51
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
52
|
Targeting Metabolic Cross Talk Between Cancer Cells and Cancer-Associated Fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:205-214. [PMID: 34014545 DOI: 10.1007/978-3-030-65768-0_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although cancer has classically been regarded as a genetic disease of uncontrolled cell growth, the importance of the tumor microenvironment (TME) [1, 2] is continuously emphasized by the accumulating evidence that cancer growth is not simply dependent on the cancer cells themselves [3, 4] but also dependent on angiogenesis [5-8], inflammation [9, 10], and the supporting roles of cancer-associated fibroblasts (CAFs) [11-13]. After the discovery that CAFs are able to remodel the tumor matrix within the TME and provide the nutrients and chemicals to promote cancer cell growth [14], many studies have aimed to uncover the cross talk between cancer cells and CAFs. Moreover, a new paradigm in cancer metabolism shows how cancer cells act like "metabolic parasites" to take up the high-energy metabolites, such as lactate, ketone bodies, free fatty acids, and glutamine from supporting cells, including CAFs and cancer-associated adipocytes (CAAs) [15, 16]. This chapter provides an overview of the metabolic coupling between CAFs and cancer cells to further define the therapeutic options to disrupt the CAF-cancer cell interactions.
Collapse
|
53
|
Zeng RJ, Zheng CW, Chen WX, Xu LY, Li EM. Rho GTPases in cancer radiotherapy and metastasis. Cancer Metastasis Rev 2020; 39:1245-1262. [PMID: 32772212 DOI: 10.1007/s10555-020-09923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Despite treatment advances, radioresistance and metastasis markedly impair the benefits of radiotherapy to patients with malignancies. Functioning as molecular switches, Rho guanosine triphosphatases (GTPases) have well-recognized roles in regulating various downstream signaling pathways in a wide range of cancers. In recent years, accumulating evidence indicates the involvement of Rho GTPases in cancer radiotherapeutic efficacy and metastasis, as well as radiation-induced metastasis. The functions of Rho GTPases in radiotherapeutic efficacy are divergent and context-dependent; thereby, a comprehensive integration of their roles and correlated mechanisms is urgently needed. This review integrates current evidence supporting the roles of Rho GTPases in mediating radiotherapeutic efficacy and the underlying mechanisms. In addition, their correlations with metastasis and radiation-induced metastasis are discussed. Under the prudent application of Rho GTPase inhibitors based on critical evaluations of biological contexts, targeting Rho GTPases can be a promising strategy in overcoming radioresistance and simultaneously reducing the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
54
|
Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine. EPMA J 2020; 11:661-694. [PMID: 33240452 DOI: 10.1007/s13167-020-00224-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022]
Abstract
Objective Energy metabolism abnormality is the hallmark in epithelial ovarian carcinoma (EOC). This study aimed to investigate energy metabolism pathway alterations and their regulation by the antiparasite drug ivermectin in EOC for the discovery of energy metabolism pathway-based molecular biomarker pattern and therapeutic targets in the context of predictive, preventive, and personalized medicine (PPPM) in EOC. Methods iTRAQ-based quantitative proteomics was used to identify mitochondrial differentially expressed proteins (mtDEPs) between human EOC and control mitochondrial samples isolated from 8 EOC and 11 control ovary tissues from gynecologic surgery of Chinese patients, respectively. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to analyze the protein expressions of energy metabolic pathways in EOC cells treated with and without ivermectin. Cell proliferation, cell cycle, apoptosis, and important molecules in energy metabolism pathway were examined before and after ivermectin treatment of different EOC cells. Results In total, 1198 mtDEPs were identified, and various mtDEPs were related to energy metabolism changes in EOC, with an interesting result that EOC tissues had enhanced abilities in oxidative phosphorylation (OXPHOS), Kreb's cycle, and aerobic glycolysis, for ATP generation, with experiment-confirmed upregulations of UQCRH in OXPHOS; IDH2, CS, and OGDHL in Kreb's cycle; and PKM2 in glycolysis pathways. Importantly, PDHB that links glycolysis with Kreb's cycle was upregulated in EOC. SILAC-based quantitative proteomics found that the protein expression levels of energy metabolic pathways were regulated by ivermectin in EOC cells. Furthermore, ivermectin demonstrated its strong abilities to inhibit proliferation and cell cycle and promote apoptosis in EOC cells, through molecular networks to target PFKP in glycolysis; IDH2 and IDH3B in Kreb's cycle; ND2, ND5, CYTB, and UQCRH in OXPHOS; and MCT1 and MCT4 in lactate shuttle to inhibit EOC growth. Conclusions Our findings revealed that the Warburg and reverse Warburg effects coexisted in human ovarian cancer tissues, provided the first multiomics-based molecular alteration spectrum of ovarian cancer energy metabolism pathways (aerobic glycolysis, Kreb's cycle, oxidative phosphorylation, and lactate shuttle), and demonstrated that the antiparasite drug ivermectin effectively regulated these changed molecules in energy metabolism pathways and had strong capability to inhibit cell proliferation and cell cycle progression and promote cell apoptosis in ovarian cancer cells. The observed molecular changes in energy metabolism pathways bring benefits for an in-depth understanding of the molecular mechanisms of energy metabolism heterogeneity and the discovery of effective biomarkers for individualized patient stratification and predictive/prognostic assessment and therapeutic targets/drugs for personalized therapy of ovarian cancer patients.
Collapse
|
55
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
56
|
Huang YT, Yeh PC, Lan SC, Liu PF. Metabolites modulate the functional state of human uridine phosphorylase I. Protein Sci 2020; 29:2189-2200. [PMID: 32864839 DOI: 10.1002/pro.3939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Metabolic pathways in cancer cells typically become reprogrammed to support unconstrained proliferation. These abnormal metabolic states are often accompanied by accumulation of high concentrations of ATP in the cytosol, a phenomenon known as the Warburg Effect. However, how high concentrations of ATP relate to the functional state of proteins is poorly understood. Here, we comprehensively studied the influence of ATP levels on the functional state of the human enzyme, uridine phosphorylase I (hUP1), which is responsible for activating the chemotherapeutic pro-drug, 5-fluorouracil. We found that elevated levels of ATP decrease the stability of hUP1, leading to the loss of its proper folding and function. We further showed that the concentration of hUP1 exerts a critical influence on this ATP-induced destabilizing effect. In addition, we found that ATP interacts with hUP1 through a partially unfolded state and accelerates the rate of hUP1 unfolding. Interestingly, some structurally similar metabolites showed similar destabilization effects on hUP1. Our findings suggest that metabolites can alter the folding and function of a human protein, hUP1, through protein destabilization. This phenomenon may be relevant in studying the functions of proteins that exist in the specific metabolic environment of a cancer cell.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Pei-Chin Yeh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Shih-Chun Lan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| |
Collapse
|
57
|
Chen L, Guo L, Sun Z, Yang G, Guo J, Chen K, Xiao R, Yang X, Sheng L. Monoamine Oxidase A is a Major Mediator of Mitochondrial Homeostasis and Glycolysis in Gastric Cancer Progression. Cancer Manag Res 2020; 12:8023-8035. [PMID: 32943935 PMCID: PMC7481281 DOI: 10.2147/cmar.s257848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/02/2020] [Indexed: 01/07/2023] Open
Abstract
Objective Monoamine oxidase A (MAO-A) is a mitochondrial protein involved in tumourigenesis in different types of cancer. However, the biological function of MAO-A in gastric cancer development remains unknown. Methods We examined MAO-A expression in gastric cancer tissues and in gastric cancer cell lines by immunohistochemistry and Western blot analyses. CCK8, FACS and bromodeoxyuridine incorporation assays were performed to assess the effects of MAO-A on gastric cancer cell proliferation. The role of MAO-A in mitochondrial function was determined through MitoSOX Red staining, ATP generation and glycolysis assays. Results In the present study, we observed that MAO-A was significantly upregulated in gastric cancer tissues and in AGS and MGC803 cells. The observed MAO-A inhibition indicated decreased cell cycle progression and proliferation. Silencing MAO-A expression was associated with suppressed migration and invasion of gastric cancer cells in vitro. Moreover, alleviated mitochondrial damage in these cells was demonstrated by decreased levels of mitochondrial reactive oxygen species and increased ATP generation. MAO-A knockdown also regulated the expression of the glycolysis rate-limiting enzymes hexokinase 2 and pyruvate dehydrogenase. Finally, we observed that the glycolysis-mediated effect was weakened in AGS and MGC803 cells when MAO-A was blocked. Conclusion The findings of the present study indicate that MAO-A is responsible for mitochondrial dysfunction and aerobic glycolysis, which in turn leads to the proliferation and metastasis of human gastric tumour cells.
