51
|
Kloverpris HN, Karlsson I, Thorn M, Buus S, Fomsgaard A. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice. APMIS 2009; 117:849-55. [PMID: 19845536 PMCID: PMC2774155 DOI: 10.1111/j.1600-0463.2009.02544.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA-A*0201 binding CTL epitopes. The seven peptides were simultaneously presented on the same dendritic cell (DC) or on separate DCs before immunization to one or different lymphoid compartments. Data from this study showed that the T-cell response, as measured by cytolytic activity and γ-interferon (IFN-γ)-producing CD8+ T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode of loading or mode of immunization. These findings may have implications for the design of vaccines based on DCs when using multiple epitopes simultaneously.
Collapse
|
52
|
Walker LJ, Sewell AK, Klenerman P. T cell sensitivity and the outcome of viral infection. Clin Exp Immunol 2009; 159:245-55. [PMID: 19968665 DOI: 10.1111/j.1365-2249.2009.04047.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The importance of CD8(+) T cells in the control of viral infections is well established. However, what differentiates CD8(+) T cell responses in individuals who control infection and those who do not is not well understood. 'Functional sensitivity' describes an important quality of the T cell response and is determined in part by the affinity of the T cell receptor for antigen. A more sensitive T cell response is generally believed to be more efficient and associated with better control of viral infection, yet may also drive viral mutation and immune escape. Various in vitro techniques have been used to measure T cell sensitivity; however, rapid ex vivo analysis of this has been made possible by the application of the 'magic' tetramer technology. Such tools have potentially important applications in the design and evaluation of vaccines.
Collapse
Affiliation(s)
- L J Walker
- Nuffield Department of Medicine and NIHR Biomedical Research Centre Programme, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
53
|
Clade-specific evolution mediated by HLA-B*57/5801 in human immunodeficiency virus type 1 clade A1 p24. J Virol 2009; 83:12636-42. [PMID: 19759140 DOI: 10.1128/jvi.01236-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
HLA-B*57-mediated selection pressure leads to a typical escape pathway in human immunodeficiency virus type 1 (HIV-1) CD8 epitopes such as TW10. Whether this T242N pathway is shared by all clades remains unknown. We therefore assessed the nature of HLA-B*57 selection in a large, observational Kenyan cohort where clades A1 and D predominate. While T242N was ubiquitous in clade D HLA-B*57(+) subjects, this mutation was rare (15%) in clade A1. Instead, P243T and I247L were selected by clade A1-infected HLA-B*57 subjects but not by HLA-B*5801(+) subjects. Our data suggest that clade A1 consensus proline at Gag residue 243 might represent an inherent block to T242N escape in clade A1. We confirmed immunologically that P243T and I247L likely represent escape mutations. HLA-B*57 evolution also differed between clades in the KF11 and IW9 epitopes. A better understanding of clade-specific evolution is important for the development of HIV vaccines in regions with multiple clades.
Collapse
|
54
|
Geldmacher C, Metzler IS, Tovanabutra S, Asher TE, Gostick E, Ambrozak DR, Petrovas C, Schuetz A, Ngwenyama N, Kijak G, Maboko L, Hoelscher M, McCutchan F, Price DA, Douek DC, Koup RA. Minor viral and host genetic polymorphisms can dramatically impact the biologic outcome of an epitope-specific CD8 T-cell response. Blood 2009; 114:1553-62. [PMID: 19542300 PMCID: PMC2731637 DOI: 10.1182/blood-2009-02-206193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/31/2009] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus-1 subtypes A and C differ in the highly conserved Gag-TL9 epitope at a single amino acid position. Similarly, the TL9 presenting human leukocyte antigen (HLA) class I molecules B42 and B81 differ only at 6 amino acid positions. Here, we addressed the influence of such minor viral and host genetic variation on the TL9-specific CD8 T-cell response. The clonotypic characteristics of CD8 T-cell populations elicited by subtype A or subtype C were distinct, and these responses differed substantially with respect to the recognition and selection of TL9 variants. Irrespective of the presenting HLA class I molecule, CD8 T-cell responses elicited by subtype C exhibited largely comparable TL9 variant cross-recognition properties, expressed T-cell receptors that used almost exclusively the TRBV 12-3 gene, and selected for predictable patterns of viral variation within TL9. In contrast, subtype A elicited TL9-specific CD8 T-cell populations with completely different, more diverse TCRBV genes and did not select for viral variants. Moreover, TL9 variant cross-recognition properties were extensive in B81(+) subjects but limited in B42(+) subjects. Thus, minor viral and host genetic polymorphisms can dramatically alter the immunologic and virologic outcome of an epitope-specific CD8 T-cell response.
