51
|
Evaluation of the Cytotoxic Activity and Anti-Migratory Effect of Berberine–Phytantriol Liquid Crystalline Nanoparticle Formulation on Non-Small-Cell Lung Cancer In Vitro. Pharmaceutics 2022; 14:pharmaceutics14061119. [PMID: 35745691 PMCID: PMC9228615 DOI: 10.3390/pharmaceutics14061119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common form of lung cancer, which is a leading cause of cancer-related deaths worldwide. Berberine is an isoquinoline alkaloid that is commercially available for use as a supplement for the treatment of diabetes and cardiovascular diseases. However, the therapeutic benefits of berberine are limited by its extremely low bioavailability and toxicity at higher doses. Increasing evidence suggests that the incorporation of drug compounds in liquid crystal nanoparticles provides a new platform for the safe, effective, stable, and controlled delivery of the drug molecules. This study aimed to formulate an optimized formulation of berberine–phytantriol-loaded liquid crystalline nanoparticles (BP-LCNs) and to investigate the in vitro anti-cancer activity in a human lung adenocarcinoma A549 cell line. The BP-LCN formulation possessing optimal characteristics that was used in this study had a favorable particle size and entrapment efficiency rate (75.31%) and a superior drug release profile. The potential mechanism of action of the formulation was determined by measuring the mRNA levels of the tumor-associated genes PTEN, P53, and KRT18 and the protein expression levels with a human oncology protein array. BP-LCNs decreased the proliferation, migration, and colony-forming activity of A549 cells in a dose-dependent manner by upregulating the mRNA expression of PTEN and P53 and downregulating the mRNA expression of KRT18. Similarly, BP-LCNs also decreased the expression of proteins related to cancer cell proliferation and migration. This study highlights the utility of phytantriol-based LCNs in incorporating drug molecules with low GI absorption and bioavailability to increase their pharmacological effectiveness and potency in NSCLC.
Collapse
|
52
|
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 2022; 13:20406223221081605. [PMID: 35321401 PMCID: PMC8935560 DOI: 10.1177/20406223221081605] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein E (ApoE) is a 299-amino acid secreted glycoprotein that binds cholesterol and phospholipids. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4) and heterozygous carriers of the ε4 allele of the gene encoding ApoE (APOE) have a fourfold greater risk of developing Alzheimer’s disease (AD). The enzymes thrombin, cathepsin D, α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 are responsible for ApoE proteolytic processing resulting in bioactive C-terminal-truncated fragments that vary depending on ApoE isoforms, brain region, aging, and neural injury. The objectives of the present narrative review were to describe ApoE processing, discussing current hypotheses about the potential role of various ApoE fragments in AD pathophysiology, and reviewing the current development status of different anti-ApoE drugs. The exact mechanism by which APOE gene variants increase/decrease AD risk and the role of ApoE fragments in the deposition are not fully understood, but APOE is known to directly affect tau-mediated neurodegeneration. ApoE fragments co-localize with neurofibrillary tangles and amyloid β (Aβ) plaques, and may cause neurodegeneration. Among anti-ApoE approaches, a fascinating strategy may be to therapeutically overexpress ApoE2 in APOE ε4/ε4 carriers through vector administration or liposomal delivery systems. Another approach involves reducing ApoE4 expression by intracerebroventricular antisense oligonucleotides that significantly decreased Aβ pathology in transgenic mice. Differences in the proteolytic processing of distinct ApoE isoforms and the use of ApoE fragments as mimetic peptides in AD treatment are also under investigation. Treatment with peptides that mimic the structural and biological properties of native ApoE may reduce Aβ deposition, tau hyperphosphorylation, and glial activation in mouse models of Aβ pathology. Alternative strategies involve the use of ApoE4 structure correctors, passive immunization to target a certain form of ApoE, conversion of the ApoE4 aminoacid sequence into that of ApoE3 or ApoE2, and inhibition of the ApoE-Aβ interaction.
Collapse
Affiliation(s)
- Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Resta
- Translational Medicine and Management of Health Systems, University of Foggia, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Solfrizzi
- ‘Cesare Frugoni’ Internal and Geriatric Medicine and Memory Unit, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Antonio Greco
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy; Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Francesco Panza
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Population Health Unit, Healthy Aging Phenotypes Research Unit, ‘Salus in Apulia Study’, National Institute of Gastroenterology ‘Saverio de Bellis’, Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Hematology and Stem Cell Transplant Unit, ‘Vito Fazzi’ Hospital, Lecce, Italy
| |
Collapse
|
53
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
54
|
Pakfetrat A, Delavarian Z, Mohtasham N, Mohajer Tehran F, Samiee N. Cathepsin-B and caveolin-1 gene expressions in oral lichen planus and oral squamous cell carcinoma. Mol Biol Rep 2022; 49:2945-2951. [PMID: 35138525 DOI: 10.1007/s11033-022-07115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Given the importance of the role of cellular changes in the prognosis and diagnosis of malignancies of the head and neck, we examined in this study the gene expressions of cathepsin-B (Cat-B) and caveolin-1 (Cav-1) which are in cell membranes structures involved in carcinogenesis, in oral squamous cell carcinoma (OSCC) and oral lichen planus (OLP) and compared them to controls. We also investigated their relationship to clinicopathological indices. METHODS AND RESULTS In this case-control study, 29 paraffin blocks of OLP patients were compared to 29 paraffin blocks of OSCC samples as well as 28 paraffin blocks of normal oral tissue. Real-time quantitative PCR was performed to determine gene expressions and results were analyzed for their relationship to clinical data using chi-square, Kruskal-Wallis and Mann-Whitney tests. RESULTS The mean age of OSCC and OLP patients were 59.24 ± 15.04 and 48.79 ± 14.17 years, respectively. The Cat-B and Cav-1 expressions were significantly higher in OSCC and OLP samples compared to control (p < 0.001). The highest expression was found in OSCC samples. The difference between OLP and control samples for Cat-B and Cav-1 expression was significant. There was no association between the gene expression and age, gender, duration of disease, Thongprasom score, smoking and cutaneous lichen planus. However, the expressions were related to the grade and stage of OSCC samples (P = 0.01, P = 0.02). CONCLUSION The gene expressions of Cat-B and Cav-1 in OSCC were associated with the stage and grade of lesions. Therefore, they appear to be useful in predicting the biological behavior of OSCC and malignant transformation of OLP, although this process is multi factorial and more investigations are needed.
Collapse
Affiliation(s)
- Atessa Pakfetrat
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Delavarian
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Samiee
- Oral and Maxillofacial Medicine Department, Dental Faculty, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
55
|
Ranade H, Paliwal P, Chaudhary AA, Piplani S, Rudayni HA, Al-Zharani M, Niraj RR, Datta M. Predicting Diagnostic Potential of Cathepsin in Epithelial Ovarian Cancer: A Design Validated by Computational, Biophysical and Electrochemical Data. Biomolecules 2021; 12:biom12010053. [PMID: 35053201 PMCID: PMC8774009 DOI: 10.3390/biom12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Epithelial ovarian cancer remains one of the leading variants of gynecological cancer with a high mortality rate. Feasibility and technical competence for screening and detection of epithelial ovarian cancer remain a major obstacle and the development of point of care diagnostics (POCD) may offer a simple solution for monitoring its progression. Cathepsins have been implicated as biomarkers for cancer progression and metastasis; being a protease, it has an inherent tendency to interact with Cystatin C, a cysteine protease inhibitor. This interaction was assessed for designing a POCD module. Methods: A combinatorial approach encompassing computational, biophysical and electron-transfer kinetics has been used to assess this protease-inhibitor interaction. Results: Calculations predicted two cathepsin candidates, Cathepsin K and Cathepsin L based on their binding energies and structural alignment and both predictions were confirmed experimentally. Differential pulse voltammetry was used to verify the potency of Cathepsin K and Cathepsin L interaction with Cystatin C and assess the selectivity and sensitivity of their electrochemical interactions. Electrochemical measurements indicated selectivity for both the ligands, but with increasing concentrations, there was a marked difference in the sensitivity of the detection. Conclusions: This work validated the utility of dry-lab integration in the wet-lab technique to generate leads for the design of electrochemical diagnostics for epithelial ovarian cancer.
Collapse
Affiliation(s)
- Hemangi Ranade
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (H.R.); (P.P.); (R.R.N.)
| | - Priya Paliwal
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (H.R.); (P.P.); (R.R.N.)
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia; (A.A.C.); (H.A.R.); (M.A.-Z.)
| | - Sakshi Piplani
- Vaxine Pty Ltd., Flinders University, Bedford Park, SA 5042, Australia;
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia; (A.A.C.); (H.A.R.); (M.A.-Z.)
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia; (A.A.C.); (H.A.R.); (M.A.-Z.)
| | - Ravi Ranjan Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (H.R.); (P.P.); (R.R.N.)
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (H.R.); (P.P.); (R.R.N.)
