51
|
Kono R, Ota T, Ito T, Miyaoka Y, Ishibashi H, Kanno Y, Miki N. Design of microfluidic channels to prevent negative filtration in implantable hemofiltration devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5051-5054. [PMID: 34892342 DOI: 10.1109/embc46164.2021.9630070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to improve the quality of life of dialysis patients, our group have been developing an implantable hemofiltration device (IHFD) composed of multiple layers of dialysis membranes and microfluidic channels. To improve the hemodialysis performance of IHFD, preventing the negative filtration, which is caused by the oncotic pressure of blood, is mandatory. In this study, we fabricated IHFDs with five different microchannel designs and experimentally investigated the performance of each device in in vitro experiment. In addition, the successful IHFD was further evaluated by ex vivo experiments with a beagle dog. The experiments verified the effectiveness of the microchannel design, which will be used for the IHFD for in vivo experiments with pigs in the future.
Collapse
|
52
|
Morozov VN, Mukhin AN, Kolyvanova MA, Belousov AV, Bushmanov YA, Grebennikova TV, Samoylov AS. Radiation Inactivation of Coronavirus Infection Pathogen by the Example of Transmissible Gastroenteritis Virus. Biophysics (Nagoya-shi) 2021; 66:589-595. [PMID: 34667331 PMCID: PMC8518271 DOI: 10.1134/s000635092104014x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, members of the Coronaviridae family have caused outbreaks of respiratory diseases (MERS, SARS, and COVID-19). At the same time, the potential of radiation-induced inactivation of this group of viruses have been little studied, although radiation technologies can be widely used both in the processing of personal protective equipment and in the sterilization of vaccines. In the present work, the effect of 10 MeV electron beams and 7.6 MeV bremsstrahlung on the coronavirus infection pathogen (transmissible gastroenteritis virus) has been studied in vitro. In the given experimental conditions, irradiation with photons turned out to be more effective. The virus-containing suspension frozen at -86°C was the most resistant to radiation: the dose required for complete inactivation of the virus in this case was from 15 kGy, while for the liquid suspension and lyophilized form the sterilizing dose was from 10 kGy. At lower radiation doses for all samples during passaging in cell culture, residual infectious activity of the virus was observed. These differences in the efficiency of inactivation of liquid and frozen virus-containing samples indicate a significant contribution of the direct effect of radiation.
Collapse
Affiliation(s)
- V. N. Morozov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - A. N. Mukhin
- Gamaleya Federal Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - M. A. Kolyvanova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, 123182 Moscow, Russia
| | - A. V. Belousov
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, 123182 Moscow, Russia
| | - Y. A. Bushmanov
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, 123182 Moscow, Russia
| | - T. V. Grebennikova
- Gamaleya Federal Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - A. S. Samoylov
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, 123182 Moscow, Russia
| |
Collapse
|
53
|
Gökler DJ, Faragó D, Szebényi G, Kiss RM, Pap K. The effect of sterilization and storage on the viscoelastic properties of human tendon allografts. J Biomech 2021; 127:110697. [PMID: 34419827 DOI: 10.1016/j.jbiomech.2021.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Allografts have become increasingly preferred for anterior cruciate ligament replacement purposes. The risk of infections necessitates thorough sterilization procedures, and the allografts usually need to be stored prior to surgery. Classical mechanical tests have been performed with various types of tendons, however, tibialis anterior and peroneus longus tend to suffer the least biomechanical changes after irradiation. Only few results are available of the strain and creep behaviour of tendons, even though this information is necessary to provide suitable allografts. The aim of the present study is to analyze the effect of different tendon types (T-tibialis anterior, P-peroneus longus), sterilization methods (G-gamma irradiation of 21 kGy, E-electron beam irradiation of 21 kGy) and storage times (5 and 6 months) on the creep behavior, which is characterized by the strain at the end of the loading phase and creep deformation after static loading. Static creep tests were performed with 250 N load during 60 s. Deformation at the end of the loading phase of both tendons was significantly smaller after 5 months long storage than that after 6 months long storage. TE5 showed significantly less creep than group TE6, and TE6 significantly greater than PE6. The creep of TE5 was significantly lower than that of TG5. Based on the data, the peroneus longus sterilized by electron beam and stored deep frozen for 5 months is a better choice for anterior cruciate ligament reconstruction than tibialis anterior sterilized by gamma irradiation stored for 6 months.
Collapse
Affiliation(s)
- Daniella Judit Gökler
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary
| | - Dénes Faragó
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Biomechanical Research Centre, Hungary
| | - Gábor Szebényi
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Biomechanical Research Centre, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering, Hungary
| | - Rita Mária Kiss
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics, and Mechanical Engineering Informatics, Hungary; Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Biomechanical Research Centre, Hungary.
| | - Károly Pap
- Semmelweis University Budapest, Department of Traumatology, Hungary; Uzsoki Hospital, Department of Orthopedics and Traumatology, Hungary
| |
Collapse
|
54
|
Łabuś W, Kitala D, Klama-Baryła A, Szapski M, Kraut M, Smętek W, Glik J, Kucharzewski M, Rojczyk E, Utrata-Wesołek A, Trzebicka B, Szeluga U, Sobota M, Poloczek R, Kamiński A. Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts. J Biomed Mater Res B Appl Biomater 2021; 110:547-563. [PMID: 34478207 DOI: 10.1002/jbm.b.34934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 08/22/2021] [Indexed: 12/14/2022]
Abstract
The nonviable allogeneic human skin grafts might be considered as the most suitable skin substitutes in the treatment of extensive and deep burns. However, in accordance to biological security such grafts require the final sterilization prior to clinical application. The aim of the study was to verify the influence of electron beam irradiation of three selected doses: 18, 25, and 35 kGy on the extracellular matrix of human skin. Prior to sterilization, the microbiological tests were conducted and revealed contamination in all examined cases. Individual groups were subjected to single electron beam radiation sterilization at proposed doses and then subjected to microbiological tests again. The results of microbiological testing performed for all irradiation doses used were negative. Only in the control group was a growth of microorganisms observed. The FTIR spectrometry tests were conducted followed by the histological evaluation and mechanical tests. In addition, cost analysis of radiation sterilization of individual doses was performed. The results of spectroscopic analysis, mechanical tests, and histological staining showed no significant changes in composition and characteristics of tested tissues after their irradiation, in comparison to control samples. The cost analysis has shown that irradiation with 18 kGy is the most cost-effective and 35 kGy is the least favorable. However, according to biological risk reduction, the recommended sterilization dose is 35 kGy, despite the higher price compared to the other doses tested.
Collapse
Affiliation(s)
- Wojciech Łabuś
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Diana Kitala
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | | | - Michał Szapski
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | - Małgorzata Kraut
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Wojciech Smętek
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Warsaw University of Technology, Warsaw, Poland
| | - Justyna Glik
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Department of Chronic Wounds Healing Management Chronic Wound Care, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kucharzewski
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Urszula Szeluga
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Ryszard Poloczek
- Laboratory for Microscopic Examination "Diagno-Med", Siemianowice Slaskie, Poland
| | - Artur Kamiński
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, Warszawa, Poland.,National Centre for Tissue and Cell Banking, Warszawa, Poland
| |
Collapse
|
55
|
Waletzko-Hellwig J, Pohl C, Riese J, Schlosser M, Dau M, Engel N, Springer A, Bader R. Effect of High Hydrostatic Pressure on Human Trabecular Bone Regarding Cell Death and Matrix Integrity. Front Bioeng Biotechnol 2021; 9:730266. [PMID: 34458245 PMCID: PMC8387795 DOI: 10.3389/fbioe.2021.730266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The reconstruction of critical size bone defects is still clinically challenging. Even though the transplantation of autologous bone is used as gold standard, this therapy is accompanied by donor site morbidities as well as tissue limitations. The alternatively used allografts, which are devitalized due to thermal, chemical or physical processing, often lose their matrix integrity and have diminished biomechanical properties. High Hydrostatic Pressure (HHP) may represent a gentle alternative to already existing methods since HHP treated human osteoblasts undergo cell death and HHP treated bone cylinders maintain their mechanical properties. The aim of this study was to determine the biological effects caused by HHP treatment regarding protein/matrix integrity and type of cell death in trabecular bone cylinders. Therefore, different pressure protocols (250 and 300 MPa for 10, 20 and 30 min) and end point analysis such as quantification of DNA-fragmentation, gene expression, SDS-PAGE, FESEM analysis and histological staining were performed. While both protein and matrix integrity was preserved, molecular biological methods showed an apoptotic differentiation of cell death for lower pressures and shorter applications (250 MPa for 10 and 20 min) and necrotic differentiation for higher pressures and longer applications (300 MPa for 30 min). This study serves as a basis for further investigation as it shows that HHP successfully devitalizes trabecular bone cylinders.
Collapse
Affiliation(s)
- Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Janik Riese
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Nadja Engel
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
56
|
Optimization of Novel Human Acellular Dermal Dressing Sterilization for Routine Use in Clinical Practice. Int J Mol Sci 2021; 22:ijms22168467. [PMID: 34445173 PMCID: PMC8395076 DOI: 10.3390/ijms22168467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Gamma rays and electrons with kinetic energy up to 10 MeV are routinely used to sterilize biomaterials. To date, the effects of irradiation upon human acellular dermal matrices (hADMs) remain to be fully elucidated. The optimal irradiation dosage remains a critical parameter affecting the final product structure and, by extension, its therapeutic potential. ADM slides were prepared by various digestion methods. The influence of various doses of radiation sterilization using a high-energy electron beam on the structure of collagen, the formation of free radicals and immune responses to non-irradiated (native) and irradiated hADM was investigated. The study of the structure changes was carried out using the following methods: immunohistology, immunoblotting, and electron paramagnetic resonance (EPR) spectroscopy. It was shown that radiation sterilization did not change the architecture and three-dimensional structure of hADM; however, it significantly influenced the degradation of collagen fibers and induced the production of free radicals in a dose-dependent manner. More importantly, the observed effects did not disrupt the therapeutic potential of the new transplants. Therefore, radiation sterilization at a dose of 35kGy can ensure high sterility of the dressing while maintaining its therapeutic potential.
