51
|
Shang C, Zhu YL, Li YQ, Song GJ, Ge CC, Lu J, Xiu ZR, Li WJ, Li SZ, Cong JN, Liu ZR, Li X, Sun LL, Jin NY. Autophagy promotes oncolysis of an adenovirus expressing apoptin in human bladder cancer models. Invest New Drugs 2021; 39:949-960. [PMID: 33534026 DOI: 10.1007/s10637-021-01073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
As a potential cancer therapy, we developed a recombinant adenovirus named Ad-VT, which was designed to express the apoptosis-inducing gene (apoptin) and selectively replicate in cancer cells via E1a manipulation. However, how it performs in bladder cancer remains unclear. We examined the antitumor efficacy of Ad-VT in bladder cancers using CCK-8 assays and xenograft models. Autophagy levels were evaluated by western blotting, MDC staining, and RFP-GFP-LC3 aggregates' analyses. Here, we report the selective replication and antitumor efficacy (viability inhibition and apoptosis induction) of Ad-VT in bladder cancer cells. Using xenograft tumor models, we demonstrate that its effects are tumor specific resulting in the inhibition of tumor growth and improvement of the survival of mice models. Most Importantly, Ad-VT induced a complete autophagy flux leading to autophagic cancer cell death through a signaling pathway involving AMPK, raptor and mTOR. Finally, we suggest that treatment combination of Ad-VT and rapamycin results in a synergistic improvement of tumor control and survival compared to monotherapy. This study suggests that Ad-VT can induce selective autophagic antitumor activities in bladder cancer through the AMPK-Raptor-mTOR pathway, which can be further improved by rapamycin.
Collapse
Affiliation(s)
- Chao Shang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Liuying west road, 666, Jingyue Economic & Technological Development Zone, Changchun, Jilin, 130122, People's Republic of China
| | - Yi-Long Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130021, People's Republic of China
| | - Yi-Quan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130021, People's Republic of China
| | - Gao-Jie Song
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China
| | - Chen-Chen Ge
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jing Lu
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China
| | - Zhi-Ru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130021, People's Republic of China
| | - Wen-Jie Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Liuying west road, 666, Jingyue Economic & Technological Development Zone, Changchun, Jilin, 130122, People's Republic of China
| | - Shan-Zhi Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130021, People's Republic of China
| | - Jia-Nan Cong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Liuying west road, 666, Jingyue Economic & Technological Development Zone, Changchun, Jilin, 130122, People's Republic of China
| | - Zi-Rui Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Liuying west road, 666, Jingyue Economic & Technological Development Zone, Changchun, Jilin, 130122, People's Republic of China
| | - Xiao Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Liuying west road, 666, Jingyue Economic & Technological Development Zone, Changchun, Jilin, 130122, People's Republic of China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130021, People's Republic of China.
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| | - Li-Li Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Liuying west road, 666, Jingyue Economic & Technological Development Zone, Changchun, Jilin, 130122, People's Republic of China.
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, 130012, People's Republic of China.
| | - Ning-Yi Jin
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Liuying west road, 666, Jingyue Economic & Technological Development Zone, Changchun, Jilin, 130122, People's Republic of China.
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130021, People's Republic of China.
- Medical College, Yanbian University, Yanji, 133002, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
52
|
Lu W, Cai H, Chen Y, Liao X, Zhang L, Ma T, Sun H, Qi Y. Ghrelin inhibited pressure overload-induced cardiac hypertrophy by promoting autophagy via CaMKK/AMPK signaling pathway. Peptides 2021; 136:170446. [PMID: 33197510 DOI: 10.1016/j.peptides.2020.170446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023]
Abstract
Ghrelin, a novel gut hormone, has been shown to exert protective effects on cardiac dysfunction and remodeling. However, the underlying mechanisms of its protective effects remain unclear. Here, we investigated the effects of ghrelin on cardiac hypertrophy and explored the mechanisms involved. Ghrelin (30 μg.kg-1. day-1) was systemically administered to rats with cardiac hypertrophy induced by abdominal aortic constriction (AAC) by a mini-osmotic pump the next day after surgery continuously for 4 weeks. The AAC treated rats without ghrelin infusion showed decreased ghrelin content and expression of its receptors in the hearts. Exogenous ghrelin greatly attenuated cardiac hypertrophy as shown by heart weight to tibial length (HW/TL), hemodynamics, echocardiography, histological analyses, and expression of hypertrophic markers induced by AAC. This corresponded with decreased cardiac fibrosis and inflammation in the hearts of AAC rats treated with ghrelin. Moreover, ghrelin significantly increased the myocardial expression of autophagy markers, which was further confirmed in cultured cardiomyocytes. Concurrently, cardiomyocyte apoptosis in vivo and in vitro was ameliorated by ghrelin, which was reversed by inhibition of autophagy. The enhancement of autophagy and inhibition of apoptosis by ghrelin were eliminated on pretreatment with compound C, an AMP-activated protein kinase (AMPK) inhibitor. Furthermore, inhibition of Ca2+/Calmodulin-dependent protein kinase kinase (CaMKK), an upstream kinase of AMPK, made ghrelin fail to activate AMPK and simultaneously reversed ghrelin's promotion of autophagy. In conclusion, ghrelin could exert its cardioprotective effects on cardiac hypertrophy by promoting autophagy, possibly via CaMKK/AMPK signaling pathway.
Collapse
Affiliation(s)
- Weiwei Lu
- Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China.
| | - Huaiqiu Cai
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yao Chen
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiang Liao
- Department of Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Linshuang Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tongtong Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yongfen Qi
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
53
|
Liu W, Miao Y, Zhang L, Xu X, Luan Q. MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered 2020; 11:189-200. [PMID: 32050841 PMCID: PMC7039642 DOI: 10.1080/21655979.2020.1729322] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of neuronal survival during cerebral ischemia/reperfusion injury. Accumulating evidence has shown that miR-211 plays a crucial role in regulating apoptosis and survival in various cell types. However, whether miR-211 is involved in regulating neuronal survival during cerebral ischemia/reperfusion injury remains unknown. In this study, we aimed to explore the biological role of miR-211 in regulating neuronal injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) and transient cerebral ischemia/reperfusion (I/R) injury in vitro and in vivo. We found that miR-211 expression was significantly downregulated in PC12 cells in response to OGD/R and in the penumbra of mouse in response to MCAO. Overexpression of miR-211 alleviated OGD/R-induced PC12 cell apoptosis, whereas miR-211 inhibition facilitated OGD/R-induced PC12 cell apoptosis in vitro. Moreover, overexpression of miR-211 reduced infarct volumes, neurologic score, and neuronal apoptosis in vivo, whereas miR-211 inhibition increased infarct volumes, neurologic score and neuronal apoptosis in vivo. Notably, our results identified P53-up-regulated modulator of apoptosis (PUMA) as a target gene of miR-211. Our findings suggested that miR-211 may protect against MCAO injury by targeting PUMA in rats, which paves a potential new way for the therapy of cerebral I/R injury.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuanqing Miao
- Department of Medical Network Information Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lin Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaolin Xu
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qi Luan
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
54
|
Cao Y, Pan L, Zhang X, Guo W, Huang D. LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression. Metab Brain Dis 2020; 35:1361-1369. [PMID: 32860611 DOI: 10.1007/s11011-020-00607-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are bound up with various human diseases. However, their roles in brain ischemia-reperfusion (I/R) injury remain largely unknown. This study aimed to reveal the potential mechanism of LncRNA SNHG3 on autophagy-induced neuronal cell apoptosis in the brain I/R injury. LncRNA SNHG3 and miR-485 or autophagy markers LC3II/I and Beclin-1 expressions were detected by qRT-PCR or Western blot and the apoptosis of N2a cells was analyzed by flow cytometry. Besides, the interactions between LncRNA SNHG3 and miR-485, miR-485 and ATG7 were validated by RNA pull-down and dual-luciferase reporter system assays. After the Oxygen and Glucose Deprivation (OGD) treatment of N2a cells transfected with pcDNA-SNHG3, pcDNA-SNHG3 + miR-485 mimic for 6 h, 1 mM autophagy inhibitor 3-MA was added and reoxygenated for 24 h, the effect of LncRNA SNHG3 on the autophagy-induced neuronal cell apoptosis was measured by Western blot and flow cytometry. LncRNA SNHG3 was highly expressed in the mouse model of transient middle cerebral artery occlusion and cell model of Oxygen and Glucose Deprivation/Reperfusion, while miR-485 was lowly expressed. Furthermore, miR-485 negatively regulated the luciferase activities of LncRNA SNHG3 and ATG7. After the OGD treatment of N2a cells transfected with pcDNA-SNHG3, pcDNA-SNHG3 + miR-485 mimic for 6 h, 1 mM 3-MA was added and reoxygenated for 24 h, the overexpression of LncRNA SNHG3 raised the ratio of LC3-II/LC3-I and Beclin-1 expression and boosted the apoptosis of N2a cells, while these effects were reversed after the transfection of miR-485 mimic. In general, our data expounded that the interference with LncRNA SNHG3 improved brain I/R injury by up-regulating miR-485 and down-regulating ATG7 to restrain autophagy and neuronal cell apoptosis.
Collapse
Affiliation(s)
- Yanbin Cao
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Lihua Pan
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Xuejun Zhang
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Wenbin Guo
- Department of Neurosurgery, Weihai municipal hospital, Weihai, Shandong, China
| | - Dezhang Huang
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo college of Medicine, Shandong University, No.758 Hefei Road, Qingdao, 266035, Shandong Province, China.
| |
Collapse
|
55
|
Hypoxia Helps Maintain Nucleus Pulposus Homeostasis by Balancing Autophagy and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5915481. [PMID: 33029281 PMCID: PMC7528147 DOI: 10.1155/2020/5915481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of lower back pain. Programmed cell death (PCD) including apoptosis and autophagy is known to play key mechanistic roles in the development of IVDD. We hypothesized that the nucleus pulposus cells that make up the center of the IVD can be affected by aging and environmental oxygen concentration, thus affecting the development of IVDD. Here, we evaluated the phenotype changes and PCD signaling in nucleus pulposus cells in two different oxygen percentages (5% (hypoxia) and 20% (normoxia)) up to serial passage 20. NP cells were isolated from the lumbar discs of rats, and the chondrogenic, autophagic, and apoptotic gene expressions were analyzed during cell culture up to serial passage 20. Hypoxia significantly increased the number of autophagosomes, as determined by monodansylcadaverine staining and transmission electron microscopy. Furthermore, hypoxia triggered the activation of autophagic flux (beclin-1, LC3-II/LC3-I ratio, and SIRT1) with a concomitant decrease in the expression of apoptotic proteins (Bax and caspase-3). Despite injury and age differences, no significant differences were observed between the ex vivo lumbar disc cultures of groups incubated in the hypoxic chamber. Our study provides a better understanding of autophagy- and apoptosis-related senescence in NP cells. These results also provide insight into the effects of aging on NP cells and their PCD levels during aging.
