51
|
Saito Y, Moriya S, Kazama H, Hirasawa K, Miyahara K, Kokuba H, Hino H, Kikuchi H, Takano N, Hiramoto M, Tsukahara K, Miyazawa K. Amino acid starvation culture condition sensitizes EGFR-expressing cancer cell lines to gefitinib-mediated cytotoxicity by inducing atypical necroptosis. Int J Oncol 2018; 52:1165-1177. [PMID: 29484439 PMCID: PMC5843391 DOI: 10.3892/ijo.2018.4282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Abstract
The maintenance of the intracellular level of amino acids is crucial for cellular homeostasis. This is carried out via the regulation of both the influx from the extracellular environment and the recycling of intracellular resources. Since epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors, including gefitinib (GEF) have been reported to induce the apoptosis of several cancer cell lines, in the present study, we examined whether the cytotoxic effects of GEF are further enhanced under amino acid starvation (AAS) culture conditions. Under AAS culture conditions, the cell killing effect of GEF was synergistically pronounced in the EGFR-expressing cell lines, namely, CAL 27, Detroit 562, A549 and PANC-1 cells compared with those treated with either GEF or AAS alone. The addition of essential amino acids, but not non-essential amino acids to the cell culture medium resulted in the cancellation of this pronounced cytotoxicity. The knockdown of L-type amino acid transporter 1 (LAT-1) by siRNA also enhanced GEF-induced cytotoxicity. Therefore, the shortage of the intracellular amino acid pool appears to determine the sensitivity to GEF. Notably, this enhanced cytotoxicity is not mediated by the induction of apoptosis, but is accompanied by the pronounced induction of autophagy. The presence of necrostatin-1, an inhibitor of receptor-interacting serine/threonine-protein kinase 1 (RIPK‑1), but not that of Z-VAD-fmk, attenuated the cytotoxic effects of GEF under AAS culture conditions. Electron microscopy demonstrated that the CAL 27 cells treated with GEF under AAS culture conditions exhibited swelling of the cytosol and organelles with an increased number of autophagosomes and autolysosomes, but without chromatin condensation and nuclear fragmentation. Autophagic cell death was excluded as the inhibition of autophagy did not attenuate the cytotoxicity. These results strongly suggest the induction of necroptosis in response to GEF under AAS culture conditions. However, we could not detect any phosphorylation of RIPK-1 and mixed lineage kinase domain like pseudokinase (MLKL), as well as any necrosome formation. Therefore, the enhanced cytotoxic effect of GEF under AAS culture conditions is thought to be mediated by atypical necroptosis.
Collapse
Affiliation(s)
- Yu Saito
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kazuhiro Hirasawa
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kana Miyahara
- Department of Breast Oncology and Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiroko Kokuba
- Department of Joint Research for Basic Medical Science, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiroyuki Kikuchi
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo 160-8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
52
|
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis 2018; 9:117. [PMID: 29371589 PMCID: PMC5833343 DOI: 10.1038/s41419-017-0063-y] [Citation(s) in RCA: 446] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
The most common type of lung cancer is adenocarcinoma (ADC), comprising around 40% of all lung cancer cases. In spite of achievements in understanding the pathogenesis of this disease and the development of new approaches in its treatment, unfortunately, lung ADC is still one of the most aggressive and rapidly fatal tumor types with overall survival less than 5 years. Lung ADC is often diagnosed at advanced stages involving disseminated metastatic tumors. This is particularly important for the successful development of new approaches in cancer therapy. The high resistance of lung ADC to conventional radiotherapies and chemotherapies represents a major challenge for treatment effectiveness. Here we discuss recent advances in understanding the molecular pathways driving tumor progression and related targeted therapies in lung ADCs. In addition, the cell death mechanisms induced by different treatment strategies and their contribution to therapy resistance are analyzed. The focus is on approaches to overcoming drug resistance in order to improve future treatment decisions.
Collapse
Affiliation(s)
- Tatiana V Denisenko
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Inna N Budkevich
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia. .,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden.
| |
Collapse
|
53
|
Targeted reduction of the EGFR protein, but not inhibition of its kinase activity, induces mitophagy and death of cancer cells through activation of mTORC2 and Akt. Oncogenesis 2018; 7:5. [PMID: 29358623 PMCID: PMC5833766 DOI: 10.1038/s41389-017-0021-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/08/2017] [Indexed: 01/06/2023] Open
Abstract
The oncogenic epidermal growth factor receptor (EGFR) is commonly overexpressed in solid cancers. The tyrosine kinase activity of EGFR has been a major therapeutic target for cancer; however, the efficacy of EGFR tyrosine kinase inhibitors to treat cancers has been challenged by innate and acquired resistance at the clinic. Accumulating evidence suggests that EGFR possesses kinase-independent pro-survival functions, and that cancer cells are more vulnerable to reduction of EGFR protein than to inhibition of its kinase activity. The molecular mechanism underlying loss-of-EGFR-induced cell death remains largely unknown. In this study, we show that, unlike inhibiting EGFR kinase activity that is known to induce pro-survival non-selective autophagy, downregulating EGFR protein, either by siRNA, or by a synthetic EGFR-downregulating peptide (Herdegradin), kills prostate and ovarian cancer cells via selective mitophagy by activating the mTORC2/Akt axis. Furthermore, Herdegradin induced mitophagy and inhibited the growth of orthotopic ovarian cancers in mice. This study identifies anti-mitophagy as a kinase-independent function of EGFR, reveals a novel function of mTORC2/Akt axis in promoting mitophagy in cancer cells, and offers a novel approach for pharmacological downregulation of EGFR protein as a potential treatment for EGFR-positive cancers.
Collapse
|
54
|
Fraser J, Cabodevilla AG, Simpson J, Gammoh N. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking. Essays Biochem 2017; 61:597-607. [PMID: 29233871 PMCID: PMC5869858 DOI: 10.1042/ebc20170091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 01/15/2023]
Abstract
Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here.