Collapse
|
57
|
The potential of radiation sterilized and banked tissue allografts for management of nuclear casualties. Cell Tissue Bank 2021; 23:325-334. [PMID: 34331627 DOI: 10.1007/s10561-021-09946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Processed and radiation sterilized allograft tissues that can be banked for use on demand are a precious therapeutic resource for the repair or reconstruction of damaged or injured tissues. Skin dressings or skin substitutes like allograft skin, amniotic membrane and bioengineered skin can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, and treatment of spinal and joint injuries. A nuclear scenario would result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Perspective of radiation sterilized biological tissues provided by the tissue banks for management of casualties in a nuclear disaster scenario is presented.
Collapse
|
58
|
Marchiori G, Berni M, Cassiolas G, Vivarelli L, Lopomo NF, Fini M, Dallari D, Govoni M. Extra-Corporeal Membrane Oxygenation Cadaver Donors: What about Tissues Used as Allografts? MEMBRANES 2021; 11:membranes11070545. [PMID: 34357195 PMCID: PMC8307999 DOI: 10.3390/membranes11070545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023]
Abstract
Several studies demonstrated the efficacy of post-mortem extracorporeal membrane oxygenation (ECMO) on donors in preserving organ function addressing organ transplantation. Nevertheless, no common and shared evidence was reached about the possibility of using ECMO donors in tissue harvesting. Therefore, this work aimed first to review the current scientific literature about ECMO donors, and then to focus on the use of ECMO tissues as allografts, mainly addressing musculoskeletal tissues, which are of the most interest for reconstruction. A search was conducted on the current scientific literature, focusing on the keywords "ECMO" and "Donor". Several online databases were used, including PubMed, Scopus, and Web of Science. From the preliminary search, 478 articles were obtained, out of which 173 specifically reported the use of ECMO for donation and transplantation purposes. Literature reported extensive analyses of ECMO organs-overall from the abdomen-both in pre- and post-transplantation studies. On the other hand, ECMO tissues were explanted only in a very limited number of cases; moreover, no information was referred about their status and use. A revision of the current scientific literature highlighted the lack of information concerning ECMO tissues and the necessity to perform preclinical, ex vivo studies to compare allografts from ECMO donors, with respect to standard donors, and, thus, to verify whether they can be harvested and implanted safely and with efficacy.
Collapse
Affiliation(s)
- Gregorio Marchiori
- Surgical Sciences and Technologies Complex Structure, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.M.); (M.F.)
| | - Matteo Berni
- Medical Technology Laboratory Complex Structure, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Giorgio Cassiolas
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (G.C.); (N.F.L.)
| | - Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (D.D.); (M.G.)
- Correspondence:
| | - Nicola Francesco Lopomo
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (G.C.); (N.F.L.)
| | - Milena Fini
- Surgical Sciences and Technologies Complex Structure, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (G.M.); (M.F.)
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (D.D.); (M.G.)
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (D.D.); (M.G.)
| |
Collapse
|
59
|
Holland JDR, Webster G, Rooney P, Wilshaw SP, Jennings LM, Berry HE. Effects of Chemical and Radiation Sterilisation on the Biological and Biomechanical Properties of Decellularised Porcine Peripheral Nerves. Front Bioeng Biotechnol 2021; 9:660453. [PMID: 34150728 PMCID: PMC8209421 DOI: 10.3389/fbioe.2021.660453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
There is a clinical need for novel graft materials for the repair of peripheral nerve defects. A decellularisation process has been developed for porcine peripheral nerves, yielding a material with potentially significant advantages over other devices currently being used clinically (such as autografts and nerve guidance conduits). Grafts derived from xenogeneic tissues should undergo sterilisation prior to clinical use. It has been reported that sterilisation methods may adversely affect the properties of decellularised tissues, and therefore potentially negatively impact on the ability to promote tissue regeneration. In this study, decellularised nerves were produced and sterilised by treatment with 0.1% (v/v) PAA, gamma radiation (25-28 kGy) or E Beam (33-37 kGy). The effect of sterilisation on the decellularised nerves was determined by cytotoxicity testing, histological staining, hydroxyproline assays, uniaxial tensile testing, antibody labelling for collagen type IV, laminin and fibronectin in the basal lamina, and differential scanning calorimetry. This study concluded that decellularised nerves retained biocompatibility following sterilisation. However, sterilisation affected the mechanical properties (PAA, gamma radiation), endoneurial structure and basement membrane composition (PAA) of decellularised nerves. No such alterations were observed following E Beam treatment, suggesting that this method may be preferable for the sterilisation of decellularised porcine peripheral nerves.
Collapse
Affiliation(s)
- James D. R. Holland
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Georgina Webster
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Paul Rooney
- National Health Service Blood and Transplant (NHSBT) Tissue and Eye Services, Liverpool, United Kingdom
| | - Stacy-Paul Wilshaw
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Louise M. Jennings
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Helen E. Berry
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
60
|
Ekiert M, Karbowniczek J, Stachewicz U, Mlyniec A. The effect of multiple freeze-thaw cycles on the viscoelastic properties and microstructure of bovine superficial digital flexor tendon. J Mech Behav Biomed Mater 2021; 120:104582. [PMID: 34090220 DOI: 10.1016/j.jmbbm.2021.104582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022]
Abstract
The most common injuries of the human musculoskeletal system are related to soft tissue structures such as tendons or ligaments. To repair torn structures, surgical intervention and application of a biological or synthetic graft may be required. A typical procedure for the processing, storage, and distribution of soft tissue grafts involves at least two freezing/thawing (F/T) cycles. Even though repeated F/T cycles decrease the mechanical performance and change the structure of tendons, it is unclear whether there exists a maximum number of F/T cycles above which tendons should not be approved for use as a tissue allograft. To fill this research gap, we present an ex vivo study on the effects of repetitive F/T cycles on the biomechanical stability of bovine superficial digital flexor tendon tissue. Using mechanical testing supported with scanning electron microscopy imaging, we show that multiple F/T cycles affect the viscoelastic and structural properties of tissue by significantly reducing its tensile modulus after the 3rd or 4th F/T cycle (depending on the strain range), stress drop during relaxation after the 8th F/T cycle (regardless the strain values), mechanical hysteresis after the 10th F/T cycle, and by causing a significant decrease in collagen fibril diameter. Our results provide a deeper insight into understanding the mechanisms responsible for tissue damage during multiple F/T cycles, and thus, may be useful for the future optimization of tissue storage protocols.
Collapse
Affiliation(s)
- Martyna Ekiert
- AGH University of Science and Technology, Faculty of Mechanics and Robotics, Krakow, Poland.
| | - Joanna Karbowniczek
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanics and Robotics, Krakow, Poland
| |
Collapse
|
61
|
Gomes AD, de Oliveira AAR, Houmard M, Nunes EHM. Gamma sterilization of collagen/hydroxyapatite composites: Validation and radiation effects. Appl Radiat Isot 2021; 174:109758. [PMID: 33962117 DOI: 10.1016/j.apradiso.2021.109758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
In this work, gamma sterilization was validated, and the impact of this sterilization process on collagen/hydroxyapatite (Col/HAp) composites was investigated. It has been already recognized that the improper sterilization of healthcare products may lead to infection and mortality/morbidity issues in patients. Gamma sterilization has emerged as a promising sterilization method because it shows advantages such as low cost, a small increase in temperature of irradiated materials, and no production of toxic residues. Moreover, gamma rays can reach the products even when contained in sealed packages. The dose of gamma radiation applied in this study ranged from 17.5 to 50 kGy. The studied samples were examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential scanning calorimetry (DSC). No apparent effect of gamma radiation on HAp was observed even when doses as high as 50 kGy were applied. On the other hand, Col was greatly affected by gamma radiation, displaying cross-linking and degradation after sterilization. These structural changes may alter Col's properties, which could, in turn, impact its medical use. As a consequence, it is strongly recommended that the irradiation dose used to sterilize the Col/HAp composites shall be kept as low as possible to mitigate the structural changes induced in Col. It was noticed that a radiation dose of 17.5 kGy was sufficient to sterilize the examined samples because a sterility assurance level (SAL) below 10-6 was detected. Although dramatic structural changes were observed in Col when this dose was applied, the sterilized samples showed no toxicity to human mesenchymal stem cells. Based on these results, we established a VDMax of 17.5 kGy for Col/HAp-based healthcare products.
Collapse
Affiliation(s)
- Anderson D Gomes
- JHS Biomaterials, Rua Ouro Branco 345, Novo Alvorada, Sabará, Minas Gerais, CEP, 34650-120, Brazil; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Bloco 2, Sala 2233, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP, 31270-901, Brazil.
| | - Agda A R de Oliveira
- JHS Biomaterials, Rua Ouro Branco 345, Novo Alvorada, Sabará, Minas Gerais, CEP, 34650-120, Brazil
| | - Manuel Houmard
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Química, Bloco 2, Sala 5212, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP, 31270-901, Brazil
| | - Eduardo H M Nunes
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Bloco 2, Sala 2233, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP, 31270-901, Brazil.
| |
Collapse
|
62
|
The Influence of the Preservation Method and Gamma Irradiation Sterilization on TGF- β and bFGF Levels in Freeze-Dried Amnion Membrane (FD-AM) and Amnion Sponge. Int J Biomater 2021; 2021:6685225. [PMID: 33927767 PMCID: PMC8049824 DOI: 10.1155/2021/6685225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Amnion grafts can be preserved as freeze-dried amnion membrane (FD-AM) and amnion sponge. Preserved grafts require to be sterilized by gamma irradiation. However, each step of the process could affect its biological properties. Even so, there are only a few studies that report the influence of the preservation method and gamma irradiation on growth factor levels in preserved amniotic grafts. Methods This was an in vitro experimental study with a pretest-posttest group design using a consecutive sampling technique in one batch of amnion donors at a particular time. The amnion was made into FD-AM and amnion sponge preparations, and they were sterilized with gamma irradiation (15 kGy and 25 kGy). Nonirradiated specimens served as controls, and 20 mg of each specimen was pulverized to evaluate the growth factors levels using ELISA. Results There were significant decreases in amnion sponge compared to the FD-AM, both in transforming growth factor beta (TGF-β) and basic fibroblast growth factor (bFGF) levels and in the preirradiated and 25 kGy postirradiated preparations (p ≤ 0.05). The growth factor levels in the preirradiated and postirradiated FD-AM (both 15 kGy and 25 kGy) showed significant differences (p ≤ 0.05). Likewise, the preirradiated amnion sponge group's growth factor levels compared with the postirradiated amnion sponge group also showed a significant decrease (p ≤ 0.05). Conclusion TGF-β and bFGF levels were lower in amnion sponge than FD-AM. The FD-AM and amnion sponge preparations' growth factors levels were reduced following gamma irradiation sterilization. Although the decrease in growth factor levels is significant, the number of growth factor levels is still sufficient for tissue healing.