- Correspondence: ; Tel.: +91-7742889287
| |
Collapse
|
56
|
FTIR Spectroscopy as a Tool to Study Age-Related Changes in Cardiac and Skeletal Muscle of Female C57BL/6J Mice. Molecules 2021; 26:molecules26216410. [PMID: 34770818 PMCID: PMC8587752 DOI: 10.3390/molecules26216410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Studying aging is important to further understand the molecular mechanisms underlying this physiological process and, ideally, to identify a panel of aging biomarkers. Animals, in particular mice, are often used in aging studies, since they mimic important features of human aging, age quickly, and are easy to manipulate. The present work describes the use of Fourier Transform Infrared (FTIR) spectroscopy to identify an age-related spectroscopic profile of the cardiac and skeletal muscle tissues of C57BL/6J female mice. We acquired ATR-FTIR spectra of cardiac and skeletal muscle at four different ages: 6; 12; 17 and 24 months (10 samples at each age) and analyzed the data using multivariate statistical tools (PCA and PLS) and peak intensity analyses. The results suggest deep changes in protein secondary structure in 24-month-old mice compared to both tissues in 6-month-old mice. Oligomeric structures decreased with age in both tissues, while intermolecular β-sheet structures increased with aging in cardiac muscle but not in skeletal muscle. Despite FTIR spectroscopy being unable to identify the proteins responsible for these conformational changes, this study gives insights into the potential of FTIR to monitor the aging process and identify an age-specific spectroscopic signature.
Collapse
|
57
|
Humphries F, Chang-McDonald B, Patel J, Bockett N, Paterson E, Davis PF, Tan ST. Cathepsins B, D, and G Are Expressed in Metastatic Head and Neck Cutaneous Squamous Cell Carcinoma. Front Oncol 2021; 11:690460. [PMID: 34621666 PMCID: PMC8491843 DOI: 10.3389/fonc.2021.690460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
Aim We have previously demonstrated the presence of two cancer stem cell (CSC) subpopulations within metastatic head and neck cutaneous squamous cell carcinoma (mHNcSCC) expressing components of the renin-angiotensin system (RAS), which promotes tumorigenesis. Cathepsins B, D and G are enzymes that constitute bypass loops for the RAS. This study investigated the expression and localization of cathepsins B, D, and G in relation to CSC subpopulations within mHNcSCC. Methods Immunohistochemical staining was performed on mHNcSCC tissue samples from 20 patients to determine the expression and localization of cathepsins B, D, and G. Immunofluorescence staining was performed on two of these mHNcSCC tissue samples by co-staining of cathepsins B and D with OCT4 and SOX2, and cathepsin G with mast cell markers tryptase and chymase. Western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were performed on five mHNcSCC samples and four mHNcSCC-derived primary cell lines, to determine protein and transcript expression of these three cathepsins, respectively. Enzyme activity assays were performed on mHNcSCC tissue samples to determine whether these cathepsins were active. Results Immunohistochemical staining demonstrated the presence of cathepsins B, D and G in in all 20 mHNcSCC tissue samples. Immunofluorescence staining showed that cathepsins B and D were localized to the CSCs both within the tumor nests and peri-tumoral stroma (PTS) and cathepsin G was localized to the phenotypic mast cells within the PTS. Western blotting demonstrated protein expression of cathepsin B and D, and RT-qPCR demonstrated transcript expression of all three cathepsins. Enzyme activity assays showed that cathepsin B and D to be active. Conclusion The presence of cathepsins B and D on the CSCs and cathepsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for mHNcSCC.
Collapse
Affiliation(s)
| | | | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand.,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
58
|
Ju PC, Ho YC, Chen PN, Lee HL, Lai SY, Yang SF, Yeh CB. Kaempferol inhibits the cell migration of human hepatocellular carcinoma cells by suppressing MMP-9 and Akt signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1981-1989. [PMID: 34156145 DOI: 10.1002/tox.23316] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Metastasis is the most prevalent cause of cancer-related deaths and treatment failure in patients with hepatocellular carcinoma (HCC). Kaempferol is a natural flavonol belonging to the subgroup of flavonoids and exhibits potent anticancer activities. This study provides molecular evidence on the anti-invasive and anti-migratory effects of kaempferol on human HCC cells. The anti-invasive effect was investigated by applying kaempferol on two human HCC cell lines (Huh-7 and SK-Hep-1). Kaempferol reduced the invasion and migration of Huh-7 and SK-Hep-1 cells by Boyden chamber invasion assay and wound healing assay, respectively. A protease array analysis showed that Matrix Metalloproteinase-9 (MMP-9) was dramatically downregulated in HCC cells after kaempferol treatment. Gelatin zymography and Western blot assay showed that kaempferol reduced the activities and protein expression of MMP-9, respectively. Kaempferol also sufficiently suppressed the phosphorylation of the Akt expression. Overall, kaempferol inhibited the invasive properties of human HCC cells by targeting MMP-9 and Akt pathways. Hence, kaempferol could be used as an adjuvant therapeutic agent for the treatment of human HCC cells.
Collapse
Affiliation(s)
- Po-Chung Ju
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Szu-Yu Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
59
|
Sangster AB, Chang-McDonald B, Patel J, Bockett N, Paterson E, Davis PF, Tan ST. Expression of cathepsins B and D by cancer stem cells in head and neck metastatic malignant melanoma. Melanoma Res 2021; 31:426-438. [PMID: 34116545 DOI: 10.1097/cmr.0000000000000752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously demonstrated cancer stem cell (CSC) subpopulations in head and neck metastatic malignant melanoma (HNmMM), and the expression of components of the renin-angiotensin system (RAS) by these CSCs. Cathepsins B, D and G are involved in carcinogenesis and constitute bypass loops of the RAS. This study investigated the expression and localization of cathepsins B, D and G, in relation to these CSCs. Immunohistochemical staining demonstrated expression of cathepsins B, D and G in HNmMM sections from all 20 patients. Western blotting confirmed the presence of cathepsins B and D proteins in all six HNmMM tissue samples and four HNmMM-derived primary cell lines. RT-qPCR showed transcript expression of cathepsins B, D and G in all six HNmMM tissue samples, and cathepsins B and D but not cathepsin G in all four HNmMM-derived primary cell lines. Enzymatic activity assays demonstrated cathepsins B and D were active in all six HNmMM tissue samples. Immunofluorescence staining performed on two of the HNmMM tissue samples demonstrated expression of cathepsins B and D by the CSCs, and cathepsin G by cells within the peritumoral stroma. Our novel findings suggest the possibility of targeting these CSCs by modulation of paracrine RAS signaling.
Collapse
Affiliation(s)
| | | | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
60
|
Shaikh NI, Sethi RS. Impairment of apoptosis pathway via Apaf1 downregulation during chlorpyrifos and/or cypermethrin induced lung damage. Anim Biotechnol 2021:1-8. [PMID: 34559034 DOI: 10.1080/10495398.2021.1981918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chlorpyrifos is an organophosphate and the cypermethrin is type 2 pyrethroid insecticide that are used for indoor and outdoor pest control. The present study aimed to investigate differential transcriptional profiling to identify the candidate gene associated with lung injury following exposure to chlorpyrifos and/or cypermethrin in a mouse model system. Swiss male albino mice (n = 24) were divided into three treatment groups (n = 6 each) that were given chlorpyrifos (2.76 mg kg-1 body weight), cypermethrin (2 mg kg-1 body weight) and the combination of both pesticides orally dissolved in corn oil and one control group (n = 6) that received corn oil for 90 days. The pulmonary expression of the Apaf1 was observed using RT2 Profiler PCR Array. The results showed that chronic exposure to chlorpyrifos, cypermethrin and their combination downregulated (67, 63 and 66 genes) and upregulated (4, 2 and 2 genes), respectively. The pulmonary expression of Apaf1 that plays important role in apoptosis was found to be downregulated. The immunohistochemistry depicted reduced expression of Apaf1 in both airway epithelium and alveolar septa following exposure to chlorpyrifos and/or cypermethrin. In conclusion, results demonstrated that exposure to chlorpyrifos, cypermethrin and their combination cause lung damage by the dysregulation of Apaf1 gene expression.
Collapse
Affiliation(s)
- Nasrul I Shaikh
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, India
| | - R S Sethi
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, India
| |
Collapse
|
61
|
Effects of Cancer Presence and Therapy on the Platelet Proteome. Int J Mol Sci 2021; 22:ijms22158236. [PMID: 34361002 PMCID: PMC8347210 DOI: 10.3390/ijms22158236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Platelets are involved in tumor angiogenesis and cancer progression. Previous studies indicated that cancer could affect platelet content. In the current study, we investigated whether cancer-associated proteins can be discerned in the platelets of cancer patients, and whether antitumor treatment may affect the platelet proteome. Platelets were isolated from nine patients with different cancer types and ten healthy volunteers. From three patients, platelets were isolated before and after the start of antitumor treatment. Mass spectrometry-based proteomics of gel-fractionated platelet proteins were used to compare patients versus controls and before and after treatment initiation. A total of 4059 proteins were detected, of which 50 were significantly more abundant in patients, and 36 more in healthy volunteers. Eight of these proteins overlapped with our previous cancer platelet proteomics study. From these data, we selected potential biomarkers of cancer including six upregulated proteins (RNF213, CTSG, PGLYRP1, RPL8, S100A8, S100A9) and two downregulated proteins (GPX1, TNS1). Antitumor treatment resulted in increased levels of 432 proteins and decreased levels of 189 proteins. In conclusion, the platelet proteome may be affected in cancer patients and platelets are a potential source of cancer biomarkers. In addition, we found in a small group of patients that anticancer treatment significantly changes the platelet proteome.