Collapse
Affiliation(s)
- Ling Chen
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Li Guo
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ziwen Sun
- Department of Scientific Research and Education, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Guochun Yang
- Department of Emergency Medicine, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kai Chen
- The Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ruixue Xiao
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xigui Yang
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Lijun Sheng
- Department of Oncology, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
58
|
Benny S, Mishra R, Manojkumar MK, Aneesh TP. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy. Med Hypotheses 2020; 144:110216. [PMID: 33254523 DOI: 10.1016/j.mehy.2020.110216] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
An old ideology of killing the cancer cells by starving them is the underlying concept of the Warburg effect. It is the process of aerobic glycolysis exhibited by the cancer cells irrespective of anaerobic glycolysis or mitochondrial oxidative phosphorylation following by their healthy counterparts. Dr Otto Heinrich Warburg proposed this abnormal metabolic behaviour of tumour cells in 1920. This phenomenon illustrates the metabolic switching in tumour cells from oxidative phosphorylation to aerobic glycolysis triggered by an injury to the mitochondrial respiration. A modernised perspective of the Warburg hypothesis termed the Reverse Warburg effect introduced in 2009, with a two-compartment model describing the metabolic symbiosis between cancer cells and its neighbouring stromal cells or cancer-associated fibroblasts. This theory is elucidating the aerobic glycolysis occurring in cancer-associated fibroblasts which leads to the generation and deposition of the lactate in tumour microenvironment along with its significance. The transportation of lactate to and from the cancer cell and extracellular space is facilitated by the lactate transporters called monocarboxylate transporters. This lactate generated irrespective of the hypoxic or aerobic conditions acts as a primary metabolic fuel for the cancer cells. Besides, it will create a tumour microenvironment that is favouring the progression and metastasis of malignancy through several means. Overall, the lactate produced through this metabolic reprogramming is supporting and worsening the conditions of cancer. The concept of the Reverse Warburg effect proposes a new anti-cancer treatment modality by preventing the generation and transport of lactate through the inhibition of monocarboxylate transporters and in turn, defeating the cancer disease by arresting the cancer cells along with silencing tumour microenvironment.
Collapse
Affiliation(s)
- Sonu Benny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682041, India
| | - Rohan Mishra
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682041, India
| | - Maneesha K Manojkumar
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682041, India.
| |
Collapse
|
59
|
Zhao C, Wang B, Liu E, Zhang Z. Loss of PTEN expression is associated with PI3K pathway-dependent metabolic reprogramming in hepatocellular carcinoma. Cell Commun Signal 2020; 18:131. [PMID: 32831114 PMCID: PMC7444061 DOI: 10.1186/s12964-020-00622-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Background Metabolic reprogramming, in which energetic metabolism changes from oxidative phosphorylation to glycolysis, is well-accepted as a hallmark of cancers including hepatocellular carcinoma (HCC). A growing body of evidence suggests the involvement of oncogenes and tumor suppressor genes in the control of metabolic reprogramming. In this study, we attempt to investigate whether loss of PTEN, a recognized tumor suppressor, drives metabolic reprogramming of HCC. Methods Cancerous liver tissues were surgically resected from 128 HCC patients, with 43 adjacent noncancerous liver tissues as control. Aerobic glycolysis (Warburg effect) was reflected by measurements of glucose uptake and lactate production, mitochondrial membrane potential collapse was observed by JC-1 staining, glycolytic rate and mitochondrial respiration were evaluated by determining glycolytic proton efflux rate (glycoPER) and oxygen consumption rate (OCR) in cultured human HHCC cells. Results Reciprocal expression of PTEN and PI3K was determined in cancer liver tissues. Overexpression of PTEN suppressed the Warburg effect, as evidenced by reductions in glucose uptake and lactate production, maintenance of mitochondrial function, and transformation of energetic metabolism from glycolysis to oxidative phosphorylation in cultured PTEN-negative HHCC cells. Importantly, 740 Y-P, a PI3K agonist that leads to activation of the PI3K pathway, partially abrogated the function of PTEN and reprogramed glucose metabolism in cultured HHCC cells. Conclusions The discovery that loss of PTEN allows the tumor metabolic program has been a major advance in understanding the carcinogenesis of HCC. Video abstract
Graphical abstract Graphic abstract showing that loss of PTEN regulates the tumor metabolic program in hepatocellular carcinoma. Loss of PTEN leads to activation of the PI3K pathway enhances the Warburg effect, thereby promoting the development of hepatocellular carcinoma.
![]()
Collapse
Affiliation(s)
- Chuanzong Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, Shandong Province, P. R. China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Ben Wang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, Shandong Province, P. R. China
| | - Enyu Liu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, Shandong Province, P. R. China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, Shandong Province, P. R. China.
| |
Collapse
|
60
|
Is Host Metabolism the Missing Link to Improving Cancer Outcomes? Cancers (Basel) 2020; 12:cancers12092338. [PMID: 32825010 PMCID: PMC7564800 DOI: 10.3390/cancers12092338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
For the past 100 years, oncologists have relentlessly pursued the destruction of tumor cells by surgical, chemotherapeutic or radiation oncological means. Consistent with this focus, treatment plans are typically based on key characteristics of the tumor itself such as disease site, histology and staging based on local, regional and systemic dissemination. Precision medicine is similarly built on the premise that detailed knowledge of molecular alterations of tumor cells themselves enables better and more effective tumor cell destruction. Recently, host factors within the tumor microenvironment including the vasculature and immune systems have been recognized as modifiers of disease progression and are being targeted for therapeutic gain. In this review, we argue that—to optimize the impact of old and new treatment options—we need to take account of an epidemic that occurs independently of—but has major impact on—the development and treatment of malignant diseases. This is the rapidly increasing number of patients with excess weight and its’ attendant metabolic consequences, commonly described as metabolic syndrome. It is well established that patients with altered metabolism manifesting as obesity, metabolic syndrome and chronic inflammation have an increased incidence of cancer. Here, we focus on evidence that these patients also respond differently to cancer therapy including radiation and provide a perspective how exercise, diet or pharmacological agents may be harnessed to improve therapeutic responses in this patient population.