Collapse
|
63
|
Sharifi S, Sharifi H, Guild C, Islam MM, Tran KD, Patzer C, Dohlman CH, Paschalis EI, Gonzalez-Andrades M, Chodosh J. Toward electron-beam sterilization of a pre-assembled Boston keratoprosthesis. Ocul Surf 2021; 20:176-184. [PMID: 33667673 DOI: 10.1016/j.jtos.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the effects of electron-beam (E-beam) irradiation on the human cornea and the potential for E-beam sterilization of Boston keratoprosthesis (BK) devices when pre-assembled with a donor cornea prior to sterilization. METHODS Human donor corneas and corneas pre-assembled in BK devices were immersed in recombinant human serum albumin (rHSA) media and E-beam irradiated at 25 kGy. Mechanical (tensile strength and modulus, and compression modulus), chemical, optical, structural, and degradation properties of the corneal tissue after irradiation and after 6 months of preservation were evaluated. RESULTS The mechanical evaluation showed that E-beam irradiation enhanced the tensile and compression moduli of human donor corneas, with no impact on their tensile strength. By chemical and mechanical analysis, E-beam irradiation caused a minor degree of crosslinking between collagen fibrils. No ultrastructural changes due to E-beam irradiation were observed. E-beam irradiation slightly increased the stability of the cornea against collagenase-induced degradation and had no impact on glucose diffusion. The optical evaluation showed transparency of the cornea was maintained. E-beam irradiated corneal tissues and BK-cornea pre-assembled devices were stable for 6 months after room-temperature preservation. CONCLUSIONS E-beam irradiation generated no detrimental effects on the corneal tissues or BK-cornea pre-assembled devices and improved native properties of the corneal tissue, enabling prolonged preservation at room temperature. The pre-assembly of BK in a donor cornea, followed by E-beam irradiation, offers the potential for an off-the-shelf, ready to implant keratoprosthesis device.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Mohammad Mirazul Islam
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Khoa D Tran
- Vision Research Laboratory, Lions VisionGift, Portland, OR, USA
| | - Corrina Patzer
- Vision Research Laboratory, Lions VisionGift, Portland, OR, USA
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain.
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
64
|
Drogset JO, Størset KH, Nitteberg TM, Gifstad T. Clinical outcome after knee ligament reconstruction with tendon allografts. J Exp Orthop 2021; 8:11. [PMID: 33554303 PMCID: PMC7868311 DOI: 10.1186/s40634-021-00331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The purpose of this study is to investigate the clinical outcome for patients after knee ligament reconstructions with allografts at a university hospital. METHODS A total of 33 patients received allografts for reconstructive knee surgery between 2007 and 2017. The follow up evaluation consisted of a clinical knee examination including evaluation of range of motion (ROM), lateral and medial laxity, the Lachman test, the Pivot shift test, the sag test, the posterior drawer test and checking for patellofemoral pain. The following patient-reported outcome measures (PROMs) were used; the Lysholm Function Score, the Tegner activity score, and the Knee injury and Osteoarthritis Outcome Score (KOOS). RESULTS Twenty-one (64%) patients were available for the follow-up evaluation and the mean follow-up time was 4.8 years. A total of 16 out of 21 patients had multiligament injuries of which the ACL was the ligament most frequently ruptured. At the time of follow-up, 14 out of 16 patients (87%) with ACL injury had Lachman test grade 0 or grade 1 + , and 12 out of 13 (92%) had a pivot shift grade 0 or 1 + . The mean Lysholm Score was 74. All mean KOOS subscale values were ≥ 59 at the follow-up. The preoperative Tegner activity score was 3 (range, 1-6) and 4 (range, 2-6) at follow up. There were no deep postoperative infections. A total of 19 out of 21 patients (90%) reported that they would have undergone surgery again had they known the clinical outcome in advance. CONCLUSIONS The patients improved from the preoperative score to the follow-up score in the knee-related Quality of Life (QoL) KOOS subscale. None of the patients were diagnosed with deep postoperative infections.
Collapse
Affiliation(s)
- Jon Olav Drogset
- Norwegian University of Science and Technology, Trondheim University Hospital, Trondheim, Norway.
| | - Kristina Hovde Størset
- Norwegian University of Science and Technology, Trondheim University Hospital, Trondheim, Norway
| | - Thea Marie Nitteberg
- Norwegian University of Science and Technology, Trondheim University Hospital, Trondheim, Norway
| | - Tone Gifstad
- Norwegian University of Science and Technology, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
65
|
Wu X, Zhang T, Hoff B, Suvarnapathaki S, Lantigua D, McCarthy C, Wu B, Camci‐Unal G. Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects. Adv Healthc Mater 2021; 10:e2001101. [PMID: 32940013 DOI: 10.1002/adhm.202001101] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Indexed: 01/28/2023]
Abstract
Sequential mineralization enables the integration of minerals within the 3D structure of hydrogels. Hydrolyzed collagen-based hydrogels are sequentially mineralized over 10 cycles. One cycle is defined as an incubation period in calcium chloride dihydrate followed by incubation in sodium phosphate dibasic dihydrate. Separate cycles are completed at 30-minute and 24-hour intervals. For the gels mineralized for 30 min and 24 h, the compressive moduli increases from 4.25 to 87.57 kPa and from 4.25 to 125.47 kPa, respectively, as the cycle number increases from 0 to 10. As indicated by X-ray diffraction (XRD) and Fourier transform infrared analysis (FTIR) analyses, the minerals in the scaffolds are mainly hydroxyapatite. In vitro experiments, which measure mechanical properties, porous structure, mineral content, and gene expression are performed to evaluate the physical properties and osteoinductivity of the scaffolds. Real time-quantitative polymerase chain reaction (RT-qPCR) demonstrates 4-10 fold increase in the expression of BMP-7 and osteocalcin. The in vivo subcutaneous implantation demonstrates that the scaffolds are biocompatible and 90% biodegradable. The critical size cranial defects in vivo exhibit nearly complete bone regeneration. Cycle 10 hydrogels mineralized for 24 h have a volume of 59.86 mm3 and a density of 1946.45 HU. These results demonstrate the suitability of sequentially mineralized hydrogel scaffolds for bone repair and regeneration.
Collapse
Affiliation(s)
- Xinchen Wu
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Tengfei Zhang
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Brianna Hoff
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Sanika Suvarnapathaki
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Darlin Lantigua
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Colleen McCarthy
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Bin Wu
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Gulden Camci‐Unal
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Department of Surgery University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
66
|
SARS-CoV-2/COVID-19 pandemic: first wave, impact, response and lessons learnt in a fully integrated Regional Blood and Tissue Bank. A narrative report. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2021; 19:158-167. [PMID: 33539280 DOI: 10.2450/2021.0259-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/05/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND The COVID-19 pandemic is placing blood and tissue establishments under unprecedented stress, putting its capacity to provide the adequate care needed at risk. Here we reflect on how our integrated organisational model has faced the first impact of the pandemic and describe what challenges, opportunities and lessons have emerged. MATERIALS AND METHODS The organisational model of the Catalan Blood and Tissue Bank (Banc de Sang i Teixits, BST) is described. The new scenario was managed by following international recommendations and considering the pandemic in a context of volatility, uncertainty, complexity, and ambiguity (VUCA), allowing rapid measures to be taken. These aimed to: ensure donor safety, promote proper responses to patients' needs, ensure the health and well-being of personnel, and prepare for future scenarios. RESULTS The BST has adapted its activities to the changes in demand. No shortage of any product or service occurred. Donor acceptance, safety and wellbeing were maintained except for tissue donation, which almost completely stopped. To support the health system, several activities have been promoted: large-scale convalescent plasma (CP) production, clinical trials with CP and mesenchymal stromal cells, massive COVID-19 diagnoses, and participation in co-operative research and publications. Haemovigilance is running smoothly and no adverse effects have been detected among donors or patients. DISCUSSION Several elements have proven to be critical when addressing the pandemic scenario: a) the early creation of a crisis committee in combination with technical recommendations and the recognition of a VUCA scenario; b) identification of the strategies described; c) the integrated donor-to-patient organisational model; d) active Research and Development (R&D); and e) the flexibility of the staff. It is essential to underline the importance of the need for centralised management, effective contingency strategies, and early collaboration with peers.
Collapse
|
67
|
Zea L, McLean RJ, Rook TA, Angle G, Carter DL, Delegard A, Denvir A, Gerlach R, Gorti S, McIlwaine D, Nur M, Peyton BM, Stewart PS, Sturman P, Velez Justiniano YA. Potential biofilm control strategies for extended spaceflight missions. Biofilm 2020; 2:100026. [PMID: 33447811 PMCID: PMC7798464 DOI: 10.1016/j.bioflm.2020.100026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA) which together recycles wastewater from human urine and recovered humidity from the ISS atmosphere. These wastewaters and various process streams are continually inoculated with microorganisms primarily arising from the space crew microbiome. Biofilm-related fouling has been encountered and addressed in spacecraft in low Earth orbit, including ISS and the Russian Mir Space Station. However, planned future missions beyond low Earth orbit to the Moon and Mars present additional challenges, as resupplying spare parts or support materials would be impractical and the mission timeline would be in the order of years in the case of a mission to Mars. In addition, future missions are expected to include a period of dormancy in which the WRS would be unused for an extended duration. The concepts developed in this review arose from a workshop including NASA personnel and representatives with biofilm expertise from a wide range of industrial and academic backgrounds. Here, we address current strategies that are employed on Earth for biofilm control, including antifouling coatings and biocides and mechanisms for mitigating biofilm growth and damage. These ideas are presented in the context of their applicability to spaceflight and identify proposed new topics of biofilm control that need to be addressed in order to facilitate future extended, crewed, spaceflight missions.
