51
|
Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine. Sci Rep 2016; 6:27634. [PMID: 27302484 PMCID: PMC4908404 DOI: 10.1038/srep27634] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Intestinal resident macrophages (Mϕs) regulate gastrointestinal homeostasis via production of an anti-inflammatory cytokine interleukin (IL)-10. Although a constant replenishment by circulating monocytes is required to maintain the pool of resident Mϕs in the colonic mucosa, the homeostatic regulation of Mϕ in the small intestine (SI) remains unclear. Here, we demonstrate that direct stimulation by dietary amino acids regulates the homeostasis of intestinal Mϕs in the SI. Mice that received total parenteral nutrition (TPN), which deprives the animals of enteral nutrients, displayed a significant decrease of IL-10-producing Mϕs in the SI, whereas the IL-10-producing CD4+ T cells remained intact. Likewise, enteral nutrient deprivation selectively affected the monocyte-derived F4/80+ Mϕ population, but not non-monocytic precursor-derived CD103+ dendritic cells. Notably, in contrast to colonic Mϕs, the replenishment of SI Mϕs and their IL-10 production were not regulated by the gut microbiota. Rather, SI Mϕs were directly regulated by dietary amino acids. Collectively, our study highlights the diet-dependent, microbiota-independent regulation of IL-10-producing resident Mϕs in the SI.
Collapse
|
52
|
Yao J, Xie J, Xie B, Li Y, Jiang L, Sui X, Zhou X, Pan H, Han W. Therapeutic effect of hydroxychloroquine on colorectal carcinogenesis in experimental murine colitis. Biochem Pharmacol 2016; 115:51-63. [PMID: 27288548 DOI: 10.1016/j.bcp.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/07/2016] [Indexed: 01/18/2023]
Abstract
Chronic inflammation in the intestine is a strong risk factor for colitis-associated colorectal cancer (CAC). Hydroxychloroquine (HCQ) is widely used as an anti-inflammatory drug in the treatment of immune-mediated inflammatory disorders and various tumors. However, little is known regarding the effects of HCQ on colitis-associated tumorigenesis. In this study, mice treated with HCQ showed a significant reduction in early-stage colitis following azoxymethane (AOM)/dextran sodium sulfate (DSS) administration, as well as a remarkable inhibition of colonic tumorigenesis and tumor growth at late stages of CAC. Mechanistically, the therapeutic effects of HCQ were attributed to inhibition of inflammatory responses and production of mutagenic reactive oxygen species (ROS) in immune cells and subsequent promotion of apoptosis and cell cycle arrest in tumor cells. Furthermore, we found that HCQ inhibited the production of inflammatory cytokines and ROS in response to toll-like receptor 4 (TLR4) activation in macrophages. Our data presented herein may help guide the clinical use of HCQ as a prevention and treatment strategy for CAC.
Collapse
Affiliation(s)
- Junlin Yao
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binbin Xie
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiran Li
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liming Jiang
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinbing Sui
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyun Zhou
- Department of Medical Oncology, Hangzhou Xiasha Hospital, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
53
|
Kamada N, Rogler G. The Innate Immune System: A Trigger for Many Chronic Inflammatory Intestinal Diseases. Inflamm Intest Dis 2016; 1:70-77. [PMID: 29922660 DOI: 10.1159/000445261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
Background Mononuclear phagocytes, such as monocytes, macrophages, and dendritic cells, are important cellular components of the innate immune system that contribute to the pathogenesis of many intestinal inflammatory diseases. Summary While mononuclear phagocytes play a key role in the induction of inflammation in many different tissues through production of pro-inflammatory cytokines and chemokines (such as IL-1, TNF, IL-6, IL-8 and MCP-1), free oxygen radicals (also termed 'oxidative burst'), proteases (such as cathepsins) and tissue-degrading enzymes (such as metalloproteinases), resident macrophages as well as dendritic cells in the intestine display an anergic and 'tolerogenic' phenotype mediating tolerance to commensal bacteria. In recent years many single nucleotide polymorphisms (SNPs) in genes mainly expressed in the above-mentioned cell types have been identified to convey an increased risk of autoimmune diseases. SNPs in the NOD2, ATG16L1 and TNFSF15 genes, which are involved in the function of the innate immune cells, are identified as risk factors for Crohn's disease (CD). Of note, these genes are involved in the different functions in the innate immune cells. For example, while NOD2 is required for intracellular recognition of microbial components, ATG16L1 is involved in autophagy responses against intracellular microbes. Likewise, TNFSF15 contributes to the induction of inflammatory responses by innate immune cells. Furthermore, the frequency of mutations in these genes differs by ethnicity. Genetic variations in the NOD2 and ATG16L1 genes are associated with CD in Caucasians but much less in Eastern Asian populations, whereas SNPs in TNFSF15 are dominated in Asian populations. Thus, different genetic risks may eventually lead to similar impairments in innate immune cells, thereby developing the same disease in Western and Asian patients with CD. Key Messages Despite differences in risk genes, similar mechanisms associated with the innate immune system may trigger autoimmune and chronic inflammatory intestinal diseases in East and West.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich., USA
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
54
|
Zhang W, Xu L, Cho SY, Min KJ, Oda T, Zhang L, Yu Q, Jin JO. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis. Nutrients 2016; 8:199. [PMID: 27058552 PMCID: PMC4848668 DOI: 10.3390/nu8040199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022] Open
Abstract
This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103(-)CD11c⁺ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103⁺CD11c⁺ cDCs and expansion of Foxp3⁺ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Si-Young Cho
- R & D Unit, AmorePacific Corporation, 1920 Yonggudae-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea.
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea.
| | - Tatsuya Oda
- Division of Biochemistry, Faculty of Fisheries, Nagasaki University, Nagasaki 55001, Japan.
| | - LiJun Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.
| |
Collapse
|
55
|
Shinzaki S, Ishii M, Fujii H, Iijima H, Wakamatsu K, Kawai S, Shiraishi E, Hiyama S, Inoue T, Hayashi Y, Kuwahara R, Takamatsu S, Kamada Y, Morii E, Tsujii M, Takehara T, Miyoshi E. N-Acetylglucosaminyltransferase V exacerbates murine colitis with macrophage dysfunction and enhances colitic tumorigenesis. J Gastroenterol 2016; 51:357-69. [PMID: 26349931 DOI: 10.1007/s00535-015-1119-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 08/20/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Oligosaccharide structures and their alterations have important roles in modulating intestinal inflammation. N-Acetylglucosaminyltransferase V (GnT-V) is involved in the biosynthesis of N-acetylglucosamine (GlcNAc) by β1,6-branching on N-glycans and is induced in various pathologic processes, such as inflammation and regeneration. GnT-V alters host immune responses by inhibiting the functions of CD4(+) T cells and macrophages. The present study aimed to clarify the role of GnT-V in intestinal inflammation using GnT-V transgenic mice. METHODS Colitis severity was compared between GnT-V transgenic mice and wild-type mice. β1,6-GlcNAc levels were investigated by phytohemagglutinin-L4 lectin blotting and flow cytometry. We investigated phagocytosis of macrophages by measuring the number of peritoneal-macrophage-ingested fluorescent latex beads by flow cytometry. Cytokine production in the culture supernatant of mononuclear cells from the spleen, mesenteric lymph nodes, and bone-marrow-derived macrophages was determined by enzyme-linked immunosorbent assay. Clodronate liposomes were intravenously injected to deplete macrophages in vivo. Chronic-colitis-associated tumorigenesis was assessed after 9 months of repeated administration of dextran sodium sulfate (DSS). RESULTS DSS-induced colitis and colitis induced by trinitrobenzene sulfonic acid were markedly exacerbated in GnT-V transgenic mice compared with wild-type mice. Production of interleukin-10 and phagocytosis of macrophages were significantly impaired in GnT-V transgenic mice compared with wild-type mice. Clodronate liposome treatment to deplete macrophages blocked the exacerbation of DSS-induced colitis and impairment of interleukin-10 production in GnT-V transgenic mice. Chronic-colitis-associated tumorigenesis was significantly increased in GnT-V transgenic mice. CONCLUSIONS Overexpression of GnT-V exacerbated murine experimental colitis by inducing macrophage dysfunction, thereby enhancing colorectal tumorigenesis.