Collapse
|
61
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
62
|
Kozlov AM, Lone A, Betts DH, Cumming RC. Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts. Sci Rep 2020; 10:8388. [PMID: 32433492 PMCID: PMC7239882 DOI: 10.1038/s41598-020-65193-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has emerged that cancer cells can use various metabolites as fuel sources. Restricting cultured cancer cells to sole metabolite fuel sources can promote metabolic changes leading to enhanced glycolysis or mitochondrial OXPHOS. However, the effect of metabolite-restriction on non-transformed cells remains largely unexplored. Here we examined the effect of restricting media fuel sources, including glucose, pyruvate or lactate, on the metabolic state of cultured human dermal fibroblasts. Fibroblasts cultured in lactate-only medium exhibited reduced PDH phosphorylation, indicative of OXPHOS, and a concurrent elevation of ROS. Lactate exposure primed fibroblasts to switch to glycolysis by increasing transcript abundance of genes encoding glycolytic enzymes and, upon exposure to glucose, increasing glycolytic enzyme levels. Furthermore, lactate treatment stabilized HIF-1α, a master regulator of glycolysis, in a manner attenuated by antioxidant exposure. Our findings indicate that lactate preconditioning primes fibroblasts to switch from OXPHOS to glycolysis metabolism, in part, through ROS-mediated HIF-1α stabilization. Interestingly, we found that lactate preconditioning results in increased transcript abundance of MYC and SNAI1, key facilitators of early somatic cell reprogramming. Defined metabolite treatment may represent a novel approach to increasing somatic cell reprogramming efficiency by amplifying a critical metabolic switch that occurs during iPSC generation.
Collapse
Affiliation(s)
- Alexandra M Kozlov
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Asad Lone
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Dean H Betts
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine and Density, The University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5W9, Canada.
| | - Robert C Cumming
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
63
|
Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity. Oncogene 2020; 39:4636-4649. [PMID: 32398866 DOI: 10.1038/s41388-020-1313-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Klotho is a transmembrane protein, which can be shed and act as a circulating hormone and is involved in regulating cellular calcium levels and inhibition of the PI3K/AKT pathway. As a longevity hormone, it protects normal cells from oxidative stress, and as a tumor suppressor it inhibits growth of cancer cells. Mechanisms governing these differential activities have not been addressed. Altered cellular metabolism is a hallmark of cancer and dysregulation of mitochondrial activity is a hallmark of aging. We hypothesized that klotho exerts its differential effects through regulation of these two hallmarks. Treatment with klotho inhibited glycolysis, reduced mitochondrial activity and membrane potential only in cancer cells. Accordingly, global metabolic screen revealed that klotho altered pivotal metabolic pathways, amongst them glycolysis and tricarboxylic acid cycle in breast cancer cells. Alteration of metabolic activity and increased AMP/ATP ratio lead to LKB1-dependent AMPK activation. Indeed, klotho induced AMPK phosphorylation; furthermore, inhibition of LKB1 partially abolished klotho's tumor suppressor activity. By diminishing deltapsi (Δψ) klotho also inhibited mitochondria Ca2+ shuttling thereby impairing mitochondria communication with SOCE leading to reduced Ca2+ influx by SOCE channels. The reduced SOCE was followed by ER Ca2+ depletion and stress. These data delineate mechanisms mediating the differential effects of klotho toward cancer versus normal cells, and indicate klotho as a potent regulator of metabolic activity.
Collapse
|
64
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 649] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
65
|
Crespo R, Rodenak-Kladniew BE, Castro MA, Soberón MV, Lavarías SM. Induction of oxidative stress as a possible mechanism by which geraniol affects the proliferation of human A549 and HepG2 tumor cells. Chem Biol Interact 2020; 320:109029. [DOI: 10.1016/j.cbi.2020.109029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
|
66
|
Li M, Shao J, Guo Z, Jin C, Wang L, Wang F, Jia Y, Zhu Z, Zhang Z, Zhang F, Zheng S, Wang X. Novel mitochondrion-targeting copper(II) complex induces HK2 malfunction and inhibits glycolysis via Drp1-mediating mitophagy in HCC. J Cell Mol Med 2020; 24:3091-3107. [PMID: 31994339 PMCID: PMC7077532 DOI: 10.1111/jcmm.14971] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
[Cu(ttpy-tpp)Br2 ]Br (abbreviated as CTB) is a novel mitochondrion-targeting copper(II) complex synthesized by our research group, which contains tri-phenyl-phosphonium (TPP) groups as its lipophilic property. In this study, we explored how CTB affects mitochondrial functions and exerts its anti-tumour activity. Multiple functional and molecular analyses including Seahorse XF Bioanalyzer Platform, Western blot, immunofluorescence analysis, co-immunoprecipitation and transmission electron microscopy were used to elucidate the underlying mechanisms. Human hepatoma cells were subcutaneously injected into right armpit of male nude mice for evaluating the effects of CTB in vivo. We discovered that CTB inhibited aerobic glycolysis and cell acidification by impairing the activity of HK2 in hepatoma cells, accompanied by dissociation of HK2 from mitochondria. The modification of HK2 not only led to the complete dissipation of mitochondrial membrane potential (MMP) but also promoted the opening of mitochondrial permeability transition pore (mPTP), contributing to the activation of mitophagy. In addition, CTB co-ordinately promoted dynamin-related protein 1 (Drp1) recruitment in mitochondria to induce mitochondrial fission. Our findings established a previously unrecognized role for copper complex in aerobic glycolysis of tumour cells, revealing the interaction between mitochondrial HK2-mediated mitophagy and Drp1-regulated mitochondrial fission.
Collapse
Affiliation(s)
- Mengmeng Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmaceutical Technology, Xuzhou Pharmaceutical Vocational College, Xuzhou, China
| | - Jiangjuan Shao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chun Jin
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenzhu Zhu
- School of Food Science and Engineering, Nanjing University Of Finance & Economics, Nanjing, China
| | - Ziji Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
67
|
Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:169-176. [DOI: 10.1007/978-3-030-34461-0_21] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
68
|
Nelson GL, Ronayne CT, Solano LN, Jonnalagadda SK, Jonnalagadda S, Rumbley J, Holy J, Rose-Hellekant T, Drewes LR, Mereddy VR. Development of Novel Silyl Cyanocinnamic Acid Derivatives as Metabolic Plasticity Inhibitors for Cancer Treatment. Sci Rep 2019; 9:18266. [PMID: 31797891 PMCID: PMC6892925 DOI: 10.1038/s41598-019-54709-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Novel silyl cyanocinnamic acid derivatives have been synthesized and evaluated as potential anticancer agents. In vitro studies reveal that lead derivatives 2a and 2b have enhanced cancer cell proliferation inhibition properties when compared to the parent monocarboxylate transporter (MCT) inhibitor cyano-hydroxycinnamic acid (CHC). Further, candidate compounds exhibit several-fold more potent MCT1 inhibition properties as determined by lactate-uptake studies, and these studies are supported by MCT homology modeling and computational inhibitor-docking studies. In vitro effects on glycolysis and mitochondrial metabolism also illustrate that the lead derivatives 2a and 2b lead to significant effects on both metabolic pathways. In vivo systemic toxicity and efficacy studies in colorectal cancer cell WiDr tumor xenograft demonstrate that candidate compounds are well tolerated and exhibit good single agent anticancer efficacy properties.