Collapse
Affiliation(s)
- Christof Geldmacher
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Payne RP, Matthews PC, Prado JG, Goulder PJR. HLA-mediated control of HIV and HIV adaptation to HLA. ADVANCES IN PARASITOLOGY 2009; 68:1-20. [PMID: 19289188 DOI: 10.1016/s0065-308x(08)00601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus (HIV) epidemic provides a rare opportunity to examine in detail the initial stages of a host-pathogen co-evolutionary struggle in humans. The genes encoding the human leukocyte antigen (HLA) class I molecules have a critical influence in the success or failure of the immune response against HIV. The particular HLA class I molecules expressed by each individual defines the type of cytotoxic T-lymphocyte (CTL) response that is made against the virus. This chapter describes the role of HLA class I and the CTL response in controlling HIV replication, and discusses the extent to which HIV has already adapted to those HLA class I molecules and CTL responses that are most effective in viral suppression. It is evident that viral mutations that enable HIV to evade the CTL response are indeed already accumulating in populations where the selecting HLA molecules are highly prevalent, indicating the dynamic and shifting nature of the evolutionary interplay between HIV and human populations.
Collapse
Affiliation(s)
- Rebecca P Payne
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | | | | | | |
Collapse
|
56
|
Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 2009; 19:1817-24. [PMID: 19541912 DOI: 10.1101/gr.092924.109] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
T-cell receptor (TCR) genomic loci undergo somatic V(D)J recombination, plus the addition/subtraction of nontemplated bases at recombination junctions, in order to generate the repertoire of structurally diverse T cells necessary for antigen recognition. TCR beta subunits can be unambiguously identified by their hypervariable CDR3 (Complement Determining Region 3) sequence. This is the site of V(D)J recombination encoding the principal site of antigen contact. The complexity and dynamics of the T-cell repertoire remain unknown because the potential repertoire size has made conventional sequence analysis intractable. Here, we use 5'-RACE, Illumina sequencing, and a novel short read assembly strategy to sample CDR3(beta) diversity in human T lymphocytes from peripheral blood. Assembly of 40.5 million short reads identified 33,664 distinct TCR(beta) clonotypes and provides precise measurements of CDR3(beta) length diversity, usage of nontemplated bases, sequence convergence, and preferences for TRBV (T-cell receptor beta variable gene) and TRBJ (T-cell receptor beta joining gene) gene usage and pairing. CDR3 length between conserved residues of TRBV and TRBJ ranged from 21 to 81 nucleotides (nt). TRBV gene usage ranged from 0.01% for TRBV17 to 24.6% for TRBV20-1. TRBJ gene usage ranged from 1.6% for TRBJ2-6 to 17.2% for TRBJ2-1. We identified 1573 examples of convergence where the same amino acid translation was specified by distinct CDR3(beta) nucleotide sequences. Direct sequence-based immunoprofiling will likely prove to be a useful tool for understanding repertoire dynamics in response to immune challenge, without a priori knowledge of antigen.
Collapse
Affiliation(s)
- J Douglas Freeman
- Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
57
|
Christie NM, Willer DO, Lobritz MA, Chan JK, Arts EJ, Ostrowski MA, Cochrane A, Luscher MA, MacDonald KS. Viral fitness implications of variation within an immunodominant CD8+ T-cell epitope of HIV-1. Virology 2009; 388:137-46. [PMID: 19368950 DOI: 10.1016/j.virol.2009.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/28/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022]
Abstract
Cytotoxic T-lymphocyte (CTL) epitopes within the HIV genome are subject to negative and positive selective pressures, the balance of which influences CTL escape at a given epitope. We investigated whether viral fitness requirements dictate conservation of the HLA-A2 restricted immunodominant epitope SLYNTVATL (SL9). Viral clones incorporating changes throughout the SL9 epitope region were compared to consensus SL9 virus in terms of replication kinetics and relative viral fitness. Constructs recapitulating in vivo SL9-CTL escape variants showed markedly little effect on replication and fitness, as did non-natural conservative mutations targeting immunologically relevant positions of the epitope. Although certain residues of the epitope were constrained by viral requirements, our research reveals that there are multiple SL9 variants that are well tolerated virologically but fail to arise in vivo. In light of this data, assumptions regarding the balance of immune and viral selective pressures on this immunodominant epitope sequence need to be reassessed.