Collapse
Affiliation(s)
- Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mayuko Ishii
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hironobu Fujii
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kana Wakamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shoichiro Kawai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eri Shiraishi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hiyama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryusuke Kuwahara
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiko Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 K1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
56
|
Cassol E, Rossouw T, Malfeld S, Mahasha P, Slavik T, Seebregts C, Bond R, du Plessis J, Janssen C, Roskams T, Nevens F, Alfano M, Poli G, van der Merwe SW. CD14(+) macrophages that accumulate in the colon of African AIDS patients express pro-inflammatory cytokines and are responsive to lipopolysaccharide. BMC Infect Dis 2015; 15:430. [PMID: 26475133 PMCID: PMC4609115 DOI: 10.1186/s12879-015-1176-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/05/2015] [Indexed: 01/05/2023] Open
Abstract
Background Intestinal macrophages are key regulators of inflammatory responses to the gut microbiome and play a central role in maintaining tissue homeostasis and epithelial integrity. However, little is known about the role of these cells in HIV infection, a disease fuelled by intestinal inflammation, a loss of epithelial barrier function and increased microbial translocation (MT). Methods Phenotypic and functional characterization of intestinal macrophages was performed for 23 African AIDS patients with chronic diarrhea and/or weight loss and 11 HIV-negative Africans with and without inflammatory bowel disease (IBD). AIDS patients were treated with cotrimoxazole for the prevention of opportunistic infections (OIs). Macrophage phenotype was assessed by flow cytometry and immuno-histochemistry (IHC); production of proinflammatory mediators by IHC and Qiagen PCR Arrays; in vitro secretion of cytokines by the Bio-Plex Suspension Array System. Statistical analyses were performed using Spearman’s correlation and Wilcoxon matched-pair tests. Results between groups were analyzed using the Kruskal-Wallis with Dunn’s post-test and the Mann–Whitney U tests. Results None of the study participants had evidence of enteric co-infections as assessed by stool analysis and histology. Compared to healthy HIV-negative controls, the colon of AIDS patients was highly inflamed with increased infiltration of inflammatory cells and increased mRNA expression of proinflammatory cytokine (tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IFN-γ, and IL-18), chemokines (chemokine (C-C motif) ligand (CCL)2 and chemokine (C-X-C) motif ligand (CXCL)10) and transcription factors (TNF receptor-associated factor (TRAF)6 and T-box (TXB)21). IHC revealed significant co-localization of TNF-α and IL-1β with CD68+ cells. As in IBD, HIV was associated with a marked increase in macrophages expressing innate response receptors including CD14, the co-receptor for lipopolysaccharide (LPS). The frequency of CD14+ macrophages correlated positively with plasma LPS, a marker of MT. Total unfractionated mucosal mononuclear cells (MMC) isolated from the colon of AIDS patients, but not MMC depleted of CD14+ cells, secreted increased levels of proinflammatory cytokines ex vivo in response to LPS. Conclusions Intestinal macrophages, in the absence of overt OIs, play an important role in driving persistent inflammation in HIV patients with late-stage disease and diarrhea. These results suggest intensified treatment strategies that target inflammatory processes in intestinal macrophages may be highly beneficial in restoring the epithelial barrier and limiting MT in HIV-infected patients.
Collapse
Affiliation(s)
- Edana Cassol
- MRC Unit for Inflammation and Immunity, Department of Immunology and the Tshwane Academic Division of the National Health Laboratory Service, University of Pretoria, Pretoria, South Africa. .,Department of Health Sciences, Carleton University, 5433 Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Theresa Rossouw
- MRC Unit for Inflammation and Immunity, Department of Immunology and the Tshwane Academic Division of the National Health Laboratory Service, University of Pretoria, Pretoria, South Africa. .,Department of Family Medicine, University of Pretoria, Pretoria, South Africa.
| | - Susan Malfeld
- MRC Unit for Inflammation and Immunity, Department of Immunology and the Tshwane Academic Division of the National Health Laboratory Service, University of Pretoria, Pretoria, South Africa.
| | - Phetole Mahasha
- MRC Unit for Inflammation and Immunity, Department of Immunology and the Tshwane Academic Division of the National Health Laboratory Service, University of Pretoria, Pretoria, South Africa.
| | - Tomas Slavik
- Department of Anatomical Pathology, University of Pretoria and Ampath Pathology Laboratories, Pretoria, South Africa.
| | - Chris Seebregts
- Jembi Health Systems NPC, Durban, South Africa. .,School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.
| | - Robert Bond
- Hepatology and GI-Research Laboratory, University of Pretoria, Pretoria, South Africa.
| | - Johannie du Plessis
- Hepatology and GI-Research Laboratory, University of Pretoria, Pretoria, South Africa.
| | - Carl Janssen
- Hepatology and GI-Research Laboratory, University of Pretoria, Pretoria, South Africa.
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium.
| | - Frederik Nevens
- Department of Hepatology, University of Leuven, Leuven, Belgium.
| | - Massimo Alfano
- San Raffaele Scientific Institute, School of Medicine, Milan, Italy. .,Present Address: Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Guido Poli
- San Raffaele Scientific Institute, School of Medicine, Milan, Italy. .,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy. .,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Schalk W van der Merwe
- MRC Unit for Inflammation and Immunity, Department of Immunology and the Tshwane Academic Division of the National Health Laboratory Service, University of Pretoria, Pretoria, South Africa. .,Department of Internal Medicine, Division of Liver and Biliopancreatic Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
57
|
Sasaki F, Kumagai K, Uto H, Takami Y, Kure T, Tabu K, Nasu Y, Hashimoto S, Kanmura S, Numata M, Moriuchi A, Sakiyama T, Tsubouchi H, Ido A. Expression of glycoprotein nonmetastatic melanoma protein B in macrophages infiltrating injured mucosa is associated with the severity of experimental colitis in mice. Mol Med Rep 2015; 12:7503-11. [PMID: 26458492 DOI: 10.3892/mmr.2015.4408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (Gpnmb) is a transmembrane glycoprotein, which negatively regulates the inflammatory responses of macrophages. However, the role of Gpnmb in intestinal macrophages remains to be fully elucidated. The present study aimed to investigate the expression of Gpnmb and its effects on colonic mucosal injuries associated with dextran sulfate sodium (DSS)‑induced colitis in BALB/c mice, DBA/2J (D2) mice lacking Gpnmb and Gpnmb‑transgenic DBA/2J mice (D2‑gpnmb+). The colonic expression of Gpnmb increased with the severity of DSS‑induced colitis in BALB/c mice, and macrophages infiltrating the inflamed mucosa were found to express Gpnmb. The D2 mice lacking Gpnmb exhibited more severe DSS‑induced colitis, which was accompanied by higher levels of pro‑inflammatory cytokines, including interleukin (IL)‑1β and IL‑6, compared with the D2‑gpnmb+ mice. Following lipopolysaccharide stimulation, macrophages from the D2 mice expressed higher levels of pro‑inflammatory cytokines and lower levels of IL‑10, compared with the D2‑gpnmb+mice. In addition, in the RAW264.7 murine macrophage cell line, knockdown of Gpnmb by small interfering RNA was associated with increased production of pro‑inflammatory cytokines, which were potentially mediated by the extracellular signal‑regulated kinase (ERK) and p38 signaling pathways. The results of the present study indicated that macrophages infiltrating injured mucosa express Gpnmb, and that Gpnmb‑positive macrophages may ameliorate inflammation in the intestinal mucosa by decreasing pro‑inflammatory cytokine production via the ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Fumisato Sasaki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Hirofumi Uto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Yoichiro Takami
- Pharmaceutical Care and Health Sciences, School of Pharmacy, Shujitsu University, Okayama 703-8516, Japan
| | - Takeshi Kure
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Yuichro Nasu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Masatsugu Numata
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Akihiro Moriuchi
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Toshio Sakiyama
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| | - Hirohito Tsubouchi
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8544, Japan
| |
Collapse
|
58
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Sacco D, Tirotta E, Caputi V, Marsilio I, Giron MC, Németh ZH, Blandizzi C, Fornai M. The AMPK enzyme-complex: from the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. Expert Opin Ther Targets 2015; 20:179-91. [DOI: 10.1517/14728222.2016.1086752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Seo SU, Kuffa P, Kitamoto S, Nagao-Kitamoto H, Rousseau J, Kim YG, Núñez G, Kamada N. Intestinal macrophages arising from CCR2(+) monocytes control pathogen infection by activating innate lymphoid cells. Nat Commun 2015; 6:8010. [PMID: 26269452 PMCID: PMC4536571 DOI: 10.1038/ncomms9010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022] Open
Abstract
