51
|
Candeias E, Sebastião I, Cardoso S, Carvalho C, Santos MS, Oliveira CR, Moreira PI, Duarte AI. Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats. Mol Neurobiol 2018; 55:4030-4050. [PMID: 28573460 DOI: 10.1007/s12035-017-0622-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein. Accordingly, the insulinotropic anti-T2D drugs from glucagon-like peptide-1 (GLP-1) mimetics, namely, exendin-4 (Ex-4), could be a promising therapy. In line with this, we hypothesized that peripherally administered Ex-4 rescues brain intracellular signaling pathways, promoting autophagy and ultimately protecting against chronic T2D-induced apoptosis. Thus, we aimed to explore the effects of chronic, continuous, subcutaneous (s.c.) exposure to Ex-4 in brain cortical GLP-1/insulin/insulin-like growth factor-1 (IGF-1) signaling, and in autophagic and cell death mechanisms in middle-aged (8 months old), male T2D Goto-Kakizaki (GK) rats. We used brain cortical homogenates obtained from middle-aged (8 months old) male Wistar (control) and T2D GK rats. Ex-4 was continuously administered for 28 days, via s.c. implanted micro-osmotic pumps (5 μg/kg/day; infusion rate 2.5 μL/h). Peripheral characterization of the animal models was given by the standard biochemical analyses of blood or plasma, the intraperitoneal glucose tolerance test, and the heart rate. GLP-1, insulin, and IGF-1, their downstream signaling and autophagic markers were evaluated by specific ELISA kits and Western blotting. Caspase-like activities and other apoptotic markers were given by colorimetric methods and Western blotting. Chronic Ex-4 treatment attenuated peripheral features of T2D in GK rats, including hyperglycemia and insulin resistance. Furthermore, s.c. Ex-4 enhanced their brain cortical GLP-1 and IGF-1 levels, and subsequent signaling pathways. Specifically, Ex-4 stimulated protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/Akt signaling, increasing cGMP and AMPK levels, and decreasing GSK3β and JNK activation in T2D rat brains. Moreover, Ex-4 regulated several markers for autophagy in GK rat brains (as mTOR, PI3K class III, LC3 II, Atg7, p62, LAMP-1, and Parkin), ultimately protecting against apoptosis (by decreasing several caspase-like activities and mitochondrial cytochrome c, and increasing Bcl2 levels upon T2D). Altogether, this study demonstrates that peripheral Ex-4 administration may constitute a promising therapy against the chronic complications of T2D affecting the brain.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Inês Sebastião
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Maria Sancha Santos
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Catarina Resende Oliveira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Ana I Duarte
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal.
| |
Collapse
|
52
|
Cuadrado A, Kügler S, Lastres-Becker I. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol 2017; 14:522-534. [PMID: 29121589 PMCID: PMC5681345 DOI: 10.1016/j.redox.2017.10.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023] Open
Abstract
Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF), an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model. The signaling pathways modulated by DMF were also studied in mouse embryonic fibroblast (MEFs) from wild type or KEAP1-deficient mice. The effect of DMF on neurodegeneration, astrocyte and microglial activation was examined in Nrf2+/+ and Nrf2−/− mice stereotaxically injected in the right hippocampus with an adeno-associated vector expressing human TAUP301L and treated daily with DMF (100 mg/kg, i.g) during three weeks. DMF induces the NRF2 transcriptional through a mechanism that involves KEAP1 but also PI3K/AKT/GSK-3-dependent pathways. DMF modulates GSK-3β activity in mouse hippocampi. Furthermore, DMF modulates TAU phosphorylation, neuronal impairment measured by calbindin-D28K and BDNF expression, and inflammatory processes involved in astrogliosis, microgliosis and pro-inflammatory cytokines production. This study reveals neuroprotective effects of DMF beyond disruption of the KEAP1/NRF2 axis by inhibiting GSK3 in a mouse model of tauopathy. Our results support repurposing of this drug for treatment of these diseases. DMF mechanisms of action are partially KEAP1-dependent. Modulation of GSK-3β phosphorylation by DMF. DMF modulates TAU hyperphosphorylation in a tauopathy mouse model. DMF attenuates hippocampal neuronal damage, astrogliosis and microgliosis.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| | - Sebastian Kügler
- Department of Neurology, Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medicine Göttingen, Göttingen, Germany.
| | - Isabel Lastres-Becker
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
53
|
Extrinsic Apoptosis Pathway Altered by Glycogen Synthase Kinase-3 β Inhibitor Influences the Net Drug Effect on NSC-34 Motor Neuron-Like Cell Survival. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4163839. [PMID: 29082245 PMCID: PMC5610847 DOI: 10.1155/2017/4163839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) inhibitors have been suggested as a core regulator of apoptosis and have been investigated as therapeutic agents for neurodegenerative diseases, including amyotrophic lateral sclerosis. However, GSK-3β has an interesting paradoxical effect of being proapoptotic during mitochondrial-mediated intrinsic apoptosis but antiapoptotic during death receptor-mediated extrinsic apoptosis. We assessed the effect of low to high doses of a GSK-3β inhibitor on survival and apoptosis of the NSC-34 motor neuron-like cell line after serum withdrawal. Then, we identified changes in extrinsic apoptosis markers, including Fas, Fas ligand, cleaved caspase-8, p38α, and the Fas-Daxx interaction. The GSK-3β inhibitor had an antiapoptotic effect at the low dose but was proapoptotic at the high dose. Proapoptotic effect at the high dose can be explained by increased signals in cleaved caspase-8 and the motor neuron-specific p38α and Fas-Daxx interaction. Our results suggest that GSK-3β inhibitor dose may determine the summation effect of the intrinsic and extrinsic apoptosis pathways. The extrinsic apoptosis pathway might be another therapeutic target for developing a potential GSK-3β inhibitor.