Collapse
Affiliation(s)
- Grady L Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Conor T Ronayne
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Lucas N Solano
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Sravan K Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Shirisha Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Rumbley
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Teresa Rose-Hellekant
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Lester R Drewes
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA. .,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA. .,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
69
|
Khammanivong A, Saha J, Spartz AK, Sorenson BS, Bush AG, Korpela DM, Gopalakrishnan R, Jonnalagadda S, Mereddy VR, O'Brien TD, Drewes LR, Dickerson EB. A novel MCT1 and MCT4 dual inhibitor reduces mitochondrial metabolism and inhibits tumour growth of feline oral squamous cell carcinoma. Vet Comp Oncol 2019; 18:324-341. [PMID: 31661586 DOI: 10.1111/vco.12551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Monocarboxylate transporters (MCTs) support tumour growth by regulating the transport of metabolites in the tumour microenvironment. High MCT1 or MCT4 expression is correlated with poor outcomes in human patients with head and neck squamous cell carcinoma (HNSCC). Recently, drugs targeting these transporters have been developed and may prove to be an effective treatment strategy for HNSCC. Feline oral squamous cell carcinoma (OSCC) is an aggressive and treatment-resistant malignancy resembling advanced or recurrent HNSCC. The goals of this study were to investigate the effects of a previously characterized dual MCT1 and MCT4 inhibitor, MD-1, in OSCC as a novel treatment approach for feline oral cancer. We also sought to determine the potential of feline OSCC as a large animal model for the further development of MCT inhibitors to treat human HNSCC. In vitro, MD-1 reduced the viability of feline OSCC and human HNSCC cell lines, altered glycolytic and mitochondrial metabolism and synergized with platinum-based chemotherapies. While MD-1 treatment increased lactate concentrations in an HNSCC cell line, the inhibitor failed to alter lactate levels in feline OSCC cells, suggesting an MCT-independent activity. In vivo, MD-1 significantly inhibited tumour growth in a subcutaneous xenograft model and prolonged overall survival in an orthotopic model of feline OSCC. Our results show that MD-1 may be an effective therapy for the treatment of feline oral cancer. Our findings also support the further investigation of feline OSCC as a large animal model to inform the development of MCT inhibitors and future clinical studies in human HNSCC.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Jhuma Saha
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Angela K Spartz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Brent S Sorenson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Alexander G Bush
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Derek M Korpela
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Raj Gopalakrishnan
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Shirisha Jonnalagadda
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, Minnesota
| | - Venkatram R Mereddy
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, Minnesota
| | - Timothy D O'Brien
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Lester R Drewes
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
70
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Multiple Targets of the Canonical WNT/β-Catenin Signaling in Cancers. Front Oncol 2019; 9:1248. [PMID: 31803621 PMCID: PMC6876670 DOI: 10.3389/fonc.2019.01248] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Canonical WNT/β-catenin signaling is involved in most of the mechanisms that lead to the formation and development of cancer cells. It plays a central role in three cyclic processes, which are the cell division cycle, the immune cycle, and circadian rhythms. When the canonical WNT pathway is upregulated as in cancers, the increase in β-catenin in the nucleus leads to activation of the expression of numerous genes, in particular CYCLIN D1 and cMYC, where the former influences the G1 phase of the cell division cycle, and the latter, the S phase. Every stage of the immune cycle is disrupted by the canonical WNT signaling. In numerous cancers, the dysfunction of the canonical WNT pathway is accompanied by alterations of the circadian genes (CLOCK, BMAL1, PER). Induction of these cyclic phenomena leads to the genesis of thermodynamic mechanisms that operate far from equilibrium, and that have been called “dissipative structures.” Moreover, upregulation of the canonical WNT/β-catenin signaling is important in the myofibroblasts of the cancer stroma. Their differentiation is controlled by the canonical WNT /TGF-β1 signaling. Myofibroblasts present ultraslow contractile properties due to the presence of the non-muscle myosin IIA. Myofibroblats also play a role in the inflammatory processes, often found in cancers and fibrosis processes. Finally, upregulated canonical WNT deviates mitochondrial oxidative phosphorylation toward the Warburg glycolysis metabolism, which is characteristic of cancers. Among all these cancer-generating mechanisms, the upregulated canonical WNT pathway would appear to offer the best hope as a therapeutic target, particularly in the field of immunotherapy.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Olivier Schussler
- Research Laboratory, Department of Cardiovascular Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Alexandre Vallée
- Hypertension and Cardiovascular Prevention Unit, Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital, AP-HP, Paris, France.,DACTIM-MIS, LMA, UMR CNRS 7348, CHU de Poitiers, Université de Poitiers, Poitiers, France
| |
Collapse
|
71
|
Li N, Zhan X, Zhan X. Energy Metabolism Heterogeneity-Based Molecular Biomarkers for Ovarian Cancer. Mol Med 2019. [DOI: 10.5772/intechopen.80622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
72
|
Zheng M, Cao MX, Yu XH, Li L, Wang K, Wang SS, Wang HF, Tang YJ, Tang YL, Liang XH. STAT3 Promotes Invasion and Aerobic Glycolysis of Human Oral Squamous Cell Carcinoma via Inhibiting FoxO1. Front Oncol 2019; 9:1175. [PMID: 31750256 PMCID: PMC6848388 DOI: 10.3389/fonc.2019.01175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/18/2019] [Indexed: 02/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a previously accepted tumor-promoting protein in various malignancies, plays a key role in the process of cancer glycolysis. However, the role and potential mechanism of STAT3 in aerobic glycolysis and progression of oral squamous cell carcinoma (OSCC) has not been explored. In the present study, we demonstrated that STAT3 knockdown remarkably inhibited migration, invasion, expressions of epithelial-mesenchymal transition (EMT) markers, and aerobic glycolysis of OSCC cells by up-regulation of FoxO1. Consistently, the expression of nuclear Tyr705-phosphorylated STAT3, an active form of STAT3, was significantly elevated in OSCC tissues compared with adjacent normal tissues, and increased nuclear staining of Tyr705-phosphorylated STAT3 was associated with metastasis and shorter overall survival. Moreover, FoxO1, which was also mainly expressed in OSCC specimens, decreased in poorly-differentiated tissues compared with the relatively well-differentiated ones, and inversely correlated with the expression of nuclear Tyr705-phosphorylated STAT3 from patients with OSCC. Hence, our findings collectively characterized the contributing role of STAT3/FoxO1 in invasion and aerobic glycolysis of OSCC cells, which may lead to the worse clinical outcome.
Collapse
Affiliation(s)
- Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Li
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao-Fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
73
|
Sagar V, Vatapalli R, Lysy B, Pamarthy S, Anker JF, Rodriguez Y, Han H, Unno K, Stadler WM, Catalona WJ, Hussain M, Gill PS, Abdulkadir SA. EPHB4 inhibition activates ER stress to promote immunogenic cell death of prostate cancer cells. Cell Death Dis 2019; 10:801. [PMID: 31641103 PMCID: PMC6805914 DOI: 10.1038/s41419-019-2042-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023]
Abstract
The EPHB4 receptor is implicated in the development of several epithelial tumors and is a promising therapeutic target, including in prostate tumors in which EPHB4 is overexpressed and promotes tumorigenicity. Here, we show that high expression of EPHB4 correlated with poor survival in prostate cancer patients and EPHB4 inhibition induced cell death in both hormone sensitive and castration-resistant prostate cancer cells. EPHB4 inhibition reduced expression of the glucose transporter, GLUT3, impaired glucose uptake, and reduced cellular ATP levels. This was associated with the activation of endoplasmic reticulum stress and tumor cell death with features of immunogenic cell death (ICD), including phosphorylation of eIF2α, increased cell surface calreticulin levels, and release of HMGB1 and ATP. The changes in tumor cell metabolism after EPHB4 inhibition were associated with MYC downregulation, likely mediated by the SRC/p38 MAPK/4EBP1 signaling cascade, known to impair cap-dependent translation. Together, our study indicates a role for EPHB4 inhibition in the induction of immunogenic cell death with implication for prostate cancer therapy.
