over the past several years, and new human studies have added key insights into the longevity of B and T cell immune memory in the absence of antigen.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
91
|
Brehm MA, Selin LK, Welsh RM. CD8 T cell responses to viral infections in sequence. Cell Microbiol 2004; 6:411-21. [PMID: 15056212 PMCID: PMC7162374 DOI: 10.1111/j.1462-5822.2004.00390.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 01/23/2004] [Accepted: 01/26/2004] [Indexed: 12/16/2022]
Abstract
Our current understanding of virus-specific T cell responses has been shaped by model systems with mice, where naive animals are infected with a single viral pathogen. Paradigms derived from such models, however, may not always be applicable to a natural setting, where a host is exposed to numerous pathogens over its lifetime. Accumulating data in animal models and with some human diseases indicate that a host's prior history of infections can impact the specificity of future CD8 T cell responses, even to unrelated viruses. This can have both beneficial and detrimental consequences for the host, including altered clearance of virus, distinct forms of immunopathology, and substantial changes in the pool of memory T cells. Here we will describe the characteristics of CD8 T cells and the dynamics of their response to heterologous viral infections in sequence.
Collapse
Affiliation(s)
- Michael A Brehm
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
92
|
Carrero JA, Calderon B, Unanue ER. Listeriolysin O fromListeria monocytogenesIs a Lymphocyte Apoptogenic Molecule. THE JOURNAL OF IMMUNOLOGY 2004; 172:4866-74. [PMID: 15067065 DOI: 10.4049/jimmunol.172.8.4866] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of mice with Listeria monocytogenes caused marked lymphocyte apoptosis in the white pulp of the spleen on day 2 postinfection. We prove in this study that listeriolysin O (LLO), a pore-forming molecule and a major virulence factor of Listeria, could directly induce murine lymphocyte apoptosis both in vivo and in vitro at nanomolar and subnanomolar doses. Induction of apoptosis by LLO was rapid, with caspase activation seen as early as 30 min post-treatment. T cells lost their mitochondrial membrane potential and exposed phosphatidylserine within 8 h of treatment. Incubation of lymphocytes with a pan-caspase inhibitor blocked DNA laddering and caspase-3 activation, but did not block phosphatidylserine exposure or loss of mitochondrial membrane potential. We describe a novel function for LLO: induction of lymphocyte apoptosis with rapid kinetics, effected by both caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
93
|
Abstract
Virus-specific memory T cell populations demonstrate plasticity in antigenic and functional phenotype, in recognition of antigen, and in their ability to accommodate new memory T cell populations. The adaptability of complex antigen-specific T cell repertoires allows the host to respond to a diverse array of pathogens and accommodate memory pools to many pathogens in a finite immune system. This is in part accounted for by crossreactive memory T cells, which can be employed in immune responses and mediate protective immunity or life-threatening immunopathology.
Collapse
Affiliation(s)
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| |
Collapse
|