Collapse
|
62
|
Habič A, Novak M, Majc B, Lah Turnšek T, Breznik B. Proteases Regulate Cancer Stem Cell Properties and Remodel Their Microenvironment. J Histochem Cytochem 2021; 69:775-794. [PMID: 34310223 DOI: 10.1369/00221554211035192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolytic activity is perturbed in tumors and their microenvironment, and proteases also affect cancer stem cells (CSCs). CSCs are the therapy-resistant subpopulation of cancer cells with tumor-initiating capacity that reside in specialized tumor microenvironment niches. In this review, we briefly summarize the significance of proteases in regulating CSC activities with a focus on brain tumor glioblastoma. A plethora of proteases and their inhibitors participate in CSC invasiveness and affect intercellular interactions, enhancing CSC immune, irradiation, and chemotherapy resilience. Apart from their role in degrading the extracellular matrix enabling CSC migration in and out of their niches, we review the ability of proteases to modulate CSC properties, which prevents their elimination. When designing protease-oriented therapies, the multifaceted roles of proteases should be thoroughly investigated.
Collapse
Affiliation(s)
- Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.,The Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
63
|
Abstract
Cysteine cathepsins are proteases critical in physiopathological processes and show potential as targets or biomarkers for diseases and medical conditions. The 11 members of the cathepsin family are redundant in some cases but remarkably independent of others, demanding the development of both pan-cathepsin targeting tools as well as probes that are selective for specific cathepsins with little off-target activity. This review addresses the diverse design strategies that have been employed to accomplish this tailored selectivity among cysteine cathepsin targets and the imaging modalities incorporated. The power of these diverse tools is contextualized by briefly highlighting the nature of a few prominent cysteine cathepsins, their involvement in select diseases, and the application of cathepsin imaging probes in research spanning basic biochemical studies to clinical applications.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| |
Collapse
|
64
|
Interplay between Extracellular Matrix and Neutrophils in Diseases. J Immunol Res 2021; 2021:8243378. [PMID: 34327245 PMCID: PMC8302397 DOI: 10.1155/2021/8243378] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic and complex network structure, which exists in almost all tissues and is the microenvironment that cells rely on for survival. ECM interacts with cells to regulate diverse functions, including differentiation, proliferation, and migration. Neutrophils are the most abundant immune cells in circulation and play key roles in orchestrating a complex series of events during inflammation. Neutrophils can also mediate ECM remodeling by providing specific matrix-remodeling enzymes (such as neutrophil elastase and metalloproteinases), generating neutrophil extracellular traps, and releasing exosomes. In turn, ECM can remodel the inflammatory microenvironment by regulating the function of neutrophils, which drives disease progression. Both the presence of ECM and the interplay between neutrophils and their extracellular matrices are considered an important and outstanding mechanistic aspect of inflammation. In this review, the importance of ECM will be considered, together with the discussion of recent advances in understanding the underlying mechanisms of the intricate interplay between ECM and neutrophils. A better comprehension of immune cell-matrix reciprocal dependence has exciting implications for the development of new therapeutic options for neutrophil-associated infectious and inflammatory diseases.
Collapse
|
65
|
Kapalatiya H, Madav Y, Tambe VS, Wairkar S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview. Drug Deliv Transl Res 2021; 12:1293-1305. [PMID: 34251612 DOI: 10.1007/s13346-021-01020-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/02/2023]
Abstract
Nanocarriers play pivotal roles in the field of biomedical applications, particularly in anticancer therapy. One of the prominent strategies for the transport of anticancer drugs with site-specific release and improved therapeutic efficacy is the use of an enzyme-responsive drug delivery system. There is an emerging class of cancer therapeutics engineered to control the release of a drug via enzymatic degradation. Enzymes, being an essential component of bio-nanotechnology toolbox, hold exceptional biorecognition abilities as well as outstanding catalytic properties. Often, abnormal enzyme expression observed in cancer offers many opportunities in designing nanocarriers modified with enzyme-labile linkage. Through altered physical or chemical characteristics of these nanocarriers or cleavage of the drug in response to the bio-action of enzyme, an on-demand drug release can be obtained. In this review, several classes of enzymes performing critical roles in cancer such as hydrolases, lipases, and oxidoreductases are summarized. Insights on various approaches that interfere with the mechanism of these enzymes have also been included. Finally, various smart nanocarriers such as mesoporous silica nanoparticles, gold nanoparticles, carbon-nanotubes, micelles, liposomes, and dendrimers serving as excellent platforms for enzyme-responsive formulations have been discussed.
Collapse
Affiliation(s)
- Hiral Kapalatiya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Yamini Madav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Varunesh Sanjay Tambe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
66
|
Kim S, Lee SI, Kim N, Joo M, Lee KH, Lee MW, Jeon HJ, Ryu H, Kim JM, Sul JY, Song GY, Kim JY, Lee HJ. Decursin inhibits cell growth and autophagic flux in gastric cancer via suppression of cathepsin C. Am J Cancer Res 2021; 11:1304-1320. [PMID: 33948359 PMCID: PMC8085838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023] Open
Abstract
Autophagy plays an important role in the survival of cancer cells under stressful conditions, such as nutrient or oxygen deficiency. Therefore, autophagy inhibition is being considered as a novel therapeutic strategy for cancer. Decursin is a natural compound derived from Angelica gigas; it has been used in the treatment of various diseases, including cancer. However, the mechanism by which decursin regulates autophagy in gastric cancer and other carcinomas remains unclear. Here, we demonstrated that decursin reduced the growth and induced cell cycle arrest in gastric cancer cells in vitro. Decursin blocked autophagic flux by reducing the expression of lysosomal protein cathepsin C (CTSC) and attenuating its activity, thereby causing autophagic dysregulation (i.e., accumulation of LC3 and SQSTM1). Decursin also inhibited cell proliferation and cell cycle progression by inhibiting CTSC and E2F3, both of which were linked to gastric cancer aggressiveness. The antitumor effects of decursin were confirmed in vivo. We established spheroid and patient-derived organoid models and found that decursin decreased the growth of spheroids and patient-derived gastric organoids, as well as modulated the expression of CTSC and autophagy-related proteins. Hence, our findings uncovered a previously unknown mechanism by which decursin regulates cell growth and autophagy and suggests that decursin may act as a potential therapeutic agent that simultaneously inhibits cell growth and autophagy.
Collapse
Affiliation(s)
- Solbi Kim
- Department of Medical Science, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Nayoung Kim
- Department of Medical Science, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Mina Joo
- Department of Medical Science, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Kyung-Ha Lee
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Myung-Won Lee
- Department of Internal Medicine, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Heung Jin Jeon
- Department of Infection Control Convergence Research Center, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Hyewon Ryu
- Department of Internal Medicine, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Ji-Young Sul
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National UniversityDaejeon, Republic of Korea
| | - Ji-Yeon Kim
- Department of Surgery, Chungnam National University College of MedicineDaejeon, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, Chungnam National University College of MedicineDaejeon, Republic of Korea
- Department of Infection Control Convergence Research Center, Chungnam National University College of MedicineDaejeon, Republic of Korea
| |
Collapse
|
67
|
Schleyer KA, Fetrow B, Zannes Fatland P, Liu J, Chaaban M, Ma B, Cui L. Dual-Mechanism Quenched Fluorogenic Probe Provides Selective and Rapid Detection of Cathepsin L Activity*. ChemMedChem 2021; 16:1082-1087. [PMID: 33295147 PMCID: PMC8202353 DOI: 10.1002/cmdc.202000823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Cathepsin L (CTL) is a cysteine protease demonstrating upregulated activity in many disease states. Overlapping substrate specificity makes selective detection of CTL activity difficult to parse from that of its close homologue CTV and the ubiquitous CTB. Current probes of CTL activity have limited applications due to either poor contrast or extra assay steps required to achieve selectivity. We have developed a fluorogenic probe, CTLAP, that displays good selectivity for CTL over CTB and CTV while exhibiting low background fluorescence attributed to dual quenching mechanisms. CTLAP achieves optimum CTL selectivity in the first 10 min of incubation, thus suggesting that it is amenable for rapid detection of CTL, even in the presence of competing cathepsins.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Ben Fetrow
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Peter Zannes Fatland
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Jun Liu
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, FL 32306, USA
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, FL 32306, USA
| | - Lina Cui
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| |
Collapse
|
68
|
Abstract
Epidemiological studies have reported an inverse correlation between cancer and neurodegenerative disorders, and increasing evidence shows that similar genes and pathways are dysregulated in both diseases but in a contrasting manner. Given the genetic convergence of the neuronal ceroid lipofuscinoses (NCLs), a family of rare neurodegenerative disorders commonly known as Batten disease, and other neurodegenerative diseases, we sought to explore the relationship between cancer and the NCLs. In this review, we survey data from The Cancer Genome Atlas and available literature on the roles of NCL genes in different oncogenic processes to reveal links between all the NCL genes and cancer-related processes. We also discuss the potential contributions of NCL genes to cancer immunology. Based on our findings, we propose that further research on the relationship between cancer and the NCLs may help shed light on the roles of NCL genes in both diseases and possibly guide therapy development.