Collapse
Affiliation(s)
- Jane Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Ainara G Cabodevilla
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Joanne Simpson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
55
|
Frentzel J, Sorrentino D, Giuriato S. Targeting Autophagy in ALK-Associated Cancers. Cancers (Basel) 2017; 9:E161. [PMID: 29186933 PMCID: PMC5742809 DOI: 10.3390/cancers9120161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process, which is used by the cells for cytoplasmic quality control. This process is induced following different kinds of stresses e.g., metabolic, environmental, or therapeutic, and acts, in this framework, as a cell survival mechanism. However, under certain circumstances, autophagy has been associated with cell death. This duality has been extensively reported in solid and hematological cancers, and has been observed during both tumor development and cancer therapy. As autophagy plays a critical role at the crossroads between cell survival and cell death, its involvement and therapeutic modulation (either activation or inhibition) are currently intensively studied in cancer biology, to improve treatments and patient outcomes. Over the last few years, studies have demonstrated the occurrence of autophagy in different Anaplastic Lymphoma Kinase (ALK)-associated cancers, notably ALK-positive anaplastic large cell lymphoma (ALCL), non-small cell lung carcinoma (NSCLC), Neuroblastoma (NB), and Rhabdomyosarcoma (RMS). In this review, we will first briefly describe the autophagic process and how it can lead to opposite outcomes in anti-cancer therapies, and we will then focus on what is currently known regarding autophagy in ALK-associated cancers.
Collapse
Affiliation(s)
- Julie Frentzel
- Merck Serono S.A., Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland.
| | - Domenico Sorrentino
- Inserm, UMR1037, CNRS, ERL5294, Université Toulouse III-Paul Sabatier, CRCT, F-31000 Toulouse, France.
| | - Sylvie Giuriato
- Inserm, UMR1037, CNRS, ERL5294, Université Toulouse III-Paul Sabatier, CRCT, F-31000 Toulouse, France.
- European Research Initiative on ALK-related malignancies (ERIA).
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138.
| |
Collapse
|
56
|
Kakei Y, Teraoka S, Akashi M, Hasegawa T, Komori T. Changes in cell junctions induced by inhibition of epidermal growth factor receptor in oral squamous cell carcinoma cells. Exp Ther Med 2017; 14:953-960. [PMID: 28810546 PMCID: PMC5525654 DOI: 10.3892/etm.2017.4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/17/2017] [Indexed: 11/29/2022] Open
Abstract
The benefits of epidermal growth factor receptor (EGFR) targeting in the treatment of head and neck cancer, have been documented. However, a minority of patients with head and neck cancer are unresponsive to EGFR targeting therapies. The present study evaluated the effects and limitations of an EGFR inhibitor on oral squamous cell carcinoma cells, particularly on cell-cell junctions mediated by epithelial (E)-cadherin. HSC-3 oral squamous cell carcinoma cells were treated with the EGFR inhibitor, AG1478 (0, 0.5, 2, 10 and 50 µM), and the effects of EGFR inhibition in HSC-3 cells were evaluated by wound healing assays, E-cadherin immunostaining and measurement of transepithelial electrical resistance in vitro. It was observed that treatment of oral squamous cell carcinoma cells with AG1478 suppressed cell motility, altered cell morphology and increased the number of cell-cell junctions compared with untreated control cells. Knockdown of EGFR induced a similar phenotype to that observed by the inhibition of EGFR. Furthermore, in oral squamous cell carcinoma cells treated with high-dose EGFR inhibitor (50 µM), the small number of cells that survived formed cell-cell junctions that were positive for E-cadherin expression. In cells treated with low concentrations of EGFR inhibitor (2 µM), recovery of epithelial properties was observed. The retention of E-cadherin expression in cells that survived high-dose EGFR inhibitor treatment may be a survival mechanism of cancer cells.
Collapse
Affiliation(s)
- Yasumasa Kakei
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Shun Teraoka
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Hyōgo 650-0017, Japan
| |
Collapse
|
57
|
Wise R, Zolkiewska A. Metalloprotease-dependent activation of EGFR modulates CD44 +/CD24 - populations in triple negative breast cancer cells through the MEK/ERK pathway. Breast Cancer Res Treat 2017; 166:421-433. [PMID: 28791489 DOI: 10.1007/s10549-017-4440-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The CD44+/CD24- cell phenotype is enriched in triple negative breast cancers, is associated with tumor invasive properties, and serves as a cell surface marker profile of breast cancer stem-like cells. Activation of Epidermal Growth Factor Receptor (EGFR) promotes the CD44+/CD24- phenotype, but the specific signaling pathway downstream of EGFR responsible for this effect is not clear. The purpose of this study was to determine the role of the MEK/ERK pathway in the expansion of CD44+/CD24- populations in TNBC cells in response to EGFR activation. METHODS Representative TNBC cell lines SUM159PT (claudin-low) and SUM149PT (basal) were used to evaluate cell surface expression of CD44 and CD24 by flow cytometry in response to EGFR and MEK inhibition or activation. EGFR and ERK phosphorylation levels were analyzed by Western blotting. The relationship between EGFR phosphorylation and MEK activation score in basal and claudin-low tumors from the TCGA database was examined. RESULTS Inhibition of ERK activation with selumetinib, a MEK1/2 inhibitor, blocked EGF-induced expansion of CD44+/CD24- populations. Sustained activation of ERK by overexpression of constitutively active MEK1 was sufficient to expand CD44+/CD24- populations in cells in which EGFR activity was blocked by either erlotinib, an EGFR kinase inhibitor, or BB-94, a metalloprotease inhibitor that prevents generation of soluble EGFR ligands. In basal and claudin-low tumors from the TCGA database, there was a positive correlation between EGFR_pY1068 and MEK activation score in tumors without genomic loss of DUSP4, a negative regulator of ERK, but not in tumors harboring DUSP4 deletion. CONCLUSION Our results demonstrate that ERK activation is a key event in EGFR-dependent regulation of CD44+/CD24- populations. Furthermore, our findings highlight the role of ligand-mediated EGFR signaling in the control of MEK/ERK pathway output in TNBC tumors without DUSP4 loss.