Collapse
Affiliation(s)
- N M Christie
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol 2008; 83:2715-27. [PMID: 19116249 DOI: 10.1128/jvi.01960-08] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on human immunodeficiency virus type 1 (HIV-1) diversity are critical for understanding viral pathogenesis and the emergence of immune escape variants and for design of vaccine strategies. To investigate HIV-1 population genetics, we used single-genome sequencing to obtain pro-pol and env sequences from longitudinal samples (n = 93) from 14 acutely or recently infected patients. The first available sample after infection for 12/14 patients revealed HIV-1 populations with low genetic diversity, consistent with transmission or outgrowth of a single variant. In contrast, two patients showed high diversity and coexistence of distinct virus populations in samples collected days after a nonreactive enzyme-linked immunosorbent assay or indeterminate Western blot, consistent with transmission or outgrowth of multiple variants. Comparison of PR and RT sequences from the first sample for all patients with the consensus subgroup B sequence revealed that nearly all nonsynonymous differences were confined to identified cytotoxic T-lymphocyte (CTL) epitopes. For HLA-typed patients, mutations compared to the consensus in transmitted variants were found in epitopes that would not be recognized by the patient's major histocompatibility complex type. Reversion of transmitted mutations was rarely seen over the study interval (up to 5 years). These data indicate that acute subtype B HIV-1 infection usually results from transmission or outgrowth of single viral variants carrying mutations in CTL epitopes that were selected prior to transmission either in the donor or in a previous donor and that reversion of these mutations can be very slow. These results have important implications for vaccine strategies because they imply that some HLA alleles could be compromised in newly acquired HIV infections.
Collapse
|
59
|
Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood 2008; 113:3978-89. [PMID: 19109229 DOI: 10.1182/blood-2008-10-182709] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There exists a unique group of persons who are able to durably control HIV in the absence of therapy. The mechanisms of control in these persons remain poorly defined. In this study, we examined CD8(+) T-cell responses in blood and rectal mucosa from 17 "elite controllers" (viral load < 75 copies/mL), 11 "viremic controllers" (75-2000 copies/mL), 14 noncontrollers (> 10,000 copies/mL), and 10 antiretroviral-treated persons (< 75 copies/mL). Production of interferon-gamma, interleukin-2, tumor necrosis factor-alpha, macrophage inflammatory protein-1 beta, and CD107a by CD8(+) T cells in response to HIV-1 Gag stimulation was measured using flow cytometry. Our hypothesis was that "polyfunctional" T cells producing multiple antiviral factors would be most abundant in mucosal tissues of HIV controllers. Mucosal CD8(+) T-cell responses were significantly stronger and more complex in controllers than in antiretroviral-suppressed persons (P = .0004). The frequency of 4-function responses in rectal mucosa was higher in controllers than in noncontrollers and patients on therapy (P < .0001). Mucosal responses in controllers were frequently stronger and more complex than blood responses. These findings demonstrate that many controllers mount strong, complex HIV-specific T-cell responses in rectal mucosa. These responses may play an important role in mucosal immune surveillance, as suggested by their relative enrichment among persons who control HIV in the absence of therapy.
Collapse
|
60
|
Butler NS, Theodossis A, Webb AI, Nastovska R, Ramarathinam SH, Dunstone MA, Rossjohn J, Purcell AW, Perlman S. Prevention of cytotoxic T cell escape using a heteroclitic subdominant viral T cell determinant. PLoS Pathog 2008; 4:e1000186. [PMID: 18949029 PMCID: PMC2563037 DOI: 10.1371/journal.ppat.1000186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/24/2008] [Indexed: 01/07/2023] Open
Abstract
High affinity antigen-specific T cells play a critical role during protective immune responses. Epitope enhancement can elicit more potent T cell responses and can subsequently lead to a stronger memory pool; however, the molecular basis of such enhancement is unclear. We used the consensus peptide-binding motif for the Major Histocompatibility Complex molecule H-2K(b) to design a heteroclitic version of the mouse hepatitis virus-specific subdominant S598 determinant. We demonstrate that a single amino acid substitution at a secondary anchor residue (Q to Y at position 3) increased the stability of the engineered determinant in complex with H-2K(b). The structural basis for this enhanced stability was associated with local alterations in the pMHC conformation as a result of the Q to Y substitution. Recombinant viruses encoding this engineered determinant primed CTL responses that also reacted to the wildtype epitope with significantly higher functional avidity, and protected against selection of virus mutated at a second CTL determinant and consequent disease progression in persistently infected mice. Collectively, our findings provide a basis for the enhanced immunogenicity of an engineered determinant that will serve as a template for guiding the development of heteroclitic T cell determinants with applications in prevention of CTL escape in chronic viral infections as well as in tumor immunity.
