51
|
The Influence of Maternal-Foetal Parameters on Concentrations of Zonulin and Calprotectin in the Blood and Stool of Healthy Newborns during the First Seven Days of Life. An Observational Prospective Cohort Study. J Clin Med 2019; 8:jcm8040473. [PMID: 30959960 PMCID: PMC6517987 DOI: 10.3390/jcm8040473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background: It can be hypothetically assumed that maternal and perinatal factors influence the intestinal barrier. Methods: The study was conducted with 100 healthy, full-term newborns breastfed in the first week of life, with similar analyses for their mothers. Zonulin and calprotectin levels were used as intestinal permeability markers. Results: The median (range) zonulin concentrations (ng/mL) were in mothers: serum, 21.39 (6.39–57.54); stool, 82.23 (42.52–225.74); and newborns: serum cord blood, 11.14 (5.82–52.34); meconium, 54.15 (1.36–700.65); and stool at age seven days, 114.41 (29.38–593.72). Calprotectin median (range) concentrations (µg/mL) in mothers were: stool, 74.79 (3.89–211.77); and newborns: meconium, 154.76 (6.93–8884.11); and stool at age seven days 139.12 (11.89–627.35). The use of antibiotics during pregnancy resulted in higher zonulin concentrations in umbilical-cord serum and calprotectin concentrations in newborn stool at seven days, while antibiotic therapy during labour resulted in higher zonulin concentrations in the stool of newborns at seven days. Zonulin concentrations in the stool of newborns (at seven days) who were born via caesarean section were higher compared to with vaginal birth. With further analyses, caesarean section was found to have a greater effect on zonulin concentrations than prophylactic administration of antibiotics in the perinatal period. Pregnancy mass gain >18 kg was associated with higher calprotectin concentrations in maternal stool. Body Mass Index (BMI) increase >5.7 during pregnancy was associated with decreased zonulin concentrations in maternal stool and increased calprotectin concentrations in stool of mothers and newborns at seven days. There was also a negative correlation between higher BMI increase in pregnancy and maternal zonulin stool concentrations and a positive correlation between BMI increase in pregnancy and maternal calprotectin stool concentrations. Conclusion: Maternal-foetal factors such as caesarean section, antibiotic therapy during pregnancy, as well as change in mother’s BMI during pregnancy may increase intestinal permeability in newborns. Changes in body mass during pregnancy can also affect intestinal permeability in mothers. However, health consequences associated with increased intestinal permeability during the first days of life are unknown. Additionally, before the zonulin and calprotectin tests can be adopted as universal diagnostic applications to assess increased intestinal permeability, validation of these tests is necessary.
Collapse
|
52
|
Sun XJ, Li QY, Liu Y, Jiang TH. Protective effect of rhubarb against intestinal mucosal barrier injury in rats with obstructive jaundice. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018500155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: To investigate the effects of raw rhubarb (RR) on the intestinal barrier dysfunction and endotoxemia in rat models with obstructive jaundice (OJ). Methods: Twenty-seven Sprague–Dawley rats were randomly allocated to four groups: control ([Formula: see text]), sham operation ([Formula: see text]), model ([Formula: see text]), and treatment ([Formula: see text]). Rat models with OJ were used in the model and treatment groups. In the treatment group, rats were intragastrically administered with RR granular solution. After treatment, serum endotoxin (ET), serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TB) levels were determined. The liver tissue, bile duct tissue above the obstruction bile duct site, and parts of the ileum and colon tissues were stained with hematoxylin and eosin and observed by light microscopy, and the histopathological changes in the ileum were observed by electron microscopy. Results: Fourteen days after the rats in the treatment group were intragastrically administered with RR granular solution, the ALT, AST, and TB levels showed no significant difference between the control and sham operation groups ([Formula: see text]). Serum ET level was significantly lower in the treatment group than in the model group ([Formula: see text]). Histopathology of the liver and bile duct revealed that RR might alleviate OJ-associated hepatocyte degeneration/necrosis, infiltration of inflammatory cells, and hepatic fibrosis, and reduce the damage to parietal cells and bile duct mucosa. In OJ rats, RR might also have a protective effect against colonic wall edema and necrosis and infiltration of inflammatory cells. Conclusions: RR may improve the structural changes in the intestinal mucosa caused by OJ and decrease serum ET level in OJ rats.
Collapse
Affiliation(s)
- Xian-Jun Sun
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
- Institute of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Qiu-Ying Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Yan Liu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Ting-Hui Jiang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| |
Collapse
|
53
|
Perez-Pardo P, Dodiya H, Engen P, Naqib A, Forsyth C, Green S, Garssen J, Keshavarzian A, Kraneveld A. Gut bacterial composition in a mouse model of Parkinson’s disease. Benef Microbes 2018; 9:799-814. [DOI: 10.3920/bm2017.0202] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanism of neurodegeneration in Parkinson’s disease (PD) remains unknown but it has been hypothesised that the intestinal tract could be an initiating and contributing factor to the neurodegenerative processes. In PD patients as well as in animal models for PD, alpha-synuclein-positive enteric neurons in the colon and evidence of colonic inflammation have been demonstrated. Moreover, several studies reported pro-inflammatory bacterial dysbiosis in PD patients. Here, we report for the first time significant changes in the composition of caecum mucosal associated and luminal microbiota and the associated metabolic pathways in a rotenone-induced mouse model for PD. The mouse model for PD, induced by the pesticide rotenone, is associated with an imbalance in the gut microbiota, characterised by a significant decrease in the relative abundance of the beneficial commensal bacteria genus Bifidobacterium. Overall, intestinal bacterial dysbiosis might play an important role in both the disruption of intestinal epithelial integrity and intestinal inflammation, which could lead or contribute to the observed alpha-synuclein aggregation and PD pathology in the intestine and central nervous system in the oral rotenone mouse model of PD.