Collapse
Affiliation(s)
- Randi Wise
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
58
|
Tang F, Hu P, Yang Z, Xue C, Gong J, Sun S, Shi L, Zhang S, Li Z, Yang C, Zhang J, Xie C. SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncol Rep 2017; 37:3449-3458. [PMID: 28498429 DOI: 10.3892/or.2017.5635] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/02/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is a major public health problem worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases. Autophagy has recently sparked great interest, and it is thought to participate in a variety of diseases, including lung cancer. Uncoordinated (Unc) 51-like kinase 1 (Ulk1), a serine/threonine kinase, plays a central role in the autophagy pathway. However, the role of Ulk1 in NSCLC remains unclear. We report that NSCLC cell lines exhibited high expression of Ulk1 and that Ulk1 was negatively correlated with prognosis in lung cancer patients. Knockdown of Ulk1 or the inhibition of Ulk1 by the selective inhibitor SBI0206965, inhibited cell proliferation, induced cell apoptosis and enhanced the sensitivity of cisplatin against NSCLC cells. Moreover, we demonstrated that Ulk1 exerted oncogenic activity in NSCLC by modulating both autophagy and apoptosis pathways. Inhibition of autophagy by SBI0206965 sensitized NSCLC cells to cisplatin by inhibiting cisplatin induced cell-protective autophagy to promote apoptosis. Furthermore, SBI0206965 promoted apoptosis in NSCLC cells independent of autophagy, which was partly mediated by destabilization of Bcl2/Bclxl. In summary, our results show that inhibition of Ulk1 suppresses NSCLC cell growth and sensitizes NSCLC cells to cisplatin by modulating both autophagy and apoptosis pathways, and that Ulk1 might be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Pengchao Hu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zetian Yang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chao Xue
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liu Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shimin Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhenzhen Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
59
|
EGFR tyrosine kinase inhibitors differentially affect autophagy in head and neck squamous cell carcinoma. Biochem Biophys Res Commun 2017; 486:1027-1033. [PMID: 28366635 DOI: 10.1016/j.bbrc.2017.03.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide. The majority of HNSCCs overexpress Epidermal Growth Factor Receptor (EGFR), an essential receptor tyrosine kinase (RTK) that promotes HNSCC growth and metastasis. Therefore, EGFR has been used as an important therapeutic target to treat HNSCC. Inhibition of EGFR stimulates autophagy in cancer cells. However, the role of autophagy in EGFR inhibitor-induced cancer suppression is still in a debate. Here, we reveal that the first- and the second-generation EGFR tyrosine kinase inhibitors (TKIs) differentially affect HNSCC autophagy. The second-generation EGFR TKIs have much stronger effects on autophagy than the first-generation TKIs. The second-generation EGFR TKIs not only promote autophagy initiation signaling but also block autophagic flux by disturbing the lysosomes function, indicating a novel mechanism by which EGFR TKIs modulate cancer cell autophagy. Blocking the initiation of autophagy does not affect the second-generation EGFR TKI-induced HNSCC growth suppression. This suggests that the anti-growth effect of the second-generation EGFR TKIs on HNSCC is not dependent on autophagy.
Collapse
|
60
|
Henson E, Chen Y, Gibson S. EGFR Family Members' Regulation of Autophagy Is at a Crossroads of Cell Survival and Death in Cancer. Cancers (Basel) 2017; 9:cancers9040027. [PMID: 28338617 PMCID: PMC5406702 DOI: 10.3390/cancers9040027] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathways are altered in many cancers contributing to increased cell survival. These alterations are caused mainly through increased expression or mutation of EGFR family members EGFR, ErbB2, ErbB3, and ErbB4. These receptors have been successfully targeted for cancer therapy. Specifically, a monoclonal antibody against ErbB2, trastuzumab, and a tyrosine kinase inhibitor against EGFR, gefitinib, have improved the survival of breast and lung cancer patients. Unfortunately, cancer patients frequently become resistant to these inhibitors. This has led to investigating how EGFR can contribute to cell survival and how cancer cells can overcome inhibition of its signaling. Indeed, it is coming into focus that EGFR signaling goes beyond a single signal triggering cell proliferation and survival and is a sensor that regulates the cell’s response to microenvironmental stresses such as hypoxia. It acts as a switch that modulates the ability of cancer cells to survive. Autophagy is a process of self-digestion that is inhibited by EGFR allowing cancer cells to survive under stresses that would normally cause death and become resistant to chemotherapy. Inhibiting EGFR signaling allows autophagy to contribute to cell death. This gives new opportunities to develop novel therapeutic strategies to treat cancers that rely on EGFR signaling networks and autophagy. In this review, we summarize the current understanding of EGFR family member regulation of autophagy in cancer cells and how new therapeutic strategies could be developed to overcome drug resistance.
Collapse
Affiliation(s)
- Elizabeth Henson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
| | - Yongqiang Chen
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
| | - Spencer Gibson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
61
|
Tsai HH, Lai HY, Chen YC, Li CF, Huang HS, Liu HS, Tsai YS, Wang JM. Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget 2017; 8:13832-13845. [PMID: 28099155 PMCID: PMC5355142 DOI: 10.18632/oncotarget.14640] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
Metformin, as an AMP-activated protein kinase (AMPK) activator, can activate autophagy. A study showed that metformin decreased the risk of hepatocellular carcinoma (HCC) in diabetic patients. However, the detailed mechanism in the metformin-mediated anticancer effect remains an open question. Transcription factor CCAAT/enhancer-binding protein delta (CEBPD) has been suggested to serve as a tumor suppressor and is responsive to multiple anticancer drugs in HCC. In this study, we found that CEBPD and autophagy are involved in metformin-induced cell apoptosis in Huh7 cells. The underlying mechanisms in this process included a reduction in Src-mediated CEBPD protein degradation and an increase in CEBPD-regulated LC3B and ATG3 gene transcription under metformin treatment. We also found that AMPK is involved in metformin-induced CEBPD expression. Combined treatment with metformin and rapamycin can enhance autophagic cell death through the AMPK-dependent and AMPK-independent pathway, respectively. Taken together, we provide a new insight and therapeutic approach by targeting autophagy in the treatment of HCC.