Collapse
Affiliation(s)
- Noah S. Butler
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Alex Theodossis
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrew I. Webb
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Roza Nastovska
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sri Harsha Ramarathinam
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle A. Dunstone
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AWP); (SP)
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (AWP); (SP)
| |
Collapse
|
61
|
Host ethnicity and virus genotype shape the hepatitis B virus-specific T-cell repertoire. J Virol 2008; 82:10986-97. [PMID: 18799575 DOI: 10.1128/jvi.01124-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repertoire composition, quantity, and qualitative functional ability are the parameters that define virus-specific T-cell responses and are linked with their potential to control infection. We took advantage of the segregation of different hepatitis B virus (HBV) genotypes in geographically and genetically distinct host populations to directly analyze the impact that host and virus variables exert on these virus-specific T-cell parameters. T-cell responses against the entire HBV proteome were analyzed in a total of 109 HBV-infected subjects of distinct ethnicities (47 of Chinese origin and 62 of Caucasian origin). We demonstrate that HBV-specific T-cell quantity is determined by the virological and clinical profiles of the patients, which outweigh any influence of race or viral diversity. In contrast, HBV-specific T-cell repertoires are divergent in the two ethnic groups, with T-cell epitopes frequently found in Caucasian patients seldom detected in Chinese patients. In conclusion, we provide a direct biological evaluation of the impact that host and virus variables exert on virus-specific T-cell responses. The discordance between HBV-specific CD8 T-cell repertoires present in Caucasian and Chinese subjects shows the ability of HLA micropolymorphisms to diversify T-cell responses and has implications for the rational development of therapeutic and prophylactic vaccines for worldwide use.
Collapse
|
62
|
Goulder PJR, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol 2008; 8:619-30. [PMID: 18617886 PMCID: PMC2963026 DOI: 10.1038/nri2357] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recent failure of the T-cell-based HIV vaccine trial led by Merck & Co., Inc. prompts the urgent need to refocus on the question of which T-cell responses are required to control HIV replication. The well-described association between the expression of particular MHC class I molecules and successful containment of HIV or, in the macaque model, SIV replication provide a valuable starting point from which to evaluate more precisely what might constitute effective CD8(+) T-cell responses. Here, we review recent studies of T-cell-mediated control of HIV and SIV infection, and offer insight for the design of a successful T-cell-based HIV vaccine in the future.
Collapse
Affiliation(s)
- Philip J R Goulder
- Department of Paediatrics, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK.
| | | |
Collapse
|
63
|
Tan AT, Koh S, Goh V, Bertoletti A. Understanding the immunopathogenesis of chronic hepatitis B virus: an Asian prospective. J Gastroenterol Hepatol 2008; 23:833-43. [PMID: 18565018 DOI: 10.1111/j.1440-1746.2008.05385.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study of hepatitis B virus (HBV) immunity has been mainly focused on understanding the differences between subjects who are able to control HBV infection and patients with persistent infection. These studies have been instrumental in increasing our knowledge on the pathogenesis of the disease caused by HBV. However, it is possible that heterogeneity of host and virus factors which segregate in ethnically distinct HBV infected populations might modify important aspects of the immune response against HBV. In this review, we reexamine the kinetics and the pattern of HBV-specific immunity associated with control or persistence of infection. We then discuss how the epidemiological, genetic and viral characteristics peculiar to Asian patients can impact the profile of HBV-specific immunity.