Collapse
|
69
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
70
|
Goyal S, Patel KV, Nagare Y, Raykar DB, Raikar SS, Dolas A, Khurana P, Cyriac R, Sarak S, Gangar M, Agarwal AK, Kulkarni A. Identification and structure-activity relationship studies of small molecule inhibitors of the human cathepsin D. Bioorg Med Chem 2020; 29:115879. [PMID: 33271453 DOI: 10.1016/j.bmc.2020.115879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Abstract
Cathepsin D, an aspartyl protease, is an attractive therapeutic target for various diseases, primarily cancer and osteoarthritis. However, despite several small molecule cathepsin D inhibitors being developed, that are highly potent, most of them show poor microsomal stability, which in turn limits their clinical translation. Herein, we describe the design, optimization and evaluation of a series of novel non-peptidic acylguanidine based small molecule inhibitors of cathepsin D. Optimization of our hit compound 1a (IC50 = 29 nM) led to the highly potent mono sulphonamide analogue 4b (IC50 = 4 nM), however with poor microsomal stability (HLM: 177 and MLM: 177 μl/min/mg). To further improve the microsomal stability while retaining the potency, we carried out an extensive structure-activity relationship screen which led to the identification of our optimised lead 24e (IC50 = 45 nM), with an improved microsomal stability (HLM: 59.1 and MLM: 86.8 μl/min/mg). Our efforts reveal that 24e could be a good starting point or potential candidate for further preclinical studies against diseases where Cathepsin D plays an important role.
Collapse
Affiliation(s)
| | | | - Yadav Nagare
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | | | - Atul Dolas
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | | | - Sharad Sarak
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | - Anil K Agarwal
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences, Bangalore 560068, India; Avaliv Therapeutics, Naples, FL, USA.
| |
Collapse
|
71
|
Park SB, Hwang KT, Chung CK, Roy D, Yoo C. Causal Bayesian gene networks associated with bone, brain and lung metastasis of breast cancer. Clin Exp Metastasis 2020; 37:657-674. [PMID: 33083937 DOI: 10.1007/s10585-020-10060-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/14/2020] [Indexed: 02/16/2023]
Abstract
Using a machine learning method, this study aimed to identify unique causal networks of genes associated with bone, brain, and lung metastasis of breast cancer. Bayesian network analysis identified differentially expressed genes in primary breast cancer tissues, in bone, brain, and lung breast cancer metastatic tissues, and the clinicopathological features of patients obtained from the Gene Expression Omnibus microarray datasets. We evaluated the causal Bayesian networks of breast metastasis to distant sites (bone, brain, or lung) by (i) measuring how well the structures of each specific type of breast cancer metastasis fit the data, (ii) comparing the structures with known experimental evidence, and (iii) reporting predictive capabilities of the structures. We report for the first time that the molecular gene signatures are specific to the different types of breast cancer metastasis. Several genes, including CHPF, ARC, ANGPTL4, NR2E1, SH2D1A, CTSW, POLR2J4, SPTLC1, ILK, ALDH3B1, PDE6A, SCTR, ADM, HEY1, KCNF1, and UVRAG, were found to be predictors of the risk for site-specific metastasis of breast cancer. Expression of POLR2JA, SPTLC1, ILK, ALDH3B1, and the estrogen receptor was significantly associated with breast cancer bone metastasis. Expression of PDE6A and NR2E1 was causally linked to breast cancer brain metastasis. Expression of HEY1, KCNF1, UVRAG, and the estrogen and progesterone receptors was strongly associated with breast cancer lung metastasis. The causal Bayesian network structures of these genes identify potential interactions among the genes in distant metastases of breast cancer, including to the bone, brain, and lung, and may serve as target candidates for treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurosurgery, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Deodutta Roy
- Department of Environmental Health Sciences, Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th Street AHC5, Miami, FL, 33199, USA.
| |
Collapse
|
72
|
Leto G, Sepporta MV. The potential of cystatin C as a predictive biomarker in breast cancer. Expert Rev Anticancer Ther 2020; 20:1049-1056. [PMID: 32990495 DOI: 10.1080/14737140.2020.1829481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the leading cause of cancer-related deaths among women. Numerous efforts are being directed toward identifying novel tissue and/or circulating molecular markers that may help clinicians in detecting early-stage BCa patients and in providing an accurate estimation of the prognosis and prediction of response to clinical treatments. In this setting, emerging evidence has indicated Cystatin C (Cyst C), as the most potent endogenous inhibitor of cysteine cathepsins, as a possible useful marker in the clinical management of BCa patients. AREAS COVERED This review analyzes the results of emerging studies underpinning a potential clinical role of Cyst C, as additional marker in BCa. EXPERT OPINION Cyst C expression levels have been reported to be altered in tumor tissues and/or in biological fluids of BCa patients. Furthermore, clinical evidence has highlighted a significant correlation between altered Cyst C levels in tumor tissues and/or biological fluids and some clinco-biological parameters of BCa progression. These findings provide evidence for a potential clinical use of Cyst C as a novel marker to improve the clinical and therapeutic management of BCa patients and as a gauge for better clarifying the role of cysteine proteinases in the various steps of BCa progression.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Pharmacology, Department of Health Promotion Sciences, School of Medicine, University of Palermo , Palermo, Italy
| | - Maria Vittoria Sepporta
- Pediatric Unit, Department Women-Mother-Children, Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital , Lausanne, Switzerland
| |
Collapse
|
73
|
Peptidyl Fluoromethyl Ketones and Their Applications in Medicinal Chemistry. Molecules 2020; 25:molecules25174031. [PMID: 32899354 PMCID: PMC7504820 DOI: 10.3390/molecules25174031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Peptidyl fluoromethyl ketones occupy a pivotal role in the current scenario of synthetic chemistry, thanks to their numerous applications as inhibitors of hydrolytic enzymes. The insertion of one or more fluorine atoms adjacent to a C-terminal ketone moiety greatly modifies the physicochemical properties of the overall substrate, especially by increasing the reactivity of this functionalized carbonyl group toward nucleophiles. The main application of these peptidyl α-fluorinated ketones in medicinal chemistry relies in their ability to strongly and selectively inhibit serine and cysteine proteases. These compounds can be used as probes to study the proteolytic activity of the aforementioned proteases and to elucidate their role in the insurgence and progress on several diseases. Likewise, if the fluorinated methyl ketone moiety is suitably connected to a peptidic backbone, it may confer to the resulting structure an excellent substrate peculiarity and the possibility of being recognized by a specific subclass of human or pathogenic proteases. Therefore, peptidyl fluoromethyl ketones are also currently highly exploited for the target-based design of compounds for the treatment of topical diseases such as various types of cancer and viral infections.
Collapse
|
74
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
75
|
Rudzińska M, Parodi A, Maslova VD, Efremov YM, Gorokhovets NV, Makarov VA, Popkov VA, Golovin AV, Zernii EY, Zamyatnin AA. Cysteine Cathepsins Inhibition Affects Their Expression and Human Renal Cancer Cell Phenotype. Cancers (Basel) 2020; 12:cancers12051310. [PMID: 32455715 PMCID: PMC7281206 DOI: 10.3390/cancers12051310] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Renal cancer would greatly benefit from new therapeutic strategies since, in advanced stages, it is refractory to classical chemotherapeutic approaches. In this context, lysosomal protease cysteine cathepsins may represent new pharmacological targets. In renal cancer, they are characterized by a higher expression, and they were shown to play a role in its aggressiveness and spreading. Traditional studies in the field were focused on understanding the therapeutic potentialities of cysteine cathepsin inhibition, while the direct impact of such therapeutics on the expression of these enzymes was often overlooked. In this work, we engineered two fluoromethyl ketone-based peptides with inhibitory activity against cathepsins to evaluate their potential anticancer activity and impact on the lysosomal compartment in human renal cancer. Molecular modeling and biochemical assays confirmed the inhibitory properties of the peptides against cysteine cathepsin B and L. Different cell biology experiments demonstrated that the peptides could affect renal cancer cell migration and organization in colonies and spheroids, while increasing their adhesion to biological substrates. Finally, these peptide inhibitors modulated the expression of LAMP1, enhanced the expression of E-cadherin, and altered cathepsin expression. In conclusion, the inhibition of cysteine cathepsins by the peptides was beneficial in terms of cancer aggressiveness; however, they could affect the overall expression of these proteases.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Valentina D. Maslova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia;
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia;
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Vasily A. Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey V. Golovin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeni Y. Zernii
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: ; Tel.: +74-95-622-9843
| |
Collapse
|
76
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
77
|
Abstract
Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
78
|
Mitschke J, Burk UC, Reinheckel T. The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer Metastasis Rev 2020; 38:431-444. [PMID: 31482486 DOI: 10.1007/s10555-019-09808-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changing the characteristics of cells from epithelial states to mesenchymal properties is a key process involved in developmental and physiological processes as well as in many diseases with cancer as the most prominent example. Nowadays, a great deal of work and literature concerns the understanding of the process of epithelial-to-mesenchymal transition (EMT) in terms of its molecular regulation and its implications for cancer. Similar statements can certainly be made regarding the investigation of the more than 500 proteases typically encoded by a mammalian genome. Specifically, the impact of proteases on tumor biology has been a long-standing topic of interest. However, although EMT actively regulates expression of many proteases and proteolytic enzymes are clearly involved in survival, division, differentiation, and movements of cells, information on the diverse roles of proteases in EMT has been rarely compiled. Here we aim to conceptually connect the scientific areas of "EMT" and "protease" research by describing how several important classes of proteolytic enzymes are regulated by EMT and how they are involved in initiation and execution of the EMT program. To do so, we briefly introduce the evolving key features of EMT and its regulation followed by discussion of protease involvement in this process.