Collapse
Affiliation(s)
- P. Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - H.B. Dodiya
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - P.A. Engen
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - A. Naqib
- DNA Services Facility, University of Illinois, 835 S Wolcott, Chicago, IL 60612, USA
| | - C.B. Forsyth
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - S.J. Green
- DNA Services Facility, University of Illinois, 835 S Wolcott, Chicago, IL 60612, USA
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| | - A. Keshavarzian
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - A.D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
54
|
Nicholson SE, Merrill D, Zhu C, Burmeister DM, Zou Y, Lai Z, Darlington DN, Lewis AM, Newton L, Scroggins S, Eastridge BJ, Schwacha MG. Polytrauma independent of therapeutic intervention alters the gastrointestinal microbiome. Am J Surg 2018; 216:699-705. [PMID: 30100050 DOI: 10.1016/j.amjsurg.2018.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study characterizes the gastrointestinal (GI) microbiome in a pre-clinical polytrauma hemorrhage model. METHODS Rats (n = 6) were anesthetized, hemorrhaged 20% of their blood volume, and subjected to a femur fracture and crush injuries to the small intestine, liver, and limb skeletal muscle without resuscitation. Fecal samples were collected pre-injury and 2 h post-injury. Purified DNA from the samples underwent 16s rRNA sequencing for microbial quantification. Bacterial diversity analysis and taxonomic classification were performed. RESULTS Following injury, the gut microbial composition was altered with a shift in beta diversity and significant differences in the relative abundance of taxa. The relative abundance of the families Lachnospiraceae and Mogibacteriaceae was increased at 2 h, while Barnesiellaceae and Bacteroidaceae were decreased. Alpha diversity was unchanged. CONCLUSIONS The GI microbiome is altered in rats subjected to a polytrauma hemorrhage model at 2 h post-injury in the absence of antibiotics or therapeutic interventions.
Collapse
Affiliation(s)
- Susannah E Nicholson
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - Daniel Merrill
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - Caroline Zhu
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - David M Burmeister
- The United State Army Institute of Surgical Research, Institute of Surgical Research, 3698 Chambers Pass STE B, JBSA Ft Sam Houston TX 78234-7767, USA.
| | - Yi Zou
- Greehey Children's Cancer Research Institute UT Health San Antonio at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX 78229, USA.
| | - Zhao Lai
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - Daniel N Darlington
- The United State Army Institute of Surgical Research, Institute of Surgical Research, 3698 Chambers Pass STE B, JBSA Ft Sam Houston TX 78234-7767, USA.
| | - Aaron M Lewis
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - Larry Newton
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - Shannon Scroggins
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - Brian J Eastridge
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| | - Martin G Schwacha
- The University of Texas Health Science Center at San Antonio, Department of Surgery, Division of Trauma and Emergency Surgery, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229-3900, USA.
| |
Collapse
|
55
|
Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol 2018; 12:641-656. [PMID: 29806487 DOI: 10.1080/17474124.2018.1481747] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
The gut liver axis is an operative unit that works to protect the human body against potentially harmful substances and microorganisms, maintaining the homeostasis of the immune system. Liver cirrhosis profoundly alters this complex system. The intestine becomes more permeable allowing the translocation of bacteria, bacterial products and fragments into the portal circulation, triggering an abnormal local and systemic inflammatory response and a condition of perpetual immunologic alarm. This immune-inflammatory disorder related to dysbiosis is involved in the development of liver damage and liver cirrhosis complications and increases intestinal permeability in a vicious circle. Areas covered: The most relevant studies on bacterial translocation, the mechanism of intestinal barrier dysfunction and its consequences in patients with liver cirrhosis have been revised through a PubMed search. Data have been discussed with particular regard to their significance in clinical practice. Expert commentary: The assessment of bacterial translocation and intestinal permeability is not currently used in clinical practice but may be useful to stratify patients' prognosis.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maria Assunta Zocco
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Lucia Cerrito
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Antonio Gasbarrini
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| | - Maurizio Pompili
- a Internal Medicine, Gastroenterology and Hepatology , Fondazione Agostino Gemelli Hospital , Rome , Italy
| |
Collapse
|
56
|
Zhu CS, Grandhi R, Patterson TT, Nicholson SE. A Review of Traumatic Brain Injury and the Gut Microbiome: Insights into Novel Mechanisms of Secondary Brain Injury and Promising Targets for Neuroprotection. Brain Sci 2018; 8:brainsci8060113. [PMID: 29921825 PMCID: PMC6025245 DOI: 10.3390/brainsci8060113] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiome and its role in health and disease have recently been major focus areas of research. In this review, we summarize the different ways in which the gut microbiome interacts with the rest of the body, with focus areas on its relationships with immunity, the brain, and injury. The gut–brain axis, a communication network linking together the central and enteric nervous systems, represents a key bidirectional pathway with feed-forward and feedback mechanisms. The gut microbiota has a central role in this pathway and is significantly altered following injury, leading to a pro-inflammatory state within the central nervous system (CNS). Herein, we examine traumatic brain injury (TBI) in relation to this axis and explore potential interventions, which may serve as targets for improving clinical outcomes and preventing secondary brain injury.
Collapse
Affiliation(s)
- Caroline S Zhu
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
| | - Ramesh Grandhi
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
- Department of Neurosurgery, The University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
- Department of Neurosurgery, The University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Thomas Tyler Patterson
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
| | - Susannah E Nicholson
- Division of Trauma and Emergency Surgery, Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive (MC 7740), San Antonio, TX 78229, USA.
| |
Collapse
|
57
|
Zhen LL, Miao B, Chen YY, Su Z, Xu MQ, Fei S, Zhang J. Protective effect and mechanism of injection of glutamate into cerebellum fastigial nucleus on chronic visceral hypersensitivity in rats. Life Sci 2018; 203:184-192. [PMID: 29704480 DOI: 10.1016/j.lfs.2018.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
AIMS We investigated the effects of chemical stimulation of cerebellum fastigial nucleus (FN) on the chronic visceral hypersensitivity (CVH) and its possible mechanism in rats. MAIN METHODS We stimulated the FN by microinjecting glutamate into the FN, in order to explore whether the cerebellum fastigial nucleus played a role on CVH in rat. The model of CVH was established by colorectal distension (CRD) in neonatal rats. Abdominal withdrawal reflex (AWR) scores, pain threshold, and amplitude of electromyography (EMG) were used to assess the hyperalgesia. KEY FINDINGS We showed that microinjection of l-glutamate (Glu) into the FN markedly attenuated hyperalgesia. The protective effect of FN was prevented by pretreatment with the glutamate decarboxylase inhibitor, 3-mercaptopropionic acid (3-MPA) into the FN or GABAA receptor antagonist, bicuculline (Bic) into the LHA (lateral hypothalamic area). The expressions of protein Bax, caspase-3 were decreased, but the expression of protein Bcl-2 was increased after chemical stimulation of FN. These results indicated that the FN participated in regulation of CVH, and was a specific area in the CNS for exerting protective effects on the CVH. In addition, LHA and GABA receptor may be involved in this process. SIGNIFICANCE Our findings might provide a new and improved understanding of the FN function, and might show an effective treatment strategy for the chronic visceral hypersensitivity.
Collapse
Affiliation(s)
- Ling-Ling Zhen
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Bei Miao
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Ying-Ying Chen
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Zhen Su
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Man-Qiu Xu
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Sujuan Fei
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.
| | - Jianfu Zhang
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
58
|
Deaver JA, Eum SY, Toborek M. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition. Front Microbiol 2018; 9:737. [PMID: 29706947 PMCID: PMC5909328 DOI: 10.3389/fmicb.2018.00737] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light–dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques, a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii, a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.