Collapse
|
54
|
Li Y, Jiao Q, Xu H, Du X, Shi L, Jia F, Jiang H. Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. Front Mol Neurosci 2017; 10:339. [PMID: 29114205 PMCID: PMC5660707 DOI: 10.3389/fnmol.2017.00339] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Biometal dyshomeostasis and toxic metal accumulation are common features in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. The neurotoxic effects of metal imbalance are generally associated with reduced enzymatic activities, elevated protein aggregation and oxidative stress in the central nervous system, in which a cascade of events lead to cell death and neurodegeneration. Although the links between biometal imbalance and neurodegenerative disorders remain elusive, a major class of endogenous proteins involved in metal transport has been receiving increasing attention over recent decades. The abnormal expression of these proteins has been linked to biometal imbalance and to the pathogenesis of AD. Here, we present a brief overview of the physiological roles of biometals including iron, zinc, copper, manganese, magnesium and calcium, and provide a detailed description of their transporters and their synergistic involvement in the development of AD. In addition, we also review the published data relating to neurotoxic metals in AD, including aluminum, lead, cadmium, and mercury.
Collapse
Affiliation(s)
- Yong Li
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Qian Jiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Xixun Du
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Limin Shi
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Fengju Jia
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Hong Jiang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
55
|
Wang Y, Sawyer TW, Tse YC, Fan C, Hennes G, Barnes J, Josey T, Weiss T, Nelson P, Wong TP. Primary Blast-Induced Changes in Akt and GSK 3β Phosphorylation in Rat Hippocampus. Front Neurol 2017; 8:413. [PMID: 28868045 PMCID: PMC5563325 DOI: 10.3389/fneur.2017.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β), in rat hippocampus, were investigated. Male Sprague-Dawley (SD) rats (350–400 g) were exposed to a single pulse shock wave (25 psi; ~7 ms duration) and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9), were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA) receptor activity was significantly increased 6 weeks after primary blast, suggesting that increased Akt phosphorylation may enhance synaptic NMDA receptor activation, or that enhanced synaptic NMDA receptor activation may increase Akt phosphorylation.
Collapse
Affiliation(s)
- Yushan Wang
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Thomas W Sawyer
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Yiu Chung Tse
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Changyang Fan
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Grant Hennes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Julia Barnes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tyson Josey
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tracy Weiss
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Peggy Nelson
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
56
|
Gu C, Zhang Y, Hu Q, Wu J, Ren H, Liu CF, Wang G. P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death Dis 2017; 8:e2858. [PMID: 28569794 PMCID: PMC5520908 DOI: 10.1038/cddis.2017.250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023]
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. Although its pathogenesis remains unclear, mitochondrial dysfunction plays a vital role in the pathology of PD. P7C3, an aminopropyl carbazole, possesses a significant neuroprotective ability in several neurodegenerative disorders, including PD. Here, we showed that P7C3 stabilized mitochondrial membrane potential, reduced reactive oxygen species production, and inhibited cytochrome c release in MES23.5 cells (a dopaminergic (DA) cell line) exposed to 1-methyl-4-phenylpyridinium (MPP+). In MES23.5 cells, P7C3 inhibited glycogen synthase kinase-3 beta (GSK3β) activation induced by MPP+. P7C3 also inhibited p53 activity and repressed Bax upregulation to protect cells from MPP+ toxicity. In addition, the activation of p53 was significantly attenuated with the inhibition of GSK3β activity by P7C3. Furthermore, P7C3 blocked GSK3β and p53 activation in the midbrain, and prevented DA neuronal loss in the substantia nigra in 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine mice. Thus, our study demonstrates that P7C3 protects DA neurons from neurotoxin-induced cell death by repressing the GSK3β-p53-Bax pathway both in vitro and in vivo, thus providing a theoretical basis for P7C3 in the potential clinical treatment of PD.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yan Zhang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Qingsong Hu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jiayuan Wu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Haigang Ren
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guanghui Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
57
|
miR-135b Plays a Neuroprotective Role by Targeting GSK3β in MPP +-Intoxicated SH-SY5Y Cells. DISEASE MARKERS 2017; 2017:5806146. [PMID: 28484287 PMCID: PMC5412211 DOI: 10.1155/2017/5806146] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/17/2022]
Abstract
miR-135a-5p was reported to play a crucial role in the protective effects of hydrogen sulfide against Parkinson's disease (PD) by targeting rho-associated protein kinase 2 (ROCK2). However, the role of another member of miR-135 family (miR-135b) and the underlying mechanism in PD are still unclear. qRT-PCR and western blot showed that miR-135 was downregulated and glycogen synthase kinase 3β (GSK3β) was upregulated at mRNA and protein levels in MPP+-intoxicated SH-SY5Y cells in a dose- and time-dependent manner. MTT, TUNEL, and ELISA assays revealed that miR-135b overexpression significantly promoted cell proliferation and inhibited apoptosis and production of TNF-α and IL-1β in SH-SY5Y cells in the presence of MPP+. Luciferase reporter assay demonstrated that GSK3β was a direct target of miR-135b. Moreover, sodium nitroprusside (SNP), a GSK3β activator, dramatically reversed the effects of miR-135b upregulation on cell proliferation, apoptosis, and inflammatory cytokine production in MPP+-intoxicated SH-SY5Y cells. Taken together, miR-135b exerts a protective role via promotion of proliferation and suppression of apoptosis and neuroinflammation by targeting GSK3β in MPP+-intoxicated SH-SY5Y cells, providing a potential therapeutic target for the treatment of PD.