Collapse
Affiliation(s)
- Julia Mitschke
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Ulrike C Burk
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, partner site Freiburg, 79106, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
79
|
da Costa AC, Santa-Cruz F, Mattos LAR, Rêgo Aquino MA, Martins CR, Bandeira Ferraz ÁA, Figueiredo JL. Cathepsin S as a target in gastric cancer. Mol Clin Oncol 2020; 12:99-103. [PMID: 31929878 PMCID: PMC6951222 DOI: 10.3892/mco.2019.1958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cathepsin S (Cat S) is a protein expressed in some epithelial cells, which appears to be associated with cancer metastasis and recurrence. The abnormal expression of Cat S has been reported to be associated with the progression of certain types of gastrointestinal neoplasms, including gastric cancer (GC). There is a need to identify novel biomarkers and therapeutic targets associated with the growth, invasion and migration of GC cells, in order to develop non-invasive diagnostic and prognostic procedures and design new therapeutic approaches. The aim of the present study was to assess the association between Cat S and oncogenic processes implicated in the development of GC, focusing on the diagnostic and therapeutic potential of this molecule in GC. A search was conducted through the PubMed and Cochrane Central Register of Controlled Trials electronic databases for relevant literature published between 2003 and 2018, using the mesh terms 'cathepsin S' and 'cancer' and 'gastric cancer'.
Collapse
Affiliation(s)
- Adriano Carneiro da Costa
- Unidade de Oncologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Fernando Santa-Cruz
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Luiz Alberto Reis Mattos
- Unidade de Oncologia, Hospital das Clínicas da Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | | | - Camila Ramos Martins
- Curso de Medicina, Centro Universitário de João Pessoa, Recife, PE 50670-901, Brazil
| | | | - José Luiz Figueiredo
- Departamento de Cirurgia, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| |
Collapse
|
80
|
Zahnd S, Braga-Lagache S, Buchs N, Lugli A, Dawson H, Heller M, Zlobec I. A Digital Pathology-Based Shotgun-Proteomics Approach to Biomarker Discovery in Colorectal Cancer. J Pathol Inform 2019; 10:40. [PMID: 31921488 PMCID: PMC6939342 DOI: 10.4103/jpi.jpi_65_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background Biomarkers in colorectal cancer are scarce, especially for patients with Stage 2 disease. The aim of our study was to identify potential prognostic biomarkers from colorectal cancers using a novel combination of approaches, whereby digital pathology is coupled to shotgun proteomics followed by validation of candidates by immunohistochemistry (IHC) using digital image analysis (DIA). Methods and Results Tissue cores were punched from formalin-fixed paraffin-embedded colorectal cancers from patients with Stage 2 and 3 disease (n = 26, each). Protein extraction and liquid chromatography-mass spectrometry (MS) followed by analysis using three different methods were performed. Fold changes were evaluated. The candidate biomarker was validated by IHC on a series of 413 colorectal cancers from surgically treated patients using a next-generation tissue microarray. DIA was performed by using a pan-cytokeratin serial alignment and quantifying staining within the tumor and normal tissue epithelium. Analysis was done in QuPath and Brightness_Max scores were used for statistical analysis and clinicopathological associations. MS identified 1947 proteins with at least two unique peptides. To reinforce the validity of the biomarker candidates, only proteins showing a significant (P < 0.05) fold-change using all three analysis methods were considered. Eight were identified, and of these, cathepsin B was selected for further validation. DIA revealed strong associations between higher cathepsin B expression and less aggressive tumor features, including tumor node metastasis stage and lymphatic vessel and venous vessel invasion (P < 0.001, all). Cathepsin B was associated with more favorable survival in univariate analysis only. Conclusions Our results present a novel approach to biomarker discovery that includes MS and digital pathology. Cathepsin B expression analyzed by DIA within the tumor epithelial compartment was identified as a strong feature of less aggressive tumor behavior and favorable outcome, a finding that should be further investigated on a more functional level.
Collapse
Affiliation(s)
- Stefan Zahnd
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Sophie Braga-Lagache
- Department for BioMedical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern, Bern, Switzerland
| | - Natasha Buchs
- Department for BioMedical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern, Bern, Switzerland
| | | | - Heather Dawson
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department for BioMedical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
81
|
Wang Z, Xiang Z, Zhu T, Chen J, Zhong MZ, Huang J, Wang KS, Li L, Sun LQ, Zhou WB. Cathepsin L interacts with CDK2-AP1 as a potential predictor of prognosis in patients with breast cancer. Oncol Lett 2019; 19:167-176. [PMID: 31897127 PMCID: PMC6924096 DOI: 10.3892/ol.2019.11067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cathepsin L (CTSL) is a lysosomal acid cysteine protease that has been implicated in tumorigenesis and malignant progression. In the present study, the role of CTSL in tumorigenesis and prognosis of breast cancer was evaluated. The prognostic value of CTSL was analyzed using immunohistochemistry in patients with breast cancer, as well as online microarray datasets. CTSL expression was knocked down in the breast cancer cell line T-47D using RNA interference. MTT and colony formation assays were performed to assess the role of CTSL in the proliferation of breast cancer cells. Cell cycle progression and apoptosis were measured using flow cytometry. A physical interaction of CTSL and cyclin dependent kinase 2 associated protein 1 (CDK2-AP1) was determined using a glutathione S-transferase pull-down assay. Endogenous CTSL expression was high in breast cancer cells and exhibited an inverse association with CDK2-AP1 expression; aberrant expression of CTSL in breast cancer tissues predicted an improved clinical outcome and prognosis. In addition, CTSL knockdown decelerated the progression of breast cancer cells by arresting cell cycle progression and increasing apoptosis. Thus, CTSL may be a potential therapeutic target for treating patients with breast cancer.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhen Xiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei-Zuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Huang
- Hunan Province Clinic Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kuan-Song Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei-Bing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
82
|
Synthesis of PEGylated methotrexate conjugated with a novel CPP6, in sillico structural insights and activity in MCF-7 cells. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
83
|
Ho DWH, Tsui YM, Sze KMF, Chan LK, Cheung TT, Lee E, Sham PC, Tsui SKW, Lee TKW, Ng IOL. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Lett 2019; 459:176-185. [PMID: 31195060 DOI: 10.1016/j.canlet.2019.06.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is heterogeneous, rendering its current curative treatments ineffective. The emergence of single-cell genomics represents a powerful strategy in delineating the complex molecular landscapes of cancers. In this study, we demonstrated the feasibility and merit of using single-cell RNA sequencing to dissect the intra-tumoral heterogeneity and analyze the single-cell transcriptomic landscape to detect rare cell subpopulations of significance. Exploration of the inter-relationship among liver cancer stem cell markers showed two distinct major cell populations according to EPCAM expression, and the EPCAM+ cells had upregulated expression of multiple oncogenes. We also identified a CD24+/CD44+-enriched cell subpopulation within the EPCAM+ cells which had specific signature genes and might indicate a novel stemness-related cell subclone in HCC. Notably, knockdown of signature gene CTSE for CD24+/CD44+ cells significantly reduced self-renewal ability on HCC cells in vitro and the stemness-related role of CTSE was further confirmed by in vivo tumorigenicity assays in nude mice. In summary, single-cell genomics is a useful tool to delineate HCC intratumoral heterogeneity at better resolution. It can identify rare but important cell subpopulations, and may guide better precision medicine in the long run.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | | | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
84
|