Monocytes play a crucial role in antimicrobial host defence, but the mechanisms by which they protect the host during intestinal infection remains poorly understood. Here we show that depletion of CCR2+ monocytes results in impaired clearance of the intestinal pathogen Citrobacter rodentium. After infection, the de novo recruited CCR2+ monocytes give rise to CD11c+CD11b+F4/80+CD103− intestinal macrophages (MPs) within the lamina propria. Unlike resident intestinal MPs, de novo differentiated MPs are phenotypically pro-inflammatory and produce robust amounts of IL-1β (interleukin-1β) through the non-canonical caspase-11 inflammasome. Intestinal MPs from infected mice elicit the activation of RORγt+ group 3 innate lymphoid cells (ILC3) in an IL-1β-dependent manner. Deletion of IL-1β in blood monocytes blunts the production of IL-22 by ILC3 and increases the susceptibility to infection. Collectively, these studies highlight a critical role of de novo differentiated monocyte-derived intestinal MPs in ILC3-mediated host defence against intestinal infection. Monocytes are important for antimicrobial host defence in the intestine but the mechanism behind their protective function is not fully understood. Seo et al. show that intestinal macrophages derived from CCR2+ monocytes support clearance of pathogenic Citrobacter rodentium through activation of group 3 innate lymphoid cells.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, 1500 E Medical Center Dr Ann Arbor, Michigan 48109, USA
| | - Peter Kuffa
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1150 W Medical Center Dr, Ann Arbor, Michigan 48109, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1150 W Medical Center Dr, Ann Arbor, Michigan 48109, USA
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1150 W Medical Center Dr, Ann Arbor, Michigan 48109, USA
| | - Jenna Rousseau
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1150 W Medical Center Dr, Ann Arbor, Michigan 48109, USA
| | - Yun-Gi Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, 1500 E Medical Center Dr Ann Arbor, Michigan 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, 1500 E Medical Center Dr Ann Arbor, Michigan 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1150 W Medical Center Dr, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
60
|
Flannigan KL, Geem D, Harusato A, Denning TL. Intestinal Antigen-Presenting Cells: Key Regulators of Immune Homeostasis and Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1809-19. [PMID: 25976247 PMCID: PMC4483458 DOI: 10.1016/j.ajpath.2015.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
The microbiota that populate the mammalian intestine are critical for proper host physiology, yet simultaneously pose a potential danger. Intestinal antigen-presenting cells, namely macrophages and dendritic cells (DCs), are integral components of the mucosal innate immune system that maintain co-existence with the microbiota in face of this constant threat. Intestinal macrophages and DCs integrate signals from the microenvironment to orchestrate innate and adaptive immune responses that ultimately lead to durable tolerance of the microbiota. Tolerance is not a default response, however, because macrophages and DCs remain poised to vigorously respond to pathogens that breach the epithelial barrier. In this review, we summarize the salient features of macrophages and DCs in the healthy and inflamed intestine and discuss how signals from the microbiota can influence their function.
Collapse
Affiliation(s)
- Kyle L Flannigan
- Institute for Biomedical Sciences, Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta
| | - Duke Geem
- Institute for Biomedical Sciences, Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Akihito Harusato
- Institute for Biomedical Sciences, Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta
| | - Timothy L Denning
- Institute for Biomedical Sciences, Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta.
| |
Collapse
|
61
|
Dual TNF-α/IL-12p40 Interference as a Strategy to Protect Against Colitis Based on miR-16 Precursors With Macrophage Targeting Vectors. Mol Ther 2015; 23:1611-21. [PMID: 26073885 DOI: 10.1038/mt.2015.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
Cytokines are central components of the mucosal inflammatory responses that take place during the development of Crohn's disease. Cell-specific combination therapies against cytokines may lead to increased efficacy and even reduced side effects. Therefore, a colonic macrophage-specific therapy using miR-16 precursors that can target both TNF-α and IL-12p40 was tested for its efficacy in experimental colitic mice. Galactosylated low molecular weight chitosan (G-LMWC) associated with miR-16 precursors were intracolonically injected into mice. The cellular localization of miR-16 precursors was determined. The therapeutic effects and possible mechanism were further studied in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. The results show that specific upregulation of miR-16 level in colonic macrophages significantly reduces TNF-α and IL-12p40 expression, which could suppress the associated mucosal inflammation and ultimately result in the relief of colitic symptoms. This strategy, based on the dual silencing of colonic macrophage-specific cytokines, represents a potential therapeutic approach that may be valuable for colitis therapy.
Collapse
|
62
|
Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci 2015; 16:7493-519. [PMID: 25849657 PMCID: PMC4425030 DOI: 10.3390/ijms16047493] [Citation(s) in RCA: 561] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases.
Collapse
Affiliation(s)
- Yu-Jie Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
63
|
Nakagawa T, Katsuno T, Noguchi Y, Mandai Y, Yoshihama S, Saito K, Maruoka D, Matsumura T, Arai M, Yokosuka O. Irsogladine Maleate Prevents Colitis in Interleukin-10 Gene-Deficient Mice by Reducing Interleukin-12 and -23 Production. Biol Pharm Bull 2015; 38:1681-8. [DOI: 10.1248/bpb.b15-00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoo Nakagawa
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Tatsuro Katsuno
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Yoshiko Noguchi
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Yasushi Mandai
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Sayuri Yoshihama
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Keiko Saito
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Daisuke Maruoka
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Tomoaki Matsumura
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Makoto Arai
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology (K1), Graduate School of Medicine, Chiba University
| |
Collapse
|
64
|
Crohn’s Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
65
|
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA. The chicken gastrointestinal microbiome. FEMS Microbiol Lett 2014; 360:100-12. [PMID: 25263745 DOI: 10.1111/1574-6968.12608] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/27/2022] Open
Abstract
The domestic chicken is a common model organism for human biological research and of course also forms the basis of a global protein industry. Recent methodological advances have spurred the recognition of microbiomes as complex communities with important influences on the health and disease status of the host. In this minireview, we provide an overview of the current state of knowledge of the chicken gastrointestinal microbiome focusing on spatial and temporal variability, the presence and importance of human pathogens, the influence of the microbiota on the immune system, and the importance of the microbiome for poultry nutrition. Review and meta-analysis of public data showed cecal communities dominated by Firmicutes and Bacteroides at the phylum level, while at finer levels of taxonomic resolution, a phylogenetically diverse assemblage of microorganisms appears to have similar metabolic functions that provide important benefits to the host as inferred from metagenomic data. This observation of functional redundancy may have important implications for management of the microbiome. We foresee advances in strategies to improve gut health in commercial operations through management of the intestinal microbiota as an alternative to in-feed subtherapeutic antibiotics, improvements in pre- and probiotics, improved management of polymicrobial poultry diseases, and better control of human pathogens via colonization reduction or competitive exclusion strategies.
Collapse
Affiliation(s)
- Brian B Oakley
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA-Agricultural Research Service, Athens, GA, USA; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Classical Th1 cells obtain colitogenicity by co-existence of RORγt-expressing T cells in experimental colitis. Inflamm Bowel Dis 2014; 20:1820-7. [PMID: 25167215 DOI: 10.1097/mib.0000000000000149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Both Th1 and Th17 cell types are involved in the pathogenesis of chronic intestinal inflammation. We recently demonstrated that retinoid-related orphan receptor gamma t (RORγt)-expressing Th17 cells are progenitor cells for alternative Th1 cells, which have the potential to induce colitis. However, the involvement of classical Th1 (cTh1) cells generated directly from naive T cells without RORγt expression in the pathogenesis of colitis remains poorly understood. METHODS We performed a series of in vivo experiments using a murine chronic colitis model induced by adoptive transfer of splenic CD4CD45RB(high) T cells obtained from wild-type, RORγt(gfp/gfp), or RORγt(gfp/gfp) mice into RAG-2(-/-) mice. RESULTS RAG-2(-/-) mice receiving transfer of in vitro-manipulated RORγt(gfp/gfp) Th1 cells developed colitis. RAG-2(-/-) mice co-transferred with splenic CD4CD45RB(high) T cells obtained from wild-type mice and RORγt(gfp/gfp) mice developed colitis with a significant increase in RORγt cTh1 cell numbers when compared with noncolitic mice transferred with splenic CD4CD45RB(high) T cells obtained from RORγt(gfp/gfp) mice. Furthermore, RAG-2(-/-) mice transferred with in vivo-manipulated RORγt(gfp/gfp) cTh1 cells developed colitis with a significant increase in RORγt(gfp/gfp) cTh1 cell numbers. CONCLUSIONS These findings indicate that both alternative Th1 cells and cTh1 cells have the potential to be colitogenic in an adaptive transfer model. The development of cTh1 cells was dependent on the co-existence of RORγt-expressing T cells, suggesting a critical role for the interactions of these cell types in the development of chronic intestinal inflammation.