Collapse
|
58
|
Kweon JH, Kim S, Lee SB. The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep 2017; 50:5-11. [PMID: 27502014 PMCID: PMC5319658 DOI: 10.5483/bmbrep.2017.50.1.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 01/30/2023] Open
Abstract
One of the characteristics of the neurons that distinguishes them from other cells is their complex and polarized structure consisting of dendrites, cell body, and axon. The complexity and diversity of dendrites are particularly well recognized, and accumulating evidences suggest that the alterations in the dendrite structure are associated with many neurodegenerative diseases. Given the importance of the proper dendritic structures for neuronal functions, the dendrite pathology appears to have crucial contribution to the pathogenesis of neurodegenerative diseases. Nonetheless, the cellular and molecular basis of dendritic changes in the neurodegenerative diseases remains largely elusive. Previous studies in normal condition have revealed that several cellular components, such as local cytoskeletal structures and organelles located locally in dendrites, play crucial roles in dendrite growth. By reviewing what has been unveiled to date regarding dendrite growth in terms of these local cellular components, we aim to provide an insight to categorize the potential cellular basis that can be applied to the dendrite pathology manifested in many neurodegenerative diseases. [BMB Reports 2017; 50(1): 5-11].
Collapse
Affiliation(s)
- Jung Hyun Kweon
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141; Department of Biomolecular Science, University of Science and Technology, Daejeon 34141, Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
59
|
Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, Cherny R, Wood SJ, Greenough M, Berger G, Pantelis C, McGorry P, Yung A, Finkelstein DI, Bush AI. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry 2017; 22:396-406. [PMID: 27400857 DOI: 10.1038/mp.2016.96] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023]
Abstract
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.
Collapse
Affiliation(s)
- P Lei
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A T Appukuttan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S Moon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - J A Duce
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, West Yorkshire, UK
| | - I Volitakis
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - R Cherny
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S J Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,School of Psychology, University of Birmingham, Birmingham, UK
| | - M Greenough
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - G Berger
- ORYGEN Research Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,Department of Child and Adolescent Psychiatry, University of Zürich, Zurich, Switzerland
| | - C Pantelis
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC, Australia
| | - P McGorry
- ORYGEN Research Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - A Yung
- Institute of Brain, Behaviour and Mental Health, University of Manchester and Greater Manchester West NHS Mental Health Trust, Manchester, UK
| | - D I Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
60
|
Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 2016; 6:37116. [PMID: 27853238 PMCID: PMC5112547 DOI: 10.1038/srep37116] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/28/2022] Open
Abstract
Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.
Collapse
|
61
|
Glycogen synthase kinase-3β regulates fractalkine production by altering its trafficking from Golgi to plasma membrane: implications for Alzheimer's disease. Cell Mol Life Sci 2016; 74:1153-1163. [PMID: 27832289 PMCID: PMC5309299 DOI: 10.1007/s00018-016-2408-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a serine-threonine kinase implicated in multiple processes and signaling pathways. Its dysregulation is associated with different pathological conditions including Alzheimer’s disease (AD). Here we demonstrate how changes in GSK-3β activity and/or levels regulate the production and subsequent secretion of fractalkine, a chemokine involved in the immune response that has been linked to AD and to other different neurological disorders. Treatment of primary cultured neurons with GSK-3β inhibitors such as lithium and AR-A014418 decreased full-length fractalkine in total cell extracts. Opposite effects were observed after neuron transduction with a lentiviral vector overexpressing the kinase. Biotinylation assays showed that those changes mainly affect the plasma membrane-associated form of the protein, an observation that positively correlates with changes in the levels of its soluble form. These effects were confirmed in lithium-treated wild type (wt) mice and in GSK-3β transgenic animals, as well as in brain samples from AD patients, evident as age-dependent (animals) or Braak stage dependent changes (humans) in both the membrane-bound and the soluble forms of the protein. Further immunohistochemical analyses demonstrated how GSK-3β exerts these effects by affecting the trafficking of the chemokine from the Golgi to the plasma membrane, in different and opposite ways when the levels/activity of the kinase are increased or decreased. This work provides for the first time a mechanism linking GSK-3β and fractalkine both in vitro and in vivo, with important implications for neurological disorders and especially for AD, in which levels of this chemokine might be useful as a diagnostic tool.
Collapse
|
62
|
Pachima YI, Zhou LY, Lei P, Gozes I. Microtubule-Tau Interaction as a Therapeutic Target for Alzheimer's Disease. J Mol Neurosci 2016; 58:145-52. [PMID: 26816082 DOI: 10.1007/s12031-016-0715-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yanina Ivashko Pachima
- Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Liu-yao Zhou
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041, China
| | - Peng Lei
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041, China. .,Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3052, VIC, Australia.
| | - Illana Gozes
- Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
63
|
Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MBH, Tipton KF, Marco-Contelles J. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Front Neurosci 2016; 10:205. [PMID: 27252617 PMCID: PMC4879129 DOI: 10.3389/fnins.2016.00205] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the "one molecule, multiple targets" paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Gerard Esteban
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Rona R. Ramsay
- Biomolecular Sciences, Biomedical Sciences Research Complex, University of St AndrewsSt. Andrews, UK
| | - Moussa B. H. Youdim
- Department of Pharmacology, Ruth and Bruce Rappaport Faculty of Medicine, Eve Topf and National Parkinson Foundation Center for Neurodegenerative Diseases ResearchHaifa, Israel
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Spanish National Research CouncilMadrid, Spain
| |
Collapse
|
64
|
Neumann T, Benajiba L, Göring S, Stegmaier K, Schmidt B. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia. J Med Chem 2015; 58:8907-19. [PMID: 26496242 DOI: 10.1021/acs.jmedchem.5b01200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The challenge for glycogen synthase kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML), may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy.