Ankney JA, Xie L, Wrobel JA, Wang L, Chen X. Novel secretome-to-transcriptome integrated or secreto-transcriptomic approach to reveal liquid biopsy biomarkers for predicting individualized prognosis of breast cancer patients. BMC Med Genomics 2019; 12:78. [PMID: 31146747 PMCID: PMC6543675 DOI: 10.1186/s12920-019-0530-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background Presently, a 50-gene expression model (PAM50) serves as a breast cancer (BC) subtype classifier that is insufficient to distinguish, within each single PAM50-classified subtype, patient subpopulations having different prognosis. There is a pressing need for inexpensive and minimally invasive biomarker tests to easily and accurately predict individuals’ clinical outcomes and response to treatments. Although quantitative proteomic approaches have been developed to identify/profile proteins secreted (secretome) from various cancer cell lines in vitro, missing are the clinicopathological relevance and the associated prognostic value of these secretomic identifications. Methods To discover biomarkers to predict individualized prognosis we introduce a new multi-omics (secreto-transcriptomics) method that identifies, in their oncogenically secreted states, candidate markers of BC subtypes whose genes bear patient-specific mRNA expression alterations of prognostic significance. First, we used label-free quantitative (LFQ) proteomics to identify the proteins showing BC-subtypic secretion from a series of BC cell lines representing major BC-subtypes. To determine and externally validate the prognostic value of these secreted proteins, we developed a secreto-transcriptomic approach that discovered a PAM50-subtypic Secretion-Correlated mRNA Expression Pattern (SeCEP) wherein the PAM50-subtypic secretion of select proteins statistically correlated with cis-mRNA expression of their encoding genes in patients of the corresponding PAM50-subtypes. Kaplan-Meier analysis of SeCEP genes was used to identify new liquid biopsy biomarkers for predicting individualized prognosis. Results The mRNA expression-to-secretion correlation (SeCEP) pinpointed multiple genes that are fully translated into the oncogenically active secretome in a PAM50-subtypic manner. Further, multiple SeCEP genes in distinct combinations or panels of multiple SeCEP genes were identified as ‘systems prognostic markers’ that showed mRNA co-overexpression patterns in the distinct subpopulations of PAM50-subtypic patients with poor prognosis or high-risk of relapse. Thus, our secreto-transcriptomic approach statistically linked BC subtypic secretome genes with patient-specific information about their mRNA expression alterations and significantly improved the sensitivity and specificity in patient stratification in the context of clinical outcomes or prognosis. Conclusions By combining LFQ secretome screening with proteo-transcriptomic retrospective analysis of patient data our integrated multi-omics approach bypasses costly, tedious, genome-wide fishing and predictive modeling that are commonly required to distinguish a few prognostically altered genes from thousands of other non-BC related genes in a genome. Electronic supplementary material The online version of this article (10.1186/s12920-019-0530-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Astor Ankney
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A Wrobel
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
85
|
Laube M, Frizler M, Wodtke R, Neuber C, Belter B, Kniess T, Bachmann M, Gütschow M, Pietzsch J, Löser R. Synthesis and preliminary radiopharmacological characterisation of an 11 C-labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins. J Labelled Comp Radiopharm 2019; 62:448-459. [PMID: 30912586 DOI: 10.1002/jlcr.3729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
An O-methyltyrosine-containing azadipeptide nitrile was synthesised and investigated for its inhibitory activity towards cathepsins L, S, K, and B. Labelling with carbon-11 was accomplished by reaction of the corresponding phenolic precursor with [11 C]methyl iodide starting from cyclotron-produced [11 C]methane. Radiopharmacological evaluation of the resulting radiotracer in a mouse xenograft model derived from a mammary tumour cell line by small animal PET imaging indicates tumour targeting with complex pharmacokinetics. Radiotracer uptake in the tumour region was considerably lower under treatment with the nonradioactive reference compound and the epoxide-based irreversible cysteine cathepsin inhibitor E64. The in vivo behaviour observed for this radiotracer largely confirms that of the corresponding 18 F-fluoroethylated analogue and suggests the limited suitability of azadipeptide nitriles for the imaging of tumour-associated cysteine cathepsins despite target-mediated uptake is evidenced.
Collapse
Affiliation(s)
- Markus Laube
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Torsten Kniess
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
86
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Giannetto A, Lanza S, Bruno G, Mirkhani V. Synthesis, solution behaviour and potential anticancer activity of new trinuclear organometallic palladium(II) complex of {S}-1-phenylethyl dithiooxamide: Comparison with the trinuclear heterobimetallic platinum(II) analogue. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
87
|
Penczek A, Burster T. Cell surface cathepsin G can be used as an additional marker to distinguish T cell subsets. Biomed Rep 2019; 10:245-249. [PMID: 30972220 DOI: 10.3892/br.2019.1198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/12/2019] [Indexed: 01/01/2023] Open
Abstract
The serine protease cathepsin G (CatG) is involved in numerous processes associated with the innate and adaptive immune system. During an immune response, neutrophils secrete CatG, which can bind to the cell surface of immune cells to provoke the proteolytic processing of cytokines and chemokines in order to stimulate lymphocytes. The present study analyzed peripheral blood mononuclear cells to characterize T cell populations in terms of their CatG content by flow cytometry. It was identified that CatG was exclusively present on the cell surface of a subset of T regulatory cells (Tregs), cluster of differentiation (CD) 39+ Tregs, which expressed CatG in contrast to CD39- Tregs. Additionally, CatG was expressed on double positive CD4+CD8+ T cells, T helper (Th) 9 cells and Th22 cells, implicating CatG as a novel marker to distinguish certain T cell subsets.
Collapse
Affiliation(s)
- Adriane Penczek
- Department of Neurosurgery, Ulm University Medical Center, D-89081 Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Republic of Kazakhstan
| |
Collapse
|
88
|
Kryczka J, Papiewska-Pajak I, Kowalska MA, Boncela J. Cathepsin B Is Upregulated and Mediates ECM Degradation in Colon Adenocarcinoma HT29 Cells Overexpressing Snail. Cells 2019; 8:cells8030203. [PMID: 30818851 PMCID: PMC6468499 DOI: 10.3390/cells8030203] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
During tumor development and ongoing metastasis the acquisition of mesenchymal cell traits by epithelial carcinoma cells is achieved through a programmed phenotypic shift called the epithelial-to-mesenchymal transition, EMT. EMT contributes to increased cancer cell motility and invasiveness mainly through invadosomes, the adhesion structures that accompany the mesenchymal migration. The invadosomes and their associated proteases restrict protease activity to areas of the cell in direct contact with the ECM, thus precisely controlling cell invasion. Our data prove that Snail-overexpressing HT-29 cells that imitate the phenotype of colon cancer cells in the early stage of the EMT showed an increase in the expression and pericellular activity of cathepsin B. It appears that the pericellular localization of cathepsin B, also observed in colon and rectum adenocarcinoma tissue samples, plays a key role in its function.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | | | - M Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| |
Collapse
|
89
|
Yap ML, McFadyen JD, Wang X, Ziegler M, Chen YC, Willcox A, Nowell CJ, Scott AM, Sloan EK, Hogarth PM, Pietersz GA, Peter K. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019; 9:1154-1169. [PMID: 30867822 PMCID: PMC6401411 DOI: 10.7150/thno.29146] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/12/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: Platelets are increasingly recognized as mediators of tumor growth and metastasis. Hypothesizing that activated platelets in the tumor microenvironment provide a targeting epitope for tumor-directed chemotherapy, we developed an antibody-drug conjugate (ADC), comprised of a single-chain antibody (scFv) against the platelet integrin GPIIb/IIIa (scFvGPIIb/IIIa) linked to the potent chemotherapeutic microtubule inhibitor, monomethyl auristatin E (MMAE). Methods: We developed an ADC comprised of three components: 1) A scFv which specifically binds to the high affinity, activated integrin GPIIb/IIIa on activated platelets. 2) A highly potent microtubule inhibitor, monomethyl auristatin E. 3) A drug activation/release mechanism using a linker cleavable by cathepsin B, which we demonstrate to be abundant in the tumor microenvironment. The scFvGPIIb/IIIa-MMAE was first conjugated with Cyanine7 for in vivo imaging. The therapeutic efficacy of the scFvGPIIb/IIIa-MMAE was then tested in a mouse metastasis model of triple negative breast cancer. Results: In vitro studies confirmed that this ADC specifically binds to activated GPIIb/IIIa, and cathepsin B-mediated drug release/activation resulted in tumor cytotoxicity. In vivo fluorescence imaging demonstrated that the newly generated ADC localized to primary tumors and metastases in a mouse xenograft model of triple negative breast cancer, a difficult to treat tumor for which a selective tumor-targeting therapy remains to be clinically established. Importantly, we demonstrated that the scFvGPIIb/IIIa-MMAE displays marked efficacy as an anti-cancer agent, reducing tumor growth and preventing metastatic disease, without any discernible toxic effects. Conclusion: Here, we demonstrate the utility of a novel ADC that targets a potent cytotoxic drug to activated platelets and specifically releases the cytotoxic agent within the confines of the tumor. This unique targeting mechanism, specific to the tumor microenvironment, holds promise as a novel therapeutic approach for the treatment of a broad range of primary tumors and metastatic disease, particularly for tumors that lack specific molecular epitopes for drug targeting.