Collapse
Affiliation(s)
- Anthony Tanoto Tan
- Viral Hepatitis Unit, Singapore Institute for Clinical Science, A*STAR, Singapore
| | | | | | | |
Collapse
|
64
|
Goepfert PA, Lumm W, Farmer P, Matthews P, Prendergast A, Carlson JM, Derdeyn CA, Tang J, Kaslow RA, Bansal A, Yusim K, Heckerman D, Mulenga J, Allen S, Goulder PJR, Hunter E. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. ACTA ACUST UNITED AC 2008; 205:1009-17. [PMID: 18426987 PMCID: PMC2373834 DOI: 10.1084/jem.20072457] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a study of 114 epidemiologically linked Zambian transmission pairs, we evaluated the impact of human leukocyte antigen class I (HLA-I)–associated amino acid polymorphisms, presumed to reflect cytotoxic T lymphocyte (CTL) escape in Gag and Nef of the virus transmitted from the chronically infected donor, on the plasma viral load (VL) in matched recipients 6 mo after infection. CTL escape mutations in Gag and Nef were seen in the donors, which were subsequently transmitted to recipients, largely unchanged soon after infection. We observed a significant correlation between the number of Gag escape mutations targeted by specific HLA-B allele–restricted CTLs and reduced VLs in the recipients. This negative correlation was most evident in newly infected individuals, whose HLA alleles were unable to effectively target Gag and select for CTL escape mutations in this gene. Nef mutations in the donor had no impact on VL in the recipient. Thus, broad Gag-specific CTL responses capable of driving virus escape in the donor may be of clinical benefit to both the donor and recipient. In addition to their direct implications for HIV-1 vaccine design, these data suggest that CTL-induced viral polymorphisms and their associated in vivo viral fitness costs could have a significant impact on HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Daucher M, Price DA, Brenchley JM, Lamoreaux L, Metcalf JA, Rehm C, Nies-Kraske E, Urban E, Yoder C, Rock D, Gumkowski J, Betts MR, Dybul MR, Douek DC. Virological outcome after structured interruption of antiretroviral therapy for human immunodeficiency virus infection is associated with the functional profile of virus-specific CD8+ T cells. J Virol 2008; 82:4102-14. [PMID: 18234797 PMCID: PMC2292997 DOI: 10.1128/jvi.02212-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 01/19/2008] [Indexed: 12/11/2022] Open
Abstract
A clear understanding of the antiviral effects of CD8(+) T cells in the context of chronic human immunodeficiency virus (HIV) infection is critical for the development of prophylactic vaccines and therapeutics designed to support T-cell-mediated immunity. However, defining the potential correlates of effective CD8(+) T-cell immunity has proven difficult; notably, comprehensive analyses have demonstrated that the size and shape of the CD8(+) T-cell response are not necessarily indicative of efficacy determined by measures of plasma viral load. Here, we conducted a detailed quantitative and qualitative analysis of CD8(+) T-cell responses to autologous virus in a cohort of six HIV-infected individuals with a history of structured interruption of antiretroviral therapy (ART) (SIT). The magnitude and breadth of the HIV-specific response did not, by themselves, explain the changes observed in plasma virus levels after the cessation of ART. Furthermore, mutational escape from targeted epitopes could not account for the differential virological outcomes in this cohort. However, the functionality of HIV-specific CD8(+) T-cell populations upon antigen encounter, determined by the simultaneous and independent measurement of five CD8(+) T-cell functions (degranulation and gamma interferon, macrophage inflammatory protein 1beta, tumor necrosis factor alpha, and interleukin-2 levels) reflected the emergent level of plasma virus, with multiple functions being elicited in those individuals with lower levels of viremia after SIT. These data show that the quality of the HIV-specific CD8(+) T-cell response, rather than the quantity, is associated with the dynamics of viral replication in the absence of ART and suggest that the effects of SIT can be assessed by measuring the functional profile of HIV-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Marybeth Daucher
- National Institute of Allergy and Infectious Diseases, Bldg. 10/Rm. 11B13, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol 2008; 9:1. [PMID: 18211710 PMCID: PMC2245908 DOI: 10.1186/1471-2172-9-1] [Citation(s) in RCA: 514] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 01/22/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Class I major histocompatibility complex (MHC) molecules bind, and present to T cells, short peptides derived from intracellular processing of proteins. The peptide repertoire of a specific molecule is to a large extent determined by the molecular structure accommodating so-called main anchor positions of the presented peptide. These receptors are extremely polymorphic, and much of the polymorphism influences the peptide-binding repertoire. However, despite this polymorphism, class I molecules can be clustered into sets of molecules that bind largely overlapping peptide repertoires. Almost a decade ago we introduced this concept of clustering human leukocyte antigen (HLA) alleles and defined nine different groups, denominated as supertypes, on the basis of their main anchor specificity. The utility of this original supertype classification, as well several other subsequent arrangements derived by others, has been demonstrated in a large number of epitope identification studies. RESULTS Following our original approach, in the present report we provide an updated classification of HLA-A and -B class I alleles into supertypes. The present analysis incorporates the large amount of class I MHC binding data and sequence information that has become available in the last decade. As a result, over 80% of the 945 different HLA-A and -B alleles examined to date can be assigned to one of the original nine supertypes. A few alleles are expected to be associated with repertoires that overlap multiple supertypes. Interestingly, the current analysis did not identify any additional supertype specificities. CONCLUSION As a result of this updated analysis, HLA supertype associations have been defined for over 750 different HLA-A and -B alleles. This information is expected to facilitate epitope identification and vaccine design studies, as well as investigations into disease association and correlates of immunity. In addition, the approach utilized has been made more transparent, allowing others to utilize the classification approach going forward.