Collapse
Affiliation(s)
- Hsin-Hwa Tsai
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yue Lai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yueh-Chiu Chen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
62
|
Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci 2017; 18:E367. [PMID: 28208579 PMCID: PMC5343902 DOI: 10.3390/ijms18020367] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fengqing Yang
- Department of Obstetrics and Gynecology, Dong'e No. 4 People's Hospital, Liaocheng 252200, China.
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Songnian Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
63
|
Zhang Q, Xu K. [Advances in the Research of Autophagy in EGFR-TKI Treatment and Resistance
in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:607-14. [PMID: 27666552 PMCID: PMC5972950 DOI: 10.3779/j.issn.1009-3419.2016.09.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
表皮生长因子受体激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor, EGFR-TKI)是一类针对肿瘤细胞中EGFR的异常活化而开发的肿瘤靶向药物,可以有效抑制带有EGFR敏感突变的肿瘤细胞的生长。然而先天性以及获得性耐药严重制约了该类药物的使用。近些年的研究发现自噬(autophagy),作为一个细胞编码的高度保守的应对压力的存活机制,其与肿瘤的发生发展及抗肿瘤药物的耐药密切相关。EGFR的激活可以通过多条通路调控自噬。EGFR-TKI也可以诱导自噬,且自噬在EGFR-TKI的治疗和产生耐药性的过程中发挥着双刃剑的作用:一方面EGFR-TKI诱导的自噬是肿瘤细胞的一个保护机制,联合使用自噬抑制剂可以增强药物的细胞毒性效果;同时还有研究证明EGFR-TKI诱导的高水平自噬可以在凋亡缺陷的细胞中造成自噬性死亡,这种情况下联合使用自噬诱导剂则可能产生更好的效果。因此,针对不同的情况通过调控自噬以提高EGFR-TKI的治疗效果是一个颇具前景的治疗方案。本文对EGFR-TKI和自噬相关的信号通路进行了阐述,并对自噬在EGFR-TKI类药物对肺癌的治疗和耐药中作用的最新研究进展进行了总结,为设计联合方案提高EGFR-TKI的抑制效果,降低耐药性提供线索。
Collapse
Affiliation(s)
- Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
64
|
Zhou Y, Li Y, Ni HM, Ding WX, Zhong H. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells. Toxicol Appl Pharmacol 2016; 310:140-149. [PMID: 27639429 DOI: 10.1016/j.taap.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to the resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
65
|
Song M, Wang Y, Shang ZF, Liu XD, Xie DF, Wang Q, Guan H, Zhou PK. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep 2016; 6:30165. [PMID: 27417393 PMCID: PMC4945935 DOI: 10.1038/srep30165] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Radiation-induced bystander effect (RIBE) describes a set of biological effects in non-targeted cells that receive bystander signals from the irradiated cells. RIBE brings potential hazards to adjacent normal tissues in radiotherapy, and imparts a higher risk than previously thought. Excessive release of some substances from irradiated cells into extracellular microenvironment has a deleterious effect. For example, cytokines and reactive oxygen species have been confirmed to be involved in RIBE process via extracellular medium or gap junctions. However, RIBE-mediating signals and intercellular communication pathways are incompletely characterized. Here, we first identified a set of differentially expressed miRNAs in the exosomes collected from 2 Gy irradiated human bronchial epithelial BEP2D cells, from which miR-7-5p was found to induce autophagy in recipient cells. This exosome-mediated autophagy was significantly attenuated by miR-7-5p inhibitor. Moreover, our data demonstrated that autophagy induced by exosomal miR-7-5p was associated with EGFR/Akt/mTOR signaling pathway. Together, our results support the involvement of secretive exosomes in propagation of RIBE signals to bystander cells. The exosomes-containing miR-7-5p is a crucial mediator of bystander autophagy.
Collapse
Affiliation(s)
- Man Song
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P R China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P R China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Da-Fei Xie
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Qi Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Ping-Kun Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P R China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| |
Collapse
|
66
|
Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells. Exp Cell Res 2016; 346:224-32. [PMID: 27381222 DOI: 10.1016/j.yexcr.2016.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 02/06/2023]
Abstract
The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.
Collapse
|
67
|
Saleh T, Cuttino L, Gewirtz DA. Autophagy is not uniformly cytoprotective: a personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer. Biochim Biophys Acta Gen Subj 2016; 1860:2130-6. [PMID: 27316314 DOI: 10.1016/j.bbagen.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In addition to surgical resection, which is considered first-line treatment at early stages of the disease, chemotherapy and radiation are widely used when the disease is advanced. Of multiple responses that may occur in the tumor cells in response to cancer therapy, the functional importance of autophagy remains equivocal; this is likely to restrict current efforts to sensitize this malignancy to chemotherapy and/or radiation by pharmacological interference with the autophagic response. SCOPE OF REVIEW In this review, we attempt to summarize the current state of knowledge based on studies that evaluated the function of autophagy in non-small cell lung cancer (NSCLC) cells in response to radiation and the most commonly used chemotherapeutic agents. MAJOR CONCLUSIONS In addition to the expected prosurvival function of autophagy, where autophagy inhibition enhances the response to therapy, autophagy appears also to have a "non-cytoprotective" function, where autophagy blockade does not affect cell viability, clonogenicity or tumor volume in response to therapy. In other cases, autophagy may actually mediate drug action via expression of its cytotoxic function. GENERAL SIGNIFICANCE These observations emphasize the complexity of autophagy function when examined in different tumor cell lines and in response to different chemotherapeutic agents. A more in-depth understanding of the conditions that promote the unique functions of autophagy is required in order to translate preclinical findings of autophagy inhibition to the clinic for the purpose of improving patient response to chemotherapy and radiation.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States
| | - Laurie Cuttino
- Department of Radiation Oncology, Virginia Commonwealth University, Henrico Doctor's Hospital, 1602 Skipwith Rd, Richmond, VA 23229, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States; Department of Medicine, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, United States.
| |
Collapse
|
68
|
Chen Y, Henson ES, Xiao W, Huang D, McMillan-Ward EM, Israels SJ, Gibson SB. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy 2016; 12:1029-46. [PMID: 27166522 DOI: 10.1080/15548627.2016.1164357] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.