Collapse
Affiliation(s)
- Vinay Sagar
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rajita Vatapalli
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Barbara Lysy
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sahithi Pamarthy
- Atrin Pharmaceuticals, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Jonathan F Anker
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yara Rodriguez
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Huiying Han
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kenji Unno
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Walter M Stadler
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - William J Catalona
- Department of Urology and Medical Social Sciences (DEV), Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maha Hussain
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Parkash S Gill
- Division of Hematology, Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarki A Abdulkadir
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
74
|
de Alteriis E, Cartenì F, Parascandola P, Serpa J, Mazzoleni S. Revisiting the Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-induced cell death. Cell Cycle 2019; 17:688-701. [PMID: 29509056 PMCID: PMC5969562 DOI: 10.1080/15384101.2018.1442622] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mechanisms behind the Warburg effect in mammalian cells, as well as for the similar Crabtree effect in the yeast Saccharomyces cerevisiae, are still a matter of debate: why do cells shift from the energy-efficient respiration to the energy-inefficient fermentation at high sugar concentration? This review reports on the strong similarities of these phenomena in both cell types, discusses the current ideas, and provides a novel interpretation of their common functional mechanism in a dynamic perspective. This is achieved by analysing another phenomenon, the sugar-induced-cell-death (SICD) occurring in yeast at high sugar concentration, to highlight the link between ATP depletion and cell death. The integration between SICD and the dynamic functioning of the glycolytic process, suggests that the Crabtree/Warburg effect may be interpreted as the avoidance of ATP depletion in those conditions where glucose uptake is higher than the downstream processing capability of the second phase of glycolysis. It follows that the down-regulation of respiration is strategic for cell survival allowing the allocation of more resources to the fermentation pathway, thus maintaining the cell energetic homeostasis.
Collapse
Affiliation(s)
| | - Fabrizio Cartenì
- b Lab Applied Ecology and System Dynamics, Dip. Agraria , Università di Napoli "Federico II" , Portici ( NA ), Italy
| | - Palma Parascandola
- c Dip. Ingegneria Industriale , Università di Salerno , Fisciano ( SA ), Italy
| | - Jacinta Serpa
- d Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas , Universidade Nova de Lisboa , Campo Mártires da Pátria 130 , Lisbon , Portugal.,e Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG) , Rua Prof Lima Basto 1099-023 , Lisbon , Portugal
| | - Stefano Mazzoleni
- b Lab Applied Ecology and System Dynamics, Dip. Agraria , Università di Napoli "Federico II" , Portici ( NA ), Italy
| |
Collapse
|
75
|
Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 2019; 30:2584-2597. [PMID: 31390283 PMCID: PMC6740200 DOI: 10.1091/mbc.e18-10-0650] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA damage signaling is critical for the maintenance of genome integrity and cell fate decision. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor rapidly activated in a damage dose- and complexity-dependent manner playing a critical role in the initial chromatin organization and DNA repair pathway choice at damage sites. However, our understanding of a cell-wide consequence of its activation in damaged cells is still limited. Using the phasor approach to fluorescence lifetime imaging microscopy and fluorescence-based biosensors in combination with laser microirradiation, we found a rapid cell-wide increase of the bound NADH fraction in response to nuclear DNA damage, which is triggered by PARP-dependent NAD+ depletion. This change is linked to the metabolic balance shift to oxidative phosphorylation (oxphos) over glycolysis. Inhibition of oxphos, but not glycolysis, resulted in parthanatos due to rapid PARP-dependent ATP deprivation, indicating that oxphos becomes critical for damaged cell survival. The results reveal the novel prosurvival response to PARP activation through a change in cellular metabolism and demonstrate how unique applications of advanced fluorescence imaging and laser microirradiation-induced DNA damage can be a powerful tool to interrogate damage-induced metabolic changes at high spatiotemporal resolution in a live cell.
Collapse
Affiliation(s)
- Michael M Murata
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697
| | - Xiangduo Kong
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Emmanuel Moncada
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA 92697
| | - Yumay Chen
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.,UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ping Wang
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697.,UC Irvine Diabetes Center, University of California, Irvine, Irvine, CA 92697
| | - Michael W Berns
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA 92697
| | - Kyoko Yokomori
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Michelle A Digman
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
76
|
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6175804. [PMID: 31467634 PMCID: PMC6701375 DOI: 10.1155/2019/6175804] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are by-products of normal cell activity. They are produced in many cellular compartments and play a major role in signaling pathways. Overproduction of ROS is associated with the development of various human diseases (including cancer, cardiovascular, neurodegenerative, and metabolic disorders), inflammation, and aging. Tumors continuously generate ROS at increased levels that have a dual role in their development. Oxidative stress can promote tumor initiation, progression, and resistance to therapy through DNA damage, leading to the accumulation of mutations and genome instability, as well as reprogramming cell metabolism and signaling. On the contrary, elevated ROS levels can induce tumor cell death. This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Collapse
|
77
|
Li Q, Yang Y, Jiang X, Jin Y, Wu J, Qin Y, Qi X, Cheng Y, Mao Y, Hua D. The combined expressions of B7H4 and ACOT4 in cancer-associated fibroblasts are related to poor prognosis in patients with gastric carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2672-2681. [PMID: 31934097 PMCID: PMC6949562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
B7H4 is a member of the B7 family, which is expressed on antigen-presenting cells (APCs) and which negatively regulates the immune response of T cells through the inhibition of their proliferation, cytokine production, and cell cycle progression. Acyl-CoA thioesterase 4 (ACOT4) is an isoform of the ACOTs family that catalyzes the hydrolysis of fatty acyl-CoA to CoA-SH and free fatty acids. An abnormal metabolism of lipids and fatty acids is observed during tumor progression. In our study, a tissue microarray was constructed from 288 cases of gastric adenocarcinoma (GC). ACOT4 expression in cancer-associated fibroblasts (CAFs) and B7H4 expression in cancer tissues were analyzed by immunohistochemistry. The correlations among B7H4 in GC cells, ACOT4 in CAFs, and survival were analyzed. The results showed that the expression rate of B7H4 in tumor cells and ACOT4 in CAFs in 288 tissues was 71.9% (207/288) and 26.4% (76/288), respectively, and a Kaplan-Meier survival analysis showed that a low expression of ACOT4 in fibroblasts was positively correlated with poor survival. However, in a subgroup showing a high ACOT4 expression, the overall survival rate was associated with a high expression of B7H4 and correlated with poor prognosis in GC. In conclusion, ACOT4 expression in CAFs could be an independent prognostic factor for GC patients, and the co-expression with B7H4 in cancer tissues was significantly correlated with GC patients' prognosis. This evidence can represent a comprehensive prediction and a targeted therapy for gastric cancer patients. Tumor immunotherapy targeting might be affected by tumor microenvironment metabolism.