Collapse
|
56
|
Zhu J, Yang LK, Wang QH, Lin W, Feng Y, Xu YP, Chen WL, Xiong K, Wang YH. NDRG2 attenuates ischemia-induced astrocyte necroptosis via the repression of RIPK1. Mol Med Rep 2020; 22:3103-3110. [PMID: 32945444 PMCID: PMC7453600 DOI: 10.3892/mmr.2020.11421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia results in severe brain damage, and is a leading cause of death and long-term disability. Previous studies have investigated methods to activate astrocytes in order to promote repair in injured brain tissue and inhibit cell death. It has previously been shown that N-myc downstream-regulated gene 2 (NDRG2) was highly expressed in astrocytes and associated with cell activity, but the underlying mechanism is largely unknown. The present study generated NDRG2 conditional knockout (Ndrg2-/-) mice to investigate whether NDRG2 can block ischemia-induced astrocyte necroptosis by suppressing receptor interacting protein kinase 1 (RIPK1) expression. This study investigated astrocyte activity in cerebral ischemia, and identified that ischemic brain injuries could trigger RIP-dependent astrocyte necroptosis. The depletion of NDRG2 was found to accelerate permanent middle cerebral artery occlusion-induced necroptosis in the brain tissue of Ndrg2-/- mice, indicating that NDRG2 may act as a neuroprotector during cerebral ischemic injury. The present study suggested that NDRG2 attenuated astrocytic cell death via the suppression of RIPK1. The pharmacological inhibition of astrocyte necroptosis by necrostatin-1 provided neuroprotection against ischemic brain injuries after NDRG2 knockdown. Therefore, NDRG2 could be considered as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Li-Kun Yang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Qiu-Hong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Wei Lin
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yi Feng
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ye-Ping Xu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei-Liang Chen
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
57
|
Lai Z, Gu L, Yu L, Chen H, Yu Z, Zhang C, Xu X, Zhang M, Zhang M, Ma M, Zhao Z, Zhang J. Delta opioid peptide [d-Ala2, d-Leu5] enkephalin confers neuroprotection by activating delta opioid receptor-AMPK-autophagy axis against global ischemia. Cell Biosci 2020; 10:79. [PMID: 32549974 PMCID: PMC7294676 DOI: 10.1186/s13578-020-00441-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Background Ischemic stroke poses a severe risk to human health worldwide, and currently, clinical therapies for the disease are limited. Delta opioid receptor (DOR)-mediated neuroprotective effects against ischemia have attracted increasing attention in recent years. Our previous studies revealed that DOR activation by [d-Ala2, d-Leu5] enkephalin (DADLE), a selective DOR agonist, can promote hippocampal neuronal survival on day 3 after ischemia. However, the specific molecular and cellular mechanisms underlying the DOR-induced improvements in ischemic neuronal survival remain unclear. Results We first detected the cytoprotective effects of DADLE in an oxygen–glucose deprivation/reperfusion (OGD/R) model and observed increased viability of OGD/R SH-SY5Y neuronal cells. We also evaluated changes in the DOR level following ischemia/reperfusion (I/R) injury and DADLE treatment and found that DADLE increased DOR levels after ischemia in vivo and vitro. The effects of DOR activation on postischemic autophagy were then investigated, and the results of the animal experiment showed that DOR activation by DADLE enhanced autophagy after ischemia, as indicated by elevated LC3 II/I levels and reduced P62 levels. Furthermore, the DOR-mediated protective effects on ischemic CA1 neurons were abolished by the autophagy inhibitor 3-methyladenine (3-MA). Moreover, the results of the cell experiments revealed that DOR activation not only augmented autophagy after OGD/R injury but also alleviated autophagic flux dysfunction. The molecular pathway underlying DOR-mediated autophagy under ischemic conditions was subsequently studied, and the in vivo and vitro data showed that DOR activation elevated autophagy postischemia by triggering the AMPK/mTOR/ULK1 signaling pathway, while the addition of the AMPK inhibitor compound C eliminated the protective effects of DOR against I/R injury. Conclusion DADLE-evoked DOR activation enhanced neuronal autophagy through activating the AMPK/mTOR/ULK1 signaling pathway to improve neuronal survival and exert neuroprotective effects against ischemia.
Collapse
Affiliation(s)
- Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lingling Gu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Zhenhua Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Cheng Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Xiaoqing Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Mutian Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| | - Mingliang Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China.,Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| |
Collapse
|
58
|
Duan C, Kuang L, Xiang X, Zhang J, Zhu Y, Wu Y, Yan Q, Liu L, Li T. Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways. Cell Death Dis 2020; 11:251. [PMID: 32312970 PMCID: PMC7170874 DOI: 10.1038/s41419-020-2461-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
The adaptation of mitochondrial homeostasis to ischemic injury is not fully understood. Here, we studied the role of dynamin-related protein 1 (Drp1) in this process. We found that mitochondrial morphology was altered in the early stage of ischemic injury while mitochondrial dysfunction occurred in the late stage of ischemia. Drp1 appeared to inhibit mitophagy by upregulating mito-Clec16a, which suppressed mito-Parkin recruitment and subsequently impaired the formation of autophagosomes in vascular tissues after ischemic injury. Moreover, ischemia-induced Drp1 activation enhanced apoptosis through inducing mitochondrial translocation of BAX and thereby increasing release of Cytochrome C to activate caspase-3/-9 signalling. Furthermore, Drp1 mediated metabolic disorders and inhibited the levels of mitochondrial glutathione to impair free radical scavenging, leading to further increases in ROS and the exacerbation of mitochondrial dysfunction after ischemic injury. Together, our data suggest a critical role for Drp1 in ischemic injury.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Qingguang Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, P. R. China.
| |
Collapse
|
59
|
Ortiz-Rodriguez A, Arevalo MA. The Contribution of Astrocyte Autophagy to Systemic Metabolism. Int J Mol Sci 2020; 21:E2479. [PMID: 32260050 PMCID: PMC7177973 DOI: 10.3390/ijms21072479] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an essential mechanism to maintain cellular homeostasis. Besides its role in controlling the quality of cytoplasmic components, it participates in nutrient obtaining and lipid mobilization under stressful conditions. Furthermore, autophagy is involved in the regulation of systemic metabolism as its blockade in hypothalamic neurons can affect the central regulation of metabolism and impact body energy balance. Moreover, hypothalamic autophagy can be altered during obesity, one of the main alterations of metabolism nowadays. In this review, we focus on the role of astrocytes, essential cells for brain homeostasis, which represent key metabolic regulators. Astrocytes can sense metabolic signals in the hypothalamus and modulate systemic functions as glucose homeostasis and feeding response. Moreover, the response of astrocytes to obesity has been widely studied. Astrocytes are important mediators of brain inflammation and can be affected by increased levels of saturated fatty acids associated with obesity. Although autophagy plays important roles for astrocyte homeostasis and functioning, the contribution of astrocyte autophagy to systemic metabolism has not been analyzed yet. Furthermore, how obesity can impact astrocyte autophagy is poorly understood. More studies are needed in order to understand the contribution of astrocyte autophagy to metabolism.
Collapse
Affiliation(s)
- Ana Ortiz-Rodriguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
| | - Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
60
|
Li X, Huang L, Liu G, Fan W, Li B, Liu R, Wang Z, Fan Q, Xiao W, Li Y, Fang W. Ginkgo diterpene lactones inhibit cerebral ischemia/reperfusion induced inflammatory response in astrocytes via TLR4/NF-κB pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112365. [PMID: 31678414 DOI: 10.1016/j.jep.2019.112365] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. (Ginkgoaceae) is a traditional Chinese medicine known to treating stroke and other cardio-cerebrovascular diseases for thousands of years in China. Ginkgo diterpene lactones (GDL) attracted much attention because of their neuroprotective properties. AIM OF THE STUDY To uncover the effects of GDL, which consist of ginkgolide A (GA), ginkgolide B (GB), and ginkgolide K (GK), on ischemic stroke, as well as the underlying molecular mechanisms. MATERIALS AND METHODS We used middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models mimicking the process of ischemia/reperfusion in vivo and in vitro, respectively. Anticoagulant effects of GDL were investigated on platelet activating factor (PAF), arachidonic acid (AA) and adenosine diphosphate (ADP)-induced platelet aggregation both in vivo and in vitro. We also evaluated the effects of GDL on lipopolysaccharide (LPS)-induced inflammatory response in primary cultured rats' astrocytes. Infarct size, neurological deficit score, and brain edema were measured at 72 h after MCAO. Immunohistochemistry was utilized to analyze neurons necrosis and astrocytes activation. Expression of pro-inflammatory cytokines, including tumor necrotic factor-α (TNF-α) and interleukin-1β (IL-1β) were detected using enzyme-linked immunosorbent assay (ELISA) and real time PCR. The levels of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) were assessed by real time PCR or Western blot. RESULTS Compared with MCAO/R rats, GDL significantly reduced infarct size and brain edema, improved neurological deficit score. Meanwhile, GDL suppressed platelet aggregation, astrocytes activation, pro-inflammatory cytokines releasing, TLR4 mRNA expression and transfer of NF-κB from cytoplasm to nucleus. Furthermore, GDL alleviated OGD/R injury and LPS-induced inflammatory response in primary astrocytes, characterized by promoting cell viability, decreasing lactate dehydrogenase (LDH) activity, and inhibiting IL-1β and TNF-α releasing. CONCLUSIONS In summary, GDL attenuate cerebral ischemic injury, inhibit platelet aggregation and astrocytes activation. The anti-inflammatory activity might be associated with the downregulation of TLR4/NF-κB signal pathway. Our present findings provide an innovative insight into the novel treatment of GDL in ischemic stroke therapy.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Rui Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qiru Fan
- Faculty of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
61
|
Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 2020; 17:46. [PMID: 32014002 PMCID: PMC6998092 DOI: 10.1186/s12974-020-1725-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are suspected to exert neuroprotective effects in brain injury, in part through the secretion of extracellular vesicles like exosomes containing bioactive compounds. We now investigate the mechanism by which bone marrow MSCs (BMSCs)-derived exosomes harboring the small non-coding RNA miR-29b-3p protect against hypoxic-ischemic brain injury in rats. METHODS We established a rat model of middle cerebral artery occlusion (MCAO) and primary cortical neuron or brain microvascular endothelial cell (BMEC) models of oxygen and glucose deprivation (OGD). Exosomes were isolated from the culture medium of BMSCs. We treated the MCAO rats with BMSC-derived exosomes in vivo, and likewise the OGD-treated neurons and BMECs in vitro. We then measured apoptosis- and angiogenesis-related features using TUNEL and CD31 immunohistochemical staining and in vitro Matrigel angiogenesis assays. RESULTS The dual luciferase reporter gene assay showed that miR-29b-3p targeted the protein phosphatase and tensin homolog (PTEN). miR-29b-3p was downregulated and PTEN was upregulated in the brain of MCAO rats and in OGD-treated cultured neurons. MCAO rats and OGD-treated neurons showed promoted apoptosis and decreased angiogenesis, but overexpression of miR-29b-3p or silencing of PTEN could reverse these alterations. Furthermore, miR-29b-3p could negatively regulate PTEN and activate the Akt signaling pathway. BMSCs-derived exosomes also exerted protective effects against apoptosis of OGD neurons and cell apoptosis in the brain samples from MCAO rats, where we also observed promotion of angiogenesis. CONCLUSION BMSC-derived exosomal miR-29b-3p ameliorates ischemic brain injury by promoting angiogenesis and suppressing neuronal apoptosis, a finding which may be of great significance in the treatment of hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Jinchuan Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
62
|
Xu Z, Lü FY, Jiang EH, Zhao XP, Shang ZJ. [Relationship among areca nut, intracellular reactive oxygen species, and autophagy]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:80-85. [PMID: 32037771 PMCID: PMC7184295 DOI: 10.7518/hxkq.2020.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 09/27/2019] [Indexed: 12/31/2022]
Abstract
The relationship between areca nut as a primary carcinogen and oral cancer has been widely concerned. Areca can change the levels of reactive oxygen species (ROS) and autophagy in cells, and the levels of ROS and autophagy are closely related to the occurrence and development of tumors. This paper reviewed the relationships among areca nut, intracellular ROS, and autophagy.