Collapse
Affiliation(s)
- Jessica A Deaver
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sung Y Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
59
|
The Brain-Intestinal Mucosa-Appendix- Microbiome-Brain Loop. Diseases 2018; 6:diseases6020023. [PMID: 29614774 PMCID: PMC6023457 DOI: 10.3390/diseases6020023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
The brain and the gut are connected from early fetal life. The mother's exposure to microbial molecules is thought to exert in utero developmental effects on the fetus. These effects could importantly underpin the groundwork for subsequent pathophysiological mechanisms for achieving immunological tolerance and metabolic equilibrium post birth, events that continue through to 3-4 years of age. Furthermore, it is understood that the microbiome promotes cues that instruct the neonate's mucosal tissues and skin in the language of molecular and cellular biology. Post birth mucosal lymphoid tissue formation and maturation (most probably including the vermiform appendix) is microbiota-encouraged co-establishing the intestinal microbiome with a developing immune system. Intestinal mucosal tissue maturation loops the brain-gut-brain and is postulated to influence mood dispositions via shifts in the intestinal microbiome phyla. A plausible appreciation is that dysregulated pro-inflammatory signals from intestinal resident macrophages could breach the loop by providing adverse mood signals via vagus nerve afferents to the brain. In this commentary, we further suggest that the intestinal resident macrophages act as an upstream traffic controller of translocated microbes and metabolites in order to maintain local neuro-endocrine-immunological equilibrium. When macrophages are overwhelmed through intestinal microbiome and intestinal epithelial cell dysbiosis, pro-inflammatory signals are sustained, which may then lead to mood disorders. The administration of probiotics as an adjunctive medicine co-administered with antidepressant medications in improving depressed mood may have biological and clinical standing.
Collapse
|
60
|
Engen PA, Dodiya HB, Naqib A, Forsyth CB, Green SJ, Voigt RM, Kordower JH, Mutlu EA, Shannon KM, Keshavarzian A. The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. JOURNAL OF PARKINSONS DISEASE 2018; 7:331-346. [PMID: 28234259 DOI: 10.3233/jpd-160991] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent evidence suggests that Parkinson's disease (PD) is associated with intestinal microbiota dysbiosis, abnormal intestinal permeability, and intestinal inflammation. OBJECTIVE Our study aimed to determine if these gut abnormalities are present in another synucleinopathy, multiple system atrophy (MSA). METHODS In six MSA and 11 healthy control subjects, we performed immunohistochemistry studies of colonic sigmoid mucosa to evaluate the intestinal barrier marker Zonula Occludens-1 and the endotoxin-related inflammation marker Toll-like-receptor-4 expression. We also assessed colonic sigmoid mucosal and fecal microbiota compositions using high-throughput 16S ribosomal RNA gene amplicon sequencing. RESULTS MSA subjects showed disrupted tight junction protein Zonula Occludens-1 structure in sigmoid mucosa tissue suggesting intestinal barrier dysfunction. The lipopolysaccharide specific inflammatory receptor Toll-like-receptor-4 was significantly higher in the colonic sigmoid mucosa in MSA relative to healthy controls. Microbiota analysis suggested high relative abundance of gram-negative, putative "pro-inflammatory" bacteria in various family and genus level taxa, from the phylum Bacteroidetes and Proteobacteria, in MSA feces and mucosa. At the taxonomic level of genus, putative "anti-inflammatory" butyrate-producing bacteria were less abundant in MSA feces. Predictive functional analysis indicated that the relative abundance of a number of genes involved in metabolism were lower in MSA feces, whereas the relative abundance of genes involved in lipopolysaccharide biosynthesis were higher in both MSA feces and mucosa compared to healthy controls. CONCLUSIONS This proof-of-concept study provides preliminary evidence that like PD, MSA subjects display evidence of disrupted intestinal barrier integrity, increased marker of endotoxin-related intestinal inflammation, and pro-inflammatory colonic microbiota.
Collapse
Affiliation(s)
- Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Hemraj B Dodiya
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey H Kordower
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Ece A Mutlu
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Kathleen M Shannon
- Department of Neurology, University of Wisconsin School of Public Health, Madison, WI, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA.,Department of Physiology, Rush University Medical Center, Chicago, IL, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
61
|
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017; 5:e1373208. [PMID: 28956703 DOI: 10.1080/21688370.2017.1373208] [Citation(s) in RCA: 604] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is considered the largest immunological organ in the body having a central role in regulating immune homeostasis. Contrary to earlier belief, the intestinal epithelial barrier is not a static physical barrier but rather strongly interacts with the gut microbiome and cells of the immune system. This intense communication between epithelial cells, immune cells and microbiome will shape specific immune responses to antigens, balancing tolerance and effector immune functions. Recent studies indicate that composition of the gut microbiome affects immune system development and modulates immune mediators, which in turn affect the intestinal barrier. Moreover, dysbiosis may favor intestinal barrier disruption and could be related to increased susceptibility to certain diseases. This review will be focused on the development of the intestinal barrier and its function in host immune defense and how gut microbiome composition throughout life can affect this role.
Collapse
Affiliation(s)
- Tatiana Takiishi
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo (USP), São Paulo - SP , Brazil
| | - Camila Ideli Morales Fenero
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo (USP), São Paulo - SP , Brazil
| | - Niels Olsen Saraiva Câmara
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo (USP), São Paulo - SP , Brazil
| |
Collapse
|
62
|
Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol 2017; 109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023]
Abstract
Gut health is determined by an intact epithelial barrier and balanced gut microbiota, both involved in the regulation of immune responses in the gut. Disruption of this system contributes to the etiology of various non-communicable diseases, including intestinal, metabolic, and autoimmune disorders. Studies suggest that some direct food additives, but also some food contaminants, such as pesticide residues and substances migrating from food contact materials (FCMs), may adversely affect the gut barrier or gut microbiota. Here, we focus on gut-related effects of FCM-relevant substances (e.g. surfactants, N-ring containing substances, nanoparticles, and antimicrobials) and show that gut health is an underappreciated target in the toxicity assessment of FCMs. Understanding FCMs' impact on gut health requires more attention to ensure safety and prevent gut-related chronic diseases. Our review further points to the existence of large population subgroups with an increased intestinal permeability; this may lead to higher uptake of compounds of not only low (<1000 Da) but also high (>1000 Da) molecular weight. We discuss the potential toxicological relevance of high molecular weight compounds in the gut and suggest that the scientific justification for the application of a molecular weight-based cut-off in risk assessment of FCMs should be reevaluated.