Collapse
Affiliation(s)
- Theresa Neumann
- Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt , 64287 Darmstadt, Germany
| | - Lina Benajiba
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Stefan Göring
- Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt , 64287 Darmstadt, Germany
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States
| | - Boris Schmidt
- Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt , 64287 Darmstadt, Germany
| |
Collapse
|
65
|
Hami J, Karimi R, Haghir H, Gholamin M, Sadr-Nabavi A. Diabetes in Pregnancy Adversely Affects the Expression of Glycogen Synthase Kinase-3β in the Hippocampus of Rat Neonates. J Mol Neurosci 2015; 57:273-81. [PMID: 26242887 DOI: 10.1007/s12031-015-0617-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
Diabetes during pregnancy causes a wide range of neurodevelopmental and neurocognitive abnormalities in offspring. Glycogen synthase kinase-3 (GSK-3) is widely expressed during brain development and regulates multiple cellular processes, and its dysregulation is implicated in the pathogenesis of diverse neurodegenerative and psychological diseases. This study was designed to examine the effects of maternal diabetes on GSK-3β messenger RNA (mRNA) expression and phosphorylation in the developing rat hippocampus. Female rats were maintained diabetic from a week before pregnancy through parturition, and male offspring was killed immediately after birth. We found a significant bilateral upregulation of GSK-3β mRNA expression in the hippocampus of pups born to diabetic mothers at P0, compared to controls. Moreover, at the same time point, there was a marked bilateral increase in the phosphorylation level of GSK-3β in the diabetic group. Unlike phosphorylation levels, there was a significant upregulation in hippocampal GSK-3β mRNA expression in the insulin-treated group, when compared to controls. The present study revealed that diabetes during pregnancy strongly influences the regulation of GSK-3β in the right/left developing hippocampi. These dysregulations may be part of the cascade of events through which diabetes during pregnancy affects the newborn's hippocampal structure and function.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Razieh Karimi
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Azadi Square, Mashhad, Iran
| | - Hossein Haghir
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.,Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Mehran Gholamin
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Azadi Square, Mashhad, Iran. .,Molecular Medicine Research Department, Iranian Academic Centers for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
66
|
Nicot AS, Lo Verso F, Ratti F, Pilot-Storck F, Streichenberger N, Sandri M, Schaeffer L, Goillot E. Phosphorylation of NBR1 by GSK3 modulates protein aggregation. Autophagy 2015; 10:1036-53. [PMID: 24879152 PMCID: PMC4091167 DOI: 10.4161/auto.28479] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy.
Collapse
Affiliation(s)
- Anne-Sophie Nicot
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Francesca Lo Verso
- Venetian Institute of Molecular Medicine and Department of Biomedical Science; University of Padova; Padova, Italy
| | - Francesca Ratti
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Fanny Pilot-Storck
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Nathalie Streichenberger
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France; Service de Neuropathologie; Groupement Hospitalier Est; Hospices Civils de Lyon; Lyon, France
| | - Marco Sandri
- Venetian Institute of Molecular Medicine and Department of Biomedical Science; University of Padova; Padova, Italy
| | - Laurent Schaeffer
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France; Centre de Biotechnologies Cellulaires; Groupement Hospitalier Est; Hospices Civils de Lyon; Lyon, France
| | - Evelyne Goillot
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) CNRS UMR5239; Ecole Normale Supérieure de Lyon; Lyon, France
| |
Collapse
|
67
|
Bele MS, Gajare KA, Deshmukh AA. Caloric restriction mimetic 2-deoxyglucose maintains cytoarchitecture and reduces tau phosphorylation in primary culture of mouse hippocampal pyramidal neurons. In Vitro Cell Dev Biol Anim 2015; 51:546-55. [PMID: 25678460 DOI: 10.1007/s11626-015-9867-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/01/2015] [Indexed: 12/26/2022]
Abstract
Typical form of neurons is crucially important for their functions. This is maintained by microtubules and associated proteins like tau. Hyperphosphorylation of tau is a major concern in neurodegenerative diseases. Glycogen synthase kinase3β (GSK3β) and cyclin-dependent protein kinase 5 (Cdk5) are the enzymes that govern tau phosphorylation. Currently, efforts are being made to target GSK3β and Cdk5 as possible therapeutic avenues to control tau phosphorylation and treat neurodegenerative diseases related to taupathies. In a number of studies, caloric restriction mimetic 2-deoxyglucose (C6H12O5) was found to be beneficial in improving the brain functions. However, no reports are available on the effect of 2-deoxyglucose 2-DG on tau phosphorylation. In the present study, hippocampal pyramidal neurons from E17 mouse embryos were isolated and cultured on poly-L-lysine-coated coverslips. Neurons from the experimental group were treated with 10 mM 2-deoxyglucose. The treatment of 2-DG resulted in healthier neuronal morphology in terms of significantly lower number of cytoplasmic vacuoles, little or no membrane blebbings, maintained axon hillock and intact neurites. There were decreased immunofluorescence signals for GSK3β, pTau at Ser262, Cdk5 and pTau at Ser235 suggesting decreased tau phosphorylation, which was further confirmed by Western blotting. The results indicate the beneficial effects of 2-DG in controlling the tau phosphorylation and maintaining the healthy neuronal cytoarchitecture.