Collapse
Affiliation(s)
- John Sidney
- Division of Vaccine Discovery, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
67
|
Rolland M, Heckerman D, Deng W, Rousseau CM, Coovadia H, Bishop K, Goulder PJR, Walker BD, Brander C, Mullins JI. Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PLoS One 2008; 3:e1424. [PMID: 18183304 PMCID: PMC2170517 DOI: 10.1371/journal.pone.0001424] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/12/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND HLA class-I alleles differ in their ability to control HIV replication through cell-mediated immune responses. No consistent associations have been found between the breadth of Cytotoxic T Lymphocytes (CTL) responses and the control of HIV-1, and it is unknown whether the size or distribution of the viral proteome-wide epitope repertoire, i.e., the intrinsic ability to present fewer, more or specific viral epitopes, could affect clinical markers of disease progression. METHODOLOGY/PRINCIPAL FINDINGS We used an epitope prediction model to identify all epitope motifs in a set of 302 HIV-1 full-length proteomes according to each individual's HLA (Human Leukocyte Antigen) genotype. The epitope repertoire, i.e., the number of predicted epitopes per HIV-1 proteome, varied considerably between HLA alleles and thus among individual proteomes. In a subgroup of 270 chronically infected individuals, we found that lower viral loads and higher CD4 counts were associated with a larger predicted epitope repertoire. Additionally, in Gag and Rev only, more epitopes were restricted by alleles associated with low viral loads than by alleles associated with higher viral loads. CONCLUSIONS/SIGNIFICANCE This comprehensive analysis puts forth the epitope repertoire as a mechanistic component of the multi-faceted HIV-specific CTL response. The favorable impact on markers of disease status of the propensity to present more HLA binding peptides and specific proteins gives impetus to vaccine design strategies that seek to elicit responses to a broad array of HIV-1 epitopes, and suggest a particular focus on Gag.
Collapse
Affiliation(s)
- Morgane Rolland
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - David Heckerman
- Machine Learning and Applied Statistics Group, Microsoft Research, Redmond, Washington, United States of America
| | - Wenjie Deng
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Christine M. Rousseau
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hoosen Coovadia
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Karen Bishop
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Philip J. R. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
68
|
Viral evolution and escape during primary human immunodeficiency virus-1 infection: implications for vaccine design. Curr Opin HIV AIDS 2008; 3:60-6. [DOI: 10.1097/coh.0b013e3282f233d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Immunological control of chronic HIV-1 infection: HLA-mediated immune function and viral evolution in adolescents. AIDS 2007; 21:2387-97. [PMID: 18025875 DOI: 10.1097/qad.0b013e3282f13823] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Differential protein targeting by HIV-specific CD8 T cells is associated with disparate plasma viral loads; however, it is unclear if the quality of these responses differs depending upon the specificity of the targeted epitopes. METHODS We examined HIV-specific CD8 T-cell responses in HIV-infected adolescents carrying either an HLA class I allele associated with a favorable prognosis (HLA-B*57) or an allele associated with usual disease progression (HLA-B*35 or HLA-B*53) using interferon-gamma ELISpot and ICS assays. RESULTS In an interferon-gamma ELISpot assay, p24 was the dominant protein targeted by B*57 carriers while responses to Nef dominated in B*35 or B*53 positive carriers. This differential protein targeting did not change during 4 years of follow-up. In these chronically infected adolescents, there were no significant differences in the quality of the immunodominant T-cell responses between the B*57 and B*35/B*53 carriers as measured by peptide avidity, degranulation, and immune memory markers. There was a trend towards higher expression of interleukin-2 from B*57-KF11 restricted CD8 T cells although this difference was not significant. Nevertheless both B*57 and B*35/53-restricted responses were relatively potent as reflected by the propensity of CD8 T cells to escape in p24 and Nef, respectively. CONCLUSIONS Differential protein targeting rather than the quality of T-cell responses appears to be a major distinguishing feature of HIV-specific CD8 T cells induced in B*57 carriers. These data suggest that viral fitness costs associated with CD8 T-cell pressure is an important factor determining differences in the viral load among HIV-infected patients.