Collapse
|
63
|
Abstract
Microbiota play a key role in various body functions, as well as in physiological, metabolic, and immunological processes, through different mechanisms such as the regulation of the development and/or functions of different types of immune cells in the intestines. Evidence indicates that alteration in the gut microbiota can influence infectious and non-infectious diseases. Bacteria that reside on the mucosal surface or within the mucus layer interact with the host immune system, thus, a healthy gut microbiota is essential for the development of mucosal immunity. In patients with human immunodeficiency virus (HIV), including those who control their disease with antiretroviral drugs (ART), the gut microbiome is very different than the microbiome of those not infected with HIV. Recent data suggests that, for these patients, dysbiosis may lead to a breakdown in the gut’s immunologic activity, causing systemic bacteria diffusion and inflammation. Since in HIV-infected patients in this state, including those in ART therapy, the treatment of gastrointestinal tract disorders is frustrating, many studies are in progress to investigate the ability of probiotics to modulate epithelial barrier functions, microbiota composition, and microbial translocation. This mini-review analyzed the use of probiotics to prevent and attenuate several gastrointestinal manifestations and to improve gut-associated lymphoid tissue (GALT) immunity in HIV infection.
Collapse
|
64
|
Stewart AS, Pratt-Phillips S, Gonzalez LM. Alterations in Intestinal Permeability: The Role of the "Leaky Gut" in Health and Disease. J Equine Vet Sci 2017; 52:10-22. [PMID: 31000910 DOI: 10.1016/j.jevs.2017.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All species, including horses, suffer from alterations that increase intestinal permeability. These alterations, also known as "leaky gut," may lead to severe disease as the normal intestinal barrier becomes compromised and can no longer protect against harmful luminal contents including microbial toxins and pathogens. Leaky gut results from a variety of conditions including physical stressors, decreased blood flow to the intestine, inflammatory disease, and pathogenic infections, among others. Several testing methods exist to diagnose these alterations in both a clinical and research setting. To date, most research has focused on regulation of the host immune response due to the wide variety of factors that can potentially influence the intestinal barrier. This article serves to review the normal intestinal barrier, measurement of barrier permeability, pathogenesis and main causes of altered permeability, and highlight potential alternative therapies of leaky gut in horses while relating what has been studied in other species. Conditions resulting in barrier dysfunction and leaky gut can be a major cause of decreased performance and also death in horses. A better understanding of the intestinal barrier in disease and ways to optimize the function of this barrier is vital to the long-term health and maintenance of these animals.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | - Liara M Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Center for Gastrointestinal Biology and Disease, Large Animal Models Core, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
65
|
Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, Casado Bedmar M, Vicario M. The intestinal barrier function and its involvement in digestive disease. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 107:686-96. [PMID: 26541659 DOI: 10.17235/reed.2015.3846/2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.
Collapse
Affiliation(s)
| | | | | | | | - María Vicario
- Gastroenteroogia, Vall d'Hebron Institut de REcerca, España
| |
Collapse
|
66
|
Pellegrini C, Colucci R, Antonioli L, Barocelli E, Ballabeni V, Bernardini N, Blandizzi C, de Jonge WJ, Fornai M. Intestinal dysfunction in Parkinson's disease: Lessons learned from translational studies and experimental models. Neurogastroenterol Motil 2016; 28:1781-1791. [PMID: 27611012 DOI: 10.1111/nmo.12933] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Symptoms of digestive dysfunction in patients with Parkinson's disease (PD) occur at all stages of the disease, often preceding the onset of central motor symptoms. On the basis of these PD-preceding symptoms it has been proposed that PD could initiate in the gut, and that the presence of alpha-synuclein aggregates, or Lewy bodies in the enteric nervous system might represent one of the earliest signs of the disease. Following this hypothesis, much research has been focused on the digestive tract to unravel the mechanisms underlying the onset and progression of PD, with particular attention to the role of alterations in enteric neurotransmission in the pathophysiology of intestinal motility disturbances. There is also evidence suggesting that the development of central nigrostriatal neurodegeneration is associated with the occurrence of gut inflammation, characterized by increments of tissue pro-inflammatory markers and oxidative stress, which might support conditions of bowel neuromotor abnormalities. PURPOSE The present review intends to provide an integrated and critical appraisal of the available knowledge on the alterations of enteric neuromuscular pathways regulating gut motor activity both in humans and preclinical models of PD. Moreover, we will discuss the possible involvement of neuro-immune mechanisms in the pathophysiology of aberrant gastrointestinal gut transit and neuromuscular activity in the small and large bowel.
Collapse
Affiliation(s)
- C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Barocelli
- Department of Pharmacy, University of Parma, Parma, Italy
| | - V Ballabeni
- Department of Pharmacy, University of Parma, Parma, Italy
| | - N Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
67
|
Aguirre Valadez JM, Rivera-Espinosa L, Méndez-Guerrero O, Chávez-Pacheco JL, García Juárez I, Torre A. Intestinal permeability in a patient with liver cirrhosis. Ther Clin Risk Manag 2016; 12:1729-1748. [PMID: 27920543 PMCID: PMC5125722 DOI: 10.2147/tcrm.s115902] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a worldwide public health problem, and patients with this disease are at high risk of developing complications, bacterial translocation from the intestinal lumen to the mesenteric nodes, and systemic circulation, resulting in the development of severe complications related to high mortality rate. The intestinal barrier is a structure with a physical and biochemical activity to maintain balance between the external environment, including bacteria and their products, and the internal environment. Patients with liver cirrhosis develop a series of alterations in different components of the intestinal barrier directly associated with the severity of liver disease that finally increased intestinal permeability. A "leaky gut" is an effect produced by damaged intestinal barrier; alterations in the function of tight junction proteins are related to bacterial translocation and their products. Instead, increasing serum proinflammatory cytokines and hemodynamics modification, which results in the appearance of complications of liver cirrhosis such as hepatic encephalopathy, variceal hemorrhage, bacterial spontaneous peritonitis, and hepatorenal syndrome. The intestinal microbiota plays a fundamental role in maintaining the proper function of the intestinal barrier; bacterial overgrowth and dysbiosis are two phenomena often present in people with liver cirrhosis favoring bacterial translocation. Increased intestinal permeability has an important role in the genesis of these complications, and treating it could be the base for prevention and partial treatment of these complications.