Collapse
Affiliation(s)
- May Lin Yap
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, Australia
| | - James D McFadyen
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
- Department of Hematology, The Alfred Hospital, Melbourne, 3004, Australia
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
| | - Melanie Ziegler
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
| | - Yung-Chih Chen
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
| | - Abbey Willcox
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
- Department of Hematology, The Alfred Hospital, Melbourne, 3004, Australia
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Victoria, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - P Mark Hogarth
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, Australia
- Burnet Institute, Melbourne, 3004, Australia
- Department of Immunology, Monash University, Melbourne, 3800, Australia
| | - Geoffrey A Pietersz
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, Australia
- Burnet Institute, Melbourne, 3004, Australia
- Department of Immunology, Monash University, Melbourne, 3800, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, 3021, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
- Department of Immunology, Monash University, Melbourne, 3800, Australia
| |
Collapse
|
90
|
Priyanga S, Khamrang T, Velusamy M, Karthi S, Ashokkumar B, Mayilmurugan R. Coordination geometry-induced optical imaging of l-cysteine in cancer cells using imidazopyridine-based copper(ii) complexes. Dalton Trans 2019; 48:1489-1503. [PMID: 30632585 DOI: 10.1039/c8dt04634d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overexpression of cysteine cathepsins proteases has been documented in a wide variety of cancers, and enhances the l-cysteine concentration in tumor cells. We report the synthesis and characterization of copper(ii) complexes [Cu(L1)2(H2O)](SO3CF3)2, 1, L1 = 3-phenyl-1-(pyridin-2-yl)imidazo[1,5-a]pyridine, [Cu(L2)2(SO3CF3)]SO3CF3, 2, L2 = 3-(4-methoxyphenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine, [Cu(L3)2(H2O)](SO3CF3)2, 3, L3 = 3-(3,4-dimethoxy-phenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine and [Cu(L4)2(H2O)](SO3CF3)2, 4, L4 = dimethyl-[4-(1-pyridin-2-yl-imidazo[1,5-a]pyridin-3-yl)phenyl]amine as 'turn-on' optical imaging probes for l-cysteine in cancer cells. The molecular structure of complexes adopted distorted trigonal pyramidal geometry (τ, 0.68-0.87). Cu-Npy bonds (1.964-1.989 Å) were shorter than Cu-Nimi bonds (2.024-2.074 Å) for all complexes. Geometrical distortion was strongly revealed in EPR spectra, showing g‖ (2.26-2.28) and A‖ values (139-163 × 10-4 cm-1) at 70 K. The d-d transitions appeared around 680-741 and 882-932 nm in HEPES, which supported the existence of five-coordinate geometry in solution. The Cu(ii)/Cu(i) redox potential of 1 (0.221 V vs. NHE) was almost identical to that of 2 and 3 but lower than that of 4 (0.525 V vs. NHE) in HEPES buffer. The complexes were almost non-emissive in nature, but became emissive by the interaction of l-cysteine in 100% HEPES at pH 7.34 via reduction of Cu(ii) to Cu(i). Among the probes, probe 2 showed selective and efficient turn-on fluorescence behavior towards l-cysteine over natural amino acids with a limit of detection of 9.9 × 10-8 M and binding constant of 2.3 × 105 M-1. The selectivity of 2 may have originated from a nearly perfect trigonal plane adopted around a copper(ii) center (∼120.70°), which required minimum structural change during the reduction of Cu(ii) to Cu(i) while imaging Cys. The other complexes, with their distorted trigonal planes, required more reorganizational energy, which resulted in poor selectivity. Probe 2 was employed for optical imaging of l-cysteine in HeLa cells and macrophages. It exhibited brighter fluorescent images by visualizing Cys at pH 7.34 and 37 °C. It showed relatively less toxicity for these cell lines as ascertained by the MTT assay.
Collapse
Affiliation(s)
- Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| | - Themmila Khamrang
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Marappan Velusamy
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Sellamuthu Karthi
- School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
91
|
Chiang KC, Lai CY, Chiou HL, Lin CL, Chen YS, Kao SH, Hsieh YH. Timosaponin AIII inhibits metastasis of renal carcinoma cells through suppressing cathepsin C expression by AKT/miR-129-5p axis. J Cell Physiol 2019; 234:13332-13341. [PMID: 30604866 DOI: 10.1002/jcp.28010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
Timosaponin AIII (TSAIII) is a steroidal saponin that exerts anticancer activity on various cancer cells. In this study, we explore the effects of TSAIII on renal cell carcinoma (RCC) cells. Our findings show that TSAIII treatment (<8 μM) insignificantly influenced cell viability and cell cycle distribution of human RCC cell lines 786-O, A-498, and ACHN. Further observations revealed that TSAIII inhibited migration and invasion of 786-O and A-498 cells, as well as significantly decreased the production and expression of cathepsin C (CTSC) in both the cell types. Kinase cascade analysis exhibited that PI3K/AKT activation was inhibited, but PTEN expression was increased, in response to TSAIII treatments. Combining TSAIII and PI3K inhibitors, LY294002 synergically reduced the migration and invasion of 786-O and A-498 cells, as well as decreased the CTSC expression in both the cell types. We also observed that miR-129-5p bound to CTSC gene and suppressed the expression of CTSC and demonstrated that the miR-129-5p expression was synergically enhanced by TSAIII and LY294002. In addition, pretreatment with antago-miR-129-5p significantly restored the CTSC expression and the migration and invasion of TSAIII-treated 786-O cells. In conclusion, our findings reveal that TSAIII inhibits the metastatic properties of RCC cells, contributing to the inhibition of PI3K/AKT and the increase of miR-129-5p and the subsequent downregulation of CTSC. This suggests that TSAIII has significant antimetastatic activity against RCC cells and may be beneficial to RCC treatments.
Collapse
Affiliation(s)
- Kuang-Chung Chiang
- Deprtment of Urology, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Chung-Yu Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Thoracic Surgery, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Biochemistry, of School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
92
|
Pendharkar N, Dhali S, Abhang S. A Novel Strategy to Investigate Tissue‐Secreted Tumor Microenvironmental Proteins in Serum toward Development of Breast Cancer Early Diagnosis Biomarker Signature. Proteomics Clin Appl 2018; 13:e1700119. [DOI: 10.1002/prca.201700119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Namita Pendharkar
- Biochemistry DepartmentB.J. Medical CollegeSassoon Hospital Pune 411001 MH India
- Proteomics LabNational Centre for Cell Science Pune 411007 MH India
| | - Snigdha Dhali
- Proteomics LabNational Centre for Cell Science Pune 411007 MH India
| | - Subodhini Abhang
- Biochemistry DepartmentB.J. Medical CollegeSassoon Hospital Pune 411001 MH India
| |
Collapse
|
93
|
Tsvirkun D, Ben-Nun Y, Merquiol E, Zlotver I, Meir K, Weiss-Sadan T, Matok I, Popovtzer R, Blum G. CT Imaging of Enzymatic Activity in Cancer Using Covalent Probes Reveal a Size-Dependent Pattern. J Am Chem Soc 2018; 140:12010-12020. [PMID: 30148621 PMCID: PMC6192666 DOI: 10.1021/jacs.8b05817] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
X-ray
CT instruments are among the most available, efficient, and
cost-effective imaging modalities in hospitals. The field of CT molecular
imaging is emerging which relies mainly on the detection of gold nanoparticles
and iodine-containing compounds directed to tagging a variety of abundant
biomolecules. Here for the first time we attempted to detect enzymatic
activity, while the low sensitivity of CT scanners to contrast reagents
made this a challenging task. Therefore, we developed a new class
of nanosized cathepsin-targeted activity-based probes (ABPs) for functional
CT imaging of cancer. ABPs are small molecules designed to covalently
modify enzyme targets in an activity-dependent manner. Using a CT
instrument, these novel probes enable detection of the elevated cathepsin
activity within cancerous tissue, thus creating a direct link between
biological processes and imaging signals. We present the generation
and biochemical evaluation of a library of ABPs tagged with different
sized gold nanoparticles (GNPs), with various ratios of cathepsin-targeting
moiety and a combination of different polyethylene glycol (PEG) protective
layers. The most potent and stable GNP-ABPs were applied for noninvasive
cancer imaging in mice. Surprisingly, detection of CT contrast from
the tumor had reverse correlation to GNP size and the amount of targeting
moiety. Interestingly, TEM images of tumor sections show intercellular
lysosomal subcellular localization of the GNP-ABPs. In conclusion,
we demonstrate that the covalent linkage is key for detection using
low sensitive imaging modalities and the utility of GNP-ABPs as a
promising tool for enzymatic-based CT imaging.