Collapse
Affiliation(s)
- Luis Zea
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | | | | | | | | | | | | | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Sridhar Gorti
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | | | - Mononita Nur
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Paul Sturman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
68
|
Singleton EV, David SC, Davies JB, Hirst TR, Paton JC, Beard MR, Hemmatzadeh F, Alsharifi M. Sterility of gamma-irradiated pathogens: a new mathematical formula to calculate sterilizing doses. JOURNAL OF RADIATION RESEARCH 2020; 61:886-894. [PMID: 32930781 PMCID: PMC7674690 DOI: 10.1093/jrr/rraa076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In recent years there has been increasing advocacy for highly immunogenic gamma-irradiated vaccines, several of which are currently in clinical or pre-clinical trials. Importantly, various methods of mathematical modelling and sterility testing are employed to ensure sterility. However, these methods are designed for materials with a low bioburden, such as food and pharmaceuticals. Consequently, current methods may not be reliable or applicable to estimate the irradiation dose required to sterilize microbiological preparations for vaccine purposes, where bioburden is deliberately high. In this study we investigated the applicability of current methods to calculate the sterilizing doses for different microbes. We generated inactivation curves that demonstrate single-hit and multiple-hit kinetics under different irradiation temperatures for high-titre preparations of pathogens with different genomic structures. Our data demonstrate that inactivation of viruses such as Influenza A virus, Zika virus, Semliki Forest virus and Newcastle Disease virus show single-hit kinetics following exposure to gamma-irradiation. In contrast, rotavirus inactivation shows multiple-hit kinetics and the sterilizing dose could not be calculated using current mathematical methods. Similarly, Streptococcus pneumoniae demonstrates multiple-hit kinetics. These variations in killing curves reveal an important gap in current mathematical formulae to determine sterility assurance levels. Here we propose a simple method to calculate the irradiation dose required for a single log10 reduction in bioburden (D10) value and sterilizing doses, incorporating both single- and multiple-hit kinetics, and taking into account the possible existence of a resistance shoulder for some pathogens following exposure to gamma-irradiation.
Collapse
Affiliation(s)
- Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Mohammed Alsharifi
- Corresponding author. Research Centre for Infectious Diseases, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
69
|
XRD and ATR-FTIR techniques for integrity assessment of gamma radiation sterilized cortical bone pretreated by antioxidants. Cell Tissue Bank 2020; 22:305-321. [PMID: 33165827 DOI: 10.1007/s10561-020-09879-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Terminal sterilization of bone allograft by gamma radiation is required to reduce the risk of infection. Free radical scavengers could be utilized to minimize the deteriorating effects of gamma radiation on bone allograft mechanical properties. The objective of this research is to assess the changes in structural and chemical composition induced by hydroxytyrosol (HT) and alpha lipoic acid (ALA) free radical scavengers in gamma sterilized cortical bone. Bovine femurs specimens were soaked in different concentrations of HT and ALA for 7 and 3 days respectively before irradiation with 35 KGy gamma radiation. The attenuated total reflection-Fourier transform infrared spectroscopy and the X-ray diffraction techniques were utilized to analyze the changes in chemical composition induced by irradiation in the presence of free radical scavengers. A significant increase in the proportion of amide I and amide II to phosphate was noticed in the irradiated group, while in the pretreated groups with ALA and HT this effect was minimized. In addition, gamma radiation reduced the mature to immature cross links while ALA and HT alleviated this reduction. No significant changes were noticed in the mineral crystallinity or crystal size. Bone chemical structure has been changed due to gamma irradiation and these changes are mainly relevant to amide I, amide II proportions and collagen crosslinks. The deteriorating effects of gamma sterilization dose (35 kGy) on chemical structure of bone allograft can be alleviated by using (HT) and (ALA) free radical scavengers before irradiation.
Collapse
|
70
|
Amelia F, Abbas B, Darwis D, Estuningsih S, Noviana D. Effects of bone types, particle sizes, and gamma irradiation doses in feline demineralized freeze-dried bone allograft. Vet World 2020; 13:1536-1543. [PMID: 33061224 PMCID: PMC7522947 DOI: 10.14202/vetworld.2020.1536-1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Fracture cases significantly increase recently, demanding high quality of bone graft materials. This research aimed to evaluate the effects of bone types, particle sizes, and gamma irradiation doses on morphological performance and cell viability of feline demineralized freeze-dried bone allograft (DFDBA) through an in vitro study. Materials and Methods: Feline DFDBA derived from feline cortical and cancellous long bones was processed into four different sizes: Group A (larger than 1000 µm), B (841-1000 µm), C (420-840 µm), and D (250-419 µm) for each type of bones. The materials were then irradiated with two doses of gamma rays, 15 and 25 kGy, resulting in 16 variants of feline DFDBA. The surfaces of each material were then observed with the scanning electron microscope (SEM). The in vitro evaluation of feline DFDBA was then performed using 3-(4,5-dimethythiazol-2)-2,5-diphenyltetrazolium bromide (MTT) assay with calf pulmonary artery endothelial cells. Results: The MTT assay results showed that the lowest inhibition rate (14.67±9.17 %) achieved by feline DFDBA in Group A derived from cortical bones irradiated with 15 kGy. Group D generally showed high inhibition rate in both cancellous and cortical bones, irradiated with either 15 or 25 kGy. The SEM results showed that cancellous and cortical bones have numerous macropores and micropores structure in 170× and 3000×, respectively. Conclusion: The material derived from cortical bones in Group A (larger than 1000 µm in particle size) irradiated with 15 kGy is the best candidate for further development due to its abundance of micropores structure and ability in preserving the living cells.
Collapse
Affiliation(s)
- Frizky Amelia
- Program Study of Animal Biomedical Science, Graduate School of IPB University, Bogor, Jawa Barat 16680, Indonesia.,Diagnostic Imaging Center, Veterinary Teaching Hospital, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia
| | - Basril Abbas
- Centre for Isotopes and Radiation Application, National Nuclear Energy Agency (BATAN), Jakarta Selatan, DKI Jakarta 12440, Indonesia
| | - Darmawan Darwis
- Centre for Isotopes and Radiation Application, National Nuclear Energy Agency (BATAN), Jakarta Selatan, DKI Jakarta 12440, Indonesia
| | - Sri Estuningsih
- Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia
| | - Deni Noviana
- Diagnostic Imaging Center, Veterinary Teaching Hospital, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia.,Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia
| |
Collapse
|
71
|
Shumborski S, Salmon LJ, Monk C, Heath E, Roe JP, Pinczewski LA. Allograft Donor Characteristics Significantly Influence Graft Rupture After Anterior Cruciate Ligament Reconstruction in a Young Active Population. Am J Sports Med 2020; 48:2401-2407. [PMID: 32736505 DOI: 10.1177/0363546520938777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Graft selection in anterior cruciate ligament (ACL) surgery can be difficult in a young active population given their high rates of reinjury. Allografts allow for control over graft size and reduce morbidity of autograft harvest. There are mixed results about the use of allograft in the literature; however, the influence of the properties of the allograft on outcomes has not been considered. HYPOTHESIS ACL reconstruction with allografts from older donors will have a higher rate of graft rupture when compared with allograft from young donors. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS Patients (N = 211) aged 13 to 25 years underwent primary ACL reconstruction with fresh-frozen nonirradiated allograft. Four graft types were used: patellar tendon, Achilles tendon, tibialis anterior, and tibialis posterior. Details were collected on allograft donor age and sex. At a minimum of 24 months, patients were evaluated for any further injuries and subjective analysis by International Knee Documentation Committee (IKDC) questionnaire. RESULTS ACL graft rupture occurred in 23.5%. When grafts were separated into single strand (patellar and Achilles tendon) and multistrand (tibialis anterior and posterior), there was a significantly higher rate of reinjury in the single-strand grafts (29.9% vs 11%; P = .014). Grafts from female donors aged ≥50 years had significantly higher rates of ACL graft rupture (52.6%; P = .003) with increased odds by 6.7 times when compared with grafts from male donors aged <50 years. There was no significant difference in mean IKDC scores among the groups based on the age and sex of the allograft donor. CONCLUSION The age and sex of the allograft donor and the morphology of the graft significantly influenced the rate of ACL graft rupture in young active patients. Tendons from female donors aged ≥50 years should be avoided given the higher rerupture rates as compared with male donors of any age and younger females.
Collapse
Affiliation(s)
- Sarah Shumborski
- North Sydney Orthopaedic and Sports Medicine Centre, Wollstonecraft, New South Wales, Australia
| | - Lucy J Salmon
- North Sydney Orthopaedic and Sports Medicine Centre, Wollstonecraft, New South Wales, Australia.,School of Medicine, University of Notre Dame Australia, Sydney, New South Wales, Australia
| | - Claire Monk
- North Sydney Orthopaedic and Sports Medicine Centre, Wollstonecraft, New South Wales, Australia
| | - Emma Heath
- North Sydney Orthopaedic and Sports Medicine Centre, Wollstonecraft, New South Wales, Australia
| | - Justin P Roe
- North Sydney Orthopaedic and Sports Medicine Centre, Wollstonecraft, New South Wales, Australia
| | - Leo A Pinczewski
- North Sydney Orthopaedic and Sports Medicine Centre, Wollstonecraft, New South Wales, Australia
| |
Collapse
|
72
|
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci 2020; 21:E5447. [PMID: 32751654 PMCID: PMC7432490 DOI: 10.3390/ijms21155447] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Raquel Ruiz-Hernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Sugoi Retegi-Carrion
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Beatriz Olalde-Graells
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
73
|
Radwan NK, Nemr W. The use of irradiated amnion dressing for the treatment of antibiotic-disinfected skin ulcer. J Tissue Eng Regen Med 2020; 14:1272-1280. [PMID: 32657035 DOI: 10.1002/term.3099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/06/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023]
Abstract
Skin ulcers are non-healed wounds caused by inflammation of epidermis up to the dermis, which causes pain and limits body movements, significantly reducing quality of life. Amniotic membrane is a placental collagenous biomaterial with many biological and mechanical properties important for tissue engineering and regenerative medicine. The aim of this work is to evaluate the efficacy of topical antibiotic washing followed with irradiated human amniotic membrane (iHAM) dressing for treating five different types of ulcers. The current study included 15 patients who were recruited from the outpatient clinic of the Egyptian Atomic Energy Authority. Follow up of all treated cases that completed the regimen was up to 3 months. The clinical progression of all treated ulcers was quantitatively evaluated by computerized estimation of the wound size reduction based on 3D image analysis. All cases in this study showed great outcomes within several weeks of treatment depending on wound infection, ulcer depth and size, period of healing disorder, age, blood glycemia, and other clinical criteria. Patients' questionnaires revealed that pain was controlled by the first time of treatment. After 1 week post-treatment, granulation tissue was generated and observed in all patients, and all microbial colonies have been eliminated from wounds with previous infection. The current study indicated that the dressing of ulcers with iHAM induces fast healing without complication.