Collapse
Affiliation(s)
| | | | - Osvely Méndez-Guerrero
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | | | - Ignacio García Juárez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| | - Aldo Torre
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición”Salvador Zubirán
| |
Collapse
|
68
|
Calvello R, Aresta A, Trapani A, Zambonin C, Cianciulli A, Salvatore R, Clodoveo ML, Corbo F, Franchini C, Panaro MA. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells. Food Chem 2016; 210:276-85. [PMID: 27211648 DOI: 10.1016/j.foodchem.2016.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022]
Abstract
In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Antonella Aresta
- Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Adriana Trapani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Carlo Zambonin
- Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Rosaria Salvatore
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Maria Lisa Clodoveo
- Department of Agro-Environmental and Territorial Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Carlo Franchini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
69
|
Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian Rhythm and the Gut Microbiome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:193-205. [PMID: 27793218 DOI: 10.1016/bs.irn.2016.07.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Circadian rhythms are 24-h patterns regulating behavior, organs, and cells in living organisms. These rhythms align biological functions with regular and predictable environmental patterns to optimize function and health. Disruption of these rhythms can be detrimental resulting in metabolic syndrome, cancer, or cardiovascular disease, just to name a few. It is now becoming clear that the intestinal microbiome is also regulated by circadian rhythms via intrinsic circadian clocks as well as via the host organism. Microbiota rhythms are regulated by diet and time of feeding which can alter both microbial community structure and metabolic activity which can significantly impact host immune and metabolic function. In this review, we will cover how host circadian rhythms are generated and maintained, how host circadian rhythms can be disrupted, as well as the consequences of circadian rhythm disruption. We will further highlight the newly emerging literature indicating the importance of circadian rhythms of the intestinal microbiota.
Collapse
Affiliation(s)
- R M Voigt
- Rush University Medical Center, Chicago, IL, United States
| | - C B Forsyth
- Rush University Medical Center, Chicago, IL, United States
| | - S J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - P A Engen
- Rush University Medical Center, Chicago, IL, United States
| | - A Keshavarzian
- Rush University Medical Center, Chicago, IL, United States; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
70
|
Mapesa JO, Maxwell AL, Ryan EP. An Exposome Perspective on Environmental Enteric Dysfunction. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1121-6. [PMID: 26713888 PMCID: PMC4977058 DOI: 10.1289/ehp.1510459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/18/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Environmental exposures to chemicals have been shown to influence gastrointestinal function, yet little is known regarding whether chemical mixtures may be involved in the development of a subclinical enteric dysfunction found in infants and children born into poor hygiene and sanitation. Advances in gastrointestinal and immunotoxicology fields merit inclusion in complex discussions of environmental enteric dysfunction (EED) that severely affects children in developing countries. OBJECTIVE We aimed to highlight exposome approaches for investigating the potential influence of environmental chemical exposures on EED development, including a role for toxicant modulation of gut immune system and microbiome function. DISCUSSION A major focus on fecal-oral contamination in impoverished living conditions already exists for EED, and should now expand to include environmental chemicals such as pesticides and heavy metals that may be anthropogenic or dietary or from microbial sources. A comprehensive characterization of environmental chemical exposures prenatally and occurring in infants and young children will enhance our knowledge of any associated risks for EED and stunting. CONCLUSIONS Integrating EED, chemical exposure, and stunting at various ages during childhood will enhance our apparent limited view when evaluating EED. Etiology and intervention studies should evaluate the suite of environmental chemical exposures as candidates in the composite of EED biomarkers. CITATION Mapesa JO, Maxwell AL, Ryan EP. 2016. An exposome perspective on environmental enteric dysfunction. Environ Health Perspect 124:1121-1126; http://dx.doi.org/10.1289/ehp.1510459.
Collapse
Affiliation(s)
- Job O. Mapesa
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
- Department of Public Health and Human Nutrition and Dietetics, Kenya Methodist University, Nairobi, Kenya
| | - Amy L. Maxwell
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
- Department of Health Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
71
|
Connor EE, Evock-Clover CM, Wall EH, Baldwin RL, Santin-Duran M, Elsasser TH, Bravo DM. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest Anim Endocrinol 2016; 56 Suppl:S56-65. [PMID: 27345324 DOI: 10.1016/j.domaniend.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of these enteric peptides are only beginning to be uncovered. One peptide in particular, glucagon-like peptide 2 (GLP-2) produced by enteroendocrine L cells, has been fairly well characterized in rodent and swine models in terms of its ability to improve nutrient absorption and healing of the gut after injury. In fact, a long-acting form of GLP-2 recently has been approved for the management and treatment of human conditions like inflammatory bowel disease and short bowel syndrome. However, novel functions of GLP-2 within the gut continue to be demonstrated, including its beneficial effects on intestinal barrier function and reducing intestinal inflammation. As knowledge continues to grow about GLP-2's effects on the gut and its mechanisms of release, the potential to use GLP-2 to improve gut function and health of food animals becomes increasingly more apparent. Thus, the purpose of this review is to summarize: (1) the current understanding of GLP-2's functions and mechanisms of action within the gut; (2) novel applications of GLP-2 (or stimulators of its release) to improve general health and production performance of food animals; and (3) recent findings, using dairy calves as a model, that suggest the therapeutic potential of GLP-2 to reduce the pathogenesis of intestinal protozoan infections.
Collapse
Affiliation(s)
- E E Connor
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA.
| | - C M Evock-Clover
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - E H Wall
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - R L Baldwin
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - M Santin-Duran
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - T H Elsasser
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - D M Bravo
- Pancosma S.A., CH-1218 Geneva, Switzerland
| |
Collapse
|
72
|
Kobyliak N, Virchenko O, Falalyeyeva T. Pathophysiological role of host microbiota in the development of obesity. Nutr J 2016; 15:43. [PMID: 27105827 PMCID: PMC4841968 DOI: 10.1186/s12937-016-0166-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/21/2016] [Indexed: 12/16/2022] Open
Abstract
Overweight and obesity increase the risk for a number of diseases, namely, cardiovascular diseases, type 2 diabetes, dyslipidemia, premature death, non-alcoholic fatty liver disease as well as different types of cancer. Approximately 1.7 billion people in the world suffer from being overweight, most notably in developed countries. Current research efforts have focused on host and environmental factors that may affect energy balance. It was hypothesized that a microbiota profile specific to an obese host with increased energy-yielding behavior may exist. Consequently, the gut microbiota is becoming of significant research interest in relation to obesity in an attempt to better understand the aetiology of obesity and to develop new methods of its prevention and treatment. Alteration of microbiota composition may stimulate development of obesity and other metabolic diseases via several mechanisms: increasing gut permeability with subsequent metabolic inflammation; increasing energy harvest from the diet; impairing short-chain fatty acids synthesis; and altering bile acids metabolism and FXR/TGR5 signaling. Prebiotics and probiotics have physiologic functions that contribute to the health of gut microbiota, maintenance of a healthy body weight and control of factors associated with obesity through their effects on mechanisms that control food intake, body weight, gut microbiota and inflammatory processes.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Bogomolets National Medical University, T. Shevchenko Boulevard, 13, Kyiv, 01601, Ukraine.