Collapse
Affiliation(s)
- Qing Li
- Department of Oncology, The Second Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
- Department of Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
- Department of Oncology, Xuzhou Central Hospital Affiliated to Dongnan UniversityXuzhou, Jiangsu Province, China
| | - Yu’e Yang
- Wuxi School of Medicine, Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Xin Jiang
- Department of Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Yufen Jin
- Department of Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Jingyi Wu
- Department of Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Yan Qin
- Department of Pathology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Xiaowei Qi
- Wuxi School of Medicine, Jiangnan UniversityWuxi, Jiangsu Province, China
- Department of Pathology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Yang Cheng
- Wuxi School of Medicine, Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Yong Mao
- Department of Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
| | - Dong Hua
- Department of Oncology, The Second Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
- Department of Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu Province, China
| |
Collapse
|
78
|
Pardo M, Xu F, Shemesh M, Qiu X, Barak Y, Zhu T, Rudich Y. Nrf2 protects against diverse PM 2.5 components-induced mitochondrial oxidative damage in lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:303-313. [PMID: 30878937 DOI: 10.1016/j.scitotenv.2019.01.436] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Michal Shemesh
- Cell Observatory of the MICC Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
79
|
Haspula D, Vallejos AK, Moore TM, Tomar N, Dash RK, Hoffmann BR. Influence of a Hyperglycemic Microenvironment on a Diabetic Versus Healthy Rat Vascular Endothelium Reveals Distinguishable Mechanistic and Phenotypic Responses. Front Physiol 2019; 10:558. [PMID: 31133884 PMCID: PMC6524400 DOI: 10.3389/fphys.2019.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia is a critical factor in the development of endothelial dysfunction in type 2 diabetes mellitus (T2DM). Whether hyperglycemic states result in a disruption of similar molecular mechanisms in endothelial cells under both diabetic and non-diabetic states, remains largely unknown. This study aimed to address this gap in knowledge through molecular and functional characterization of primary rat cardiac microvascular endothelial cells (RCMVECs) derived from the T2DM Goto-Kakizaki (GK) rat model in comparison to control Wistar-Kyoto (WKY) in response to a normal (NG) and hyperglycemic (HG) microenvironment. GK and WKY RCMVECs were cultured under NG (4.5 mM) and HG (25 mM) conditions for 3 weeks, followed by tandem mass spectrometry (MS/MS), qPCR, tube formation assay, microplate based fluorimetry, and mitochondrial respiration analyses. Following database matching and filtering (false discovery rate ≤ 5%, scan count ≥ 10), we identified a greater percentage of significantly altered proteins in GK (7.1%, HG versus NG), when compared to WKY (3.5%, HG versus NG) RCMVECs. Further stringent filters (log2ratio of > 2 or < -2, p < 0.05) followed by enrichment and pathway analyses of the MS/MS and quantitative PCR datasets (84 total genes screened), resulted in the identification of several molecular targets involved in angiogenic, redox and metabolic functions that were distinctively altered in GK as compared to WKY RCMVECs following HG exposure. While the expression of thirteen inflammatory and apoptotic genes were significantly increased in GK RCMVECs under HG conditions (p < 0.05), only 2 were significantly elevated in WKY RCMVECs under HG conditions. Several glycolytic enzymes were markedly reduced and pyruvate kinase activity was elevated in GK HG RCMVECs, while in mitochondrial respiratory chain activity was altered. Supporting this, TNFα and phorbol ester (PMA)-induced Reactive Oxygen Species (ROS) production were significantly enhanced in GK HG RCMVECs when compared to baseline levels (p < 0.05). Additionally, PMA mediated increase was the greatest in GK HG RCMVECs (p < 0.05). While HG caused reduction in tube formation assay parameters for WKY RCMVECs, GK RCMVECs exhibited impaired phenotypes under baseline conditions regardless of the glycemic microenvironment. We conclude that hyperglycemic microenvironment caused distinctive changes in the bioenergetics and REDOX pathways in the diabetic endothelium as compared to those observed in a healthy endothelium.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States
| | - Andrew K Vallejos
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy M Moore
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian R Hoffmann
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
80
|
Khandekar D, Amara S, Tiriveedhi V. Immunogenicity of Tumor Initiating Stem Cells: Potential Applications in Novel Anticancer Therapy. Front Oncol 2019; 9:315. [PMID: 31106150 PMCID: PMC6494937 DOI: 10.3389/fonc.2019.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor initiating stem cells (TISCs) are a subset of tumor cells, which are implicated in cancer relapse and resistance to chemotherapy. The metabolic programs that drive TISC functions are exquisitely unique and finely-tuned by various oncogene-driven transcription factors to facilitate pro-cancerous adaptive challenges. While this change in TISC metabolic machinery allows for the identification of associated molecular targets with diagnostic and prognostic value, these molecules also have a potential immunological application. Recent studies have shown that these TISC-associated molecules have strong antigenic properties enabling naïve CD8+T lymphocytes to differentiate into cytotoxic effector phenotype with anticancer potential. In spite of the current challenges, a detailed understanding in this direction offers an immense immunotherapeutic opportunity. In this review, we highlight the molecular targets that characterize TISCs, the metabolic landscape of TISCs, potential antitumor immune cell activation, and the opportunities and challenges they present in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Durga Khandekar
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Suneetha Amara
- Department of Medicine, St. Thomas Hospital-Midtown, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
81
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
82
|
Jonnalagadda S, Jonnalagadda SK, Ronayne CT, Nelson GL, Solano LN, Rumbley J, Holy J, Mereddy VR, Drewes LR. Novel N,N-dialkyl cyanocinnamic acids as monocarboxylate transporter 1 and 4 inhibitors. Oncotarget 2019; 10:2355-2368. [PMID: 31040927 PMCID: PMC6481325 DOI: 10.18632/oncotarget.26760] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Potent and dual monocarboxylate transporter (MCT) 1 and 4 inhibitors have been developed for the first time as potential anticancer agents based on α-cyanocinnamic acid structural template. Candidate inhibitors 1-9 have been evaluated for in vitro cell proliferation against MCT1 and MCT4 expressing cancer cell lines. Potential MCT1 and MCT4 binding interactions of the lead compound 9 have been studied through homology modeling and molecular docking prediction. In vitro effects on extracellular flux via glycolysis and mitochondrial stress tests suggest that candidate compounds 3 and 9 disrupt glycolysis and OxPhos efficiently in MCT1 expressing colorectal adenocarcinoma WiDr and MCT4 expressing triple negative breast cancer MDA-MB-231 cells. Fluorescence microscopy analyses in these cells also indicate that compound 9 is internalized and concentrated near mitochondria. In vivo tumor growth inhibition studies in WiDr and MDA-MB-231 xenograft tumor models in mice indicate that the candidate compound 9 exhibits a significant single agent activity.