Collapse
Affiliation(s)
- Darya Tsvirkun
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Yael Ben-Nun
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Emmanuelle Merquiol
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Ivan Zlotver
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Karen Meir
- Department of Pathology , Hadassah Medical Center , Jerusalem 9112001 , Israel
| | - Tommy Weiss-Sadan
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Ilan Matok
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| | - Rachela Popovtzer
- Faculty of Engineering & The Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 52900 , Israel
| | - Galia Blum
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem , The Hebrew University , Jerusalem 9112001 , Israel
| |
Collapse
|
94
|
Pappa KI, Kontostathi G, Makridakis M, Lygirou V, Zoidakis J, Daskalakis G, Anagnou NP. High Resolution Proteomic Analysis of the Cervical Cancer Cell Lines Secretome Documents Deregulation of Multiple Proteases. Cancer Genomics Proteomics 2018; 14:507-521. [PMID: 29109100 DOI: 10.21873/cgp.20060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Oncogenic infection by HPV, eventually leads to cervical carcinogenesis, associated by deregulation of specific pathways and protein expression at the intracellular and secretome level. Thus, secretome analysis can elucidate the biological mechanisms contributing to cervical cancer. In the present study we systematically analyzed its constitution in four cervical cell lines employing a highly sensitive proteomic technology coupled with bioinformatics analysis. MATERIALS AND METHODS LC/MS-MS proteomics and bioinformatics analysis were performed in the secretome of four informative cervical cell lines SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-) and HCK1T (normal). RESULTS The proteomic pattern of each cancer cell line compared to HCK1T was identified and a detailed bioinformatics analysis disclosed inhibition of matrix metalloproteases in cancer cell lines. This prediction was further confirmed via zymography for MMP-2 and MMP-9, western blot analysis for ADAM10 and by MRM for TIMP1. The differential expression of important secreted proteins such as CATD, FUCA1 and SOD2 was also confirmed by western blot analysis. MRM-targeted proteomics analysis confirmed the differential expression of CATD, CATB, SOD2, QPCT and NEU1. CONCLUSION High resolution proteomics analysis of cervical cancer secretome revealed significantly deregulated biological processes and proteins implicated in cervical carcinogenesis.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece .,First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Manousos Makridakis
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - George Daskalakis
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | - Nicholas P Anagnou
- Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
95
|
Shaul ME, Fridlender ZG. Cancer-related circulating and tumor-associated neutrophils - subtypes, sources and function. FEBS J 2018; 285:4316-4342. [PMID: 29851227 DOI: 10.1111/febs.14524] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
In recent years, the role of neutrophils in cancer biology has been a matter of increasing interest. Many patients with advanced cancer show high levels of neutrophilia, tumor neutrophils are connected to dismal prognosis, and the neutrophil-to-lymphocyte ratio has been introduced as a significant prognostic factor for survival in many types of cancer. Neutrophils constitute an important portion of the infiltrating immune cells in the tumor microenvironment, but controversy has long surrounded the function of these cells in the context of cancer. Multiple evidences have shown that neutrophils recruited to the tumor can acquire either protumor or antitumor function. These findings have led to the identification of multiple and heterogeneous neutrophil subsets in the tumor and circulation. In addition, tumor-associated neutrophils (TANs) were shown to demonstrate functional plasticity, driven by multiple factors present in the tumor microenvironment. In this review, we examine the current knowledge on cancer-related circulating neutrophils, their source and the function of the different subtypes, both mature and immature. We then discuss the pro vs antitumor nature of TANs in cancer, their functional plasticity and the mechanisms that regulate neutrophil recruitment and polarization. Although the vast majority of the knowledge on neutrophils in cancer comes from murine studies, recent work has been done on human cancer-related neutrophils. In the final paragraphs, we expand on the current knowledge regarding the role of neutrophils in human cancer and examine the question whether cancer-related neutrophils (circulating or intratumoral) could be a new possible target for cancer immunotherapy.
Collapse
Affiliation(s)
- Merav E Shaul
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
96
|
Cysteine cathepsins as a prospective target for anticancer therapies-current progress and prospects. Biochimie 2018; 151:85-106. [PMID: 29870804 DOI: 10.1016/j.biochi.2018.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Cysteine cathepsins (CTS), being involved in both physiological and pathological processes, play an important role in the human body. During the last 30 years, it has been shown that CTS are highly upregulated in a wide variety of cancer types although they have received a little attention as a potential therapeutic target as compared to serine or metalloproteinases. Studies on the increasing problem of neoplastic progression have revealed that secretion of cell-surface- and intracellular cysteine proteases is aberrant in tumor cells and has an impact on their growth, invasion, and metastasis by taking part in tumor angiogenesis, in apoptosis, and in events of inflammatory and immune responses. Considering the role of CTS in carcinogenesis, inhibition of these enzymes becomes an attractive strategy for cancer therapy. The downregulation of natural CTS inhibitors (CTSsis), such as cystatins, observed in various types of cancer, supports this claim. The intention of this review is to highlight the relationship of CTS with cancer and to present illustrations that explain how some of their inhibitors affect processes related to neoplastic progression.
Collapse
|
97
|
Leto G, Crescimanno M, Flandina C. On the role of cystatin C in cancer progression. Life Sci 2018; 202:152-160. [DOI: 10.1016/j.lfs.2018.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/17/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
|
98
|
Wang HH, Hsu YH, Chang MS. IL-20 bone diseases involvement and therapeutic target potential. J Biomed Sci 2018; 25:38. [PMID: 29690863 PMCID: PMC5913811 DOI: 10.1186/s12929-018-0439-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Millions of people around the world suffer from bone disorders, likes osteoporosis, rheumatoid arthritis (RA), and cancer-induced osteolysis. In general, the bone remodeling balance is determined by osteoclasts and osteoblasts, respectively responsible for bone resorption and bone formation. Excessive inflammation disturbs the activities of these two kinds of cells, typically resulting in the bone loss. MAIN BODY IL-20 is emerging as a potent angiogenic, chemotactic, and proinflammatory cytokine related to several chronic inflammatory disorders likes psoriasis, atherosclerosis, cancer, liver fibrosis, and RA. IL-20 has an important role in the regulation of osteoclastogenesis and osteoblastogenesis and is upregulated in several bone-related diseases. The anti-IL-20 monoclonal antibody treatment has a therapeutic potential in several experimental disease models including ovariectomy-induced osteoporosis, cancer-induced osteolysis, and bone fracture. CONCLUSION This review article provides an overview describing the IL-20's biological functions in the common bone disorders and thus providing a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
99
|
Kenyon A, Gavriouchkina D, Zorman J, Chong-Morrison V, Napolitani G, Cerundolo V, Sauka-Spengler T. Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes. Dis Model Mech 2018; 11:dmm030056. [PMID: 29666124 PMCID: PMC5963855 DOI: 10.1242/dmm.030056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
A complex network of inflammatory genes is closely linked to somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. Here, we describe the development of a double binary zebrafish model that enables regulatory programming of the myeloid cells as they respond to oncogene-activated melanocytes to be explored, focussing on the initial phase when cells become the precursors of cancer. A hormone-inducible binary system allows for temporal control of expression of different Ras oncogenes (NRasQ61K, HRasG12V and KRasG12V) in melanocytes, leading to proliferation and changes in morphology of the melanocytes. This model was coupled to binary cell-specific biotagging models allowing in vivo biotinylation and subsequent isolation of macrophage or neutrophil nuclei for regulatory profiling of their active transcriptomes. Nuclear transcriptional profiling of neutrophils, performed as they respond to the earliest precursors of melanoma in vivo, revealed an intricate landscape of regulatory factors that may promote progression to melanoma, including Serpinb1l4, Fgf1, Fgf6, Cathepsin H, Galectin 1 and Galectin 3. The model presented here provides a powerful platform to study the myeloid response to the earliest precursors of melanoma.
Collapse
Affiliation(s)
- Amy Kenyon
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Daria Gavriouchkina
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Jernej Zorman
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Giorgio Napolitani
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Vincenzo Cerundolo
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
100
|
Sabrkhany S, Kuijpers MJE, Knol JC, Olde Damink SWM, Dingemans AMC, Verheul HM, Piersma SR, Pham TV, Griffioen AW, Oude Egbrink MGA, Jimenez CR. Exploration of the platelet proteome in patients with early-stage cancer. J Proteomics 2018; 177:65-74. [PMID: 29432918 DOI: 10.1016/j.jprot.2018.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/29/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
Platelets play an important role in tumor growth and, at the same time, platelet characteristics are affected by cancer presence. Therefore, we investigated whether the platelet proteome harbors differentially expressed proteins associated with early-stage cancer. For this proof-of-concept study, patients with early-stage lung (n = 8) or head of pancreas cancer (n = 4) were included, as were healthy sex- and age-matched controls for both subgroups. Blood samples were collected from controls and from patients before surgery. Furthermore, from six of the patients, a second sample was collected two months after surgery. NanoLC-MS/MS-based proteomics of gel-fractionated platelet proteins was used for comparative spectral count analyses of patients to controls and before to after surgery samples. The total platelet proteome dataset included 4384 unique proteins of which 85 were significantly (criteria Fc > 1.5 and p < 0.05) changed in early-stage cancer compared to controls. In addition, the levels of 81 platelet proteins normalized after tumor resection. When filtering for the most discriminatory proteins, we identified seven promising platelet proteins associated with early-stage cancer. In conclusion, this pioneering study on the platelet proteome in cancer patients clearly identifies platelets as a new source of candidate protein biomarkers of early-stage cancer. BIOLOGICAL SIGNIFICANCE Currently, most blood-based diagnostics/biomarker research is performed in serum or plasma, while the content of blood cells is usually neglected. It is known that especially blood platelets, which are the main circulating pool of many bioactive proteins, such as growth factors, chemokines, and cytokines, are a potentially rich source of biomarkers. The current study is the first to measure the effect of early-stage cancer on the platelet proteome of patients. Our study demonstrates that the platelet proteome of patients with early-stage lung or head of pancreas cancer differs considerably compared to that of healthy individuals of matched sex and age. In addition, the platelet proteome of cancer patients normalized after surgical resection of the tumor. Exploiting platelet proteome differences linked to both tumor presence and disease status, we were able to demonstrate that the platelet proteome can be mined for potential biomarkers of cancer.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Cardiovascular Research Institute Maastricht, Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Steven W M Olde Damink
- Cardiovascular Research Institute Maastricht, Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anne-Marie C Dingemans
- Cardiovascular Research Institute Maastricht, Department of Pulmonology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Henk M Verheul
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU Medical Center, Amsterdam, The Netherlands
| | - Mirjam G A Oude Egbrink
- Cardiovascular Research Institute Maastricht, Department of Physiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|