| | - Oleksandr Virchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| |
Collapse
|
73
|
Effects of acute intra-abdominal hypertension on multiple intestinal barrier functions in rats. Sci Rep 2016; 6:22814. [PMID: 26980423 PMCID: PMC4793228 DOI: 10.1038/srep22814] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/15/2016] [Indexed: 12/18/2022] Open
Abstract
Intra-abdominal hypertension (IAH) is a common and serious complication in critically ill patients for which there is no well-defined treatment strategy. Here, we explored the effect of IAH on multiple intestinal barriers and discussed whether the alteration in microflora provides clues to guide the rational therapeutic treatment of intestinal barriers during IAH. Using a rat model, we analysed the expression of tight junction proteins (TJs), mucins, chemotactic factors, and Toll-like receptor 4 (TLR4) by immunohistochemistry. We also analysed the microflora populations using 16S rRNA sequencing. We found that, in addition to enhanced permeability, acute IAH (20 mmHg for 90 min) resulted in significant disturbances to mucosal barriers. Dysbiosis of the intestinal microbiota was also induced, as represented by decreased Firmicutes (relative abundance), increased Proteobacteria and migration of Bacteroidetes from the colon to the jejunum. At the genus level, Lactobacillus species and Peptostreptococcaceae incertae sedis were decreased, whereas levels of lactococci remained unchanged. Our findings outline the characteristics of IAH-induced barrier changes, indicating that intestinal barriers might be treated to alleviate IAH, and the microflora may be an especially relevant target.
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW This article evaluates the current status of the gut barrier in gastrointestinal disorders. RECENT FINDINGS The gut barrier is a complex, multicomponent, interactive, and bidirectional entity that includes, but is not restricted to, the epithelial cell layer. Intestinal permeability, the phenomenon most readily and commonly studied, reflects just one (albeit an important one) function of the barrier that is intimately related to and interacts with luminal contents, including the microbiota. The mucosal immune response also influences barrier integrity; effects of inflammation per se must be accounted for in the interpretation of permeability studies in disease states. SUMMARY Although several aspects of barrier function can be assessed in man, one must be aware of exactly what a given test measures, as well as of its limitations. The temptation to employ results from a test of paracellular flux to imply a role for barrier dysfunction in disorders thought to be based on bacterial or macromolecular translocation must be resisted. Although changes in barrier function have been described in several gastrointestinal disorders, their primacy remains to be defined. At present, few studies support efficacy for an intervention that improves barrier function in altering the natural history of a disease process.
Collapse
|
75
|
Lower Neighborhood Socioeconomic Status Associated with Reduced Diversity of the Colonic Microbiota in Healthy Adults. PLoS One 2016; 11:e0148952. [PMID: 26859894 PMCID: PMC4747579 DOI: 10.1371/journal.pone.0148952] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
In the United States, there are persistent and widening socioeconomic gaps in morbidity and mortality from chronic diseases. Although most disparities research focuses on person-level socioeconomic-status, mounting evidence suggest that chronic diseases also pattern by the demographic characteristics of neighborhoods. Yet the biological mechanisms underlying these associations are poorly understood. There is increasing recognition that chronic diseases share common pathogenic features, some of which involve alterations in the composition, diversity, and functioning of the gut microbiota. This study examined whether socioeconomic-status was associated with alpha-diversity of the colonic microbiota. Forty-four healthy adults underwent un-prepped sigmoidoscopy, during which mucosal biopsies and fecal samples were collected. Subjects’ zip codes were geocoded, and census data was used to form a composite indicator of neighborhood socioeconomic-status, reflecting household income, educational attainment, employment status, and home value. In unadjusted analyses, neighborhood socioeconomic-status explained 12–18 percent of the variability in alpha-diversity of colonic microbiota. The direction of these associations was positive, meaning that as neighborhood socioeconomic-status increased, so did alpha-diversity of both the colonic sigmoid mucosa and fecal microbiota. The strength of these associations persisted when models were expanded to include covariates reflecting potential demographic (age, gender, race/ethnicity) and lifestyle (adiposity, alcohol use, smoking) confounds. In these models neighborhood socioeconomic-status continued to explain 11–22 percent of the variability in diversity indicators. Further analyses suggested these patterns reflected socioeconomic variations in evenness, but not richness, of microbial communities residing in the sigmoid. We also found indications that residence in neighborhoods of higher socioeconomic-status was associated with a greater abundance of Bacteroides and a lower abundance of Prevotella, suggesting that diet potentially underlies differences in microbiota composition. These findings suggest the presence of socioeconomic variations in colonic microbiota diversity. Future research should explore whether these variations contribute to disparities in chronic disease outcomes.
Collapse
|
76
|
Putignani L, Del Chierico F, Vernocchi P, Cicala M, Cucchiara S, Dallapiccola B. Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood-Adulthood Transition. Inflamm Bowel Dis 2016; 22:487-504. [PMID: 26588090 DOI: 10.1097/mib.0000000000000602] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal disorders, although clinically heterogeneous, share pathogenic mechanisms, including genetic susceptibility, impaired gut barrier function, altered microbiota, and environmental triggers (infections, social and behavioral factors, epigenetic control, and diet). Gut microbiota has been studied for inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) in either children or adults, while modifiable gut microbiota features, acting as risk and premorbid factors along the childhood-adulthood transition, have not been thoroughly investigated so far. Indeed, the relationship between variations of the entire host/microbiota/environmental scenario and clinical phenotypes is still not fully understood. In this respect, tracking gut dysbiosis grading may help deciphering host phenotype-genotype associations and microbiota shifts in an integrated top-down omics-based approach within large-scale pediatric and adult case-control cohorts. Large-scale gut microbiota signatures and host inflammation patterns may be integrated with dietary habits, under genetic and epigenetic constraints, providing gut dysbiosis profiles acting as risk predictors of IBD or IBS in preclinical cases. Tracking dysbiosis supports new personalized/stratified IBD and IBS prevention programmes, generating Decision Support System tools. They include (1) high risk or flare-up recurrence -omics-based dysbiosis profiles; (2) microbial and molecular biomarkers of health and disease; (3) -omics-based pipelines for laboratory medicine diagnostics; (4) health apps for self-management of score-based dietary profiles, which can be shared with clinicians for nutritional habit and lifestyle amendment; (5) -omics profiling data warehousing and public repositories for IBD and IBS profile consultation. Dysbiosis-related indexes can represent novel laboratory and clinical medicine tools preventing or postponing the disease, finally interfering with its natural history.