Collapse
Affiliation(s)
- Zhi Xu
- Dept. of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng-Yuan Lü
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Er-Hui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology Hubei-MOST & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiao-Ping Zhao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng-Jun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology Hubei-MOST & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
63
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
64
|
Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2019; 122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes can serve multiple functions in maintaining cellular homeostasis of the central nervous system (CNS), and normal functions for autophagy in astrocytes is considered to have very vital roles in the pathogenesis of aging and neurodegenerative diseases. Autophagy is a major intracellular lysosomal (or its yeast analog, vacuolar) clearance pathways involved in the degradation and recycling of long-lived proteins, oxidatively damaged proteins and dysfunctional organelles by lysosomes. Current evidence has shown that autophagy might influence inflammation, oxidative stress, aging and function of astrocytes. Although the interrelation between autophagy and inflammation, oxidative stress, aging or neurological disorders have been addressed in detail, the influence of astrocytes mediated-autophagy in aging and neurodegenerative disorders has yet to be fully reviewed. In this review, we will summarize the most up-to-date findings and highlight the role of autophagy in astrocytes and link autophagy of astrocytes to aging and neurodegenerative diseases. Due to the prominent roles of astrocytic autophagy in age-related neurodegenerative diseases, we believe that we can provide new suggestions for the treatment of these disorders.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
65
|
MiRNA-199a-5p Protects Against Cerebral Ischemic Injury by Down-Regulating DDR1 in Rats. World Neurosurg 2019; 131:e486-e494. [DOI: 10.1016/j.wneu.2019.07.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/20/2022]
|
66
|
Nazarinia D, Aboutaleb N, Gholamzadeh R, Nasseri Maleki S, Mokhtari B, Nikougoftar M. Conditioned medium obtained from human amniotic mesenchymal stem cells attenuates focal cerebral ischemia/reperfusion injury in rats by targeting mTOR pathway. J Chem Neuroanat 2019; 102:101707. [PMID: 31672459 DOI: 10.1016/j.jchemneu.2019.101707] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Conditioned medium obtained from human amniotic mesenchymal stem cells (hAMSC-CM) was recently shown to have many antioxidant, antiapoptotic and proangiogenic growth factors. The present study was performed to investigate whether protective effects of hAMSC-CM against focal cerebral ischemia/ reperfusion (I/R) injury is associated with modulation of the mammalian target of rapamycin (mTOR) pathway. A rat model of middle cerebral artery occlusion (MCAO) was created and the animals were divided into three groups including sham, MCAO and MCAO + hAMSC-CM. Drug was administrated immediately after cerebral reperfusion (i.v). The expressions of mTOR, p-mTOR and LC3 were measured using Western blotting and real time-PCR, respectively. Apoptosis and neuronal loss were determined using TUNEL and Nissl staining, respectively. Infarct volume and the blood-brain barrier (BBB) damage were evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans Blue (EB) uptake, respectively. Compared with sham, significant infarct volume, apoptotic cell death, and neuronal loss were found in MCAO rats that reversed by hAMSC-CM (P < 0.05). Likewise, MCAO rats exhibited increased mRNA level of light-chain 3 (LC3) and the LC3II/LC3I ratio as well as decreased expression level of p-mTOR that reversed by hAMSC-CM (P < 0.05). There were no significant differences in the expression of total mTOR among the experimental groups. In summary, our results demonstrate that hAMSC-CM gives rise to neuroprotection following ischemic stroke by restoring mTOR activity and inhibiting autophagy.
Collapse
Affiliation(s)
- Donya Nazarinia
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Raheleh Gholamzadeh
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Mokhtari
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
67
|
Dexmedetomidine Protects Against Oxygen-Glucose Deprivation-Induced Injury Through Inducing Astrocytes Autophagy via TSC2/mTOR Pathway. Neuromolecular Med 2019; 22:210-217. [PMID: 31654225 PMCID: PMC7230061 DOI: 10.1007/s12017-019-08576-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Although there is an increment in stroke burden in the world, stroke therapeutic strategies are still extremely limited to a minority of patients. We previously demonstrated that dexmedetomidine (DEX) protects against focal cerebral ischemia via inhibiting neurons autophagy. Nevertheless, the role of DEX in regulating astrocytes autophagic status in oxygen–glucose deprivation, a condition that mimics cerebral ischemia, is still unknown. In this study, we have shown that DEX and DEX + RAPA (autophagy inducer) increased viability and reduced apoptosis of primary astrocytes in oxygen–glucose deprivation (OGD) model compared with DEX + 3-methyladenine (3-MA) (autophagy inhibitor). DEX induced the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1, while reduced the expression of p62 in primary cultured astrocytes through induction of autophagy. In addition, DEX enhanced the expression of tuberous sclerosis complex 2 (TSC2) in primary cultured astrocytes, while reduced the expression of mammalian target of rapamycin (mTOR). In conclusion, our study suggests that DEX exerts a neuroprotection against OGD-induced astrocytes injury via activation of astrocytes autophagy by regulating the TSC2/mTOR signaling pathway, which provides a new insight into the mechanisms of DEX treatment for acute ischemic injury.
Collapse
|
68
|
Yue J, Wang XS, Feng B, Hu LN, Yang LK, Lu L, Zhang K, Wang YT, Liu SB. Activation of G-Protein-Coupled Receptor 30 Protects Neurons against Excitotoxicity through Inhibiting Excessive Autophagy Induced by Glutamate. ACS Chem Neurosci 2019; 10:4227-4236. [PMID: 31545891 DOI: 10.1021/acschemneuro.9b00287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a protecting intracellular pathway to transmit unnecessary or dysfunctional components to the lysosome for degeneration. Autophagic imbalance is connected with neurodegeneration. Neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and Huntington's disease are closely related to excitotoxicity and neuronal loss. Activation of G-protein-coupled receptor 30 (GPR30), an estrogen membrane receptor, protects neurons from excitotoxicity-induced cell death. However, whether autophagy is involved in the neuroprotective effect of GPR30 activation is not well-known. In this study, methyl thiazolyl tetrazolium (MTT), Western blot, monodansylcadaverine (MDC) staining, and immunofluorescent staining were employed to detect the role of autophagy in cultured primary cortical neurons after glutamate exposure and G1 treatment. Pretreatment of G1 (GPR30 specific agonist) reduced neuronal loss through inhibiting excessive autophagy induced by glutamate exposure, which was blocked by GPR30 antagonist G15, phosphatidylinositol-3-kinase (PI3K), and the mammalian target of rapamycin (mTOR) inhibitors. These data suggest that GPR30 protects neurons from cell loss primarily by modulating PI3K-AKT-mTOR signaling pathway. In addition, G1 alone did not affect the basal autophagy and cell viability. We conclude that GPR30 activation reduces glutamate-induced excessive autophagy in neurons and protects neurons against excitotoxicity.
Collapse
Affiliation(s)
- Jiao Yue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an 710032, China
| | - Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an 710032, China
| | - Li-ning Hu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Liu-kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Ya-tao Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
69
|
Li Y, Song AM, Fu Y, Walayat A, Yang M, Jian J, Liu B, Xia L, Zhang L, Xiao D. Perinatal nicotine exposure alters Akt/GSK-3β/mTOR/autophagy signaling, leading to development of hypoxic-ischemic-sensitive phenotype in rat neonatal brain. Am J Physiol Regul Integr Comp Physiol 2019; 317:R803-R813. [PMID: 31553625 DOI: 10.1152/ajpregu.00218.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Maternal cigarette smoking is a major perinatal insult that contributes to an increased risk of cardiovascular and neurodevelopmental diseases in offspring. Our previous studies revealed that perinatal nicotine exposure reprograms a sensitive phenotype in neonatal hypoxic-ischemic encephalopathy (HIE), yet the underlying molecular mechanisms remain largely elusive. The present study tested the hypothesis that perinatal nicotine exposure impacts autophagy signaling in the developing brain, resulting in enhanced susceptibility to neonatal HIE. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Neonatal HIE was conducted in 9-day-old male rat pups. Protein kinase B/glycogen synthase kinase-3β/mammalian target of rapamycin (Akt/GSK-3β/mTOR) signaling and key autophagy markers were determined by Western blotting analysis. Rapamycin and MK2206 were administered via intracerebroventricular injection. Nicotine exposure significantly inhibited autophagy activities in neonatal brain tissues, characterized by an increased ratio of phosphoylated (p-) to total mTOR protein expression but reduced levels of autophagy-related 5, Beclin 1, and LC3βI/II. Treatment with mTOR inhibitor rapamycin effectively blocked nicotine-mediated autophagy deficiency and, more importantly, reversed the nicotine-induced increase in HI brain infarction. In addition, nicotine exposure significantly upregulated p-Akt and p-GSK-3β. Treatment with the Akt selective inhibitor MK2206 reversed the enhanced p-Akt and p-GSK-3β, restored basal autophagic flux, and abolished nicotine-mediated HI brain injury. These findings suggest that perinatal nicotine-mediated alteration of Akt/GSK-3β/mTOR signaling plays a key role in downregulation of autophagic flux, which contributes to the development of hypoxia/ischemia-sensitive phenotype in the neonatal brain.