Collapse
Affiliation(s)
- Yongqiang Chen
- a Research Institute in Oncology and Hematology, CancerCare Manitoba , Winnipeg , Manitoba , Canada
| | - Elizabeth S Henson
- a Research Institute in Oncology and Hematology, CancerCare Manitoba , Winnipeg , Manitoba , Canada.,b Department of Biochemistry and Medical Genetics , University of Manitoba , Winnipeg , Manitoba , Canada
| | - Wenyan Xiao
- a Research Institute in Oncology and Hematology, CancerCare Manitoba , Winnipeg , Manitoba , Canada
| | - Daniel Huang
- a Research Institute in Oncology and Hematology, CancerCare Manitoba , Winnipeg , Manitoba , Canada
| | - Eileen M McMillan-Ward
- a Research Institute in Oncology and Hematology, CancerCare Manitoba , Winnipeg , Manitoba , Canada
| | - Sara J Israels
- a Research Institute in Oncology and Hematology, CancerCare Manitoba , Winnipeg , Manitoba , Canada.,c Department of Pediatrics , University of Manitoba , Winnipeg , Manitoba , Canada
| | - Spencer B Gibson
- a Research Institute in Oncology and Hematology, CancerCare Manitoba , Winnipeg , Manitoba , Canada.,b Department of Biochemistry and Medical Genetics , University of Manitoba , Winnipeg , Manitoba , Canada
| |
Collapse
|
69
|
Tan X, Lambert PF, Rapraeger AC, Anderson RA. Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol 2016; 26:352-366. [PMID: 26827089 PMCID: PMC5120732 DOI: 10.1016/j.tcb.2015.12.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/27/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, noncanonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here, we review the mechanistic regulation of noncanonical EGFR trafficking and signaling, and the pathological and therapeutic stresses that activate it. We also discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Alan C Rapraeger
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
70
|
Mukai S, Moriya S, Hiramoto M, Kazama H, Kokuba H, Che XF, Yokoyama T, Sakamoto S, Sugawara A, Sunazuka T, Ōmura S, Handa H, Itoi T, Miyazawa K. Macrolides sensitize EGFR-TKI-induced non-apoptotic cell death via blocking autophagy flux in pancreatic cancer cell lines. Int J Oncol 2015; 48:45-54. [PMID: 26718641 PMCID: PMC4734605 DOI: 10.3892/ijo.2015.3237] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most difficult types of cancer to treat because of its high mortality rate due to chemotherapy resistance. We previously reported that combined treatment with gefitinib (GEF) and clarithromycin (CAM) results in enhanced cytotoxicity of GEF along with endoplasmic reticulum (ER) stress loading in non-small cell lung cancer cell lines. An epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) such as GEF induces autophagy in a pro-survival role, whereas CAM inhibits autophagy flux in various cell lines. Pronounced GEF-induced cytotoxicity therefore appears to depend on the efficacy of autophagy inhibition. In the present study, we compared the effect on autophagy inhibition among such macrolides as CAM, azithromycin (AZM), and EM900, a novel 12-membered non-antibiotic macrolide. We then assessed the enhanced GEF-induced cytotoxic effect on pancreatic cancer cell lines BxPC-3 and PANC-1. Autophagy flux analysis indicated that AZM is the most effective autophagy inhibitor of the three macrolides. CAM exhibits an inhibitory effect but less than AZM and EM900. Notably, the enhancing effect of GEF-induced cytotoxicity by combining macrolides correlated well with their efficient autophagy inhibition. However, this pronounced cytotoxicity was not due to upregulation of apoptosis induction, but was at least partially mediated through necroptosis. Our data suggest the possibility of using macrolides as ‘chemosensitizers’ for EGFR-TKI therapy in pancreatic cancer patients to enhance non-apoptotic tumor cell death induction.
Collapse
Affiliation(s)
- Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo, Japan
| | - Xiao-Fang Che
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Tomohisa Yokoyama
- Department of Clinical Oncology, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Sakamoto
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akihiro Sugawara
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
71
|
Bundela S, Sharma A, Bisen PS. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine. PLoS One 2015; 10:e0141719. [PMID: 26536350 PMCID: PMC4633227 DOI: 10.1371/journal.pone.0141719] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine.