Collapse
Affiliation(s)
- Shirisha Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Sravan K Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Conor T Ronayne
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Grady L Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Lucas N Solano
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Jon Rumbley
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA
| | - Jon Holy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN 55812, USA
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.,Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA
| | - Lester R Drewes
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|
83
|
Batool A, Chen SR, Liu YX. Distinct Metabolic Features of Seminoma and Embryonal Carcinoma Revealed by Combined Transcriptome and Metabolome Analyses. J Proteome Res 2019; 18:1819-1826. [PMID: 30835130 DOI: 10.1021/acs.jproteome.9b00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Seminoma and embryonal carcinoma (EC), two typical types of testicular germ cell tumors (TGCTs), present significant differences in growth behavior, expression characteristics, differentiation potential, clinical features, therapy, and prognosis. The purpose of this study was to compare the distinctive or preference metabolic pathways between seminoma and EC. The Cancer Genome Atlas revealed that many genes encoding metabolic enzymes could distinguish between seminoma and EC. Using well-characterized cell line models for seminoma (Tcam-2 cells) and EC (NT2 cells), we characterized their metabolite profiles using ultraperformance liquid chromatography coupled to Q-TOF mass spectrometry (UPLC/Q-TOF MS). In general, the integrated results from transcriptome and metabolite profiling revealed that seminoma and EC exhibited distinctive characteristics in the metabolisms of amino acids, glucose, fatty acids, sphingolipids, nucleotides, and drugs. Notably, an attenuation of citric acid cycle/mitochondrial oxidative phosphorylation and sphingolipid biosynthesis as well as an increase in arachidonic acid metabolism and (very) long-chain fatty acid abundance occurred in seminoma as compared with EC. Our study suggests histologic subtype-dependent metabolic reprogramming in TGCTs and will lead to a better understanding of the metabolic signatures and biology of TGCT subtypes.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
84
|
Ma B, Cheng H, Mu C, Geng G, Zhao T, Luo Q, Ma K, Chang R, Liu Q, Gao R, Nie J, Xie J, Han J, Chen L, Ma G, Zhu Y, Chen Q. The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression. Nat Commun 2019; 10:1034. [PMID: 30833558 PMCID: PMC6399320 DOI: 10.1038/s41467-019-08618-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
The interactions between tumor cells with their microenvironments, including hypoxia, acidosis and immune cells, lead to the tumor heterogeneity which promotes tumor progression. Here, we show that SIAH2-NRF1 axis remodels tumor microenvironment through regulating tumor mitochondrial function, tumor-associated macrophages (TAMs) polarization and cell death for tumor maintenance and progression. Mechanistically, low mitochondrial gene expression in breast cancers is associated with a poor clinical outcome. The hypoxia-activated E3 ligase SIAH2 spatially downregulates nuclear-encoded mitochondrial gene expression including pyruvate dehydrogenase beta via degrading NRF1 (Nuclear Respiratory Factor 1) through ubiquitination on lysine 230, resulting in enhanced Warburg effect, metabolic reprogramming and pro-tumor immune response. Dampening NRF1 degradation under hypoxia not only impairs the polarization of TAMs, but also promotes tumor cells to become more susceptible to apoptosis in a FADD-dependent fashion, resulting in secondary necrosis due to the impairment of efferocytosis. These data represent that inhibition of NRF1 degradation is a potential therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Biao Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaili Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rui Chang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruize Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Junli Nie
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaying Xie
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinxue Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Gui Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China. .,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
85
|
Abstract
SIGNIFICANCE Angiogenesis is the formation of new vessels that sprout from existing vessels. This process is highly complex and requires a coordinated shift of the endothelial phenotype from a quiescent cell in the vessel wall into a migrating or proliferating cell. Such change in the life of the endothelial cell is induced by a variety of factors such as hypoxia, metabolic changes, or cytokines. Recent Advances: Within the last years, it became clear that the cellular redox state and oxidation of signaling molecules or phosphatases are critical modulators in angiogenesis. CRITICAL ISSUES According to the wide variety of stimuli that induce angiogenesis, a complex signaling network is needed to support a coordinated response of the endothelial cell. Reactive oxygen species (ROS) now are second messengers that either directly oxidize a target molecule or initiate a cascade of redox sensitive steps that transmit the signal. Further Directions: For the understanding of redox signaling, it is essential to recognize and accept that ROS do not represent master regulators of angiogenetic processes. They rather modulate existing signal cascades. This review summarizes some current findings on redox signaling in angiogenesis.
Collapse
Affiliation(s)
- Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,2 German Center for Cardiovascular Research (DZHK), Rhine-Main, Frankfurt, Germany
| |
Collapse
|
86
|
Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi MH, Mansouri K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed Pharmacother 2019; 112:108690. [PMID: 30798124 DOI: 10.1016/j.biopha.2019.108690] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can adapt to low energy sources in the face of ATP depletion as well as to their high levels of ROS by altering their metabolism and energy production networks which might also have a role in determining cell fate and developing drug resistance. Cancer cells are generally characterized by increased glycolysis. This is while; cancer stem cells (CSCs) exhibit an enhanced pentose phosphate pathway (PPP) metabolism. Based on the current literature, we suggest that cancer cells when encountering ROS, first increase the glycolysis rate and then following the continuation of oxidative stress, the metabolic balance is skewed from glycolysis to PPP. Therefore, we hypothesize in this review that in cancer cells this metabolic deviation during persistent oxidative stress might be a sign of cancer cells' shift towards CSCs, an issue that might be pivotal in more effective targeting of cancer cells and CSCs.
Collapse
Affiliation(s)
- Zahra Ghanbari Movahed
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- HSCT research center, Laboratory Hematology and blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran; Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
87
|
Zhuang Y, Ly RC, Frazier CV, Yu J, Qin S, Fan XY, Goetz MP, Boughey JC, Weinshilboum R, Wang L. The novel function of tumor protein D54 in regulating pyruvate dehydrogenase and metformin cytotoxicity in breast cancer. Cancer Metab 2019; 7:1. [PMID: 30697423 PMCID: PMC6345044 DOI: 10.1186/s40170-018-0193-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023] Open
Abstract
Background The role of tumor protein D54 in breast cancer has not been studied and its function in breast cancer remains unclear. In our previous pharmacogenomic studies using lymphoblastoid cell line (LCL), this protein has been identified to affect metformin response. Although metformin has been widely studied as a prophylactic and chemotherapeutic drug, there is still a lack of biomarkers predicting the response to metformin in breast cancer. In this study, we revealed the novel function of TPD54 in breast cancer through understanding how TPD54 altered the cancer cell sensitivity to metformin. Methods The role of TPD54 in altering cellular sensitivity to metformin treatment was carried out by either knockdown or overexpression of TPD54, followed by measuring cell viability and reactive oxygen species (ROS) production in MCF7 breast cancer cell line and breast cancer patient-derived xenografts. Functional analysis of TPD54 in breast cancer cells was demonstrated by studying TPD54 protein localization and identification of potential binding partners of TPD54 through immunoprecipitation followed by mass spectrometry. The effect of TPD54 on pyruvate dehydrogenase (PDH) protein regulation was demonstrated by western blot, immunoprecipitation, and site-directed mutagenesis. Results TPD54 inhibited colony formation and enhanced cellular sensitivity to metformin treatment in MCF7 cells and breast cancer patient-derived xenografts. Mechanistic study indicated that TPD54 had mitochondrial localization, bound to and stabilized pyruvate dehydrogenase E1α by blocking pyruvate dehydrogenase kinase 1 (PDK1)-mediated serine 232 phosphorylation. TPD54 knockdown increased PDH E1α protein degradation and led to decreased PDH enzyme activity, which reduced mitochondrial oxygen consumption and reactive oxygen species (ROS) production, thus contributing to the resistance of breast cancer cells to metformin treatment. Conclusion We have discovered a novel mechanism by which TPD54 regulates pyruvate dehydrogenase and affects the sensitivity of breast cancer to metformin treatment. Our findings highlight the important post-translational regulation of PDK1 on PDH E1α and the potential application of TPD54 as a biomarker for selecting tumors that may be sensitive to metformin therapy. These provide new insights into understanding the regulation of PDH complexes and the resistance mechanisms of cancer cells to metformin treatment. Electronic supplementary material The online version of this article (10.1186/s40170-018-0193-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongxian Zhuang
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Reynold C Ly
- 2Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of the Biomedical Sciences, Rochester, MN 55905 USA
| | | | - Jia Yu
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Sisi Qin
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Xiao-Yang Fan
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Matthew P Goetz
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA.,4Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Judy C Boughey
- 5Department of Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Richard Weinshilboum
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Liewei Wang
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
88
|
Area-Gomez E, Guardia-Laguarta C, Schon EA, Przedborski S. Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J Clin Invest 2019; 129:34-45. [PMID: 30601141 DOI: 10.1172/jci120848] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial respiratory deficiencies have been observed in numerous neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. For decades, these reductions in oxidative phosphorylation (OxPhos) have been presumed to trigger an overall bioenergetic crisis in the neuron, resulting in cell death. While the connection between respiratory defects and neuronal death has never been proven, this hypothesis has been supported by the detection of nonspecific mitochondrial DNA mutations in these disorders. These findings led to the notion that mitochondrial respiratory defects could be initiators of these common neurodegenerative disorders, instead of being consequences of a prior insult, a theory we believe to be misconstrued. Herein, we review the roots of this mitochondrial hypothesis and offer a new perspective wherein mitochondria are analyzed not only from the OxPhos point of view, but also as a complex organelle residing at the epicenter of many metabolic pathways.