Collapse
Affiliation(s)
- M S Bele
- Cellular stress response laboratory, Cell Biology Division, Department of Zoology, Shivaji University, Kolhapur, India
| | | | | |
Collapse
|
68
|
Liu ZC, Chu J, Lin L, Song J, Ning LN, Luo HB, Yang SS, Shi Y, Wang Q, Qu N, Zhang Q, Wang JZ, Tian Q. SIL1 Rescued Bip Elevation-Related Tau Hyperphosphorylation in ER Stress. Mol Neurobiol 2015; 53:983-994. [PMID: 25575678 DOI: 10.1007/s12035-014-9039-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/30/2014] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress has been indicated in the early stage of Alzheimer's disease (AD), in which tau hyperphosphorylation is one major pathological alteration. The elevation of binding immunoglobulin protein (Bip), an important ER chaperon, was reported in AD brain. It is important to study the roles of ER-related chaperons in tau hyperphosphorylation. In this research, increased Bip was found in the brains of the AD model mice (Tg2576) compared to the age-matched control mice. Meanwhile, deficiency of SIL1, an important co-chaperon of Bip, was observed in brains of Tg2576 mice and in ER stress both in vivo and in vitro. Then, we transfected Bip-EGFP plasmid into HEK293 cells stably expressing the longest human tau (HEK293/tau) or N2a cells and found that increased Bip induced tau hyperphosphorylation via activating glycogen synthase kinase-3β (GSK-3β), an important tau kinase, and increased the association with tau and GSK-3β. When we overexpressed SIL1 in Bip-transfected HEK293/tau cells and thapsigargin-treated HEK293/tau cells, significantly reduced tau hyperphosphorylation and GSK-3β activation were observed. These results suggested the important roles of ER-related chaperons, Bip and SIL1, in AD-like tau hyperphosphorylation.
Collapse
Affiliation(s)
- Zan-Chao Liu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- 2nd Hospital of Shijiazhuang, Shijiazhuang, 050051, China
| | - Jiang Chu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Li Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- Hubei University of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Jie Song
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Hong-Bin Luo
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- Medical School, Hubei University for Nationalities, Enshi, 445000, China
| | - Shu-Sheng Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- Hubei University of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Na Qu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Qi Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
69
|
Abstract
No disease modifying therapy exists for Alzheimer's disease (AD). The growing burden of this disease to our society necessitates continued investment in drug development. Over the last decade, multiple phase 3 clinical trials testing drugs that were designed to target established disease mechanisms of AD have all failed to benefit patients. There is, therefore, a need for new treatment strategies. Changes to the transition metals, zinc, copper, and iron, in AD impact on the molecular mechanisms of disease, and targeting these metals might be an alternative approach to treat the disease. Here we review how metals feature in molecular mechanisms of AD, and we describe preclinical and clinical data that demonstrate the potential for metal-based drug therapy.
Collapse
Affiliation(s)
- Scott Ayton
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, 3052 VIC Australia
| | - Peng Lei
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, 3052 VIC Australia
| | - Ashley I. Bush
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, 3052 VIC Australia
| |
Collapse
|
70
|
Kamarudin MNA, Mohd Raflee NA, Syed Hussein SS, Lo JY, Supriady H, Abdul Kadir H. (R)-(+)-α-lipoic acid protected NG108-15 cells against H₂O₂-induced cell death through PI3K-Akt/GSK-3β pathway and suppression of NF-κβ-cytokines. Drug Des Devel Ther 2014; 8:1765-80. [PMID: 25336920 PMCID: PMC4199983 DOI: 10.2147/dddt.s67980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Nur Afiqah Mohd Raflee
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Jia Ye Lo
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hadi Supriady
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
71
|
Tao G, Zhang J, Zhang L, Dong Y, Yu B, Crosby G, Culley DJ, Zhang Y, Xie Z. Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice. Anesthesiology 2014; 121:510-27. [PMID: 24787352 PMCID: PMC4165789 DOI: 10.1097/aln.0000000000000278] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Children with multiple exposures to anesthesia and surgery may have an increased risk of developing cognitive impairment. Sevoflurane is a commonly used anesthetic in children. Tau phosphorylation contributes to cognitive dysfunction. The authors therefore assessed the effects of sevoflurane on Tau phosphorylation and the underlying mechanisms in young mice. METHODS Six-day-old wild-type and Tau knockout mice were exposed to sevoflurane. The authors determined the effects of sevoflurane anesthesia on Tau phosphorylation, levels of the kinases and phosphatase related to Tau phosphorylation, interleukin-6 and postsynaptic density protein-95 in hippocampus, and cognitive function in both young wild-type and Tau knockout mice. RESULTS Anesthesia with 3% sevoflurane 2 h daily for 3 days induced Tau phosphorylation (257 vs. 100%, P = 0.0025, n = 6) and enhanced activation of glycogen synthase kinase 3β, which is the kinase related to Tau phosphorylation in the hippocampus of postnatal day-8 wild-type mice. The sevoflurane anesthesia decreased hippocampus postsynaptic density protein-95 levels and induced cognitive impairment in the postnatal day-31 mice. Glycogen synthase kinase 3β inhibitor lithium inhibited the sevoflurane-induced glycogen synthase kinase 3β activation, Tau phosphorylation, increased levels of interleukin-6, and cognitive impairment in the wild-type young mice. Finally, the sevoflurane anesthesia did not induce an increase in interleukin-6 levels, reduction in postsynaptic density protein-95 levels in hippocampus, or cognitive impairment in Tau knockout young mice. CONCLUSIONS These data suggested that sevoflurane induced Tau phosphorylation, glycogen synthase kinase 3β activation, increase in interleukin-6 and reduction in postsynaptic density protein-95 levels in hippocampus of young mice, and cognitive impairment in the mice. Future studies will dissect the cascade relation of these effects.