Collapse
|
67
|
Gastrointestinal tract and the mucosal macrophage reservoir in HIV infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1469-73. [PMID: 25185575 DOI: 10.1128/cvi.00518-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is a primary site for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection, replication, and dissemination. After an initial explosive phase of infection, HIV establishes latency. In addition to CD4 T cells, macrophages are readily infected, which can persist for long periods of time. Though macrophages at various systemic sites are infected, those present in the GIT constitute a major cellular reservoir due to the abundance of these cells at mucosal sites. Here, we review some of the important findings regarding what is known about the macrophage reservoir in the gut and explore potential approaches being pursued in the field to reduce this reservoir. The development of strategies that can lead to a functional cure will need to incorporate approaches that can eradicate the macrophage reservoir in the GIT.
Collapse
|
68
|
Kamada N, Núñez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 2014; 146:1477-88. [PMID: 24503128 PMCID: PMC3995843 DOI: 10.1053/j.gastro.2014.01.060] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
The microbiota is an important factor in the development of the immune response. The interaction between the gastrointestinal tract and resident microbiota is well balanced in healthy individuals, but its breakdown can lead to intestinal and extraintestinal disease. We review current knowledge about the mechanisms that regulate the interaction between the immune system and the microbiota, focusing on the role of resident intestinal bacteria in the development of immune responses. We also discuss mechanisms that prevent immune responses against resident bacteria, and how the indigenous bacteria stimulate the immune system to protect against commensal pathobionts and exogenous pathogens. Unraveling the complex interactions between resident intestinal bacteria and the immune system could improve our understanding of disease pathogenesis and lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
69
|
Pae M, Wu D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications. Food Funct 2014; 4:1287-303. [PMID: 23835657 DOI: 10.1039/c3fo60076a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Consuming green tea or its active ingredient, epigallocatechin-3-gallate (EGCG), has been shown consistently to benefit the healthy functioning of several body systems. In the immune system specifically, accumulating evidence has revealed an immunomodulating effect of green tea/EGCG. Several types of immune cells in both the innate and adaptive immune systems are known to be affected in varying degrees by green tea/EGCG. Among them, the dramatic effect on T cell functions has been repeatedly demonstrated, including T cell activation, proliferation, differentiation, and production of cytokines. In particular, dysregulated T cell function with respect to different subsets of CD4(+) T cells is a critical pathogenic factor in the development of autoimmune inflammatory diseases. Recent studies have shown that EGCG affects the differentiation of naïve CD4(+) T cells into different effector subsets in a way that would be expected to favorably impact autoimmunity. Consistent with these findings, studies using animal models of autoimmune diseases have reported disease improvement in animals treated with green tea/EGCG. Altogether, these studies identify and support the use of EGCG as a potential therapeutic agent in preventing and ameliorating T cell-mediated autoimmune diseases. Given the paucity of information in human studies, the translational value of these findings needs to be verified in future research.
Collapse
Affiliation(s)
- Munkyong Pae
- Cellular and Molecular Physiology Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
70
|
Pacheco R, Contreras F, Zouali M. The dopaminergic system in autoimmune diseases. Front Immunol 2014; 5:117. [PMID: 24711809 PMCID: PMC3968755 DOI: 10.3389/fimmu.2014.00117] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/05/2014] [Indexed: 01/02/2023] Open
Abstract
Bidirectional interactions between the immune and the nervous systems are of considerable interest both for deciphering their functioning and for designing novel therapeutic strategies. The past decade has brought a burst of insights into the molecular mechanisms involved in neuroimmune communications mediated by dopamine. Studies of dendritic cells (DCs) revealed that they express the whole machinery to synthesize and store dopamine, which may act in an autocrine manner to stimulate dopamine receptors (DARs). Depending on specific DARs stimulated on DCs and T cells, dopamine may differentially favor CD4+ T cell differentiation into Th1 or Th17 inflammatory cells. Regulatory T cells can also release high amounts of dopamine that acts in an autocrine DAR-mediated manner to inhibit their suppressive activity. These dopaminergic regulations could represent a driving force during autoimmunity. Indeed, dopamine levels are altered in the brain of mouse models of multiple sclerosis (MS) and lupus, and in inflamed tissues of patients with inflammatory bowel diseases or rheumatoid arthritis (RA). The distorted expression of DARs in peripheral lymphocytes of lupus and MS patients also supports the importance of dopaminergic regulations in autoimmunity. Moreover, dopamine analogs had beneficial therapeutic effects in animal models, and in patients with lupus or RA. We propose models that may underlie key roles of dopamine and its receptors in autoimmune diseases.
Collapse
Affiliation(s)
- Rodrigo Pacheco
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida , Santiago , Chile ; Programa de Biomedicina, Universidad San Sebastián , Santiago , Chile
| | - Francisco Contreras
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida , Santiago , Chile ; Universidad Andrés Bello, Facultad de Ciencias Biológicas , Santiago , Chile
| | - Moncef Zouali
- INSERM UMR 1132 , Paris , France ; University Paris Diderot , Paris , France
| |
Collapse
|
71
|
Steinbach EC, Kobayashi T, Russo SM, Sheikh SZ, Gipson GR, Kennedy ST, Uno JK, Mishima Y, Borst LB, Liu B, Herfarth H, Ting JPY, Sartor RB, Plevy SE. Innate PI3K p110δ regulates Th1/Th17 development and microbiota-dependent colitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:3958-68. [PMID: 24634494 DOI: 10.4049/jimmunol.1301533] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The p110δ subunit of class IA PI3K modulates signaling in innate immune cells. We previously demonstrated that mice harboring a kinase-dead p110δ subunit (p110δ(KD)) develop spontaneous colitis. Macrophages contributed to the Th1/Th17 cytokine bias in p110δ(KD) mice through increased IL-12 and IL-23 expression. In this study, we show that the enteric microbiota is required for colitis development in germfree p110δ(KD) mice. Colonic tissue and macrophages from p110δ(KD) mice produce significantly less IL-10 compared with wild-type mice. p110δ(KD) APCs cocultured with naive CD4+ Ag-specific T cells also produce significantly less IL-10 and induce more IFN-γ- and IL-17A-producing CD4+ T cells compared with wild-type APCs. Illustrating the importance of APC-T cell interactions in colitis pathogenesis in vivo, Rag1(-/-)/p110δ(KD) mice develop mild colonic inflammation and produced more colonic IL-12p40 compared with Rag1(-/-) mice. However, CD4+ CD45RB(high/low) T cell Rag1(-/-)/p110δ(KD) recipient mice develop severe colitis with increased percentages of IFN-γ- and IL-17A-producing lamina propria CD3+D4+ T cells compared with Rag1(-/-) recipient mice. Intestinal tissue samples from patients with Crohn's disease reveal significantly lower expression of PIK3CD compared with intestinal samples from non-inflammatory bowel disease control subjects (p < 0.05). PIK3CD expression inversely correlates with the ratio of IL12B:IL10 expression. In conclusion, the PI3K subunit p110δ controls homeostatic APC-T cell interactions by altering the balance between IL-10 and IL-12/23. Defects in p110δ expression and/or function may underlie the pathogenesis of human inflammatory bowel disease and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Erin C Steinbach
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Kobayashi T, Steinbach EC, Russo SM, Matsuoka K, Nochi T, Maharshak N, Borst LB, Hostager B, Garcia-Martinez JV, Rothman PB, Kashiwada M, Sheikh SZ, Murray PJ, Plevy SE. NFIL3-deficient mice develop microbiota-dependent, IL-12/23-driven spontaneous colitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:1918-27. [PMID: 24442434 DOI: 10.4049/jimmunol.1301819] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
NFIL3 is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. In this article, we describe spontaneous colitis in Nfil3(-/-) mice. Mice lacking both Nfil3 and Il10 had severe early-onset colitis, suggesting that NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, because Nfil3/Rag1 double-knockout mice were protected from disease. However, Nfil3/Rag1 double-knockout mice adoptively transferred with wild-type CD4(+) T cells developed severe colitis compared with Rag1(-/-) recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3(-/-) mice do not develop colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Gastrointestinal Biology and Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Mikami Y, Mizuno S, Nakamoto N, Hayashi A, Sujino T, Sato T, Kamada N, Matsuoka K, Hisamatsu T, Ebinuma H, Hibi T, Yoshimura A, Kanai T. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation. PLoS One 2014; 9:e84619. [PMID: 24392145 PMCID: PMC3879334 DOI: 10.1371/journal.pone.0084619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022] Open
Abstract
The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2−/− mice adoptively transferred with CD4+CD45RBhigh T cells; and IL-10−/− mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b−CD11clowPDCA-1+ plasmacytoid dendritic cells (DCs) abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4+CD45RBhigh T cell-transferred RAG-2−/− mice and IL-10−/− mice in parallel with the emergence of macrophages (Mφs) and conventional DCs (cDCs). Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS)-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinta Mizuno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiko Kamada
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katsuyoshi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshifumi Hibi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- * E-mail: (TK); (AY)
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- * E-mail: (TK); (AY)
| |
Collapse
|
74
|
Shouval DS, Ouahed J, Biswas A, Goettel JA, Horwitz BH, Klein C, Muise AM, Snapper SB. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv Immunol 2014; 122:177-210. [PMID: 24507158 PMCID: PMC4741283 DOI: 10.1016/b978-0-12-800267-4.00005-5] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin 10 (IL10) is a key anti-inflammatory cytokine that can inhibit proinflammatory responses of both innate and adaptive immune cells. An association between IL10 and intestinal mucosal homeostasis became clear with the discovery that IL10 and IL10 receptor (IL10R)-deficient mice develop spontaneous intestinal inflammation. Similarly, patients with deleterious mutations in IL10, IL10RA, or IL10RB present with severe enterocolitis within the first months of life. Here, we review recent findings on how IL10- and IL10R-dependent signaling modulates innate and adaptive immune responses in the murine gastrointestinal tract, with implications of their role in the prevention of inflammatory bowel disease (IBD). In addition, we discuss the impact of IL10 and IL10R signaling defects in humans and their relationship to very early-onset IBD (VEO-IBD).