Collapse
Affiliation(s)
- Saurabh Bundela
- Defence Research Development Establishment, Defence Research Development Organization, Ministry of Defence, Govt. of India, Gwalior, Madhya Pradesh, India
- Department of Postgraduate Studies & Research in Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
| | - Anjana Sharma
- Department of Postgraduate Studies & Research in Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
| | - Prakash S. Bisen
- Defence Research Development Establishment, Defence Research Development Organization, Ministry of Defence, Govt. of India, Gwalior, Madhya Pradesh, India
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
72
|
Lee YM, Sun YH. Maintenance of glia in the optic lamina is mediated by EGFR signaling by photoreceptors in adult Drosophila. PLoS Genet 2015; 11:e1005187. [PMID: 25909451 PMCID: PMC4409299 DOI: 10.1371/journal.pgen.1005187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/31/2015] [Indexed: 01/13/2023] Open
Abstract
The late onset of neurodegeneration in humans indicates that the survival and function of cells in the nervous system must be maintained throughout adulthood. In the optic lamina of the adult Drosophila, the photoreceptor axons are surrounded by multiple types of glia. We demonstrated that the adult photoreceptors actively contribute to glia maintenance in their target field within the optic lamina. This effect is dependent on the epidermal growth factor receptor (EGFR) ligands produced by the R1-6 photoreceptors and transported to the optic lamina to act on EGFR in the lamina glia. EGFR signaling is necessary and sufficient to act in a cell-autonomous manner in the lamina glia. Our results suggest that EGFR signaling is required for the trafficking of the autophagosome/endosome to the lysosome. The loss of EGFR signaling results in cell degeneration most likely because of the accumulation of autophagosomes. Our findings provide in vivo evidence for the role of adult neurons in the maintenance of glia and a novel role for EGFR signaling in the autophagic flux. Degeneration of the nervous system can be viewed as a failure to maintain cell survival or function in the nervous system. The late onset of neurodegeneration in humans indicates that the cell survival in the nervous system must be maintained throughout our lives. Neuronal survival is maintained by neurotrophic factors in adults; however, it is unclear whether glia survival is also maintained throughout adulthood. Here, we use the Drosophila visual system as a model to address the role played by adult neurons for the active maintenance of glia. We demonstrated that the adult photoreceptors secrete a signaling molecule, which is transported to the brain to act on the lamina glia and maintain its integrity. When this signaling pathway is blocked, the lamina glia undergoes a progressive and irreversible degeneration. The primary defect occurs in the trafficking from the late endosome and autophagosome to the lysosome. This defect leads to an accumulation of autophagosomes and subsequent cell degeneration as a result of autophagy. Our findings provide in vivo evidence for a novel aspect of the neuron-glia interaction and a novel role for EGFR signaling in regulating the maintenance and degeneration of the nervous system.
Collapse
Affiliation(s)
- Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Y. Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
73
|
Tan X, Thapa N, Sun Y, Anderson RA. A kinase-independent role for EGF receptor in autophagy initiation. Cell 2015; 160:145-60. [PMID: 25594178 DOI: 10.1016/j.cell.2014.12.006] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/21/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022]
Abstract
The epidermal growth factor receptor (EGFR) is upregulated in numerous human cancers. Inhibition of EGFR signaling induces autophagy in tumor cells. Here, we report an unanticipated role for the inactive EGFR in autophagy initiation. Inactive EGFR interacts with the oncoprotein LAPTM4B that is required for the endosomal accumulation of EGFR upon serum starvation. Inactive EGFR and LAPTM4B stabilize each other at endosomes and recruit the exocyst subcomplex containing Sec5. We show that inactive EGFR, LAPTM4B, and the Sec5 subcomplex are required for basal and starvation-induced autophagy. LAPTM4B and Sec5 promote EGFR association with the autophagy inhibitor Rubicon, which in turn disassociates Beclin 1 from Rubicon to initiate autophagy. Thus, the oncoprotein LAPTM4B facilitates the role of inactive EGFR in autophagy initiation. This pathway is positioned to control tumor metabolism and promote tumor cell survival upon serum deprivation or metabolic stress.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Yue Sun
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
74
|
Tang MC, Wu MY, Hwang MH, Chang YT, Huang HJ, Lin AMY, Yang JCH. Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells. PLoS One 2015; 10:e0119135. [PMID: 25807554 PMCID: PMC4373825 DOI: 10.1371/journal.pone.0119135] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 01/26/2015] [Indexed: 01/19/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib, are effective for non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, these patients eventually develop resistance to EGFR-TKI. The goal of the present study was to investigate the involvement of autophagy in gefitinib resistance. We developed gefitinib-resistant cells (PC-9/gef) from PC-9 cells (containing exon 19 deletion EGFR) after long-term exposure in gefitinib. PC-9/gef cells (B4 and E3) were 200-fold more resistant to gefitinib than PC-9/wt cells. Compared with PC-9/wt cells, both PC-9/gefB4 and PC-9/gefE3 cells demonstrated higher basal LC3-II levels which were inhibited by 3-methyladenine (3-MA, an autophagy inhibitor) and potentiated by chloroquine (CQ, an inhibitor of autophagolysosomes formation), indicating elevated autophagy in PC-9/gef cells. 3-MA and CQ concentration-dependently inhibited cell survival of both PC-9wt and PC-9/gef cells, suggesting that autophagy may be pro-survival. Furthermore, gefitinib increased LC3-II levels and autolysosome formation in both PC-9/wt cells and PC-9/gef cells. In PC-9/wt cells, CQ potentiated the cytotoxicity by low gefitinib (3nM). Moreover, CQ overcame the acquired gefitinib resistance in PC-9/gef cells by enhancing gefitinib-induced cytotoxicity, activation of caspase 3 and poly (ADP-ribose) polymerase cleavage. Using an in vivo model xenografting with PC-9/wt and PC-9/gefB4 cells, oral administration of gefitinib (50 mg/kg) completely inhibited the tumor growth of PC-9/wt but not PC-9/gefB4cells. Combination of CQ (75 mg/kg, i.p.) and gefitinib was more effective than gefitinib alone in reducing the tumor growth of PC-9/gefB4. Our data suggest that inhibition of autophagy may be a therapeutic strategy to overcome acquired resistance of gefitinib in EGFR mutation NSCLC patients.