Collapse
Affiliation(s)
- Guorong Tao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China 200025
| | - Jie Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R China 430030
| | - Lei Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China 200025
| | - Gregory Crosby
- Department of Anesthesia, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Deborah J. Culley
- Department of Anesthesia, Brigham & Women’s Hospital and Harvard Medical School Boston, MA 02115
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| |
Collapse
|
72
|
The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis 2014; 5:e1373. [PMID: 25118933 PMCID: PMC4454303 DOI: 10.1038/cddis.2014.328] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 02/06/2023]
Abstract
Loss of the mitochondrial protease activity of Omi causes mitochondrial dysfunction, neurodegeneration with parkinsonian features and premature death in mnd2 (motor neuron degeneration 2) mice. However, the detailed mechanisms underlying this pathology remain largely unknown. Here, we report that Omi participates in the process of mitochondrial biogenesis, which has been linked to several neurodegenerative diseases. The mitochondrial biogenesis is deficit in mnd2 mice, evidenced by severe decreases of mitochondrial components, mitochondrial DNA and mitochondrial density. Omi cleaves glycogen synthase kinase 3β (GSK3β), a kinase promoting PPARγ coactivator-1α (PGC-1α) degradation, to regulate PGC-1α, a factor important for the mitochondrial biogenesis. In mnd2 mice, GSK3β abundance is increased and PGC-1α abundance is decreased significantly. Inhibition of GSK3β by SB216763 or overexpression of PGC-1α can restore mitochondrial biogenesis in mnd2 mice or Omi-knockdown N2a cells. Furthermore, there is a significant improvement of the movement ability of mnd2 mice after SB216763 treatment. Thus, our study identified Omi as a novel regulator of mitochondrial biogenesis, involving in Omi protease-deficient-induced neurodegeneration.
Collapse
|
73
|
Xu H, Finkelstein DI, Adlard PA. Interactions of metals and Apolipoprotein E in Alzheimer's disease. Front Aging Neurosci 2014; 6:121. [PMID: 24971061 PMCID: PMC4054654 DOI: 10.3389/fnagi.2014.00121] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, which is characterized by the neuropathological accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). Clinically, patients will endure a gradual erosion of memory and other higher order cognitive functions. Whilst the underlying etiology of the disease remains to be definitively identified, a body of work has developed over the last two decades demonstrating that AD plasma/serum and brain are characterized by a dyshomeostasis in a number of metal ions. Furthermore, these metals (such as zinc, copper and iron) play roles in the regulation of the levels of AD-related proteins, including the amyloid precursor protein (APP) and tau. It is becoming apparent that metals also interact with other proteins, including apolipoprotein E (ApoE). The Apolipoprotein E gene (APOE) is critically associated with AD, with APOE4 representing the strongest genetic risk factor for the development of late-onset AD. In this review we will summarize the evidence supporting a role for metals in the function of ApoE and its consequent role in the pathogenesis of AD.
Collapse
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
74
|
Trimethyltin can induce cell death in the entorhinal cortex of rat brain: a histological architecture and neuronal density evaluation of the neuroprotective role of lithium chloride. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1953-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Mairet-Coello G, Polleux F. Involvement of 'stress-response' kinase pathways in Alzheimer's disease progression. Curr Opin Neurobiol 2014; 27:110-7. [PMID: 24709372 DOI: 10.1016/j.conb.2014.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia, affecting more than 25 million people worldwide. Current models of the pathophysiological mechanisms of AD suggest that the accumulation of soluble oligomeric forms of amyloid-β (Aβ) peptides causes early loss of excitatory synapses and impairs synaptic plasticity. The signaling pathways mediating Aβ oligomer-induced impairment of synaptic plasticity and loss of excitatory synapses are only beginning to be unraveled. Here, we review recent evidence supporting the critical contribution of conserved 'stress-response' kinase pathways in AD progression.
Collapse
Affiliation(s)
- Georges Mairet-Coello
- The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037-1000, USA
| | - Franck Polleux
- The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037-1000, USA.
| |
Collapse
|
76
|
Liao D, Miller EC, Teravskis PJ. Tau acts as a mediator for Alzheimer's disease-related synaptic deficits. Eur J Neurosci 2014; 39:1202-13. [PMID: 24712999 PMCID: PMC3983570 DOI: 10.1111/ejn.12504] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
The two histopathological hallmarks of Alzheimer's disease (AD) are amyloid plaques containing multiple forms of amyloid beta (Aβ) and neurofibrillary tangles containing phosphorylated tau proteins. As mild cognitive impairment frequently occurs long before the clinical diagnosis of AD, the scientific community has been increasingly interested in the roles of Aβ and tau in earlier cellular changes that lead to functional deficits. Therefore, great progress has recently been made in understanding how Aβ or tau causes synaptic dysfunction. However, the interaction between the Aβ and tau-initiated intracellular cascades that lead to synaptic dysfunction remains elusive. The cornerstone of the two-decade-old hypothetical amyloid cascade model is that amyloid pathologies precede tau pathologies. Although the premise of Aβ-tau pathway remains valid, the model keeps evolving as new signaling events are discovered that lead to functional deficits and neurodegeneration. Recent progress has been made in understanding Aβ-PrP(C) -Fyn-mediated neurotoxicity and synaptic deficits. Although still elusive, many novel upstream and downstream signaling molecules have been found to modulate tau mislocalization and tau hyperphosphorylation. Here we will discuss the mechanistic interactions between Aβ-PrP(C) -mediated neurotoxicity and tau-mediated synaptic deficits in an updated amyloid cascade model with calcium and tau as the central mediators.
Collapse
Affiliation(s)
- Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Eric C. Miller
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Peter J. Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
- College of Biological Sciences University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
77
|
Ahn J, Jang J, Choi J, Lee J, Oh SH, Lee J, Yoon K, Kim S. GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev 2014; 23:1121-33. [PMID: 24397546 DOI: 10.1089/scd.2013.0397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway.