Collapse
Affiliation(s)
- Yong Li
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Andrew M Song
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Yingjie Fu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Andrew Walayat
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Meizi Yang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Jie Jian
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Bailin Liu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Liang Xia
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Daliao Xiao
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
70
|
Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep 2019; 39:BSR20191452. [PMID: 31420372 PMCID: PMC6732367 DOI: 10.1042/bsr20191452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cerebral ischemia–reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κB (NF-κB)/p53 pathway in cerebral I/R rats. Methods: Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given intraperitoneally (i.p.) after the 2-h ischemia, and Pifithrin-α (PFT-α, p53 inhibitor), SN50 (NF-κB inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, respectively. Results: The neurological deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT-α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT-α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT-α and ginkgetin. Conclusion: Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κB/p53 signaling pathway.
Collapse
|
71
|
Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, Pang A, Kong L. TIGAR Attenuates High Glucose-Induced Neuronal Apoptosis via an Autophagy Pathway. Front Mol Neurosci 2019; 12:193. [PMID: 31456661 PMCID: PMC6700368 DOI: 10.3389/fnmol.2019.00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023] Open
Abstract
Hyperglycemia-induced neuronal apoptosis is one of the important reasons for diabetic neuropathy. Long-time exposure to high glucose accelerates many aberrant glucose metabolic pathways and eventually leads to neuronal injury. However, the underlying mechanisms of metabolic alterations remain unknown. TP53-inducible glycolysis and apoptosis regulator (TIGAR) is an endogenous inhibitor of glycolysis and increases the flux of pentose phosphate pathway (PPP) by regulating glucose 6-phosphate dehydrogenase (G6PD). TIGAR is highly expressed in neurons, but its role in hyperglycemia-induced neuronal injury is still unclear. In this study, we observed that TIGAR and G6PD are decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Correspondingly, in cultured primary neurons and Neuro-2a cell line, stimulation with high glucose induced significant neuronal apoptosis and down-regulation of TIGAR expression. Overexpression of TIGAR reduced the number of TUNEL-positive neurons and prevented the activation of Caspase-3 in cultured neurons. Furthermore, enhancing the expression of TIGAR rescued high glucose-induced autophagy impairment and the decrease of G6PD. Nitric oxide synthase 1 (NOS1), a negative regulator of autophagy, is also inhibited by overexpression of TIGAR. Inhibition of autophagy abolished the protective effect of TIGAR in neuronal apoptosis in Neuro-2a. Importantly, overexpression of TIGAR in the hippocampus ameliorated STZ-induced cognitive impairment in mice. Therefore, our data demonstrated that TIGAR may have an anti-apoptosis effect via up-regulation of autophagy in diabetic neuropathy.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuan Yao
- Department of Physical Education, Shanghai Normal University, Shanghai, China
| | - Jinxing Li
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong Wu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Man Zhao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zongting Yan
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Aimei Pang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
72
|
Thiebaut AM, Hedou E, Marciniak SJ, Vivien D, Roussel BD. Proteostasis During Cerebral Ischemia. Front Neurosci 2019; 13:637. [PMID: 31275110 PMCID: PMC6594416 DOI: 10.3389/fnins.2019.00637] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation.
Collapse
Affiliation(s)
- Audrey M Thiebaut
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France
| | - Elodie Hedou
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Denis Vivien
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France.,Department of Clinical Research, University of Caen Normandy, Caen, France
| | - Benoit D Roussel
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France
| |
Collapse
|
73
|
Zhang JY, Lee JH, Gu X, Wei ZZ, Harris MJ, Yu SP, Wei L. Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. J Neurotrauma 2019; 35:802-813. [PMID: 29108471 DOI: 10.1089/neu.2016.4871] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disorder, but no effective therapies currently exist. An underlying pathophysiology of TBI includes the pathological elevation of autophagy. β-Catenin, a downstream mediator of the canonical Wnt pathway, is a repressor of autophagy. The Wnt/β-catenin pathway plays a crucial role in cell proliferation and neuronal plasticity/repair in the adult brain. We hypothesized that activation of this pathway could promote neuroprotection and neural regeneration following TBI. In the controlled cortical impact (CCI) model of TBI in C57BL/6 mice (total n = 160), we examined intranasal application of recombinant Wnt3a (2 μg/kg) in a short-term (1 dose/day for 2 days) and long-term (1 dose/day for 7 days) regimen. Immunohistochemistry was performed at 1 to 14 days post-TBI to assess cell death and neurovascular regeneration. Western blotting measured canonical Wnt3a activity, expression of growth factors, and cell death markers. Longitudinal behavior assays evaluated functional recovery. In short-term experiments, Wnt3a treatment with a 60-min delay post-TBI suppressed TBI-induced autophagic activity in neurons (44.3 ± 6.98 and 4.25 ± 2.53 LC3+/NeuN+ double positive cells in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.0001, n = 5/group), reduced autophagic markers light chain 3 (LC3)-II and Beclin-1, as well as injury markers caspase-3 and matrix metalloproteinase 9 (MMP-9). The Wnt3a treatment reduced cell death and contusion volume (0.72 ± 0.07 mm2 and 0.26 ± 0.04 mm2 in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.001, n = 5/group). The 7-day Wnt3a treatment increased levels of β-catenin and growth factors glial-derived growth factor (GDNF) and vascular endothelial growth factor (VEGF). This chronic Wnt3a therapy augmented neurogenesis (0.52 ± 0.09 and 1.25 ± 0.13 BrdU+/NeuN+ co-labeled cells in TBI+Saline mice and TBI+Wnt3a mice, respectively; p < 0.01, n = 6/group) and angiogenesis (0.26 ± 0.07 and 0.74 ± 0.13 BrdU+/GLUT1+ co-labeled cells in TBI+Saline and TBI+Wnt3a mice, respectively; p = 0.014, n = 6/group). The treatment improved performance in the rotarod test and adhesive removal test. Targeting the Wnt pathway implements a unique combination of protective and regenerative approaches after TBI.
Collapse
Affiliation(s)
- James Ya Zhang
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jin Hwan Lee
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Xiaohuan Gu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Zheng Zachory Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | | | - Shan Ping Yu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Ling Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia .,2 Department of Neurology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
74
|
Zhang DM, Zhang T, Wang MM, Wang XX, Qin YY, Wu J, Han R, Sheng R, Wang Y, Chen Z, Han F, Ding Y, Li M, Qin ZH. TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 2019; 137:13-23. [PMID: 30978385 DOI: 10.1016/j.freeradbiomed.2019.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
Autophagy has been reported to play protective and pathogenetic roles in cerebral ischemia/reperfusion (I/R)-induced neuronal injury. Our previous studies have shown that TP53-induced glycolysis and apoptosis regulator (TIGAR) ameliorates I/R-induced brain injury and reduces anti-cancer drug-induced autophagy activation. However, if TIGAR plays a regulatory role on autophagy in cerebral I/R injury is still unclear. The purpose of the present study is to investigate the role of TIGAR on I/R-induced autophagy activation and ischemic neuronal injury in vivo and in vitro stroke models using TIGAR-transgenic (tg-TIGAR) mice and TIGAR-knockout (ko-TIGAR) mice. The present study confirmed that autophagy was activated after I/R. Overexpression of TIGAR in tg-TIGAR mice significantly reduced I/R-induced autophagy activation and alleviated brain damage, while knockout of TIGAR in ko-TIGAR mice enhanced I/R-induced autophagy activation and exacerbated brain injury in vivo and in vitro. The different activity of autophagy in tg-TIGAR and ko-TIGAR primary neurons after OGD/R were largely reversed by knockdown or re-expression of TIGAR in these neurons. The autophagy inhibitor 3-methyladenine (3-MA) partly prevented exacerbation of brain damage induced by ko-TIGAR, whereas the autophagy inducer rapamycin partially abolished the neuroprotective effect of tg-TIGAR. Knockout of TIGAR reduced the levels of phosphorylated mTOR and S6KP70, which were blocked by 3-MA and NADPH after I/R and OGD/R in vivo and in vitro, respectively. Overexpression of TIGAR increased the levels of phosphorylated mTOR and S6KP70 under OGD/R condition, this enhancement effect was suppressed by rapamycin. In conclusion, our current data suggest that TIGAR protected against neuronal injury partly through inhibiting autophagy by regulating the mTOR-S6KP70 signaling pathway.
Collapse
Affiliation(s)
- Ding-Mei Zhang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Tian Zhang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Ming-Ming Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xin-Xin Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yuan-Yuan Qin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Junchao Wu
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Han
- College of Pharmaceutical Science, Nanjing Medical University, Nanjing, 210029, China
| | - Yuqiang Ding
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Zheng-Hong Qin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
75
|
Qin Y, He Y, Zhu YM, Li M, Ni Y, Liu J, Zhang HL. CID1067700, a late endosome GTPase Rab7 receptor antagonist, attenuates brain atrophy, improves neurologic deficits and inhibits reactive astrogliosis in rat ischemic stroke. Acta Pharmacol Sin 2019; 40:724-736. [PMID: 30315251 PMCID: PMC6786391 DOI: 10.1038/s41401-018-0166-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that Ras-related in brain 7 (Rab7), an endosome-localized small GTPase contributes to cerebral ischemic brain injury. In the present study, we investigated the role of Rab7 in ischemic stroke-induced formation of astrogliosis and glial scar. Rats were subjected to transient middle cerebral artery occlusion (tMCAO); the rats were injected with the Rab7 receptor antagonist CID1067700 (CID). Primary astrocytes were subjected to an oxygen and glucose deprivation and reoxygenation (OGD/Re) procedure; CID was added to the cell culture media. We found that Rab7 was significantly elevated over time in both the in vivo and in vitro astrocytic injury models, and administration of CID significantly down-regulated the glial scar markers such as glial fibillary acidic protein (GFAP), neurocan and phosphacan. Moreover, administration of CID significantly attenuated the brain atrophy and improved neurologic deficits in tMCAO rats, and protected astrocytes against OGD/Re-induced injury. Further, CID downregulated the protein levels of Lamp1 and active cathepsin B in astrocytes after OGD/Re or tMCAO injury; CID inhibited the co-localization of cathepsin B and Rab7, Lamp1 and Rab7; CID decreased OGD/Re-induced increase in lysosomal membrane permeability and blocked OGD/Re-induced release of cathepsin B from the lysosome into the cytoplasm in astrocytes. Taken together, these results suggest that Rab7 is involved in ischemic stroke-induced formation of astrogliosis and glial scar. CID administration attenuates brain atrophy and improves neurologic deficits and inhibits astrogliosis and glial scar formation after ischemic stroke via reducing the activation and release of cathepsin B from the lysosome into the cytoplasm.