Collapse
|
70
|
McAulay KA, Higgins CD, Macsween KF, Lake A, Jarrett RF, Robertson FL, Williams H, Crawford DH. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest 2007; 117:3042-8. [PMID: 17909631 PMCID: PMC1994627 DOI: 10.1172/jci32377] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 08/01/2007] [Indexed: 11/17/2022] Open
Abstract
Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence.
Collapse
Affiliation(s)
- Karen A McAulay
- Clinical and Basic Virology Laboratory, School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, Summerhall, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Sáez-Cirión A, Pancino G, Sinet M, Venet A, Lambotte O. HIV controllers: how do they tame the virus? Trends Immunol 2007; 28:532-40. [PMID: 17981085 DOI: 10.1016/j.it.2007.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
Abstract
HIV controllers are rare, chronically HIV-1-infected patients in whom viral replication is undetectable in the absence of antiretroviral treatment. Most such patients are nonetheless infected by replication-competent viruses. An effective, multifunctional HIV-specific CD8(+) T-cell response is thought to be central to viral control in these individuals. The mechanisms underlying this spontaneous control of HIV infection and the particular characteristics of the CD8(+) T-cell response in HIV controllers are the focus of intensive investigations, because they should help to unravel the pathogenesis of AIDS and to provide new clues for the design of effective vaccine strategies. In this review, we examine recent findings from these studies.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, 25 rue du Dr Roux, 75725 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
72
|
Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, Hewitt HS, Linde CH, Kavanagh DG, Woodberry T, Henry LM, Faircloth K, Listgarten J, Kadie C, Jojic N, Sango K, Brown NV, Pae E, Zaman MT, Bihl F, Khatri A, John M, Mallal S, Marincola FM, Walker BD, Sette A, Heckerman D, Korber BT, Brander C. Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur J Immunol 2007; 37:2419-33. [PMID: 17705138 PMCID: PMC2628559 DOI: 10.1002/eji.200737365] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I-restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals' HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I-restricted antigen presentation and vaccine development.
Collapse
Affiliation(s)
- Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Karina Yusim
- Theoretical Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| | - Todd J. Suscovich
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | | | - John Sidney
- La Jolla Institute of Allergy and Immunology, Redmond, WA
| | - Peter Hraber
- Theoretical Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| | - Hannah S. Hewitt
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Caitlyn H. Linde
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Daniel G. Kavanagh
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Tonia Woodberry
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Leah M. Henry
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Kellie Faircloth
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | | | | | | | - Kaori Sango
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Nancy V. Brown
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Eunice Pae
- Fenway Community Health Center, Boston, MA
| | | | - Florian Bihl
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Mina John
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Australia
| | - Simon Mallal
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Australia
| | | | - Bruce D. Walker
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | | | | | - Bette T. Korber
- Theoretical Biophysics, Los Alamos National Laboratory, Los Alamos, NM
- Santa Fe Institute, Santa Fe, NM, USA
| | - Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| |
Collapse
|
73
|
Harari A, Cellerai C, Enders FB, Köstler J, Codarri L, Tapia G, Boyman O, Castro E, Gaudieri S, James I, John M, Wagner R, Mallal S, Pantaleo G. Skewed association of polyfunctional antigen-specific CD8 T cell populations with HLA-B genotype. Proc Natl Acad Sci U S A 2007; 104:16233-8. [PMID: 17911249 PMCID: PMC1999394 DOI: 10.1073/pnas.0707570104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We studied CD8 T cell responses against HIV-1, cytomegalovirus, Epstein-Barr virus, and influenza in 128 subjects and demonstrate that polyfunctional CD8 T cell responses, also including IL-2 production and Ag-specific proliferation, are predominantly driven by virus epitopes restricted by HLA-B alleles. Interestingly, these protective CD8 T cells are equipped with low-avidity T cell receptors (TCRs) for the cognate virus epitope. Conversely, HLA-A-restricted epitopes are mostly associated with "only effector" IFN-gamma-secreting, with cytotoxicity, and with the lack of IL-2 production and Ag-specific proliferation. These CD8 T cells are equipped with high-avidity TCR and express higher levels of the T cell exhaustion marker PD-1. Thus, the functional profile of the CD8 T cell response is strongly influenced by the extent to which there is stimulation of polyfunctional (predominantly restricted by HLA-B) versus only effector (restricted by HLA-A) T cell responses. These results provide the rationale for the observed protective role of HLA-B in HIV-1-infection and new insights into the relationship between TCR avidity, PD-1 expression, and the functional profile of CD8 T cells.