Collapse
Affiliation(s)
- Nashwa K Radwan
- Dermatology Unit, Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Waleed Nemr
- Department of Radiation Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
74
|
Jose G, Shalumon K, Chen JP. Natural Polymers Based Hydrogels for Cell Culture Applications. Curr Med Chem 2020; 27:2734-2776. [DOI: 10.2174/0929867326666190903113004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival
and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for
the standard in vitro experiments, their mechanical, structural, and compositional characteristics can
alter cell functions drastically. Many scientists reported that cells behave more natively when cultured
in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell
culture environment that can better mimic the biochemical and mechanical properties of the ECM. In
this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for
developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be
tuned and altered systematically, these materials can function actively in a defined culture medium to
support long-term self-renewal of various cells. The physico-chemical and biological properties of the
materials used for developing hydrogel should be tunable in accordance with culture needs. Various
types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture
applications. In this review, we present an overview of various hydrogels based on natural polymers
that can be used for cell culture, irrespective of types of applications. We also explain how each
hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative
engineering.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
75
|
Nashwa RK, Ahmed EB, Nemr WA. Comparative study between topically applied irradiated human amniotic membrane in combination with tea tree oil versus topical tioconazole in pityraisis versicolor treatment. Cell Tissue Bank 2020; 21:313-320. [PMID: 32162164 DOI: 10.1007/s10561-020-09824-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022]
Abstract
Pityriasis versicolor (PV) is a chronic skin disease caused by virulence activities of Malassezia, a genus of skin-associated yeasts. Traditionally, Tioconazole is used as a topical antifungal for curing PV. Previous investigations cited that human amniotic membrane (HAM), a placental tissue, has antimicrobial and anti-inflammatory activities and is useful as a dressing for healing skin lesions. Moreover, tea tree oil (TTO) has a potent antifungal efficacy. This clinical trial aims to achieve an alternative therapeutic treatment able to kill Malassezia and heal PV lesions using TTO-saturated HAM (TOSHAM), with little application times. This study subjected 120 patients with hypopigmented or hyperpigmented PV lesions; half patients were treated weekly with TOSHAM compared with the others who applying 1% Tioconazole cream daily as a traditional treatment. Microbiological evaluation of in vitro fungicidal activity of TOSHAM versus Tioconazole was carried out against Malassezia furfur culture. The clinical outcomes of this study proved the superior activity of TOSHAM to heal PV lesions than Tioconazole; this was in harmony with microbiological findings. This study approached a novel therapeutic treatment of PV with great outcomes by using TOSHAM.
Collapse
Affiliation(s)
- Radwan K Nashwa
- Dermatology Unit, Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| | - El Bedewi Ahmed
- Dermatology Unit, Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt
| | - Waleed A Nemr
- Department of Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
76
|
Zhang Y, Zhang L, Duan X, Qu S, Xu L. Development of a revised ICC-qPCR method used for Pseudorabies virus inactivation validation study of biologically sourced materials. Anal Biochem 2020; 592:113576. [PMID: 31917958 DOI: 10.1016/j.ab.2020.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/28/2022]
Abstract
To develop a precise and convenient method to evaluate the virus transmission risk of biologically sourced materials, an integrated cell culture-qPCR (ICC-qPCR) method for Pseudorabies virus (PRV) was established and revised for applications to this new field. The optimized post-infection period was found at 12-hr to achieve a reasonable detection limit (-0.25 Log10TCID50/100 μL, Logs) and a quantitative range (0.75-3.75 Logs). The results of mimic samples suggested that three 10-fold dilutions at the time of virus inoculation combined with three washes after virus absorption, and the sets of non-amplified samples as controls could efficiently eliminate the false positive signals caused by high levels of noninfectious viruses. The virus inactivation validation studies of acellular porcine corneas suggested that the logs inactivation of PRV at 12 kGy irradiation dose obtained by general ICC-qPCR, revised ICC-qPCR and cell culture were 2.49, 4.85 and 5.08, respectively. At 25 kGy, those were 2.31, 4.85 and 5.08, respectively. The results obtained by the revised ICC-qPCR were consistent with cell culture and more precise than general ICC-qPCR. Therefore, the revised ICC-qPCR proposed in this study has an application prospect in the PRV inactivation validation studies of biologically sourced materials.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Le Zhang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Xiaojie Duan
- National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Shuxin Qu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Liming Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; National Institutes for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
77
|
|
78
|
|
79
|
Jeschke MG, Rehou S, McCann MR, Shahrokhi S. Allogeneic mesenchymal stem cells for treatment of severe burn injury. Stem Cell Res Ther 2019; 10:337. [PMID: 31752987 PMCID: PMC6869190 DOI: 10.1186/s13287-019-1465-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
The most important determinant of survival post-burn injury is wound healing. For decades, allogeneic mesenchymal stem cells (MSCs) have been suggested as a potential treatment for severe burn injuries. This report describes a patient with a severe burn injury whose wounds did not heal with over 18 months of conventional burn care. When treated with allogeneic MSCs, wound healing accelerated with no adverse treatment complications. Wound sites showed no evidence of keloids or hypertrophic formation during a 6-year follow-up period. This therapeutic use of allogeneic MSCs for large non-healing burn wounds was deemed safe and effective and has great treatment potential.
Collapse
Affiliation(s)
- Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. D7 04, Toronto, Ontario, M4N 3M5, Canada. .,Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Sarah Rehou
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. D7 04, Toronto, Ontario, M4N 3M5, Canada
| | | | - Shahriar Shahrokhi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. D7 04, Toronto, Ontario, M4N 3M5, Canada.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
80
|
Pendleton MM, Emerzian SR, Liu J, Tang SY, O'Connell GD, Alwood JS, Keaveny TM. Effects of ex vivo ionizing radiation on collagen structure and whole-bone mechanical properties of mouse vertebrae. Bone 2019; 128:115043. [PMID: 31445224 PMCID: PMC6813909 DOI: 10.1016/j.bone.2019.115043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
Abstract
Bone can become brittle when exposed to ionizing radiation across a wide range of clinically relevant doses that span from radiotherapy (accumulative 50 Gy) to sterilization (~35,000 Gy). While irradiation-induced embrittlement has been attributed to changes in the collagen molecular structure, the relative role of collagen fragmentation versus non-enzymatic collagen crosslinking remains unclear. To better understand the effects of radiation on the bone material without cellular activity, we conducted an ex vivo x-ray radiation experiment on excised mouse lumbar vertebrae. Spinal tissue from twenty-week old, female, C57BL/6J mice were randomly assigned to a single x-ray radiation dose of either 0 (control), 50, 1000, 17,000, or 35,000 Gy. Measurements were made for collagen fragmentation, non-enzymatic collagen crosslinking, and both monotonic and cyclic-loading compressive mechanical properties. We found that the group differences for mechanical properties were more consistent with those for collagen fragmentation than for non-enzymatic collagen crosslinking. Monotonic strength at 17,000 and 35,000 Gy was lower than that of the control by 50% and 73% respectively, (p < 0.001) but at 50 and 1000 Gy was not different than the control. Consistent with those trends, collagen fragmentation only occurred at 17,000 and 35,000 Gy. By contrast, non-enzymatic collagen crosslinking was greater than control for all radiation doses (p < 0.001). All results were consistent both for monotonic and cyclic loading conditions. We conclude that the reductions in bone compressive monotonic strength and fatigue life due to ex vivo ionizing radiation are more likely caused by fragmentation of the collagen backbone than any increases in non-enzymatic collagen crosslinks.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jennifer Liu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Material Science & Mechanical Engineering, Washington University, St. Louis, MO, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
81
|
Islam MM, Sharifi R, Mamodaly S, Islam R, Nahra D, Abusamra DB, Hui PC, Adibnia Y, Goulamaly M, Paschalis EI, Cruzat A, Kong J, Nilsson PH, Argüeso P, Mollnes TE, Chodosh J, Dohlman CH, Gonzalez-Andrades M. Effects of gamma radiation sterilization on the structural and biological properties of decellularized corneal xenografts. Acta Biomater 2019; 96:330-344. [PMID: 31284096 PMCID: PMC7043233 DOI: 10.1016/j.actbio.2019.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
To address the shortcomings associated with corneal transplants, substantial efforts have been focused on developing new modalities such as xenotransplantion. Xenogeneic corneas are anatomically and biomechanically similar to the human cornea, yet their applications require prior decellularization to remove the antigenic components to avoid rejection. In the context of bringing decellularized corneas into clinical use, sterilization is a crucial step that determines the success of the transplantation. Well-standardized sterilization methods, such as gamma irradiation (GI), have been applied to decellularized porcine corneas (DPC) to avoid graft-associated infections in human recipients. However, little is known about the effect of GI on decellularized corneal xenografts. Here, we evaluated the radiation effect on the ultrastructure, optical, mechanical and biological properties of DPC. Transmission electron microscopy revealed that gamma irradiated decellularized porcine cornea (G-DPC) preserved its structural integrity. Moreover, the radiation did not reduce the optical properties of the tissue. Neither DPC nor G-DPC led to further activation of complement system compared to native porcine cornea when exposed to plasma. Although, DPC were mechanically comparable to the native tissue, GI increased the mechanical strength, tissue hydrophobicity and resistance to enzymatic degradation. Despite these changes, human corneal epithelial, stromal, endothelial and hybrid neuroblastoma cells grew and differentiated on DPC and G-DPC. Thus, GI may achieve effective tissue sterilization without affecting critical properties that are essential for corneal transplant survival.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Roholah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shamina Mamodaly
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Daniel Nahra
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dina B Abusamra
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pui Chuen Hui
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yashar Adibnia
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Yeditepe University School of Medicine, Istanbul, Turkey
| | - Mehdi Goulamaly
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eleftherios I Paschalis
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Andrea Cruzat
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway; Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Pablo Argüeso
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - James Chodosh
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Claes H Dohlman
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain.