Collapse
Affiliation(s)
- Yuan Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yang He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Min Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences; Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
76
|
Hase Y, Chen A, Bates LL, Craggs LJL, Yamamoto Y, Gemmell E, Oakley AE, Korolchuk VI, Kalaria RN. Severe white matter astrocytopathy in CADASIL. Brain Pathol 2019; 28:832-843. [PMID: 29757481 DOI: 10.1111/bpa.12621] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by strategic white matter (WM) hyperintensities on MRI. Pathological features include WM degeneration, arteriolosclerosis, lacunar infarcts, and the deposition of granular osmiophilic material. Based on the hypothesis that the gliovascular unit is compromised, we assessed the nature of astrocyte damage in the deep WM of CADASIL subjects. METHODS We evaluated post-mortem brains from CADASIL, cerebral small vessel disease, similar age cognitively normal and older control subjects. Standard immunohistochemical, immunofluorescent, and unbiased stereological methods were used to evaluate the distribution of astrocytes, microvessels, and autophagy markers in five different brain regions. RESULTS Compared to the controls, the deep WM of CADASIL subjects overall showed increased numbers of glial fibrillary acidic protein (GFAP)-positive clasmatodendritic astrocytes (P=0.037) and a decrease in the percentage of normal appearing astrocytes (P=0.025). In accord with confluent WM hyperintensities, the anterior temporal pole contained abundant clasmatodendritic astrocytes with displaced aquaporin 4 immunoreactivity. Remarkably, we also found strong evidence for the immunolocalization of autophagy markers including microtubule-associated protein 1, light chain 3 (LC3), and sequestosome 1/p62 and Caspase-3 in GFAP-positive clasmatodendritic cells, particularly within perivascular regions of the deep WM. LC3 was co-localized in more than 90% of the GFAP-positive clasmatodendrocytes. CONCLUSIONS Our novel findings show astrocytes undergo autophagy-like cell death in CADASIL, with the anterior temporal pole being highly vulnerable. We propose astrocytes transform from normal appearing type A to hypertrophic type B and eventually to clasmatodendritic type C cells. These observations also suggest the gliovascular unit of the deep WM is severely impaired in CADASIL.
Collapse
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Aiqing Chen
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Letitia L Bates
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Lucinda J L Craggs
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Yumi Yamamoto
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Elizabeth Gemmell
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Arthur E Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK.,Institute for Ageing, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK.,Institute for Ageing, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
77
|
Shi Q, Zhang Q, Peng Y, Zhang X, Wang Y, Shi L. A natural diarylheptanoid protects cortical neurons against oxygen–glucose deprivation-induced autophagy and apoptosis. J Pharm Pharmacol 2019; 71:1110-1118. [DOI: 10.1111/jphp.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
This study aims to investigate the neuroprotective effects of curcumin analogues, 7-(4-Hydroxy-3-methoxyphenyl)-1-phenyl-4E-hepten-3-one (AO-2) on oxygen–glucose deprivation and re-oxygenation (OGD/R) induced injury in cortical neurons, which is a widely accepted in-vitro model for ischaemic reperfusion.
Methods
In this study, AO-2 was added to cortical neurons for 2 h as pretreatment, and then cortical neurons were subjected to OGD/R in the presence of AO-2 for 4 h. Cell viability was tested by 2′, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and apoptosis by flow cytometry and Live & Dead cell assay. Western blot analysis detected the change in AKT/mTOR (mammalian target of rapamycin) signalling pathway.
Key findings
Treatment of AO-2 increased cell survival of OGD/R-treated cortical neurons. Transient AKT/mTOR inhibition, induction of the autophagy marker LC3-II (microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate), and cleavage of the apoptosis marker Caspase-3 were observed at different stages of OGD/R, and AO-2 reversed all three events. Importantly, treatment of the mTOR inhibitor rapamycin blocked the neuroprotective effects of AO-2 on reducing LC3-II and cleaved Caspase-3 expression and cancelled AO-2-mediated neuronal survival.
Conclusions
These results demonstrate that AO-2 increases resistance of cortical neurons to OGD/R by decreasing autophagy and cell apoptosis, which involves an mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Qiaoyun Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoqi Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
78
|
Zhang X, Fu C, Chen B, Xu Z, Zeng Z, He L, Lu Y, Chen Z, Liu X. Autophagy Induced by Oxygen-Glucose Deprivation Mediates the Injury to the Neurovascular Unit. Med Sci Monit 2019; 25:1373-1382. [PMID: 30787267 PMCID: PMC6394142 DOI: 10.12659/msm.915123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Autophagy is characterized by the degradation of cellular components in autophagosomes. It plays a significant role in cerebral ischemic injury and has a complex functional connection with apoptosis. The neurovascular unit (NVU) is a structural and functional unit of the nervous system presented as a therapeutic target of stroke. This study aimed to investigate the effect of autophagy induced by ischemic damage on NVUs. MATERIAL AND METHODS SH-SY5Y cells, C6 cells, and rat brain microvascular endothelial cells were cultured with oxygen-glucose deprivation (OGD) exposure for different time durations, and 3-methyladenine (3-MA) was added as an autophagy inhibitor. In all 3 cell lines, lactate dehydrogenase (LDH) release was measured. Furthermore, apoptosis was detected using Annexin V-fluorescein isothiocyanate/propidium iodide labeling and immunofluorescence staining. Autophagosomes were observed through AO/MDC (acridine orange/monodansycadaverine) double staining. LC3-II expression levels were evaluated by western blot analysis. RESULTS In the OGD groups of 3 cell lines, LDH leakage, and apoptotic rates were obviously increased. Remarkable increase in LC3-II expression was found in the OGD groups of SH-SY5Y cells and C6 cells. However, 3-MA decreased the LC3-II expression to varying degrees. CONCLUSIONS OGD could induce the over-activation of autophagy and augment the apoptotic activity in neurons and glial cells of NVUs.
Collapse
Affiliation(s)
- Xinyang Zhang
- Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Chen Fu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Baoxin Chen
- Department of Neurology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Zhenmin Xu
- Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Zixiu Zeng
- Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Lijuan He
- Department of Neurology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Yan Lu
- Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China (mainland)
| | - Zhigang Chen
- Department of Neurology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Xuemei Liu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
79
|
Qin A, Zhang Q, Wang J, Sayeed I, Stein DG. Is a combination of progesterone and chloroquine more effective than either alone in the treatment of cerebral ischemic injury? Restor Neurol Neurosci 2019; 37:1-10. [PMID: 30741704 DOI: 10.3233/rnn-180837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this proof-of-concept paper, we investigated whether combination treatment with progesterone (P4) and chloroquine (CQ) would reduce ischemic injury more effectively than either agent alone in a transient middle cerebral artery occlusion (tMCAO) model in male rats. METHODS P4 (8 mg/kg) and CQ (25 mg/kg) were given alone or in combination beginning at different times during surgery and for 3 days post-occlusion. Locomotor activity and grip strength were evaluated as measures of impairment and recovery. Infarct size was assessed by TTC staining. Markers of autophagy (LC3 and SQSTM1/p62) and apoptosis (Bcl-2 and Bax) were evaluated with western blotting. RESULTS At the doses we employed, the combination was not more effective than either drug given separately on measures of grip strength or locomotor activity. However, combination therapy substantially reduced infarct size, and significantly increased Bcl-2 protein levels and suppressed Bax expression. Progesterone decreased the expression of LC3-II 24 h and SQSTM1/p62 after ischemia. CONCLUSIONS Our findings suggest that combination therapy with P4 and CQ is not detrimental and has a small-to-moderate additive neuroprotective effect on ischemic injury in rats without substantively affecting behavioral outcomes. CQ and P4 may help to regulate the expression of both autophagy-related and apoptosis-related proteins.
Collapse
Affiliation(s)
- Aiping Qin
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Qian Zhang
- Xuzhou Medical University, Xuzhou, China
| | - Jun Wang
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, Georgia, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, Georgia, USA
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
80
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
81
|
Li F, Yang B, Li T, Gong X, Zhou F, Hu Z. HSPB8 over-expression prevents disruption of blood-brain barrier by promoting autophagic flux after cerebral ischemia/reperfusion injury. J Neurochem 2018; 148:97-113. [PMID: 30422312 DOI: 10.1111/jnc.14626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/13/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Abstract
Heat-shock protein B8 (HSPB8) has been recently reported to confer neuroprotection against ischemia/reperfusion (I/R)-induced cerebral injury in vivo and in vitro. However, the molecular mechanism is still elusive. This study focused on the effect of intracerebroventricular (i.c.v) delivery of lenti-HSPB8 virus against neurological injury in a rat model of cerebral I/R and explored the underlying mechanism. We found that lentivirus i.c.v injection-induced HSPB8 over-expression strongly alleviated infarct volume, improved neurobehavioral outcomes, and reduced brain edema in rat middle cerebral artery occlusion/reperfusion (MCAO/R) model. Concomitantly, HSPB8 over-expression noticeably prevented blood-brain barrier (BBB) disruption after cerebral I/R injury as indicated by the reduction in Evans blue leakage and IgG detection in the ipsilateral hemisphere compared with the vehicle group. Moreover, immunoblotting and immunofluorescence staining of tight junction proteins claudin-5 and occludin showed that HSPB8 over-expression prevented the degradation of these proteins induced by MCAO/R, which indicated the protective effect of HSPB8 on BBB. Western blotting and immunostaining techniques were also utilized to analyze the expression of the markers of autophagy. We found that HSPB8 over-expression promoted autophagic flux, evidenced by increased ratio of LC3 I/II, accumulation of Beclin-1 expression and enhanced p62 degradation. i.c.v injection of 15 μg autophagy inhibitor 3-methyladenine (3-MA) was applied at the onset of reperfusion. The results showed that 3-MA elicited a significant loss of the protective effect of HSPB8 against MCAO/R-induced neurological defect, Evans blue extravasation, and the loss tight junction proteins, suggesting that the BBB protective role of HSPB8 was, at least in part, mediated through autophagy. Collectively, HSPB8 may represent a potential therapeutic agent for preserving BBB integrity following cerebral I/R injury. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14488.