Collapse
Affiliation(s)
- Mei-Chuan Tang
- National Center of Excellence for Clinical Trial and Research, National Taiwan University, Taipei, Taiwan
| | - Mei-Yi Wu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hung Hwang
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Ju Huang
- Department of Medical Research, Taipei-Veterans General Hospital, Taipei, Taiwan
| | - Anya Maan-Yuh Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei-Veterans General Hospital, Taipei, Taiwan
- * E-mail: (AMYL); (JCHY)
| | - James Chih-Hsin Yang
- National Center of Excellence for Clinical Trial and Research, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University and Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (AMYL); (JCHY)
| |
Collapse
|
75
|
Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M. PLoS One 2014; 9:e114000. [PMID: 25486409 PMCID: PMC4259313 DOI: 10.1371/journal.pone.0114000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022] Open
Abstract
Protein kinase CK2 has diverse functions promoting and maintaining cancer phenotypes. We investigated the effect of CK2 inhibition in lung cancer cells with T790M-mediated resistance to the EGFR-TK inhibitor. Resistant sublines of PC-9 to gefitinib (PC-9/GR) and erlotinib (PC-9/ER) were established by previous study, and T790M secondary mutation was found in both resistant sublines. A decrease of EGFR by siRNA treatment effectively controlled the growth of resistant cells, thus suggesting that they still have EGFR-dependency. CX-4945, a potent and selective CK2 inhibitor, induced autophagy in PC-9/GR and PC-9/ER, and which was supported by the induction of autophagic vacuoles and microtubule-associated protein 1 light chain 3 (LC3) expression, and the increase of punctate fluorescent signals in resistant cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. However, the withdrawal of CX-4945 led to the recovery of cancer cells with autophagy. We found that the induction of autophagy by CX-4945 in both resistant cells was CK2 dependent by using small interfering RNA against CK2. The treatment with CX-4945 alone induced a minimal growth inhibition in resistant cells. However, combined treatment of CX-4945 and EGFR-TKI effectively inhibited cancer-cell proliferation and induced apoptosis. CX-4945 increased the translocation of EGFR from the cell surface into the autophagosome, subsequently leading to the decrease of EGFR while inhibition of autophagy by 3MA or Atg7-targeted siRNA pretreatment reduced the decrease of EGFR by CX-4945. Accordingly, apoptosis by a combination of CX-4945 and EGFR-TKI was suppressed by 3MA or Atg7-targeted siRNA pretreatment, thus suggesting that autophagosome-mediated EGFR down-regulation would have an important role regarding apoptotic cell death by EGFR-TKI. Combined treatment of the CK2 inhibitor and EGFR-TKI may be a promising strategy for overcoming T790M-mediated resistance.
Collapse
|
76
|
EGFR inhibitors and autophagy in cancer treatment. Tumour Biol 2014; 35:11701-9. [PMID: 25293518 DOI: 10.1007/s13277-014-2660-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/18/2014] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) inhibitor treatment is a strategy for cancer therapy. However, innate and acquired resistance is a major obstacle of the efficacy. Autophagy is a self-digesting process in cells, which is considered to be associated with anti-cancer drug resistance. The activation of EGFR can regulate autophagy through multiple signal pathways. EGFR inhibitors can induce autophagy, but the specific function of the induction of autophagy by EGFR inhibitors remains biphasic. On the one hand, autophagy induced by EGFR inhibitors acts as a cytoprotective response in cancer cells, and autophagy inhibitors can enhance the cytotoxic effects of EGFR inhibitors. On the other hand, a high level of autophagy after treatment of EGFR inhibitors can also result in autophagic cell death lacking features of apoptosis, and the combination of EGFR inhibitors with an autophagy inducer might be beneficial. Thus, autophagy regulation represents a promising approach for improving the efficacy of EGFR inhibitors in the treatment of cancer patients.
Collapse
|
77
|
Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells. Anticancer Drugs 2014; 25:652-62. [DOI: 10.1097/cad.0000000000000089] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
78
|
Adsorption and desorption of tyrosine kinase inhibitor erlotinib on gold nanoparticles. J Colloid Interface Sci 2014; 425:96-101. [DOI: 10.1016/j.jcis.2014.03.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 11/18/2022]
|
79
|
Therapeutic targeting of autophagy in cancer. Part I: molecular pathways controlling autophagy. Semin Cancer Biol 2014; 31:89-98. [PMID: 24879905 DOI: 10.1016/j.semcancer.2014.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/09/2014] [Accepted: 05/18/2014] [Indexed: 12/31/2022]
Abstract
Autophagy is a process in which cells can generate energy and building materials, by degradation of redundant and/or damaged organelles and proteins. Especially during conditions of stress, autophagy helps to maintain homeostasis. In addition, autophagy has been shown to influence malignant transformation and cancer progression. The precise molecular events in autophagy are complex and the core autophagic machinery described to date consists of nearly thirty proteins. Apart from these factors that execute the process of autophagy, several signalling pathways are involved in converting internal and external stimuli into an autophagic response. In this review we provide an overview of the signalling pathways that influence autophagy, particularly in cancer cells. We will illustrate that interference with multiple of these signalling pathways can have significant effects on cancer cell survival.
Collapse
|
80
|
Song H, Pan B, Yi J, Chen L. Featured article: autophagic activation with nimotuzumab enhanced chemosensitivity and radiosensitivity of esophageal squamous cell carcinoma. Exp Biol Med (Maywood) 2014; 239:529-41. [PMID: 24625442 DOI: 10.1177/1535370214525315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy and radiotherapy are two indispensible methods for esophageal squamous cell carcinoma (ESCC), especially for those recurring and metastatic ones, but therapeutic toxicity remains a major problem to overcome. In the present study, the potential therapeutic value of nimotuzumab (an antiepidermal growth factor receptor [EGFR] monoclonal antibody) in combination with chemotherapy and radiotherapy was evaluated on Eca109 and TE-1 ESCC cells, with high and low expression of EGFR, respectively. It was shown that nimotuzumab enhanced the sensitivity of Eca109 cells to other cytotoxic agents (paclitaxel and cis-platinum) and X-ray radiation, and the cytotoxicity was associated with increased autophagy. Conversely, the chemo- and radio-sensitivity of TE-1 cells showed no improvement with addition of nimotuzumab, but could be increased by combining with rapamycin, an autophagy inducer. Therefore, it was concluded that autophagic activation mediated by nimotuzumab could promote autophagic cell death and produce additive antitumor effects.
Collapse
Affiliation(s)
- Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | | | | | | |
Collapse
|
81
|
Abstract
Autophagy is a cell-autonomous, catabolic process that plays context-dependent roles in tumor growth and progression. Wei et al. report that EGFR signaling promotes tumor growth through phosphorylation and functional inactivation of Beclin 1 and the consequent suppression of autophagy.