| |
Collapse
|
82
|
Diaz-Rodriguez P, López-Álvarez M, Serra J, González P, Landín M. Current Stage of Marine Ceramic Grafts for 3D Bone Tissue Regeneration. Mar Drugs 2019; 17:md17080471. [PMID: 31443166 PMCID: PMC6723791 DOI: 10.3390/md17080471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Bioceramic scaffolds are crucial in tissue engineering for bone regeneration. They usually provide hierarchical porosity, bioactivity, and mechanical support supplying osteoconductive properties and allowing for 3D cell culture. In the case of age-related diseases such as osteoarthritis and osteoporosis, or other bone alterations as alveolar bone resorption or spinal fractures, functional tissue recovery usually requires the use of grafts. These bone grafts or bone void fillers are usually based on porous calcium phosphate grains which, once disposed into the bone defect, act as scaffolds by incorporating, to their own porosity, the intergranular one. Despite their routine use in traumatology and dental applications, specific graft requirements such as osteoinductivity or balanced dissolution rate are still not completely fulfilled. Marine origin bioceramics research opens the possibility to find new sources of bone grafts given the wide diversity of marine materials still largely unexplored. The interest in this field has also been urged by the limitations of synthetic or mammalian-derived grafts already in use and broadly investigated. The present review covers the current stage of major marine origin bioceramic grafts for bone tissue regeneration and their promising properties. Both products already available on the market and those in preclinical phases are included. To understand their clear contribution to the field, the main clinical requirements and the current available biological-derived ceramic grafts with their advantages and limitations have been collected.
Collapse
Affiliation(s)
- Patricia Diaz-Rodriguez
- R + D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Department of Chemical Engineering and Pharmaceutical Technology, School of Sciences, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain.
| | - Miriam López-Álvarez
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI-Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Julia Serra
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI-Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Pío González
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI-Campus Lagoas-Marcosende, Vigo 36310, Spain
| | - Mariana Landín
- R + D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
83
|
Dey K, Agnelli S, Sartore L. Effects of gamma sterilization on the physicomechanical and thermal properties of gelatin‐based novel hydrogels. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kamol Dey
- Department of Mechanical and Industrial Engineering, Materials Science and Technology LaboratoryUniversity of Brescia via Branze 38, 25123 Brescia Italy
| | - Silvia Agnelli
- Department of Mechanical and Industrial Engineering, Materials Science and Technology LaboratoryUniversity of Brescia via Branze 38, 25123 Brescia Italy
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, Materials Science and Technology LaboratoryUniversity of Brescia via Branze 38, 25123 Brescia Italy
| |
Collapse
|
84
|
Rahman MS, Akhtar N, Hasan MZ, Asaduzzaman SM. Human tissue banking in Bangladesh: hope for the patients of massive burns, surgical wound and bone associated complications. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2019; 9:23-27. [PMID: 31149389 PMCID: PMC6526381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/25/2018] [Indexed: 06/09/2023]
Abstract
Each year throughout Bangladesh, thousands of people suffering from massive burns and surgical wounds require amniotic grafts for transplantation. Additionally, the stricken persons of the country have to embrace bone associated disability for the whole life due to traumatic complications need bone graft to treat. As a result, these two problems are the largest financial burden as this situation not only affect the family of patients but also cripple down national economy. However, institute of tissue banking in Bangladesh has undertaken the service program on the processing, preservation and clinical applications of amnion membrane and bone graft for rehabilitative surgery. Importantly, in recent years, this institute has started cranial bone autograft processing and transplantation. In accidental cases such as head injury, it is difficult to provide suitable cranial bone allograft according to demand. In this situation, injured cranial bone of the patient is being transported to the lab of the institute, where the scientist, tissue banker and medic work together immediately to process the cranial bone and sterilize by gamma radiation; and after quality assurance, the processed cranial bone autograft is being supplied for replacement surgery. The use of irradiated amnion and bone allografts and cranial bone autograft in reconstructive surgery restore normalcy to lives of many patients from disabilities. This tissue bank is based on finding and obtaining qualified donors from the community and a demand for tissue grafts from the hospitals. Although growing needs for tissue transplantation but raw and processed tissue grafts preservation and banking braces enormous logistical limitations. The only human tissue bank in Bangladesh, however, ensures the availability of tissue allografts of high quality and acceptability to the recipients for rehabilitative surgery for a decade, regardless patients' socio-economic status.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research EstablishmentDhaka 1349, Bangladesh
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital, Heinrich Heine UniversityDüsseldorf 40225, Germany
| | - Naznin Akhtar
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research EstablishmentDhaka 1349, Bangladesh
| | - Md Zahid Hasan
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research EstablishmentDhaka 1349, Bangladesh
| | - Sikder M Asaduzzaman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research EstablishmentDhaka 1349, Bangladesh
| |
Collapse
|
85
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
Affiliation(s)
- Michael Meyer
- Research Institute for Leather and Plastic Sheeting, Meissner Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
86
|
Ottensmeyer PF, Witzler M, Schulze M, Tobiasch E. Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells. Int J Mol Sci 2018; 19:E3601. [PMID: 30441872 PMCID: PMC6274752 DOI: 10.3390/ijms19113601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
The need for bone grafts is high, due to age-related diseases, such as tumor resections, but also accidents, risky sports, and military conflicts. The gold standard for bone grafting is the use of autografts from the iliac crest, but the limited amount of accessible material demands new sources of bone replacement. The use of mesenchymal stem cells or their descendant cells, namely osteoblast, the bone-building cells and endothelial cells for angiogenesis, combined with artificial scaffolds, is a new approach. Mesenchymal stem cells (MSCs) can be obtained from the patient themselves, or from donors, as they barely cause an immune response in the recipient. However, MSCs never fully differentiate in vitro which might lead to unwanted effects in vivo. Interestingly, purinergic receptors can positively influence the differentiation of both osteoblasts and endothelial cells, using specific artificial ligands. An overview is given on purinergic receptor signaling in the most-needed cell types involved in bone metabolism-namely osteoblasts, osteoclasts, and endothelial cells. Furthermore, different types of scaffolds and their production methods will be elucidated. Finally, recent patents on scaffold materials, as wells as purinergic receptor-influencing molecules which might impact bone grafting, are discussed.
Collapse
Affiliation(s)
- Patrick Frank Ottensmeyer
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Markus Witzler
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
87
|
Peña Fernández M, Dall'Ara E, Kao AP, Bodey AJ, Karali A, Blunn GW, Barber AH, Tozzi G. Preservation of Bone Tissue Integrity with Temperature Control for In Situ SR-MicroCT Experiments. MATERIALS 2018; 11:ma11112155. [PMID: 30388813 PMCID: PMC6266162 DOI: 10.3390/ma11112155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Abstract
Digital volume correlation (DVC), combined with in situ synchrotron microcomputed tomography (SR-microCT) mechanics, allows for 3D full-field strain measurement in bone at the tissue level. However, long exposures to SR radiation are known to induce bone damage, and reliable experimental protocols able to preserve tissue properties are still lacking. This study aims to propose a proof-of-concept methodology to retain bone tissue integrity, based on residual strain determination using DVC, by decreasing the environmental temperature during in situ SR-microCT testing. Compact and trabecular bone specimens underwent five consecutive full tomographic data collections either at room temperature or 0 °C. Lowering the temperature seemed to reduce microdamage in trabecular bone but had minimal effect on compact bone. A consistent temperature gradient was measured at each exposure period, and its prolonged effect over time may induce localised collagen denaturation and subsequent damage. DVC provided useful information on irradiation-induced microcrack initiation and propagation. Future work is necessary to apply these findings to in situ SR-microCT mechanical tests, and to establish protocols aiming to minimise the SR irradiation-induced damage of bone.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, S1 3DJ, Sheffield, UK.
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | | | - Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, Portsmouth, UK.
| | - Asa H Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
- School of Engineering, London South Bank University, SE1 0AA, London, UK.
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| |
Collapse
|
88
|
Alcaraz JP, Cinquin P, Martin DK. Tackling the Concept of Symbiotic Implantable Medical Devices with Nanobiotechnologies. Biotechnol J 2018; 13:e1800102. [PMID: 30367543 DOI: 10.1002/biot.201800102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/17/2018] [Indexed: 12/21/2022]
Abstract
This review takes an approach to implanted medical devices that considers whether the intention of the implanted device is to have any communication of energy or materials with the body. The first part describes some specific examples of three different classes of implants, analyzed with regards to the type of signal sent to cells. Through several examples, the authors describe that a one way signaling to the body leads to encapsulation or degradation. In most cases, those phenomena do not lead to major problems. However, encapsulation or degradation are critical for new kinds of medical devices capable of duplex communication, which are defined in this review as symbiotic devices. The concept the authors propose is that implanted medical devices that need to be symbiotic with the body also need to be designed with an intended duplex communication of energy and materials with the body. This extends the definition of a biocompatible system to one that requires stable exchange of materials between the implanted device and the body. Having this novel concept in mind will guide research in a new field between medical implant and regenerative medicine to create actual symbiotic devices.