Collapse
Affiliation(s)
- Dror S Shouval
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce H Horwitz
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Aleixo M Muise
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology at University of Toronto, Toronto, Ontario, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Gastroenterology, Brigham & Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
75
|
Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int J Mol Sci 2013; 15:15-28. [PMID: 24451125 PMCID: PMC3907795 DOI: 10.3390/ijms15010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022] Open
Abstract
To determine the effects of heat-killed VSL#3 (B. breve, B. longum and B. infantis; L. plantarum, L. bulgaricus, L. casei and L. acidophilus; S. salivarius subsp. thermophilus) therapy in the dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Acute experimental colitis was induced in rats by 5% DSS and freely drink for seven days. Beginning on Day 8, rats underwent gavage once daily for seven days with heat-killed probiotic VSL#3 (0.6 g/kg/day), colonic damage was evaluated histologically and biochemically seven days after gavage. Expression of inflammatory related mediators (STAT3, P-STAT3) and cytokines (IL-6, IL-23, TGFβ) in colonic tissue were detected. The results revealed that heat-killed and live VSL#3 have identical anti-inflammatory properties by the assessed DAI (disease activity index), colon length, histological tissue and MPO activity. Heat-killed and live VSL#3 results in reduced IL-6, IL-23, TGFβ, STAT3 and P-STAT3 expression in colonic tissue. Heat-killed and live VSL#3 have showed the similar anti-inflammatory activity by inhibiting IL-6/STAT3 pathway in the DSS-induced acute experimental colitis in rats.
Collapse
|
76
|
Hibi T, Hisamatsu T. [110th Scientific Meeting of the Japanese Society of Internal Medicine: Invited lecture: 4. Recent progress of research and clinics in inflammatory bowel disease]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2195-2213. [PMID: 24228400 DOI: 10.2169/naika.102.2195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Toshifumi Hibi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Japan
| | | |
Collapse
|
77
|
Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, Yan J, Miller D, Zhang HG. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther 2013; 22:522-534. [PMID: 23939022 DOI: 10.1038/mt.2013.190] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/05/2013] [Indexed: 12/28/2022] Open
Abstract
The gut mucosal immune system is considered to play an important role in counteracting potential adverse effects of food-derived antigens including nanovesicles. Whether nanovesicles naturally released from edible fruit work in a coordinated manner with gut immune cells to maintain the gut in a noninflammatory status is not known. Here, as proof of concept, we demonstrate that grapefruit-derived nanovesicles (GDNs) are selectively taken up by intestinal macrophages and ameliorate dextran sulfate sodium (DSS)-induced mouse colitis. These effects were mediated by upregulating the expression of heme oxygenase-1 (HO-1) and inhibiting the production of IL-1β and TNF-α in intestinal macrophages. The inherent biocompatibility and biodegradability, stability at wide ranges of pH values, and targeting of intestinal macrophages led us to further develop a novel GDN-based oral delivery system. Incorporating methotrexate (MTX), an anti-inflammatory drug, into GDNs and delivering the MTX-GDNs to mice significantly lowered the MTX toxicity when compared with free MTX, and remarkably increased its therapeutic effects in DSS-induced mouse colitis. These findings demonstrate that GDNs can serve as immune modulators in the intestine, maintain intestinal macrophage homeostasis, and can be developed for oral delivery of small molecule drugs to attenuate inflammatory responses in human disease.
Collapse
Affiliation(s)
- Baomei Wang
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA.
| | - Xiaoying Zhuang
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Zhong-Bin Deng
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Hong Jiang
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Jingyao Mu
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Qilong Wang
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoyu Xiang
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Haixun Guo
- Department of Diagnostic Radiology, University of Louisville, Louisville, Kentucky, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Lifeng Zhang
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Gerald Dryden
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Donald Miller
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Huang-Ge Zhang
- James Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA; Department of Microbiology & Immunology, University of Louisville, Louisville, Kentucky, USA; Louisville Veterans Administration Medical Center, Louisville, Kentucky, USA.
| |
Collapse
|
78
|
Anderson P, Souza-Moreira L, Morell M, Caro M, O'Valle F, Gonzalez-Rey E, Delgado M. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 2013; 62:1131-41. [PMID: 22637701 DOI: 10.1136/gutjnl-2012-302152] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effect of adipose-derived mesenchymal stromal cells (ASCs) on the activation state of macrophages (MΦ) in vitro, and the potential therapeutic effect of these cells in experimental colitis and sepsis. DESIGN Murine bone marrow-derived macrophages were cultured with ASCs or with ASC conditioned media (ASC-MΦ) and characterised for the expression of several regulatory macrophage markers, including enzymes and cytokines, and for their immunomodulatory capacity in vitro. The therapeutic effect was investigated of ASC-MΦ in two models of experimental inflammatory colitis induced by trinitrobenzene sulphonic acid and dextran sodium sulphate, and in polymicrobial sepsis induced by caecal ligation and puncture. RESULTS ASC-MΦ showed a phenotype that clearly differed from the classically activated macrophages or the alternatively activated macrophages induced by interleukin (IL)-4, characterised by high arginase activity, increased production of IL-10 upon restimulation and potent immunosuppressive activity on T cells and macrophages. Activation of cyclo-oxygenase-2 on ASCs seems to be critically involved in inducing this phenotype. Systemic infusion of ASC-MΦ inhibited colitis in mice, reducing mortality and weight loss while lowering the colonic and systemic levels of inflammatory cytokines. Importantly, therapeutic injection of ASC-MΦ in established chronic colitis alleviated its progression and avoided disease recurrence. Moreover, ASC-MΦ protected from severe sepsis by reducing the infiltration of inflammatory cells into various organs and by downregulating the production of several inflammatory mediators, where ASC-MΦ-derived IL-10 played a critical role. CONCLUSION ASCs induce a distinct regulatory activation state of macrophages which possess potent immunomodulatory ability and therapeutic potential in inflammatory bowel diseases and sepsis.