Collapse
Affiliation(s)
- Jyhyun Ahn
- 1 School of Biological Sciences, Seoul National University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Son HS, Kwon HY, Sohn EJ, Lee JH, Woo HJ, Yun M, Kim SH, Kim YC. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 β mediate ursolic acid induced apoptosis in HepG2 liver cancer cells. Phytother Res 2013; 27:1714-22. [PMID: 23325562 DOI: 10.1002/ptr.4925] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2023]
Abstract
Despite the antitumour effect of ursolic acid observed in several cancers, the underlying mechanism remains unclear. Thus, in the present study, the roles of AMP-activated protein kinase (AMPK) and glycogen synthase kinase 3 beta (GSK3β) were examined in ursolic acid induced apoptosis in HepG2 hepatocellular carcinoma cells. Ursolic acid significantly exerted cytotoxicity, increased the sub-G1 population and the number of ethidium homodimer and terminal deoxynucleotidyl transferase(TdT) mediated dUTP nick end labeling positive cells in HepG2 cells. Also, ursolic acid enhanced the cleavages of poly-ADP-ribose polymerase (PARP) and caspase3, attenuated the expression of astrocyte elevated gene (AEG1) and survivin in HepG2 cells. Interestingly, ursolic acid increased the phosphorylation of AMPK and coenzyme A carboxylase and also enhanced phosphorylation of GSK3β at inactive form serine 9, whereas ursolic acid attenuated the phosphorylation of AKT and mTOR in HepG2 cells. Conversely, AMPK inhibitor compound C or GSK3β inhibitor SB216763 blocked the cleavages of PARP and caspase 3 induced by ursolic acid in HepG2 cells. Furthermore, proteosomal inhibitor MG132 suppressed AMPK activation, GSK3β phosphorylation, cleaved PARP and deceased AEG-1 induced by ursolic acid in HepG2 cells. Overall, our findings suggest that ursolic acid induced apoptosis in HepG2 cells via AMPK activation and GSK3β phosphorylation as a potent chemopreventive agent.
Collapse
Affiliation(s)
- Hyun-Soo Son
- College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Activation of GSK-3β and caspase-3 occurs in Nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One 2013; 8:e70951. [PMID: 23940672 PMCID: PMC3733721 DOI: 10.1371/journal.pone.0070951] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/24/2013] [Indexed: 11/24/2022] Open
Abstract
The 6-Hydroxydopamine (6-OHDA) rat model of Parkinson's disease is essential for a better understanding of the pathological processes underlying the human disease and for the evaluation of promising therapeutic interventions. This work evaluated whether a single striatal injection of 6-OHDA causes progressive apoptosis of dopamine (DA) neurons and activation of glycogen synthase kinase 3β (GSK-3β) and caspase-3 in the substantia nigra compacta (SNc). The loss of DA neurons was shown by three neuron markers; tyrosine hydroxylase (TH), NeuN, and β-III tubulin. Apoptosis activation was determined using Apostain and immunostaining against cleaved caspase-3 and GSK-3β pY216. We also explored the possibility that cleaved caspase-3 is produced by microglia and astrocytes. Our results showed that the 6-OHDA caused loss of nigral TH(+) cells, progressing mainly in rostrocaudal and lateromedial directions. In the neostriatum, a severe loss of TH(+) terminals occurred from day 3 after lesion. The disappearance of TH(+) cells was associated with a decrease in NeuN and β-III tubulin immunoreactivity and an increase in Apostain, cleaved caspase-3, and GSK-3β pY216 in the SNc. Apostain immunoreactivity was observed from days 3 to 21 postlesion. Increased levels of caspase-3 immunoreactivity in TH(+) cells were detected from days 1 to 15, and the levels then decreased to day 30 postlesion. The cleaved caspase-3 also collocated with microglia and astrocytes indicating its participation in glial activation. Our results suggest that caspase-3 and GSK-3β pY216 activation might participate in the DA cell death and that the active caspase-3 might also participate in the neuroinflammation caused by the striatal 6-OHDA injection.
Collapse
|
80
|
Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci 2013; 5:34. [PMID: 23874300 PMCID: PMC3715022 DOI: 10.3389/fnagi.2013.00034] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal within the brain, and is vital for a number of cellular processes including neurotransmitter synthesis, myelination of neurons, and mitochondrial function. Redox cycling between ferrous and ferric iron is utilized in biology for various electron transfer reactions essential to life, yet this same chemistry mediates deleterious reactions with oxygen that induce oxidative stress. Consequently, there is a precise and tightly controlled mechanism to regulate iron in the brain. When iron is dysregulated, both conditions of iron overload and iron deficiencies are harmful to the brain. This review focuses on how iron metabolism is maintained in the brain, and how an alteration to iron and iron metabolism adversely affects neurological function.
Collapse
Affiliation(s)
- Dominic Hare
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
- Elemental Bio-imaging Facility, University of TechnologySydney, NSW, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Ashley Bush
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Peng Lei
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| |
Collapse
|
81
|
Increased zinc and manganese in parallel with neurodegeneration, synaptic protein changes and activation of Akt/GSK3 signaling in ovine CLN6 neuronal ceroid lipofuscinosis. PLoS One 2013; 8:e58644. [PMID: 23516525 PMCID: PMC3597713 DOI: 10.1371/journal.pone.0058644] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.