Collapse
Affiliation(s)
- Jean-Pierre Alcaraz
- Univverity Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France.,SyNaBi, Pavillon Taillefer, Domaine de la Merci, La Tronche 38706, Grenoble, France
| | - Philippe Cinquin
- Univverity Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France.,SyNaBi, Pavillon Taillefer, Domaine de la Merci, La Tronche 38706, Grenoble, France
| | - Donald K Martin
- Univverity Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France.,SyNaBi, Pavillon Taillefer, Domaine de la Merci, La Tronche 38706, Grenoble, France
| |
Collapse
|
89
|
Low-energy electron-beam treatment as alternative for on-site sterilization of highly functionalized medical products – A feasibility study. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
White LJ, Keane TJ, Smoulder A, Zhang L, Castleton AA, Reing JE, Turner NJ, Dearth CL, Badylak SF. The impact of sterilization upon extracellular matrix hydrogel structure and function. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
91
|
Evaluation of allograft decontamination with two different antibiotic cocktails at the Treviso Tissue Bank Foundation. PLoS One 2018; 13:e0201792. [PMID: 30071084 PMCID: PMC6072104 DOI: 10.1371/journal.pone.0201792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023] Open
Abstract
Microbiological contamination of retrieved tissues is a critical aspect of allograft safety and tissue banks must continuously implement decontamination procedures to minimize tissue contamination. In this study we compared the decontamination efficacy of a new antibiotic cocktail (cocktail B: BASE medium with Gentamicin, Meropenem and Vancomycin) with the cocktail previously adopted at Treviso Tissue Bank Foundation (FBTV) (cocktail A: RPMI medium with Ceftazidime, Lincomycin, Polymyxin B and Vancomycin). Two decontamination steps were carried out, the first immediately after retrieval, the second after processing. The contamination rate was calculated before processing (Time 1) and cryopreservation (Time 2) for total tissues, musculoskeletal tissues and cardiovascular tissues, and the bacterial species involved were analyzed. Cocktail A was used to decontaminate 3548 tissues, of which 266 were cardiovascular and 3282 musculoskeletal tissues. For cocktail A, total tissue contamination was 18.6% at Time 1 and 0.9% at Time 2, with 15.7% contaminated musculoskeletal tissues at Time 1 and 0.4% at Time 2, respectively, while cardiovascular tissues were 50% contaminated at Time 1 and 6.4% at Time 2. Cocktail B was used to decontaminate 3634 tissues of which 318 were cardiovascular and 3316 musculoskeletal tissues. For cocktail B, total tissue contamination was 8.6% at Time 1 and 0.2% at Time 2, with 7.6% contaminated musculoskeletal tissues at Time 1 and 0.03% at Time 2, respectively. Contamination of cardiovascular tissues was 20.4% at Time 1 and 1.9% at Time 2. Intergroup and intragroup contamination rates decreased statistically significantly (p<0.05). Our results have shown that cocktail B was more effective than cocktail A in killing bacteria in both cardiovascular and musculoskeletal tissues during the two decontamination cycles.
Collapse
|
92
|
Bhardwaj VA, Deepika PC, Basavarajaiah S. Zinc Incorporated Nano Hydroxyapatite: A Novel Bone Graft Used for Regeneration of Intrabony Defects. Contemp Clin Dent 2018; 9:427-433. [PMID: 30166839 PMCID: PMC6104351 DOI: 10.4103/ccd.ccd_192_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To enhance the bioactivity of hydroxyapatite (HA), various ions have been incorporated into its porous structure such as zinc. Zinc has shown to have a stimulatory effect on osteoblastic cells. This study attempts to evaluate the efficacy of an indigenously prepared zinc incorporated nanohydroxyapatite (ZINH) bone graft in the treatment of intrabony defects. MATERIALS AND METHODS A split-mouth study, which consists of 11 systemically healthy subjects with 45 sites, were randomly treated with ZINH or with nanoHA alone. Plaque index, gingival index, gingival bleeding index, pocket depth (PD) and clinical attachment level (CAL) were assessed at baseline, 3, 6, 9, and 12 months. Bone probing depth (BPD) and radiographic parameters were assessed at baseline, 6, and 12 months. Statistical analysis used was student's t-test and one-way analysis of variance. RESULTS At 12 months, PD and BPD reduction was more in test (4.37 ± 0.989 mm and 3.36 ± 0.446 mm) than control (2.81 ± 0.084 mm and 2.15 ± 0.159 mm). Gain in CAL for test (3.08 ± 0.148 mm) was higher than control (2.33 ± 0.278 mm). Furthermore amount and percentage of bone fill was higher in test (1.92 ± 0.702 mm, 54.7 ± 20.286, respectively) than control (1.38 ± 0.650 mm, 40.2 ± 20.972, respectively). Statistically significant improvements in all parameters were seen in the test sites at 12 months. CONCLUSION ZINH bone graft can be considered as a prospective bone regenerative material.
Collapse
Affiliation(s)
- Vasundhra Ajay Bhardwaj
- Department of Periodontology, JSS Dental College and Hospital, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - P. C. Deepika
- Department of Periodontology, JSS Dental College and Hospital, Mysore, Karnataka, India
| | - Siddaramaiah Basavarajaiah
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore, Karnataka, India
| |
Collapse
|
93
|
Abstract
The radioisotope cobalt-60 (Co-60) is important for commercial, medical, and agricultural applications. Its widespread use has meant that Co-60 can be found in less secured facilities, leading to the fear that unauthorized persons could obtain and use it to produce a "dirty bomb". This potential security concern has led to government calls for phasing-out Co-60 and other radiation sources, despite ongoing safety and security regulations for handling, transport and use of radioactive sealed sources. This paper explores potential implications of phasing out radioisotopic technologies, including unintended safety and cost consequences for healthcare and food in the US and globally. The use of Co-60 for healthcare and agricultural applications is well-documented. Co-60 is used to sterilize single-use medical devices, tissue allografts, and a range of consumer products. Co-60 is used in Gamma Knife treatment of brain tumors in over 70,000 patients annually. Co-60 is also used to preserve food and kill insects and pathogens that cause food-borne illness. Co-60 is effective, reliable, and predictable. Limitations of alternative sterilization technologies include complex equipment, toxicities, incompatibilities with plastic, and physical hazards. Alternative ionizing radiation sources for wide-reaching applications, including e-beam and x-ray radiation, have advantages and drawbacks related to commercial scale capacity, penetrability, complexity and reliability. Identifying acceptable alternatives would require time, costs and lengthy regulatory review. FDA testing requirements and other hurdles would delay replacement of existing technologies and slow medical innovation, even delaying access to life-saving therapies. A phase-out would raise manufacturing costs, and reduce supply-chain efficiencies, potentially increasing consumer prices, and reducing supply. These consequences are poorly understood and merit additional research. Given Co-60's importance across medical and non-medical fields, restrictions on Co-60 warrant careful consideration and evaluation before adoption.
Collapse
|
94
|
Study of tensiometric properties, microbiological and collagen content in nile tilapia skin submitted to different sterilization methods. Cell Tissue Bank 2018; 19:373-382. [DOI: 10.1007/s10561-017-9681-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
|
95
|
Pérez-Díaz MA, Silva-Bermudez P, Jiménez-López B, Martínez-López V, Melgarejo-Ramírez Y, Brena-Molina A, Ibarra C, Baeza I, Martínez-Pardo ME, Reyes-Frías ML, Márquez-Gutiérrez E, Velasquillo C, Martínez-Castañon G, Martinez-Gutierrez F, Sánchez-Sánchez R. Silver-pig skin nanocomposites and mesenchymal stem cells: suitable antibiofilm cellular dressings for wound healing. J Nanobiotechnology 2018; 16:2. [PMID: 29321021 PMCID: PMC5761131 DOI: 10.1186/s12951-017-0331-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Background Treatment of severe or chronic skin wounds is an important challenge facing medicine and a significant health care burden. Proper wound healing is often affected by bacterial infection; where biofilm formation is one of the main risks and particularly problematic because it confers protection to microorganisms against antibiotics. One avenue to prevent bacterial colonization of wounds is the use of silver nanoparticles (AgNPs); which have proved to be effective against non-multidrug-resistant and multidrug-resistant bacteria. In addition, the use of mesenchymal stem cells (MSC) is an excellent option to improve wound healing due to their capability for differentiation and release of relevant growth factors. Finally, radiosterilized pig skin (RPS) is a biomatrix successfully used as wound dressing to avoid massive water loss, which represents an excellent carrier to deliver MSC into wound beds. Together, AgNPs, RPS and MSC represent a potential dressing to control massive water loss, prevent bacterial infection and enhance skin regeneration; three essential processes for appropriate wound healing with minimum scaring. Results We synthesized stable 10 nm-diameter spherical AgNPs that showed 21- and 16-fold increase in bacteria growth inhibition (in comparison to antibiotics) against clinical strains Staphylococcus aureus and Stenotrophomonas maltophilia, respectively. RPS samples were impregnated with different AgNPs suspensions to develop RPS-AgNPs nanocomposites with different AgNPs concentrations. Nanocomposites showed inhibition zones, in Kirby–Bauer assay, against both clinical bacteria tested. Nanocomposites also displayed antibiofilm properties against S. aureus and S. maltophilia from RPS samples impregnated with 250 and 1000 ppm AgNPs suspensions, respectively. MSC were isolated from adipose tissue and seeded on nanocomposites; cells survived on nanocomposites impregnated with up to 250 ppm AgNPs suspensions, showing 35% reduction in cell viability, in comparison to cells on RPS. Cells on nanocomposites proliferated with culture days, although the number of MSC on nanocomposites at 24 h of culture was lower than that on RPS. Conclusions AgNPs with better bactericide activity than antibiotics were synthesized. RPS-AgNPs nanocomposites impregnated with 125 and 250 ppm AgNPs suspensions decreased bacterial growth, decreased biofilm formation and were permissive for survival and proliferation of MSC; constituting promising multi-functional dressings for successful treatment of skin wounds. Electronic supplementary material The online version of this article (10.1186/s12951-017-0331-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario Alberto Pérez-Díaz
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico.,Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Binisa Jiménez-López
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Ana Brena-Molina
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Clemente Ibarra
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Isabel Baeza
- Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico
| | - M Esther Martínez-Pardo
- Banco de Tejidos Radioesterilizados, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N La Marquesa, 52750, Ocoyoacac, Mexico
| | - M Lourdes Reyes-Frías
- Banco de Tejidos Radioesterilizados, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N La Marquesa, 52750, Ocoyoacac, Mexico
| | - Erik Márquez-Gutiérrez
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico
| | - Gabriel Martínez-Castañon
- Laboratorio de Nanobiomateriales, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 2, Zona Universitaria, C.P. 78290, San Luis Potosí, Mexico
| | - Fidel Martinez-Gutierrez
- Laboratorio de Microbiología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 6, Zona Universitaria, C.P. 78210, San Luis Potosí, Mexico.