Collapse
Affiliation(s)
- Per Anderson
- Instituto de Parasitologia y Biomedicina-CSIC, Avda. Conocimiento, PT Ciencias de la Salud, Granada 18100, Spain
| | | | | | | | | | | | | |
Collapse
|
79
|
Yoneno K, Hisamatsu T, Shimamura K, Kamada N, Ichikawa R, Kitazume MT, Mori M, Uo M, Namikawa Y, Matsuoka K, Sato T, Koganei K, Sugita A, Kanai T, Hibi T. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology 2013; 139:19-29. [PMID: 23566200 PMCID: PMC3634536 DOI: 10.1111/imm.12045] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) play important roles not only in lipid metabolism, but also in signal transduction. TGR5, a transmembrane receptor of BAs, is an immunomodulative factor, but its detailed mechanism remains unclear. Here, we aimed to delineate how BAs operate in immunological responses via the TGR5 pathway in human mononuclear cell lineages. We examined TGR5 expression in human peripheral blood monocytes, several types of in vitro differentiated macrophages (Mϕs) and dendritic cells. Mϕs differentiated with macrophage colony-stimulating factor and interferon-γ (Mγ-Mϕs), which are similar to the human intestinal lamina propria CD14+ Mϕs that contribute to Crohn's disease (CD) pathogenesis by production of pro-inflammatory cytokines, highly expressed TGR5 compared with any other type of differentiated Mϕ and dendritic cells. We also showed that a TGR5 agonist and two types of BAs, deoxycholic acid and lithocholic acid, could inhibit tumour necrosis factor-α production in Mγ-Mϕs stimulated by commensal bacterial antigen or lipopolysaccharide. This inhibitory effect was mediated by the TGR5–cAMP pathway to induce phosphorylation of c-Fos that regulated nuclear factor-κB p65 activation. Next, we analysed TGR5 levels in lamina propria mononuclear cells (LPMCs) obtained from the intestinal mucosa of patients with CD. Compared with non-inflammatory bowel disease, inflamed CD LPMCs contained more TGR5 transcripts. Among LPMCs, isolated CD14+ intestinal Mϕs from patients with CD expressed TGR5. In isolated intestinal CD14+ Mϕs, a TGR5 agonist could inhibit tumour necrosis factor-α production. These results indicate that TGR5 signalling may have the potential to modulate immune responses in inflammatory bowel disease.
Collapse
Affiliation(s)
- Kazuaki Yoneno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, Mikulski Z, Khorram N, Rosenthal P, Broide DH, Croft M. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. ACTA ACUST UNITED AC 2013; 210:775-88. [PMID: 23547101 PMCID: PMC3620360 DOI: 10.1084/jem.20121849] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3(+) iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3(+) Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma.
Collapse
Affiliation(s)
- Pejman Soroosh
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hisamatsu T, Kanai T, Mikami Y, Yoneno K, Matsuoka K, Hibi T. Immune aspects of the pathogenesis of inflammatory bowel disease. Pharmacol Ther 2013; 137:283-97. [PMID: 23103332 DOI: 10.1016/j.pharmthera.2012.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
Abstract
Although the precise etiologies of inflammatory bowel disease (IBD) (ulcerative colitis and Crohn's disease) remain obscure, several reports have indicated that dysfunction of the mucosal immune system plays an important role in its pathogenesis. Recent progress with genome-wide association studies has identified many IBD susceptibility genes. In individuals with genetic risk, abnormal interactions between the host immune system and gut flora, and dysregulation of cellular responses such as autophagy and ER stress, induce an abnormal host immune response in the gut resulting in intestinal inflammation. Research progress animal models in IBD, and in human IBD, has identified several key molecules in IBD pathogenesis such as TNFα and adhesion molecules, and molecular targeting therapies based on these molecules have been developed. Here, we review immunological aspects in IBD pathogenesis and the development of immunoregulatory therapy.
Collapse
Affiliation(s)
- Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
At mucosal surfaces, phagocytes such as macrophages coexist with microbial communities; highly controlled regulation of these interactions is essential for immune homeostasis. Pattern-recognition receptors (PRRs) are critical in recognizing and responding to microbial products, and they are subject to negative regulation through various mechanisms, including downregulation of PRR-activating components or induction of inhibitors. Insights into these regulatory mechanisms have been gained through human genetic disease-association studies, in vivo mouse studies utilizing disease models or targeted gene perturbations, and in vitro and ex vivo human cellular studies examining phagocytic cell functions. Although mouse models provide an important approach to study macrophage regulation, human and mouse macrophages exhibit differences, which must be considered when extrapolating mouse findings to human physiology. This review discusses inhibitory regulation of PRR-induced macrophage functions and the consequences of dysregulation of these functions and highlights mechanisms that have a role in intestinal macrophages and in human macrophage studies.
Collapse
Affiliation(s)
- M Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
84
|
Clinical use and mechanisms of infliximab treatment on inflammatory bowel disease: a recent update. BIOMED RESEARCH INTERNATIONAL 2013; 2013:581631. [PMID: 23484133 PMCID: PMC3581271 DOI: 10.1155/2013/581631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
The pathogenesis and treatment of inflammatory bowel disease (IBD) have been recently advanced, while it is still challenged with high morbidity and poor prognosis. Infliximab, a monoclonal antibody of tumor necrosis factor (TNF), has emerged as an efficient treatment with many clinical benefits such as quick disease activity reduction and IBD patient life quality improvement. However, the biological effects of infliximab on IBD need to be elucidated. This paper reviewed the clinical use and recently advanced biological action of infliximab on IBD. By forming the stable complex with the soluble or the membrane form of TNF in fluid environment or on cell surface of immune cell, fibroblast, endothelium, and epithelium, infliximab quenches TNF activity and performs the important biological actions which lead to amelioration and remission of immune responses. The mechanisms of infliximab treatment for IBD were intensively discussed. The recent advances on two topics including predictors and side effects of infliximab treatment were also reviewed.
Collapse
|
85
|
Abstract
OBJECTIVE The objective of the study was to study the relationship between autoimmune pancreatitis (AIP) and colitis in C57BL/6 interleukin 10-deficient (IL-10KO) mice and to compare the extrapancreatic involvement of AIP between IL-10KO and MRL/Mp mice that developed pancreatitis. METHODS Six-week-old female IL-10KO and MRL/Mp mice were injected intraperitoneally with polyinosinic polycytidylic acid (poly I:C) twice weekly for 8 or 12 weeks, respectively. The mice were killed, and the severity of inflammation in the pancreas, colon, liver, bile duct, and salivary gland was assessed using histological scoring systems. T-cell subsets derived from IL-10KO mice with pancreatitis were adoptively transferred into recombination activating gene 2-deficient mice. RESULTS Administration of poly I:C induced pancreatitis and accelerated the development of colitis in IL-10KO mice. Pancreatitis was characterized by specific destruction of exocrine glands and the production of various autoantibodies. Involvement of the liver and bile duct was observed in both IL-10KO and MRL/Mp mice, but sialadenitis was present only in MRL/Mp mice. Adoptive transfer of CD4(+) T cells from AIP mice induced pancreatitis in recipient mice. CONCLUSIONS Pancreatitis in IL-10KO mice resembles human type 1 AIP and is not associated with colitis. Genetic background may affect susceptibility to extrapancreatic involvement in type 1 AIP.
Collapse
|
86
|
Chios Mastic Fractions in Experimental Colitis: Implication of the Nuclear Factor κB Pathway in Cultured HT29 Cells. J Med Food 2012; 15:974-83. [DOI: 10.1089/jmf.2012.0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
87
|
Nishise S, Sato T, Sasaki Y, Nagino K, Iwano D, Yaoita T, Yoshizawa K, Nishise Y, Takeda H. Production of Interleukin-10 by Combining a Granulocyte and Monocyte Adsorption Carrier With Ulinastatin. Ther Apher Dial 2012; 16:449-55. [DOI: 10.1111/j.1744-9987.2012.01110.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Hermano E, Lerner I, Elkin M. Heparanase enzyme in chronic inflammatory bowel disease and colon cancer. Cell Mol Life Sci 2012; 69:2501-13. [PMID: 22331282 PMCID: PMC11114524 DOI: 10.1007/s00018-012-0930-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 12/20/2022]
Abstract
Heparanase is the sole mammalian endoglycosidase that cleaves heparan sulfate, the key polysaccharide of the extracellular matrix and basement membranes. Enzymatic cleavage of heparan sulfate profoundly affects a variety of physiological and pathological processes, including morphogenesis, neovascularization, inflammation, and tumorigenesis. Critical involvement of heparanase in colorectal tumor progression and metastatic spread is widely documented; however, until recently a role for heparanase in the initiation of colon carcinoma remained underappreciated. Interestingly, the emerging data that link heparanase to chronic inflammatory bowel conditions, also suggest contribution of the enzyme to colonic tumor initiation, at least in the setting of colitis-associated cancer. Highly coordinated interplay between intestinal heparanase and immune cells (i.e., macrophages) preserves chronic inflammatory conditions and creates a tumor-promoting microenvironment. Here we review the action of heparanase in colon tumorigenesis and discuss recent findings, pointing to a role for heparanase in sustaining immune cell-epithelial crosstalk that underlies intestinal inflammation and the associated cancer.