Collapse
Affiliation(s)
- Valeria R Fantin
- Oncology Research Unit, Pfizer Worldwide Research and Development, La Jolla, CA 92121, USA
| | | |
Collapse
|
82
|
Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, Grishin NV, Peyton M, Minna J, Bhagat G, Levine B. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013; 154:1269-84. [PMID: 24034250 DOI: 10.1016/j.cell.2013.08.015] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/11/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
Abstract
Cell surface growth factor receptors couple environmental cues to the regulation of cytoplasmic homeostatic processes, including autophagy, and aberrant activation of such receptors is a common feature of human malignancies. Here, we defined the molecular basis by which the epidermal growth factor receptor (EGFR) tyrosine kinase regulates autophagy. Active EGFR binds the autophagy protein Beclin 1, leading to its multisite tyrosine phosphorylation, enhanced binding to inhibitors, and decreased Beclin 1-associated VPS34 kinase activity. EGFR tyrosine kinase inhibitor (TKI) therapy disrupts Beclin 1 tyrosine phosphorylation and binding to its inhibitors and restores autophagy in non-small-cell lung carcinoma (NSCLC) cells with a TKI-sensitive EGFR mutation. In NSCLC tumor xenografts, the expression of a tyrosine phosphomimetic Beclin 1 mutant leads to reduced autophagy, enhanced tumor growth, tumor dedifferentiation, and resistance to TKI therapy. Thus, oncogenic receptor tyrosine kinases directly regulate the core autophagy machinery, which may contribute to tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Yongjie Wei
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Autosomal-dominant polycystic kidney disease is the most common form of polycystic kidney disease in adults and is caused by a mutation in the polycystic kidney disease 1 or 2 genes, which encode, respectively, polycystin-1 and polycystin-2. Autophagy is present in polycystic kidneys in rat and mouse models of polycystic kidney disease. Autophagy has yet to be shown in human polycystic kidney disease kidneys. The mechanism of cyst growth has been studied extensively in vitro and in vivo. Multiple molecules and signaling pathways have been implicated in cyst growth including mammalian target of rapamycin, the renin-angiotensin-aldosterone system, vasopressin and cyclic adenosine monophosphate, epidermal growth factor and insulin-like growth factor tyrosine kinases, vascular endothelial growth factor, extracellular signal-related kinase, tumor necrosis factor-α, cyclin-dependent kinases, caspases and apoptosis, and cyclic adenosine monophosphate-activated protein kinases. Many of the agents that inhibit these signaling pathways and slow cyst growth are also autophagy inducers such as mammalian target of rapamycin inhibitors, cyclin-dependent kinase inhibitors, caspase inhibitors, tyrosine kinase inhibitors, metformin, curcumin, and triptolide. There are reasons to believe that suppression of autophagy may play a role in cyst formation and growth. This review presents the hypothesis that suppression of autophagy may play a role in cyst formation and growth, based on the following: (1) many of the agents that protect against polycystic kidney disease also induce autophagy, (2) suppression of autophagy in polycystic kidney disease 1 knockout cells, (3) a defect in autophagy in congenital polycystic kidney mice with polycystic kidney disease, (4) how suppressed autophagy may relate to apoptosis in polycystic kidney disease, and (5) conditions with defective cilia, the ciliopathies, are associated with decreased autophagy.
Collapse
Affiliation(s)
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO.
| |
Collapse
|
84
|
Inhibition of PARP1 by small interfering RNA enhances docetaxel activity against human prostate cancer PC3 cells. Biochem Biophys Res Commun 2013; 442:127-32. [PMID: 24239883 DOI: 10.1016/j.bbrc.2013.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Though poly(ADP-ribose) polymerase 1 (PARP1) inhibitors have benefits in combination with radiotherapy in prostate cancers, few is known about the exactly role and underlying mechanism of PARP1 in combination with chemotherapy agents. Here our data revealed that inhibition of PARP1 by small interfering RNA (siRNA) could enhance docetaxel's activity against PC3 cells, which is associated with an accelerate repression of EGF/Akt/FOXO1 signaling pathway. Our results provide a novel role of PARP1 in transcription regulation of EGFR/Akt/FOXO1 signaling pathway and indicate that PARP1 siRNA combined with docetaxel can be an innovative treatment strategy to potentially improve outcomes in CRPC patients.
Collapse
|
85
|
Sobhakumari A, Schickling BM, Love-Homan L, Raeburn A, Fletcher EV, Case AJ, Domann FE, Miller FJ, Simons AL. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells. Toxicol Appl Pharmacol 2013; 272:736-45. [PMID: 23917044 PMCID: PMC3808873 DOI: 10.1016/j.taap.2013.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/20/2013] [Accepted: 07/22/2013] [Indexed: 02/05/2023]
Abstract
Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect.
Collapse
Affiliation(s)
- Arya Sobhakumari
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
- Department of Pathology, The University of Iowa, Iowa City, Iowa
| | | | | | - Ayanna Raeburn
- Department of Pathology, The University of Iowa, Iowa City, Iowa
| | - Elise V.M. Fletcher
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
- Department of Pathology, The University of Iowa, Iowa City, Iowa
| | - Adam J. Case
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, Iowa
| | - Frederick E. Domann
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
- Department of Pathology, The University of Iowa, Iowa City, Iowa
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa
| | - Francis J. Miller
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa
| | - Andrean L. Simons
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
- Department of Pathology, The University of Iowa, Iowa City, Iowa
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
86
|
Deng Q, Wang Z, Wang L, Zhang L, Xiang X, Wang Z, Chong T. Lower mRNA and Protein Expression Levels of LC3 and Beclin1, Markers of Autophagy, were Correlated with Progression of Renal Clear Cell Carcinoma. Jpn J Clin Oncol 2013; 43:1261-8. [DOI: 10.1093/jjco/hyt160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
87
|
Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 2013; 19:428-46. [DOI: 10.1016/j.molmed.2013.04.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022]
|