Collapse
Affiliation(s)
- Lorenza Putignani
- *Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; †Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; ‡Gastroenterology Unit, University Campus Bio-Medico of Rome, Rome, Italy; §Department of Pediatrics, Center for Pediatric Inflammatory Bowel Disease, University of Rome "La Sapienza," Rome, Italy; and ‖Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
77
|
Ren Q, Ren L, Ren C, Liu X, Dong C, Zhang X. Platelet endothelial cell adhesion molecule-1 (PECAM1) plays a critical role in the maintenance of human vascular endothelial barrier function. Cell Biochem Funct 2015; 33:560-5. [PMID: 26607202 DOI: 10.1002/cbf.3155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Qi Ren
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Limin Ren
- Department of Neurosurgery; Zoucheng People's Hospital; Jining 273500 Shandong China
| | - Changjie Ren
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Xuefei Liu
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
| | - Chun Dong
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Xinghua Zhang
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
| |
Collapse
|
78
|
Dobson GP. Addressing the Global Burden of Trauma in Major Surgery. Front Surg 2015; 2:43. [PMID: 26389122 PMCID: PMC4558465 DOI: 10.3389/fsurg.2015.00043] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Despite a technically perfect procedure, surgical stress can determine the success or failure of an operation. Surgical trauma is often referred to as the "neglected step-child" of global health in terms of patient numbers, mortality, morbidity, and costs. A staggering 234 million major surgeries are performed every year, and depending upon country and institution, up to 4% of patients will die before leaving hospital, up to 15% will have serious post-operative morbidity, and 5-15% will be readmitted within 30 days. These percentages equate to around 1000 deaths and 4000 major complications every hour, and it has been estimated that 50% may be preventable. New frontline drugs are urgently required to make major surgery safer for the patient and more predictable for the surgeon. We review the basic physiology of the stress response from neuroendocrine to genomic systems, and discuss the paucity of clinical data supporting the use of statins, beta-adrenergic blockers and calcium-channel blockers. Since cardiac-related complications are the most common, particularly in the elderly, a key strategy would be to improve ventricular-arterial coupling to safeguard the endothelium and maintain tissue oxygenation. Reduced O2 supply is associated with glycocalyx shedding, decreased endothelial barrier function, fluid leakage, inflammation, and coagulopathy. A healthy endothelium may prevent these "secondary hit" complications, including possibly immunosuppression. Thus, the four pillars of whole body resynchronization during surgical trauma, and targets for new therapies, are: (1) the CNS, (2) the heart, (3) arterial supply and venous return functions, and (4) the endothelium. This is termed the Central-Cardio-Vascular-Endothelium (CCVE) coupling hypothesis. Since similar sterile injury cascades exist in critical illness, accidental trauma, hemorrhage, cardiac arrest, infection and burns, new drugs that improve CCVE coupling may find wide utility in civilian and military medicine.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University , Townsville, QLD , Australia
| |
Collapse
|
79
|
Dore MP, Goni E, Di Mario F. Is There a Role for Probiotics in Helicobacter pylori Therapy? Gastroenterol Clin North Am 2015; 44:565-575. [PMID: 26314668 DOI: 10.1016/j.gtc.2015.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of probiotics in Helicobacter pylori therapy remains unclear. Lactobacilli can be shown to inhibit H pylori in vitro. Some strains of Lactobacilli may exert specific antimicrobial effects. There is no strong evidence of a benefit on eradication rate when probiotics are added to a regimen. Despite promising results obtained using compounds of L reuteri and S boulardii, high-quality trials are needed to define the role of probiotics as adjuvant therapy. Variables that remain to be studied with L reuteri, currently the most promising strain, include dosage, frequency of administration, administration in relation to meals, and duration of therapy.
Collapse
Affiliation(s)
- Maria P Dore
- Dipartimento di Medicina Clinica e Sperimentale, University of Sassari, Viale San Pietro n 8, Sassari 07100, Italy; Department of Medicine, Michael E. DeBakey VAMC, Baylor College of Medicine, 2002 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elisabetta Goni
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg 39106, Germany
| | - Francesco Di Mario
- Department of Clinical and Experimental Medicine, University of Parma, School of Medicine, Via Gramsci 14, Parma 43125, Italy.
| |
Collapse
|
80
|
Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM. Colonic bacterial composition in Parkinson's disease. Mov Disord 2015; 30:1351-60. [PMID: 26179554 DOI: 10.1002/mds.26307] [Citation(s) in RCA: 885] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION We showed that Parkinson's disease (PD) patients have alpha-synuclein (α-Syn) aggregation in their colon with evidence of colonic inflammation. If PD patients have altered colonic microbiota, dysbiosis might be the mechanism of neuroinflammation that leads to α-Syn misfolding and PD pathology. METHODS Sixty-six sigmoid mucosal biopsies and 65 fecal samples were collected from 38 PD patients and 34 healthy controls. Mucosal-associated and feces microbiota compositions were characterized using high-throughput ribosomal RNA gene amplicon sequencing. Data were correlated with clinical measures of PD, and a predictive assessment of microbial community functional potential was used to identify microbial functions. RESULTS The mucosal and fecal microbial community of PD patients was significantly different than control subjects, with the fecal samples showing more marked differences than the sigmoid mucosa. At the taxonomic level of genus, putative, "anti-inflammatory" butyrate-producing bacteria from the genera Blautia, Coprococcus, and Roseburia were significantly more abundant in feces of controls than PD patients. Bacteria from the genus Faecalibacterium were significantly more abundant in the mucosa of controls than PD. Putative, "proinflammatory" Proteobacteria of the genus Ralstonia were significantly more abundant in mucosa of PD than controls. Predictive metagenomics indicated that a large number of genes involved in metabolism were significantly lower in the PD fecal microbiome, whereas genes involved in lipopolysaccharide biosynthesis and type III bacterial secretion systems were significantly higher in PD patients. CONCLUSION This report provides evidence that proinflammatory dysbiosis is present in PD patients and could trigger inflammation-induced misfolding of α-Syn and development of PD pathology.
Collapse
Affiliation(s)
- Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Physiology, Rush University Medical Center, Chicago, Illinois, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Ece Mutlu
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kathleen M Shannon
- Department of Neurology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
81
|
Murugesan S, Ulloa-Martínez M, Martínez-Rojano H, Galván-Rodríguez FM, Miranda-Brito C, Romano MC, Piña-Escobedo A, Pizano-Zárate ML, Hoyo-Vadillo C, García-Mena J. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis 2015; 34:1337-1346. [PMID: 25761741 DOI: 10.1007/s10096-015-2355-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
Obesity and overweight are health problems of multifactorial etiology, which may include changes in the microbiome. In Mexico, more than 30 % of the child population between 5 and 11 years of age suffer from being overweight or are obese, which makes it a public health issue in progress. The purpose of this work was to measure the short-chain fatty acid concentration by high-performance liquid chromatography (HPLC), and to characterize the bacterial diversity by ion torrent semiconductor sequencing, of 16S rDNA libraries prepared from stools collected from a sample of well-characterized Mexican children for normal weight, overweight, and obese conditions by anthropometric and biochemical criteria. We found that triglyceride levels are increased in overweight and obese children, who presented altered propionic and butyric acid concentrations in feces. In addition, although the colon microbiota did not show a clear bacterial dysbiosis among the three conditions, the abundance of some particular bacteria was changed with respect to normal controls. We conclude from our results that the imbalance in the abundance of at least nine different bacteria as well as altered short-chain fatty acid concentration in feces is associated to the overweight and obese conditions of Mexican children.