Collapse
Affiliation(s)
- Esther Hermano
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Immanuel Lerner
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Michael Elkin
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| |
Collapse
|
89
|
Kobayashi T, Matsuoka K, Sheikh SZ, Russo SM, Mishima Y, Collins C, deZoeten EF, Karp CL, Ting JPY, Sartor RB, Plevy SE. IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1792-9. [PMID: 22786766 DOI: 10.4049/jimmunol.1200042] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To prevent excessive inflammatory responses to commensal microbes, intestinal macrophages, unlike their systemic counterparts, do not produce inflammatory cytokines in response to enteric bacteria. Consequently, loss of macrophage tolerance to the enteric microbiota plays a central role in the pathogenesis of inflammatory bowel diseases. Therefore, we examined whether the hyporesponsive phenotype of intestinal macrophages is programmed by prior exposure to the microbiota. IL-10, but not in vivo exposure to the microbiota, programs intestinal macrophage tolerance, because wild-type (WT) colonic macrophages from germ-free and specific pathogen-free (SPF)-derived mice produce IL-10, but not IL-12 p40, when activated with enteric bacteria. Basal and activated IL-10 expression is mediated through a MyD88-dependent pathway. Conversely, colonic macrophages from germ-free and SPF-derived colitis-prone Il10(-/-) mice demonstrated robust production of IL-12 p40. Next, mechanisms through which IL-10 inhibits Il12b expression were investigated. Although Il12b mRNA was transiently induced in LPS-activated WT bone marrow-derived macrophages (BMDMs), expression persisted in Il10(-/-) BMDMs. There were no differences in nucleosome remodeling, mRNA stability, NF-κB activation, or MAPK signaling to explain prolonged transcription of Il12b in Il10(-/-) BMDMs. However, acetylated histone H4 transiently associated with the Il12b promoter in WT BMDMs, whereas association of these factors was prolonged in Il10(-/-) BMDMs. Experiments using histone deacetylase (HDAC) inhibitors and HDAC3 short hairpin RNA indicate that HDAC3 is involved in histone deacetylation of the Il12b promoter by IL-10. These results suggest that histone deacetylation on the Il12b promoter by HDAC3 mediates homeostatic effects of IL-10 in macrophages.
Collapse
Affiliation(s)
- Taku Kobayashi
- Department of Medicine, Center for Gastrointestinal Biology and Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Geem D, Medina-Contreras O, Kim W, Huang CS, Denning TL. Isolation and characterization of dendritic cells and macrophages from the mouse intestine. J Vis Exp 2012:e4040. [PMID: 22644046 DOI: 10.3791/4040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Within the intestine reside unique populations of innate and adaptive immune cells that are involved in promoting tolerance towards commensal flora and food antigens while concomitantly remaining poised to mount inflammatory responses toward invasive pathogens. Antigen presenting cells, particularly DCs and macrophages, play critical roles in maintaining intestinal immune homeostasis via their ability to sense and appropriately respond to the microbiota. Efficient isolation of intestinal DCs and macrophages is a critical step in characterizing the phenotype and function of these cells. While many effective methods of isolating intestinal immune cells, including DCs and macrophages, have been described, many rely upon long digestions times that may negatively influence cell surface antigen expression, cell viability, and/or cell yield. Here, we detail a methodology for the rapid isolation of large numbers of viable, intestinal DCs and macrophages. Phenotypic characterization of intestinal DCs and macrophages is carried out by directly staining isolated intestinal cells with specific fluorescence-labeled monoclonal antibodies for multi-color flow cytometric analysis. Furthermore, highly pure DC and macrophage populations are isolated for functional studies utilizing CD11c and CD11b magnetic-activated cell sorting beads followed by cell sorting.
Collapse
Affiliation(s)
- Duke Geem
- Department of Pediatrics, Emory University
| | | | | | | | | |
Collapse
|
91
|
Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, Núñez G. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012; 336:1325-9. [PMID: 22582016 DOI: 10.1126/science.1222195] [Citation(s) in RCA: 466] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The virulence mechanisms that allow pathogens to colonize the intestine remain unclear. Here, we show that germ-free animals are unable to eradicate Citrobacter rodentium, a model for human infections with attaching and effacing bacteria. Early in infection, virulence genes were expressed and required for pathogen growth in conventionally raised mice but not germ-free mice. Virulence gene expression was down-regulated during the late phase of infection, which led to relocation of the pathogen to the intestinal lumen where it was outcompeted by commensals. The ability of commensals to outcompete C. rodentium was determined, at least in part, by the capacity of the pathogen and commensals to grow on structurally similar carbohydrates. Thus, pathogen colonization is controlled by bacterial virulence and through competition with metabolically related commensals.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Chandhoke SK, Mooseker MS. A role for myosin IXb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol Biol Cell 2012; 23:2468-80. [PMID: 22573889 PMCID: PMC3386211 DOI: 10.1091/mbc.e11-09-0803] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myo9b is a motor–RhoGAP chimera that has been implicated in inflammatory bowel disease. Findings suggest that Myo9b is essential during both collective and individual wound-induced cell migration. It is also important for maintaining tight junction barrier integrity. Polymorphisms in the gene encoding the heavy chain of myosin IXb (Myo9b) have been linked to several forms of inflammatory bowel disease (IBD). Given that Myo9b contains a RhoGTPase-activating protein domain within its tail, it may play key roles in Rho-mediated actin cytoskeletal modifications critical to intestinal barrier function. In wounded monolayers of the intestinal epithelial cell line Caco2BBe (BBe), Myo9b localizes to the extreme leading edge of lamellipodia of migrating cells. BBe cells exhibiting loss of Myo9b expression with RNA interference or Myo9b C-terminal dominant-negative (DN) tail-tip expression lack lamellipodia, fail to migrate into the wound, and form stress fiber–like arrays of actin at the free edges of cells facing the wound. These cells also exhibit disruption of tight junction (TJ) protein localization, including ZO-1, occludin, and claudin-1. Torsional motility and junctional permeability to dextran are greatly increased in cells expressing DN-tail-tip. Of interest, this effect is propagated to neighboring cells. Consistent with a role for Myo9b in regulating levels of active Rho, localization of both RhoGTP and myosin light chain phosphorylation corresponds to Myo9b-knockdown regions of BBe monolayers. These data reveal critical roles for Myo9b during epithelial wound healing and maintenance of TJ integrity—key functions that may be altered in patients with Myo9b-linked IBD.
Collapse
Affiliation(s)
- Surjit K Chandhoke
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
93
|
Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, Chang MW, Beckman SK, Cook AD, Hamilton JA. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. THE JOURNAL OF IMMUNOLOGY 2012; 188:5752-65. [PMID: 22547697 DOI: 10.4049/jimmunol.1103426] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
GM-CSF and M-CSF (CSF-1) induce different phenotypic changes in macrophage lineage populations. The nature, extent, and generality of these differences were assessed by comparing the responses to these CSFs, either alone or in combination, in various human and murine macrophage lineage populations. The differences between the respective global gene expression profiles of macrophages, derived from human monocytes by GM-CSF or M-CSF, were compared with the differences between the respective profiles for macrophages, derived from murine bone marrow cells by each CSF. Only 17% of genes regulated differently by these CSFs were common across the species. Whether a particular change in relative gene expression is by direct action of a CSF can be confounded by endogenous mediators, such as type I IFN, IL-10, and activin A. Time-dependent differences in cytokine gene expression were noted in human monocytes treated with the CSFs; in this system, GM-CSF induced a more dramatic expression of IFN-regulated factor 4 (IRF4) than of IRF5, whereas M-CSF induced IRF5 but not IRF4. In the presence of both CSFs, some evidence of "competition" at the level of gene expression was observed. Care needs to be exercised when drawing definitive conclusions from a particular in vitro system about the roles of GM-CSF and M-CSF in macrophage lineage biology.