Collapse
Affiliation(s)
- Fazhao Li
- Department of General Surgery, 2nd Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ting Li
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiyu Gong
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
82
|
Qin C, Liu Q, Hu ZW, Zhou LQ, Shang K, Bosco DB, Wu LJ, Tian DS, Wang W. Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. Theranostics 2018; 8:5434-5451. [PMID: 30555556 PMCID: PMC6276098 DOI: 10.7150/thno.27882] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022] Open
Abstract
Rationale: Ischemic white matter damage frequently results in myelin loss, accompanied with microglial activation. We previously found that directing microglia towards an anti-inflammatory phenotype provided a beneficial microenvironment and helped maintain white matter integrity during chronic cerebral hypoperfusion. However, the molecular mechanisms underlying microglial polarization remain elusive. Methods: Hypoperfusion induced white matter damage mice model and lipopolysaccharide (LPS) induced primary cultured microglia were established. Autophagy activation in microglia was detected both in vivo and in vitro by immunofluorescence, Western blot and electron microscopy. Autophagy inhibitors/agonist were administrated to investigate the role of autophagic process in modulating microglial phenotypes. Quantitative real time-polymerase chain reaction and Western blot were carried out to investigate the possible pathway. Results: We identified rapid accumulation of autophagosomes in primary cultured microglia exposed to LPS and within activated microglia during white matter ischemic damage. Autophagy inhibitors switched microglial function from pro-inflammatory to anti-inflammatory phenotype. Furthermore, we found TLR4, one of the major receptors binding LPS, was most highly expressed on microglia in corpus callosum during white matter ischemic damage, and TLR4 deficiency could mimic the phenomenon in microglial functional transformation, and exhibit a protective activity in chronic cerebral hypoperfusion. Whereas, the anti-inflammatory phenotype of microglia in TLR4 deficiency group was largely abolished by the activation of autophagic process. Finally, our transcriptional analysis confirmed that the up-regulation of STAT1 and down-regulation of STAT6 in microglia exposure to LPS could be reversed by autophagy inhibition. Conclusion: These results indicated that TLR4-dependent autophagy regulates microglial polarization and induces ischemic white matter damage via STAT1/6 pathway.
Collapse
|
83
|
Chen X, Zhang X, Chen T, Jiang X, Wang X, Lei H, Wang Y. Inhibition of immunoproteasome promotes angiogenesis via enhancing hypoxia-inducible factor-1α abundance in rats following focal cerebral ischaemia. Brain Behav Immun 2018; 73:167-179. [PMID: 29679638 DOI: 10.1016/j.bbi.2018.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis after ischemic stroke contributes to the restoration of blood supply in the ischemic zone. Strategies to improve angiogenesis may facilitate the function recovery after stroke. Growing evidence shows that proteasome inhibitors enhance angioneurogenesis and induces a long-term neuroprotection after cerebral ischemia in rodents' models. We have previously reported that inhibition of the immunoproteasome subunit low molecular mass peptide 2 (LMP2) offers a strong neuroprotection in ischemic stroke rats. However, there are no data available to show the relationship between immunoproteasome and angiogenesis under ischemia stroke context. In this study, we identified that inhibition of immunoproteasome LMP2 was able to enhance angiogenesis and facilitate neurological functional recovery in rats after focal cerebral ischemia/reperfusion. In vitro, oxygen-glucose deprivation and reperfusion (OGD/R) significantly enhanced the expression of immunoproteasome LMP2 and proteasome activities in primary culture astrocytes, but these beneficial effects were abolished by knockdown of LMP2 with siRNA transfection. Along with this, protein abundance of HIF-1α was significantly increased by inhibition LMP2 in vivo and in vitro and was associated with angiogenesis and cell fates. However, these beneficial effects were partly abolished by HIF-1α inhibitor 2-methoxyestradiol (2ME). Taken together; this study highlights an important role for inhibition of LMP2 in promoting angiogenesis events in ischemic stroke, and point to HIF-1α as a key mediator of this response, suggesting that immunoproteasome inhibitors may be a promising strategy for stroke treatment.
Collapse
Affiliation(s)
- Xingyong Chen
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Ting Chen
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Xiulong Jiang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Xiaosong Wang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Huixin Lei
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Fujian Medical University Shengli Clinical College, Fuzhou 350001, PR China.
| |
Collapse
|
84
|
Li W, Liu J, Chen JR, Zhu YM, Gao X, Ni Y, Lin B, Li H, Qiao SG, Wang C, Zhang HL, Ao GZ. Neuroprotective Effects of DTIO, A Novel Analog of Nec-1, in Acute and Chronic Stages After Ischemic Stroke. Neuroscience 2018; 390:12-29. [PMID: 30076999 DOI: 10.1016/j.neuroscience.2018.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023]
Abstract
Receptor-interacting protein 1 kinase (RIP1K) plays a key role in necroptosis. Necrostatin-1 (Nec-1), a specific inhibitor of RIP1K, provides neuroprotection against ischemic brain injury, associating with inhibition of inflammation. Recently, our group synthesized a novel analog of Nec-1, 5-(3',5'-dimethoxybenzal)-2-thio-imidazole-4-ketone (DTIO). The present study investigated the effect of DTIO on ischemic stroke-induced brain injury in both acute and chronic phase and its underlying mechanism. In vivo, DTIO treatment reduced infarct volume and improved neurological deficits in the acute phase after permanent middle cerebral artery occlusion (pMCAO) and it also attenuated brain atrophy and promoted brain functional recovery in the chronic phase post-cerebral ischemia/reperfusion (I/R). In vitro, DTIO treatment decreased lactate dehydrogenase (LDH) leakage and necrotic cell death in the oxygen and glucose deprivation (OGD) or oxygen and glucose deprivation and reoxygenation (OGD/R)-induced neuronal or astrocytic cell injury. Simultaneously, DTIO suppressed the production and release of inflammatory cytokines, and reduced the formation of glial scar. Homology modeling analysis illustrated that DTIO had an ability of binding to RIP1K. Furthermore, immunoprecipitation analysis showed that DTIO inhibited the phosphorylation of RIP1K and decreased the interaction between the RIP1K and RIP3K. In addition, knockdown of RIP1K had neuroprotective effects and inhibited the release of proinflammatory cytokines, but didn't have a significant effect on DTIO-mediated neuroprotection. In conclusion, DTIO has protective effects on acute ischemic stroke and promotes functional recovery during chronic phase, associating with protecting ischemic neurons and astrocytes, inhibiting inflammation, and lessening the glial scar formation via inhibiting of the RIP1K.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie-Ru Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huanqiu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Chen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
85
|
Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 2018; 14:1164-1184. [PMID: 29938598 DOI: 10.1080/15548627.2018.1458173] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.
Collapse
Affiliation(s)
- Bing Han
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yanhong Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Xufeng Chen
- b Department of Emergency , Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Rongrong Huang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Fangfang Wu
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Shuo Leng
- c Department of Radiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- d Department of Physiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - John H Zhang
- e Department of Physiology and Pharmacology , School of Medicine, Loma Linda University , Loma Linda , California , USA
| | - Gang Hu
- f Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China.,g Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
86
|
Chen H, Hu Y, Xie K, Chen Y, Wang H, Bian Y, Wang Y, Dong A, Yu Y. Effect of autophagy on allodynia, hyperalgesia and astrocyte activation in a rat model of neuropathic pain. Int J Mol Med 2018; 42:2009-2019. [PMID: 30015858 PMCID: PMC6108883 DOI: 10.3892/ijmm.2018.3763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023] Open
Abstract
Primary damage or dysfunction of the nervous system may cause or initiate neuropathic pain. However, it has been difficult to establish an effective treatment for neuropathic pain, as the mechanisms responsible for its pathology remain largely unknown. Autophagy is closely associated with the pathological process of neurodegenerative diseases, neuropathic injury and cancer, among others. The aim of the present study was to examine the changes in the autophagy-lysosomal pathway and discuss the effects of autophagy on allodynia, hyperalgesia and astrocyte activation in neuropathic pain. A neuropathic pain model was induced by chronic constriction injury (CCI) in rats. Inducers and inhibitors of autophagy and lysosomes were used to assess autophagy, allodynia, hyperalgesia and astrocyte activity. Neuropathic pain was found to induce an increase in the levels of the autophagy-related proteins, LC3II and Beclin 1 and, and in those of the lysosomal proteins, lysosomal-associated membrane protein type 2 (LAMP2) and Ras-related protein Rab-7a (RAB7), whereas p62 levels were found to decrease from day 1 to 14 following CCI. The autophagy inducer, rapamycin, further increased the LC3II, Beclin 1, lysosomal-associated membrane protein 2 (LAMP2) and Ras-related protein Rab-7a (RAB7) expression levels, and decreased the p62 expression levels, which were accompanied by alleviation of allodynia, hyperalgesia and astrocyte activation in the rats subjected to CCI; the autophagy inhibitor, 3-methyladenine, reversed these effects. The use of the lysosomal inhibitors, bafilomycin and chloroquine, resulted in the accumulation of LC3II and Beclin 1, a decrease in the levels of LAMP2 and RAB7, and the exacerbation of allodynia, hyperalgesia and astrocyte activation in rats with neuropathic pain. On the whole, the findings of this study indicate that neuropathic pain activates autophagy, which alleviates mechanical and thermal hyperalgesia and suppresses astrocyte activity. Therefore, neuropathic pain induced by CCI in rats appears to be mediated via the autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yajiao Hu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yajun Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huixing Wang
- Pain Management Center, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Aili Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
87
|
Xie YL, Zhang B, Jing L. MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia-reperfusion injury by targeting p53. Neurol Res 2018; 40:828-837. [PMID: 29956588 DOI: 10.1080/01616412.2018.1488654] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To explore the potential effect of miR-125b on p53-mediated regulation of Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rats with cerebral ischemia-reperfusion (CIR) injury. METHODS Sprague-Dawley (SD) rats were used to conduct CIR injury and injected with miR-125b mimic/inhibitor or p53 inhibitor (Pifithrin-α, PFT-α). Dual-luciferase reporter gene assay was used to analyze the targeting relationship between miR-125b and p53. Longa scoring and Triphenyl tetrazolinm chloride (TTC) staining were used to test the neurologic function and determine infarct size, respectively. Hematoxylin-eosin (HE) and Nissl's stainings were conducted to observe the morphology of cortical neurons. Neuronal nuclei (NeuN) expression was detected by immunohistochemical staining. QRT-PCR was performed to detect the expressions of miR-125b and p53. TUNEL staining and Western blotting was used to determine neuronal apoptosis and expressions of Bax/Cytochrome C/Caspase-3 signaling pathway-related proteins, respectively. RESULTS Our results showed that miR-125b could directly target p53. As observed, overexpression of miR-125b could obviously reduce the neurological score, infarct size, and brain water content after CIR in rats, which also improved the morphology of cortical neurons, increased the number of neurons, reduced neuronal apoptosis, and inhibited the expressions of Bax/Cytochrome C/Caspase-3 pathway. Moreover,the similar results were observed in rats with CIR after injected with PFT-α. But no significant differences in each index were found in CIR group and CIR + anti-miR-125b + PFT-α group. CONCLUSION MiR-125b exerts protective effects on CIR injury through inhibition of Bax/Cytochrome C/Caspase-3signaling pathway via targeting p53, which is likely to be a promising treatment for CIR. ABBREVIATIONS 3'-UTR: 3-untranslated region; CIR: cerebral ischemia-reperfusion; CIS: cerebral ischemic stroke; PFT-α: Pifithrin-α; PVDF: polyvinylidene fluoride; SD: Sprague-Dawley; TBST: tris buffered saline with tween. TTC staining: Triphenyl tetrazolinm chloride staining; TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling.