Collapse
Affiliation(s)
- S Murugesan
- Departamento de Genética y Biología Molecular, Cinvestav-IPN Unidad Zacatenco, México, DF, 07360, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Tessier SN, Katzenback BA, Pifferi F, Perret M, Storey KB. Cytokine and Antioxidant Regulation in the Intestine of the Gray Mouse Lemur (Microcebus murinus) During Torpor. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:127-35. [PMID: 26092185 PMCID: PMC4511783 DOI: 10.1016/j.gpb.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
Abstract
During food shortages, the gray mouse lemur (Microcebus murinus) of Madagascar experiences daily torpor thereby reducing energy expenditures. The present study aimed to understand the impacts of torpor on the immune system and antioxidant response in the gut of these animals. This interaction may be of critical importance given the trade-off between the energetically costly immune response and the need to defend against pathogen entry during hypometabolism. The protein levels of cytokines and antioxidants were measured in the small intestine (duodenum, jejunum, and ileum) and large intestine of aroused and torpid lemurs. While there was a significant decrease of some pro-inflammatory cytokines (IL-6 and TNF-α) in the duodenum and jejunum during torpor as compared to aroused animals, there was no change in anti-inflammatory cytokines. We observed decreased levels of cytokines (IL-12p70 and M-CSF), and several chemokines (MCP-1 and MIP-2) but an increase in MIP-1α in the jejunum of the torpid animals. In addition, we evaluated antioxidant response by examining the protein levels of antioxidant enzymes and total antioxidant capacity provided by metabolites such as glutathione (and others). Our results indicated that levels of antioxidant enzymes did not change between torpor and aroused states, although antioxidant capacity was significantly higher in the ileum during torpor. These data suggest a suppression of the immune response, likely as an energy conservation measure, and a limited role of antioxidant defenses in supporting torpor in lemur intestine.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Surgery & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Barbara A Katzenback
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Fabien Pifferi
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy 91800, France
| | - Martine Perret
- UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy 91800, France
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
83
|
Berkhout B. With a Little Help from my Enteric Microbial Friends. Front Med (Lausanne) 2015; 2:30. [PMID: 26029695 PMCID: PMC4426759 DOI: 10.3389/fmed.2015.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Although the disciplines of bacteriology and virology frequently come together in the setting of a diagnostic medical microbiology laboratory, the two scientific fields are usually miles apart. The microbiologists basically form two non-overlapping groups of scientists, the bacteriologists and virologists, which go to separate meetings and do not easily intermingle. Some recent research findings about elegant virus–bacterium interactions may change this situation. Obviously, interactions between these two microbes can occur only when they colocalize, which most likely occurs in the gut/intestines where 1014 commensal bacteria reside (the microbiota). We review findings on the following enteric microbial tandems: norovirus – Enterobacter cloacae, mouse mammary tumor virus (MMTV) – bacterial lipopolysaccharide (LPS), poliovirus and reovirus – intestinal bacteria. The close bacterium–virus interplay may also present options to develop unique therapeutic strategies for those infected, and to prevent further virus spread, and thus minimize the risk for the community.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
84
|
Lynch DB, Jeffery IB, O'Toole PW. The role of the microbiota in ageing: current state and perspectives. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:131-8. [PMID: 25777986 PMCID: PMC4406138 DOI: 10.1002/wsbm.1293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 12/19/2022]
Abstract
Since the application of high-throughput technologies to investigate complex microbial communities, alterations in the human gut microbiota have been associated with an increasing number of diseases and conditions. This field of research has developed into an area of intense study which is quite different to the microbial investigations that have preceded it in terms of both the broadness of the area of research and the complexity of the analyses. In this review, we discuss gut microbiota changes observed in ageing in the context of the physiological changes that accompany senescence, examine what correlations can be established or inferred, and we discuss what key questions remain to be answered in the field. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Denise B Lynch
- School of Microbiology, University College Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | | |
Collapse
|
85
|
HIV and the gut microbiota, partners in crime: breaking the vicious cycle to unearth new therapeutic targets. J Immunol Res 2015; 2015:614127. [PMID: 25759844 PMCID: PMC4352503 DOI: 10.1155/2015/614127] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays a key role in health and immune system education and surveillance. The delicate balance between microbial growth and containment is controlled by the immune system. However, this balance is disrupted in cases of chronic viral infections such as HIV. This virus is capable of drastically altering the immune system and gastrointestinal environment leading to significant changes to the gut microbiota and mucosal permeability resulting in microbial translocation from the gut into the peripheral blood. The changes made locally in the gut have far-reaching consequences on the other organs of the body starting in the liver, where microbes and their products are normally filtered out, and extending to the blood and even brain. Microbial translocation and their downstream effects such as increased indolamine 2,3-dioxygenase (IDO) enzyme expression and activity create a self-sustaining feedback loop which enhances HIV disease progression and constitute a vicious cycle of inflammation and immune activation combining viral and bacterial factors. Understanding this self-perpetuating cycle could be a key element in developing new therapies aimed at the gut microbiota and its fallout after infection.
Collapse
|
86
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
87
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
88
|
Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: A delicate balance between health and disease. Cell Mol Gastroenterol Hepatol 2014; 1:28-40. [PMID: 25729763 PMCID: PMC4339954 DOI: 10.1016/j.jcmgh.2014.11.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The concept that the intestinal microbiota modulates numerous physiological processes including immune development and function, nutrition and metabolism as well as pathogen exclusion is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a "healthy" microbiome are slowly emerging. The objective of this review is to bring into focus important aspects of microbial/host interactions in the intestine and to discuss key molecular mechanisms controlling health and disease states. We will discuss recent evidence on how microbes interact with the host and one another and their impact on intestinal homeostasis.
Collapse
Affiliation(s)
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
- Correspondence Address correspondence to: Christian Jobin, PhD, Department of Medicine, University of Florida, 2033 Mowry Road, Office 461, Gainesville, Florida 32610. fax: (352) 392-3944.
| |
Collapse
|