Collapse
Affiliation(s)
- Derek C Lacey
- Department of Medicine, Arthritis and Inflammation Research Centre, University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Vos ACW, Wildenberg ME, Arijs I, Duijvestein M, Verhaar AP, de Hertogh G, Vermeire S, Rutgeerts P, van den Brink GR, Hommes DW. Regulatory macrophages induced by infliximab are involved in healing in vivo and in vitro. Inflamm Bowel Dis 2012; 18:401-8. [PMID: 21936028 DOI: 10.1002/ibd.21818] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/08/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Regulatory macrophages play an important role in wound healing and gut homeostasis and have antiinflammatory properties. Induction of this cell type (Mψ(ind) ) by the anti-tumor necrosis factor (TNF) antibodies, infliximab and adalimumab, has recently been shown in vitro. Also, the superiority of infliximab/azathioprine combination therapy over infliximab or azathioprine monotherapy has recently been established, but the mechanism behind this remains unclear. The aim of this study was to examine the induction of regulatory macrophages in patients with and without mucosal healing in response to infliximab. In addition, we studied the effect of infliximab/azathioprine combination treatment on the differentiation and function of regulatory macrophages. METHODS Inflammatory bowel disease (IBD) patients (n = 10) underwent endoscopy before and after first infliximab treatment. Immunohistochemical staining of CD68 and CD206 was performed in all patients. Mixed lymphocyte reactions (MLRs) were treated with infliximab, azathioprine, or both. Macrophage phenotype was evaluated by flow cytometry and inhibition of T-cell proliferation was measured in a secondary MLR containing macrophages and third-party lymphocytes. RESULTS A significant induction of regulatory macrophages was observed in patients with mucosal healing after treatment with infliximab; this induction was absent in patients without mucosal healing. In addition, Mψ(ind) have the ability to induce wound healing in an in vitro model, further suggesting a key role for infliximab-induced macrophages in mucosal healing. Upon infliximab/azathioprine combination treatment, an increased number of regulatory macrophages was observed. These macrophages also displayed stronger immunosuppressive properties than macrophages induced by infliximab monotherapy. CONCLUSIONS These data show that regulatory macrophages may be involved in mucosal healing and provide a rationale for the superiority of infliximab/azathioprine combination treatment observed in the clinic.
Collapse
Affiliation(s)
- Anne Christine W Vos
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
TGF-β1-dependent L1CAM expression has an essential role in macrophage-induced apoptosis resistance and cell migration of human intestinal epithelial cells. Oncogene 2012; 32:180-9. [DOI: 10.1038/onc.2012.44] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Yu LCH, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol 2012; 3:27-43. [PMID: 22368784 PMCID: PMC3284523 DOI: 10.4291/wjgp.v3.i1.27] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status.
Collapse
|
97
|
Shaw MH, Kamada N, Kim YG, Núñez G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med 2012; 209:251-8. [PMID: 22291094 PMCID: PMC3280878 DOI: 10.1084/jem.20111703] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/04/2012] [Indexed: 12/17/2022] Open
Abstract
T(H)17 cells are a lineage of CD4(+) T cells that are critical for host defense and autoimmunity by expressing the cytokines IL-17A, IL-17F, and IL-22. A feature of T(H)17 cells at steady state is their ubiquitous presence in the lamina propria of the small intestine. The induction of these steady-state intestinal T(H)17 (sT(H)17) cells is dependent on the presence of the microbiota. However, the signaling pathway linking the microbiota to the development of intestinal sT(H)17 cells remains unclear. In this study, we show that IL-1β, but not IL-6, is induced by the presence of the microbiota in intestinal macrophages and is required for the induction of sT(H)17 cells. In the absence of IL-1β-IL-1R or MyD88 signaling, there is a selective reduction in the frequency of intestinal sT(H)17 cells and impaired production of IL-17 and IL-22. Myeloid differentiation factor 88-deficient (MyD88(-/-)) and germ-free (GF) mice, but not IL-1R(-/-) mice, exhibit impairment in IL-1β induction. Microbiota-induced IL-1β acts directly on IL-1R-expressing T cells to drive the generation of sT(H)17 cells. Furthermore, administration of IL-1β into GF mice induces the development of retinoic acid receptor-related orphan receptor γt-expressing sT(H)17 cells in the small intestine, but not in the spleen. Thus, commensal-induced IL-1β production is a critical step for sT(H)17 differentiation in the intestine, which may have therapeutic implications for T(H)17-mediated pathologies.
Collapse
Affiliation(s)
- Michael H Shaw
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
98
|
Khan MW, Kale AA, Bere P, Vajjala S, Gounaris E, Pakanati KC. Microbes, intestinal inflammation and probiotics. Expert Rev Gastroenterol Hepatol 2012; 6:81-94. [PMID: 22149584 DOI: 10.1586/egh.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is known for causing disturbed homeostatic balance among the intestinal immune compartment, epithelium and microbiota. Owing to the emergence of IBD as a major cause of morbidity and mortality, great efforts have been put into understanding the sequence of intestinal inflammatory events. Intestinal macrophages and dendritic cells act in a synergistic fashion with intestinal epithelial cells and microbiota to initiate the triad that governs the intestinal immune responses (whether inflammatory or regulatory). In this review, we will discuss the interplay of intestinal epithelial cells, bacteria and the innate immune component. Moreover, whether or not genetic intervention of probiotic bacteria is a valid approach for attenuating/mitigating exaggerated inflammation and IBD will also be discussed.
Collapse
Affiliation(s)
- Mohammad W Khan
- The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, Parkos CA, Denning TL. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 2012; 121:4787-95. [PMID: 22045567 DOI: 10.1172/jci59150] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/21/2011] [Indexed: 12/17/2022] Open
Abstract
The two most common forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis, affect approximately 1 million people in the United States. Uncontrolled APC reactivity toward commensal bacteria is implicated in the pathogenesis of the disease. A number of functionally distinct APC populations exist in the mucosal lamina propria (LP) below the intestinal epithelium, but their relative contributions to inflammation remain unclear. Here, we demonstrate in mice important roles for the chemokine receptor CX3CR1 in maintaining LP macrophage populations, preventing translocation of commensal bacteria to mesenteric lymph nodes (mLNs), and limiting colitogenic Th17 responses. CX3CR1 was found to be expressed in resident LP macrophages (defined as CD11b(+)F4/80(+)) but not DCs (defined as CD11c(+)CD103(+)). LP macrophage frequency and number were decreased in two strains of CX3CR1-knockout mice and in mice deficient in the CX3CR1 ligand CX3CL1. All these knockout strains displayed markedly increased translocation of commensal bacteria to mLNs. Additionally, the severity of DSS-induced colitis was dramatically enhanced in the knockout mice as compared with controls. Disease severity could be limited by either administration of neutralizing IL-17A antibodies or transfer of CX3CR1-sufficient macrophages. Our data thus suggest key roles for the CX3CR1/CX3CL1 axis in the intestinal mucosa; further clarification of CX3CR1 function will likely direct efforts toward therapeutic intervention for mucosal inflammatory disorders such as IBD.
Collapse
|
100
|
Oral ingestion of Capsaicin, the pungent component of chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes. Mucosal Immunol 2012; 5:76-86. [PMID: 22113584 DOI: 10.1038/mi.2011.50] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vanilloid receptor 1 (VR1) is expressed on immune cells as well as on sensory neurons. Here we report that VR1 can regulate immunological events in the gut in response to its ligand Capsaicin (CP), a nutritional factor, the pungent component of chili peppers. Oral administration of CP attenuates the proliferation and activation of autoreactive T cells in pancreatic lymph nodes (PLNs) but not other lymph nodes, and protects mice from development of type 1 diabetes (T1D). This is a general phenomenon and not restricted to one particular strain of mice. Engagement of VR1 enhances a discreet population of CD11b(+)/F4/80(+) macrophages in PLN, which express anti-inflammatory factors interleukin (IL)-10 and PD-L1. This population is essential for CP-mediated attenuation of T-cell proliferation in an IL-10-dependent manner. Lack of VR1 expression fails to inhibit proliferation of autoreactive T cells, which is partially reversed in (VR1(+/+) → VR1(-/-)) bone marrow chimeric mice, implying the role of VR1 in crosstalk between neuronal and immunological responses in vivo. These findings imply that endogenous ligands of VR1 can have profound effect on gut-mediated immune tolerance and autoimmunity by influencing the nutrient-immune interactions.
Collapse
|