Collapse
Affiliation(s)
- Yun-Liang Xie
- a Medical Department , The Affiliated Hospital of Bei Hua University , Jilin , China
| | - Bo Zhang
- b Health Care Department , The Affiliated Hospital of Bei Hua University , Jilin , China
| | - Ling Jing
- c College of Pharmacy , Jilin University , Changchun , China
| |
Collapse
|
88
|
Mitophagy is activated in brain damage induced by cerebral ischemia and reperfusion via the PINK1/Parkin/p62 signalling pathway. Brain Res Bull 2018; 142:63-77. [PMID: 29964088 DOI: 10.1016/j.brainresbull.2018.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
This study examined the course of mitophagy following cerebral ischemia with reperfusion and the role of the PTEN-induced kinase 1 (PINK1)/Parkin/p62 signalling pathway. The middle cerebral artery of male Sprague-Dawley rats was occluded for 90 min and was followed by different time-points of reperfusion. Cerebral infarct areas were detected by 2,3,5-triphenyl tetrazolium chloride staining, while brain damage was observed by haematoxylin and eosin staining. Levels of LC3, Beclin1 and LAMP-1 were estimated by western blots. LC3B location was observed in various cells in the neurovascular unit. In addition, PINK1 accumulation in damaged mitochondria and Parkin/p62 mitochondrial translocation were investigated by double immunofluorescence staining. Finally, the levels of PINK1, Parkin and p62 expression in mitochondrial fractions were estimated by western blots. Cerebral ischemia with different time-points of reperfusion resulted in infarct in the territory of the middle cerebral artery accompanied by overall brain damage. In addition, we found up-regulation of LC3B, Beclin1, and LAMP-1, as well as mitophagy activation after reperfusion, with peak expression of these proteins at 24 h after reperfusion. Electron microscopy and immunofluorescence indicated that LC3B was primarily located in neurons, although lower levels of expression were found in astrocytes and even less in vascular endothelial cells. Moreover, significant increases in PINK1 accumulation in the outer membrane of mitochondria and increased Parkin/p62 mitochondrial translocation were shown at 24 h after reperfusion. These findings suggest that the PINK1/Parkin/p62 signalling pathway was involved in the pathophysiological processes following ischemia and reperfusion.
Collapse
|
89
|
Muñoz-Galdeano T, Reigada D, Del Águila Á, Velez I, Caballero-López MJ, Maza RM, Nieto-Díaz M. Cell Specific Changes of Autophagy in a Mouse Model of Contusive Spinal Cord Injury. Front Cell Neurosci 2018; 12:164. [PMID: 29946241 PMCID: PMC6005838 DOI: 10.3389/fncel.2018.00164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an essential process of cellular waist clearance that becomes altered following spinal cord injury (SCI). Details on these changes, including timing after injury, underlying mechanisms, and affected cells, remain controversial. Here we present a characterization of autophagy in the mice spinal cord before and after a contusive SCI. In the undamaged spinal cord, analysis of LC3 and Beclin 1 autophagic markers reveals important differences in basal autophagy between neurons, oligodendrocytes, and astrocytes and even within cell populations. Following moderate contusion, western blot analyses of LC3 indicates that autophagy increases to a maximum at 7 days post injury (dpi), whereas unaltered Beclin 1 expression and increase of p62 suggests a possible blockage of autophagosome clearance. Immunofluorescence analyses of LC3 and Beclin 1 provide additional details that reveal a complex, cell-specific scenario. Autophagy is first activated (1 dpi) in the severed axons, followed by a later (7 dpi) accumulation of phagophores and/or autophagosomes in the neuronal soma without signs of increased initiation. Oligodendrocytes and reactive astrocytes also accumulate phagophores and autophagosomes at 7 dpi, but whereas the accumulation in astrocytes is associated with an increased autophagy initiation, it seems to result from a blockage of the autophagic flux in oligodendrocytes. Comparison with previous studies highlights the complex and heterogeneous autophagic responses induced by the SCI, leading in many cases to contradictory results and interpretations. Future studies should consider this complexity in the design of therapeutic interventions based on the modulation of autophagy to treat SCI.
Collapse
Affiliation(s)
- Teresa Muñoz-Galdeano
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - David Reigada
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Ángela Del Águila
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Irene Velez
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Marcos J Caballero-López
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rodrigo M Maza
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Manuel Nieto-Díaz
- Laboratory of Molecular Neuroprotection, UDI-HNP, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
90
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
91
|
Yin X, Wang S, Qi Y, Wang X, Jiang H, Wang T, Yang Y, Wang Y, Zhang C, Feng H. Astrocyte elevated gene-1 is a novel regulator of astrogliosis and excitatory amino acid transporter-2 via interplaying with nuclear factor-κB signaling in astrocytes from amyotrophic lateral sclerosis mouse model with hSOD1 G93A mutation. Mol Cell Neurosci 2018; 90:1-11. [PMID: 29777762 DOI: 10.1016/j.mcn.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
AEG-1 has received extensive attention on cancer research. However, little is known about its roles in astrogliosis of Amyotrophic lateral sclerosis (ALS). In this study, we detected AEG-1 expression in hSOD1G93A-positive (mut-SOD1) astrocytes and wild type (wt-SOD1) astrocytes, and intend to elucidate its potential functions in ALS related astrogliosis and the always accompanied dysregulated glutamate clearance. Results showed elevated protein and mRNA levels of AEG-1 in mut-SOD1 astrocytes; Also, NF-κB signaling pathway related proteins and inflammatory cytokines were upregulated in mut-SOD1 astrocytes; AEG-1 knockdown attenuated astrocytes proliferation and pro-inflammatory release; also we found that AEG-1 silence inhibited translocation of p65 from cytoplasma to nuclear, which was associated with inhibited NF-κB signaling. Besides, excitatory amino acid transporter-2 (EAAT2) expression levels were significantly decreased, accompanied by impaired glutamate clearance ability, in mut-SOD1 astrocytes; yin yang 1 (YY1), a transcriptional inhibitor for EAAT2, increased in nucleus of mut-SOD1 astrocytes. AEG-1 silence inhibited translocation of YY1 to nucleus, increased EAAT2 expression levels, and enhanced astrocytic ability of glutamate clearance, ultimately exerted the neuronal protection. Findings from this study implicate potential function of AEG-1 in mut-SOD1 related astrogliosis and the accompanied excitatory cytotoxic mechanism in ALS.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yan Qi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xudong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongquan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Tianhang Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yueqing Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
92
|
Yang G, Wang N, Seto SW, Chang D, Liang H. Hydroxysafflor yellow a protects brain microvascular endothelial cells against oxygen glucose deprivation/reoxygenation injury: Involvement of inhibiting autophagy via class I PI3K/Akt/mTOR signaling pathway. Brain Res Bull 2018; 140:243-257. [PMID: 29775658 DOI: 10.1016/j.brainresbull.2018.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
The present study aimed to test whether Hydroxysafflor yellow A (HSYA) protects the brain microvascular endothelial cells (BMECs) injury induced by oxygen glucose deprivation/reoxygenation (OGD/R) via the PI3K/Akt/mTOR autophagy signaling pathway. Primary rat BMECs were cultured and identified by the expression of factor VIII-related antigen before being exposed to OGD/R to imitate ischemia/reperfusion (I/R) damage in vitro. The protective effect of HSYA was evaluated by assessing (1) cellular morphologic and ultrastructural changes; (2) cell viability and cytotoxicity; (3) transendothelial electrical resistance (TEER) of monolayer BMECs; (4) cell apoptosis; (5) fluorescence intensity of LC3B; (6) LC3 mRNA expression; (7) protein expressions of LC3, Beclin-1, Zonula occludens-1 (ZO-1), phospho-Akt (p-Akt), Akt, phospho-mTOR (p-mTOR) and mTOR. It was found that HSYA (20, 40, and 80 μM) and 3-MA effectively reversed the cellular morphological and ultrastructural changes, increased cell survival, normalized the permeability of BMECs, and suppressed apoptosis induced by OGD/R (2 h OGD followed by 24 h reoxygenation). Concurrently, HSYA and 3-MA also inhibited OGD/R-induced autophagy evidenced by the decreased number of autophagosomes and down-regulated levels of LC3 and Beclin-1 proteins and mRNAs. HSYA (80 μM), in combination with 3-MA showed a synergistic effect. Mechanistic studies revealed that HSYA (80 μM) markedly increased the levels of p-Akt and p-mTOR proteins. Blockade of PI3K activity by ZSTK474 abolished its anti-autophagic and pro-survival effect and lowered both Akt and mTOR phosphorylation levels. Taken together, these results suggest that HSYA protects BMECs against OGD/R-induced injury by inhibiting autophagy via the Class I PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| | - Ning Wang
- Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Sai Wang Seto
- National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Huangzheng Liang
- School of Medical, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
93
|
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164:98-117. [DOI: 10.1016/j.pneurobio.2018.01.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
94
|
Ren W, Yang X. Pathophysiology of Long Non-coding RNAs in Ischemic Stroke. Front Mol Neurosci 2018; 11:96. [PMID: 29651234 PMCID: PMC5884949 DOI: 10.3389/fnmol.2018.00096] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease with high disability and fatality rates, and ischemic stroke accounts for 75% of all stroke cases. The underlying pathophysiologic processes of ischemic stroke include oxidative stress, toxicity of excitatory amino acids, excess calcium ions, increased apoptosis and inflammation. Long non-coding RNAs (lncRNAs) may participate in the regulation of the pathophysiologic processes of ischemic stroke as indicated by altered expression of lncRNAs in blood samples of acute ischemic stroke patients, animal models of focal cerebral ischemia and oxygen-glucose deprivation (OGD) cell models. Because of the potentially important role, lncRNAs might be useful as biomarkers for the diagnosis, treatment and prognosis of ischemic stroke. This article reviews the functions of lncRNAs in different pathophysiology events of ischemic stroke with a focus on specific lncRNAs that may underlie ischemic stroke pathophysiology and that could therefore serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Yang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
95
|
Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018; 144:617-633. [DOI: 10.1111/jnc.14271] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| | - Karen Horsburgh
- Centre for Neuroregeneration; University of Edinburgh; Edinburgh UK
| | - Masafumi Ihara
- Department of Neurology; National Cerebral and Cardiovascular Center; Suita Osaka Japan
| | - Raj N. Kalaria
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| |
Collapse
|
96
|
Şekerdağ E, Solaroğlu I, Gürsoy-Özdemir Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol 2018; 16:1396-1415. [PMID: 29512465 PMCID: PMC6251049 DOI: 10.2174/1570159x16666180302115544] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/18/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
As a result of ischemia or hemorrhage, blood supply to neurons is disrupted which subsequently promotes a cascade of pathophysiological responses resulting in cell loss. Many mechanisms are involved solely or in combination in this disorder including excitotoxicity, mitochondrial death pathways, and the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy and inflammation. Besides neuronal cell loss, damage to and loss of astrocytes as well as injury to white matter contributes also to cerebral injury. The core problem in stroke is the loss of neuronal cells which makes recovery difficult or even not possible in the late states. Acute treatment options that can be applied for stroke are mainly targeting re-establishment of blood flow and hence, their use is limited due to the effective time window of thrombolytic agents. However, if the acute time window is exceeded, neuronal loss starts due to the activation of cell death pathways. This review will explore the most updated cellular death mechanisms leading to neuronal loss in stroke. Ischemic and hemorrhagic stroke as well as subarachnoid hemorrhage will be debated in the light of cell death mechanisms and possible novel molecular and cellular treatment options will be discussed.