Collapse
Affiliation(s)
- Alexandre Harari
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Cristina Cellerai
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Felicitas Bellutti Enders
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Josef Köstler
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, D-93053 Regensburg, Germany; and
| | - Laura Codarri
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Gonzalo Tapia
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Onur Boyman
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Erika Castro
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | - Silvana Gaudieri
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Western Australia 6000, Australia
| | - Ian James
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Western Australia 6000, Australia
| | - Mina John
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Western Australia 6000, Australia
| | - Ralf Wagner
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, D-93053 Regensburg, Germany; and
| | - Simon Mallal
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Western Australia 6000, Australia
| | - Giuseppe Pantaleo
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
van Bockel D, Price DA, Asher TE, Venturi V, Suzuki K, Warton K, Davenport MP, Cooper DA, Douek DC, Kelleher AD. Validation of RNA-based molecular clonotype analysis for virus-specific CD8+ T-cells in formaldehyde-fixed specimens isolated from peripheral blood. J Immunol Methods 2007; 326:127-38. [PMID: 17716684 PMCID: PMC2080792 DOI: 10.1016/j.jim.2007.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/15/2007] [Accepted: 07/15/2007] [Indexed: 11/28/2022]
Abstract
Recent advances in the field of molecular clonotype analysis have enabled detailed repertoire characterization of viably isolated antigen-specific T cell populations directly ex vivo. However, in the absence of a biologically contained FACS facility, peripheral blood mononuclear cell (PBMC) preparations derived from patients infected with agents such as HIV must be formaldehyde fixed to inactivate the pathogen; this procedure adversely affects nucleic acid template quality. Here, we developed and validated a method to amplify and sequence mRNA species derived from formaldehyde fixed PBMC specimens. Antigen-specific CD8+ cytotoxic T-lymphocyte populations were identified with standard fluorochrome-conjugated peptide-major histocompatibility complex class I tetramers refolded around synthetic peptides representing immunodominant epitopes from HIV p24 Gag (KRWII[M/L]GLNK/HLA B*2705) and CMV pp65 (NLVPMVATV/HLA A*0201 and TPRVTGGGAM/HLA B*0702), and acquired in separate laboratories with or without fixation. In the presence of proteinase K pre-treatment, the observed antigen-specific CD8+ T-cell repertoire determined by molecular clonotype analysis was statistically no different whether derived from fixed or unfixed PBMC. However, oligo-dT recovery methods were not suitable for use with fixed tissue as significant skewing of clonotypic representation was observed. Thus, we have developed a reliable RNA-based method for molecular clonotype analysis that is compatible with formaldehyde fixation and therefore suitable for use with primary human samples isolated by FACS outside the context of a biological safety level 3 containment facility.
Collapse
Affiliation(s)
- David van Bockel
- Centre for Immunology, St Vincent's Hospital, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Liu Y, McNevin J, Zhao H, Tebit DM, Troyer RM, McSweyn M, Ghosh AK, Shriner D, Arts EJ, McElrath MJ, Mullins JI. Evolution of human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitopes: fitness-balanced escape. J Virol 2007; 81:12179-88. [PMID: 17728222 PMCID: PMC2169017 DOI: 10.1128/jvi.01277-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-8070, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|