Collapse
|
82
|
Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res 2012; 1514:63-74. [PMID: 23261660 DOI: 10.1016/j.brainres.2012.12.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/11/2012] [Indexed: 11/22/2022]
Abstract
17β-estradiol (E2 or estrogen) is an endogenous steroid hormone that is well known to exert neuroprotection. Along these lines, one mechanism through which E2 protects the hippocampus from cerebral ischemia is by preventing the post-ischemic elevation of Dkk1, a neurodegenerative factor that serves as an antagonist of the canonical Wnt signaling pathway, and simultaneously inducing pro-survival Wnt/β-Catenin signaling in hippocampal neurons. Intriguingly, while expression of Dkk1 is required for proper neural development, overexpression of Dkk1 is characteristic of many neurodegenerative diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and temporal lobe epilepsy. In this review, we will briefly summarize the canonical Wnt signaling pathway, highlight the current literature linking alterations of Dkk1 and Wnt/β-Catenin signaling with neurological disease, and discuss E2's role in maintaining the delicate balance of Dkk1 and Wnt/β-Catenin signaling in the adult brain. Finally, we will consider the implications of long-term E2 deprivation and hormone therapy on this crucial neural pathway. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
|
83
|
Kim C, Choi H, Jung ES, Lee W, Oh S, Jeon NL, Mook-Jung I. HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 2012; 7:e42983. [PMID: 22937007 PMCID: PMC3425572 DOI: 10.1371/journal.pone.0042983] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Even though the disruption of axonal transport is an important pathophysiological factor in neurodegenerative diseases including Alzheimer's disease (AD), the relationship between disruption of axonal transport and pathogenesis of AD is poorly understood. Considering that α-tubulin acetylation is an important factor in axonal transport and that Aβ impairs mitochondrial axonal transport, we manipulated the level of α-tubulin acetylation in hippocampal neurons with Aβ cultured in a microfluidic system and examined its effect on mitochondrial axonal transport. We found that inhibiting histone deacetylase 6 (HDAC6), which deacetylates α-tubulin, significantly restored the velocity and motility of the mitochondria in both anterograde and retrograde axonal transports, which would be otherwise compromised by Aβ. The inhibition of HDAC6 also recovered the length of the mitochondria that had been shortened by Aβ to a normal level. These results suggest that the inhibition of HDAC6 significantly rescues hippocampal neurons from Aβ-induced impairment of mitochondrial axonal transport as well as mitochondrial length. The results presented in this paper identify HDAC6 as an important regulator of mitochondrial transport as well as elongation and, thus, a potential target whose pharmacological inhibition contributes to improving mitochondrial dynamics in Aβ treated neurons.
Collapse
Affiliation(s)
- Chaeyoung Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Heesun Choi
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Sun Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Wonik Lee
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soojung Oh
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
- World Class University (WCU) Program of Multiscale Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
- World Class University (WCU) Program of Multiscale Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
84
|
Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson's disease. Prog Neurobiol 2012; 98:207-21. [PMID: 22709943 DOI: 10.1016/j.pneurobio.2012.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/20/2012] [Accepted: 06/08/2012] [Indexed: 12/24/2022]
Abstract
Complex molecular mechanisms underlying the pathogenesis of Parkinson's disease (PD) are gradually being elucidated. Accumulating genetic evidence implicates dysfunction of kinase activities and phosphorylation pathways in the pathogenesis of PD. Causative and risk gene products associated with PD include protein kinases (such as PINK1, LRRK2 and GAK) and proteins related phosphorylation signaling pathways (such as SNCA, DJ-1). PINK1, LRRK2 and several PD gene products have been associated with mitogen-activated protein (MAP) and protein kinase B (AKT) kinase signaling pathways. C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK) and p38, signaling pathways downstream of MAP, are particularly important in PD. JNK and p38 play an integral role in neuronal death. Targeting JNK or p38 signaling may offer an effective therapy for PD. Inhibitors of the ERK signaling pathway, which plays an important role in the development of l-DOPA-induced dyskinesia (LID), have been shown to attenuate this condition in animal models. In this review, we summarize experimental evidence gathered over the last decade on the role of PINK1, LRRK2 and GAK and their related phosphorylation signaling pathways (JNK, ERK, p38 and PI3K/AKT) in PD. It is speculated that improvement or modulation of these signaling pathways will reveal potential therapeutic targets for attenuation of the cardinal symptoms and motor complications in patients with PD in the future.
Collapse
|
85
|
Jellinger KA. Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med 2012; 16:1166-83. [PMID: 22176890 PMCID: PMC3823071 DOI: 10.1111/j.1582-4934.2011.01507.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Abstract
The misfolding and progressive aggregation of specific proteins in selective regions of the nervous system is a seminal occurrence in many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic and experimental differences, increasing evidence indicates considerable overlap between synucleinopathies, tauopathies and other protein-misfolding diseases. Inclusions, often characteristic hallmarks of these disorders, suggest interactions of pathological proteins enganging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Alzheimer, Parkinson, Huntington and prion diseases, have confirmed correlations/overlaps between these and other neurodegenerative disorders. Emerging evidence, in addition to synergistic effects of tau protein, amyloid-β, α-synuclein and other pathologic proteins, suggests that prion-like induction and spreading, involving secreted proteins, are major pathogenic mechanisms in various neurodegenerative diseases, depending on genetic backgrounds and environmental factors. The elucidation of the basic molecular mechanisms underlying the interaction and spreading of pathogenic proteins, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, is a major challenge for modern neuroscience, to provide a deeper insight into their pathogenesis as a basis of effective diagnosis and treatment.
Collapse
|
86
|
Adlard PA, Bush AI. Metal chaperones: a holistic approach to the treatment of Alzheimer's disease. Front Psychiatry 2012; 3:15. [PMID: 22403554 PMCID: PMC3291880 DOI: 10.3389/fpsyt.2012.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/14/2012] [Indexed: 12/16/2022] Open
Abstract
As evidence for the role of metal ion dysregulation in the pathogenesis of multiple CNS disorders grows, it has become important to more precisely identify and differentiate the biological effects of various pharmacological modulators of metal ion homeostasis. This is particularly evident in disorders such as Alzheimer's disease (AD), where the use of metal chaperones (that transport metals), as opposed to chelators (which exclude metals from biological interactions), may prove to be the first truly disease modifying approach for this condition. The purpose of this mini-review is to highlight the emerging notion that metal chaperones, such as PBT2 (Prana Biotechnology), modulate a variety of critical pathways affecting key aspects of the AD cascade to provide a more "holistic" approach to the treatment of this disease.
Collapse
Affiliation(s)
- Paul Anthony Adlard
- The Mental Health Research Institute, University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
87
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|