| | - Roberto Sánchez-Sánchez
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz. México Xochimilco No 289 Col. Arenal de Guadalupe, C.P.14389, Mexico City, Mexico.
| |
Collapse
|
96
|
Drug-eluting silicone hydrogel for therapeutic contact lenses: Impact of sterilization methods on the system performance. Colloids Surf B Biointerfaces 2018; 161:537-546. [DOI: 10.1016/j.colsurfb.2017.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023]
|
97
|
Harrell CR, Djonov V, Fellabaum C, Volarevic V. Risks of Using Sterilization by Gamma Radiation: The Other Side of the Coin. Int J Med Sci 2018; 15:274-279. [PMID: 29483819 PMCID: PMC5820857 DOI: 10.7150/ijms.22644] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
The standard sterilization method for most medical devices over the past 40 years involves gamma irradiation. During sterilization, gamma rays efficiently eliminate microorganisms from the medical devices and tissue allografts, but also significantly change molecular structure of irradiated products, particularly fragile biologics such as cytokines, chemokines and growth factors. Accordingly, gamma radiation significantly alters biomechanical properties of bone, tendon, tracheal, skin, amnion tissue grafts and micronized amniotic membrane injectable products. Similarly, when polymer medical devices are sterilized by gamma radiation, their physico-chemical characteristics undergo modification significantly affecting their clinical use. Several animal studies demonstrated that consummation of irradiated food provoked genome instability raising serious concerns regarding oncogenic potential of irradiated consumables. These findings strongly suggest that new, long-term, prospective clinical studies should be conducted in near future to investigate whether irradiated food is safe for human consumption. In this review, we summarized current knowledge regarding molecular mechanisms responsible for deleterious effects of gamma radiation with focusing on its significance for food safety and biomechanical characteristics of medical devices, and tissue allografts, especially injectable biologics.
Collapse
Affiliation(s)
- C Randall Harrell
- Regenerative Processing Plant, LLC, Palm Harbor, Florida, United States of America
| | | | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, Palm Harbor, Florida, United States of America
| | - Vladislav Volarevic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
98
|
Galante R, Pinto TJA, Colaço R, Serro AP. Sterilization of hydrogels for biomedical applications: A review. J Biomed Mater Res B Appl Biomater 2017; 106:2472-2492. [PMID: 29247599 DOI: 10.1002/jbm.b.34048] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/04/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022]
Abstract
Despite the beneficial properties and outstanding potential of hydrogels for biomedical applications, several unmet challenges must be overcome, especially regarding to their known sensitivity to conventional sterilization methods. It is crucial for any biomaterial to withstand an efficient sterilization to obtain approval from regulatory organizations and to safely proceed to clinical trials. Sterility assurance minimizes the incidence of medical device-related infections, which still constitute a major concern in health care. In this review, we provide a detailed and comprehensive description of the published work from the past decade regarding the effects of sterilization on different types of hydrogels for biomedical applications. Advances in hydrogel production methods with simultaneous sterilization are also reported. Terminal sterilization methods can induce negative or positive effects on several material properties (e.g., aspect, size, color, chemical structure, mechanical integrity, and biocompatibility). Due to the complexity of factors involved (e.g., material properties, drug stability, sterilization conditions, and parameters), it is important to note the virtual impossibility of predicting the outcome of sterilization methods to determine a set of universal rules. Each system requires case-by-case testing to select the most suitable, effective method that allows for the main properties to remain unaltered. The impact of sterilization methods on the intrinsic properties of these systems is understudied, and further research is needed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2472-2492, 2018.
Collapse
Affiliation(s)
- Raquel Galante
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, Brazil.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Terezinha J A Pinto
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, Brazil
| | - Rogério Colaço
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Engenharia Mecânica and IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, Portugal
| |
Collapse
|
99
|
Bielli A, Bernardini R, Varvaras D, Rossi P, Di Blasi G, Petrella G, Buonomo OC, Mattei M, Orlandi A. Characterization of a new decellularized bovine pericardial biological mesh: Structural and mechanical properties. J Mech Behav Biomed Mater 2017; 78:420-426. [PMID: 29223730 DOI: 10.1016/j.jmbbm.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Implants made from naturally-derived biomaterials, also called biological meshes or biomeshes, typically derive from decellularized extracellular matrix of either animal or human tissue. Biomeshes have many biomedical applications such as ligament repair, bone and cartilage regeneration and soft tissue replacement. Bovine collagen is one of the most widely used and abundantly available xenogenic materials. In particular, bovine pericardium is widely used as extracellular matrix bioprosthetic tissue. The efficiency of a pericardial mesh to function as scaffold depends on the quality of the decellularization protocol used. Moreover, the biomesh mechanical features are critical for a successful surgical repair process, as they must reproduce the biological properties of the autologous tissue. Different methods of physical, chemical, or enzymatic decellularization exist, but no one has proved to be ideal. Therefore, in the present study, we developed a novel decellularization protocol for a bovine pericardium-derived biomesh. We characterized the biomesh obtained by comparing some ultrastructural, physical and mechanical features to a reference commercial biomesh. Quantification revealed that our novel decellularization process removed about 90% of the native pericardial DNA. Microscopic and ultrastructural analysis documented the maintenance of the physiological structure of the pericardial collagen. Moreover, mechanical tests showed that both the extension and resilience of the new biomesh were statistically higher than the commercial control ones. The results presented in this study demonstrate that our protocol is promising in preparing high quality bovine pericardial biomeshes, encouraging further studies to validate its use in tissue engineering and regenerative medicine protocols.
Collapse
Affiliation(s)
- Alessandra Bielli
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberta Bernardini
- Centro Servizi Interdipartimentale - STA, University of Rome "Tor Vergata", Rome, Italy; Dept. of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Dimitrios Varvaras
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | - Piero Rossi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | | | - Giuseppe Petrella
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | - Maurizio Mattei
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Dept. of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - Augusto Orlandi
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
100
|
Schneider C, Lehmann J, van Osch GJVM, Hildner F, Teuschl A, Monforte X, Miosga D, Heimel P, Priglinger E, Redl H, Wolbank S, Nürnberger S. Systematic Comparison of Protocols for the Preparation of Human Articular Cartilage for Use as Scaffold Material in Cartilage Tissue Engineering. Tissue Eng Part C Methods 2017; 22:1095-1107. [PMID: 27846786 DOI: 10.1089/ten.tec.2016.0380] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Natural extracellular matrix-derived biomaterials from decellularized allogenic tissues are of increasing interest for tissue engineering because their structure and composition provide a complexity that is not achievable with current manufacturing techniques. The prerequisite to bring allogenic tissue from bench to bedside as a functional biomaterial is the full removal of cells while preserving most of its native characteristics such as structure and composition. The exceptionally dense structure of articular cartilage, however, poses a special challenge for decellularization, scaffold preparation, and reseeding. Therefore, we tested 24 different protocols aiming to remove cells and glycosaminoglycans (GAG) while preserving the collagen backbone and ultrastructure. The resulting matrices were analyzed for cell removal (DNA quantification, haematoxylin and eosin staining), GAG content (dimethyl methylene blue assay, Alcian blue staining and micro-computed tomography), collagen integrity (immunohistochemistry and ultrastructure), and biomechanics (compression test). Furthermore, seeding tests were conducted to evaluate cell viability and attachment to the scaffolds. Sodium dodecyl sulfate-based protocols yielded satisfactory reduction of DNA content, yet had negative effects on cell viability and attachment. Hydrochloric acid efficiently decellularized the scaffold and pepsin emerged as best option for GAG depletion. Combining these two reagents led to our final protocol, most efficient in DNA and GAG depletion while preserving the collagen architecture. The compressive modulus decreased in the absence of GAG to ∼1/3 of native cartilage, which is significantly higher than that by commercially available scaffolds tested as a reference (ranging from 1/25 to 1/100 of native cartilage). Cytocompatibility tests showed that human adipose-derived stromal cells readily adhered to the scaffold. In this study, we established a protocol combining freeze-thaw cycles, osmotic shock, and treatment with hydrochloric acid followed by a pepsin digestion step, achieving successful decellularization and GAG depletion within 1 week, resulting in a cytocompatible material with intact collagen structure. The protocol provides a basis for the generation of allogeneic scaffolds, potentially substituting manufactured scaffolds currently used in clinical articular cartilage treatment.
Collapse
Affiliation(s)
- Cornelia Schneider
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Lehmann
- 3 Department of Otorhinolaryngology and Cell Biology, Erasmus MC, University Medical Center , Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- 4 Department of Otorhinolaryngology and Orthopaedics, Erasmus MC, University Medical Center , Rotterdam, The Netherlands
| | - Florian Hildner
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,5 Red Cross Blood Transfusion Center of Upper Austria , Linz, Austria
| | - Andreas Teuschl
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,6 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Vienna, Austria
| | - Xavier Monforte
- 6 Department of Biochemical Engineering, University of Applied Sciences Technikum Wien , Vienna, Austria
| | - David Miosga
- 7 Department of Trauma Surgery, Medical University, Vienna, Austria
| | - Patrick Heimel
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,8 Karl Donath Laboratory for Hard Tissue and Biomaterial Research, School of Dentistry Medical University of Vienna , Austria
| | - Eleni Priglinger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Suanne Wolbank
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sylvia Nürnberger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria .,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria .,7 Department of Trauma Surgery, Medical University, Vienna, Austria .,9 Bernhard Gottlieb University Clinic of Dentistry , Vienna, Austria .,10 School of Dentistry Medical University of Vienna , Competence Center for Morphology, Vienna, Austria
| |
Collapse
|