Collapse
Affiliation(s)
- Emine Şekerdağ
- Address correspondence to this author at the Neuroscience Research Lab, Research Center for Translational Medicine, Koç University, Istanbul, Turkey; Tel: +90 850 250 8250; E-mail:
| | | | | |
Collapse
|
97
|
RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway. Neuroscience 2017; 371:60-74. [PMID: 29102662 DOI: 10.1016/j.neuroscience.2017.10.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023]
Abstract
Although the receptor-interacting protein 1 kinase (RIP1K)-regulated necroptosis can be evoked by cerebral ischemia, the effects of RIP1K in mediating neuronal and astrocytic cell death and the underlying mechanisms remain poorly understood. This study evaluates the contribution of RIP1K to ischemic stroke-induced neuronal and astrocytic cell death, and the activation of autophagic-lysosomal pathway. Using an in vitro oxygen and glucose deprivation (OGD) in primary cultured neurons or astrocytes and a permanent middle cerebral artery occlusion (pMCAO) model in rats or mice, we observed the role of RIP1K in the ischemic neuronal and astrocytic cell death and the underlying mechanisms by pharmacological or genetic inhibition of RIP1K. pMCAO or OGD condition led to an increase in RIP1K, RIP3K and RIP1K-RIP3K complex. RIP1K knockdown or necrostatin-1 (Nec-1, a specific inhibitor of RIP1K) treatment reduced infarct volume, improved neurological deficits, increased microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP) levels, and attenuated neuronal or astrocytic necrotic cell death in the ischemic cortex. RIP1K knockdown decreased RIP1K-RIP3K complex formation, light chain 3 II (LC3II) and active cathepsin B levels and lysosomal membrane permeability (LMP). Furthermore, a combination of Nec-1 and an inhibitor of autophagy or cathepsin B produced an enhancement of protective effect on neuronal or astrocytic cell death. RIP1K-mediated necroptosis may play important roles in ischemia-induced neuronal and astrocytic cell death through the activation of autophagic-lysosomal pathway.
Collapse
|
98
|
Wang C, Ahmed MM, Jiang Q, Lu N, Tan C, Gao Y, Mahmood Q, Chen D, Fukunaga K, Li M, Chen Z, Wilcox CS, Lu Y, Qin Z, Han F. Melatonin ameliorates hypoglycemic stress-induced brain endothelial tight junction injury by inhibiting protein nitration of TP53-induced glycolysis and apoptosis regulator. J Pineal Res 2017; 63:e12440. [PMID: 28776759 PMCID: PMC5656838 DOI: 10.1111/jpi.12440] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Severe hypoglycemia has a detrimental impact on the cerebrovasculature, but the molecular events that lead to the disruption of the integrity of the tight junctions remain unclear. Here, we report that the microvessel integrity was dramatically compromised (59.41% of wild-type mice) in TP53-induced glycolysis and apoptosis regulator (TIGAR) transgenic mice stressed by hypoglycemia. Melatonin, a potent antioxidant, protects against hypoglycemic stress-induced brain endothelial tight junction injury in the dosage of 400 nmol/L in vitro. FRET (fluorescence resonance energy transfer) imaging data of endothelial cells stressed by low glucose revealed that TIGAR couples with calmodulin to promote TIGAR tyrosine nitration. A tyrosine 92 mutation interferes with the TIGAR-dependent NADPH generation (55.60% decreased) and abolishes its protective effect on tight junctions in human brain microvascular endothelial cells. We further demonstrate that the low-glucose-induced disruption of occludin and Caludin5 as well as activation of autophagy was abrogated by melatonin-mediated blockade of nitrosative stress in vitro. Collectively, we provide information on the detailed molecular mechanisms for the protective actions of melatonin on brain endothelial tight junctions and suggest that this indole has translational potential for severe hypoglycemia-induced neurovascular damage.
Collapse
Affiliation(s)
- Cheng‐kun Wang
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Muhammad Masood Ahmed
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Quan Jiang
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Nan‐nan Lu
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Chao Tan
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yin‐ping Gao
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Qaisar Mahmood
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Dan‐yang Chen
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Kohji Fukunaga
- Department of PharmacologyGraduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Mei Li
- Department of Pharmacology and Laboratory of Aging and Nervous DiseasesSoochow University School of Pharmaceutical ScienceSuzhouChina
| | - Zhong Chen
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Christopher S. Wilcox
- Hypertension, Kidney, and Vascular Research CenterGeorgetown University Medical CenterWashingtonDCUSA
| | - Ying‐mei Lu
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Zheng‐hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous DiseasesSoochow University School of Pharmaceutical ScienceSuzhouChina
| | - Feng Han
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
99
|
RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis 2017; 8:e3080. [PMID: 28981095 PMCID: PMC5680587 DOI: 10.1038/cddis.2017.465] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 01/15/2023]
Abstract
The reticulon family has been found to induce apoptosis, inhibit axon regeneration and regulate protein trafficking. However, little is known about the mechanisms of how reticulon proteins are involved in neuronal death-promoting processes during ischemia. Here, we report that the expression of Reticulon Protein 1-C (RTN1-C) was associated with the progression of cerebral ischemia/reperfusion (I/R) injury. Using a combination of rat middle cerebral artery occlusion (MCAO) stroke and oxygen-glucose deprivation followed by reoxygenation (OGD/R) models, we determined that the expression of RTN1-C was significantly increased during cerebral ischemic/reperfusion. RTN1-C overexpression induced apoptosis and increased the cell vulnerability to ischemic injury, whereas RTN1-C knockdown reversed ischemia-induced apoptosis and attenuated the vulnerability of OGD/R-treated neural cells. Mechanistically, we demonstrated that RTN1-C mediated OGD/R-induced apoptosis through ER stress and mitochondria-associated pathways. RTN1-C interacted with Bcl-xL and increased its localization in the ER, thus reducing the anti-apoptotic activity of Bcl-xL. Most importantly, knockdown of Rtn1-c expression in vivo attenuated apoptosis in MCAO rats and reduced the extent of I/R-induced brain injury, as assessed by infarct volume and neurological score. Collectively, these data support for the first time that RTN1-C may represent a novel candidate for therapies against cerebral ischemia/reperfusion injury.
Collapse
|
100
|
Zhu Y, Shui M, Liu X, Hu W, Wang Y. Increased autophagic degradation contributes to the neuroprotection of hydrogen sulfide against cerebral ischemia/reperfusion injury. Metab Brain Dis 2017; 32:1449-1458. [PMID: 28421304 DOI: 10.1007/s11011-017-0014-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signal molecule, exhibits protective effect against ischemic injury. However, its underlying mechanism is not fully understood. We have recently reported that exogenous H2S decreases the accumulation of autophagic vacuoles in mouse brain with ischemia/reperfusion (I/R) injury. To further investigate whether this H2S-induced reduction of autophagic vacuoles is caused by the decreased autophagosome synthesis and/or the increased autophagic degradation inautophagic flux, we performed in vitro and in vivo studies using SH-SY5Y cells for the oxygen and glucose deprivation/reoxygenation (OGD/R) and mice for the cerebral I/R, respectively. NaHS (a donor of H2S) treatment significantly increased cell viability and reduced cerebral infarct volume. NaHS treatment reduced the OGD/R-induced elevation in LC3-II (an autophagic marker), which was completely reversed by co-treatment with an autophagic flux inhibitor bafilomycin A1 (BafA1). However, H2S did not affect the OGD/R-induced increase of the ULK1 self-association and decrease of the ATG13 phosphorylation, which are the critical steps for the initiation of autophagosome formation. Cerebral I/R injury caused an increase in LC3-II, a decrease in p62 and the accumulation of autophagosomes in the cortex and the hippocampus, which were inhibited by NaHS treatment. This H2S-induced decline of LC3-II in ischemic brain was reversed by BafA1. Moreover, BafA1 treatment abolished the protection of H2S on the cerebral infarction. Collectively, the neuroprotection of exogenous H2S against ischemia/hypoxia and reperfusion/reoxygenation injury is mediated by the enhancement of autophagic degradation.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Mengyang Shui
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyan Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| | - Yinye Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|