Collapse
Affiliation(s)
| | | | - Eric A Schon
- Department of Neurology.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
89
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
90
|
Propranolol Promotes Glucose Dependence and Synergizes with Dichloroacetate for Anti-Cancer Activity in HNSCC. Cancers (Basel) 2018; 10:cancers10120476. [PMID: 30513596 PMCID: PMC6316475 DOI: 10.3390/cancers10120476] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Tumor cell metabolism differs from that of normal cells, conferring tumors with metabolic advantages but affording opportunities for therapeutic intervention. Accordingly, metabolism-targeting therapies have shown promise. However, drugs targeting singular metabolic pathways display limited efficacy, in part due to the tumor’s ability to compensate by using other metabolic pathways to meet energy and growth demands. Thus, it is critical to identify novel combinations of metabolism-targeting drugs to improve therapeutic efficacy in the face of compensatory cellular response mechanisms. Our lab has previously identified that the anti-cancer activity of propranolol, a non-selective beta-blocker, is associated with inhibition of mitochondrial metabolism in head and neck squamous cell carcinoma (HNSCC). In response to propranolol, however, HNSCC exhibits heightened glycolytic activity, which may limit the effectiveness of propranolol as a single agent. Thus, we hypothesized that propranolol’s metabolic effects promote a state of enhanced glucose dependence, and that propranolol together with glycolytic inhibition would provide a highly effective therapeutic combination in HNSCC. Here, we show that glucose deprivation synergizes with propranolol for anti-cancer activity, and that the rational combination of propranolol and dichloroacetate (DCA), a clinically available glycolytic inhibitor, dramatically attenuates tumor cell metabolism and mTOR signaling, inhibits proliferation and colony formation, and induces apoptosis. This therapeutic combination displays efficacy in both human papillomavirus-positive (HPV(+)) and HPV(−) HNSCC cell lines, as well as a recurrent/metastatic model, while leaving normal tonsil epithelial cells relatively unaffected. Importantly, the combination significantly delays tumor growth in vivo with no evidence of toxicity. Additionally, the combination of propranolol and DCA enhances the effects of chemoradiation and sensitizes resistant cells to cisplatin and radiation. This novel therapeutic combination represents a promising treatment strategy which may overcome some of the limitations of targeting individual metabolic pathways in cancer.
Collapse
|
91
|
de Bari L, Atlante A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming. Cell Mol Life Sci 2018; 75:2763-2776. [PMID: 29728715 PMCID: PMC11105303 DOI: 10.1007/s00018-018-2831-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
Glucose avidity, high glycolysis and L-lactate production, regardless of oxygen availability, are the main traits of cancer metabolic reprogramming. The idea that mitochondria are dysfunctional in cancer, thus causing a glycolysis increase for ATP production and L-lactate accumulation as a dead-end product of glucose catabolism, has oriented cancer research for many years. However, it was shown that mitochondrial metabolism is essential for cancer cell proliferation and tumorigenesis and that L-lactate is a fundamental energy substrate with tumor growth-promoting and signaling capabilities. Nevertheless, the known ability of mitochondria to take up and oxidize L-lactate has remained ignored by cancer research. Beginning with a brief overview of the metabolic changes occurring in cancer, we review the present knowledge of L-lactate formation, transport, and intracellular oxidation and underline the possible role of L-lactate metabolism as energetic, signaling and anabolic support for cancer cell proliferation. These unexplored aspects of cancer biochemistry might be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Lidia de Bari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)-CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Anna Atlante
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)-CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
92
|
Wanandi SI, Ningsih SS, Asikin H, Hosea R, Neolaka GMG. Metabolic Interplay between Tumour Cells and Cancer-Associated Fibroblasts (CAFs) under Hypoxia versus Normoxia. Malays J Med Sci 2018; 25:7-16. [PMID: 30899183 PMCID: PMC6422554 DOI: 10.21315/mjms2018.25.3.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023] Open
Abstract
The growth of tumour cells is closely related to cancer-associated fibroblasts (CAFs) present within their microenvironment. CAFs, the most abundant cells in tumour stroma, secrete growth factors that play pivotal roles in tumour cell proliferation, metabolism, angiogenesis and metastasis. Tumour cells adapt to rapid environmental changes from normoxia to hypoxia through metabolic interplay with CAFs. In this mini review, we discuss the role of lactate dehydrogenases (LDHs) and monocarboxylate transporters (MCTs) on the metabolic interplay between tumour cells and CAFs under hypoxia compared to normoxia. The LDHs catalyse the interchange of lactate and pyruvate, whereas MCTs facilitate the influx and efflux of monocarboxylates, especially lactate and pyruvate. To sum up, tumour cells switch their metabolic state between glycolysis and oxidative phosphorylation through metabolic interplay with CAFs, which exhibit the Warburg effect under hypoxia and reverse Warburg effect under normoxia.
Collapse
Affiliation(s)
- Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 6, Jakarta 10430, Indonesia
| | - Sri Suciati Ningsih
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Hijrah Asikin
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Rendy Hosea
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Gladies Mercya Grameinie Neolaka
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| |
Collapse
|
93
|
Li N, Zhan X, Zhan X. The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecol Oncol 2018; 150:343-354. [PMID: 29921511 DOI: 10.1016/j.ygyno.2018.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Malignant tumors are heterogeneous diseases characterized by different metabolic phenotypes. These were revealed by Warburg effect and reverse Warburg effect phenotypes. However, the molecular mechanism remains largely unknown. METHODS Isobaric tag for relative and absolute quantification (iTRAQ) proteomics was used to identify mitochondrial differentially expressed proteins (DEPs) of ovarian cancers relative to controls, followed by bioinformatic analysis. The molecular profiling of long non-coding RNAs (lncRNAs) was also investigated by searching the dataset of the Cancer Genome Atlas (TCGA) consisting of 419 ovarian cancer patients. RESULTS A total of 1198 mitochondrial DEPs were identified by iTRAQ quantitative proteomics. Bioinformatic analysis of those DEPs showed that cancer cells exhibited an increased dependence on Kreb's cycle and oxidative phosphorylation, with some related upregulated proteins. Moreover, TCGA analysis showed lncRNA SNHG3 was not only related to ovarian cancer survival, but also energy metabolism. Interestingly, integrated analysis of the results of GSEA analysis and Starbase 2.0 found that SNHG3 was related to energy metabolism by regulating miRNAs and EIF4AIII, and those molecules had target sites with PKM, PDHB, IDH2, and UQCRH in the glycolysis, Kreb's cycle, and oxidative phosphorylation (OXPHOS) pathways. Furthermore, SNHG3 might be associated with drug resistance. CONCLUSION The results derived from TCGA data and mitochondrial DEPs data are consistent with the Warburg and reverse Warburg effects that cancer cells mainly rely on glycolysis and oxidative phosphorylation to produce energy. Also, this integrated lncRNA-miRNA-mRNA and lncRNA-binding protein-mRNA signatures might have important merit for insights into molecular mechanisms and clinical implications in ovarian cancer.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; The Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
94
|
Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S. Cancer Stem Cell Metabolism and Potential Therapeutic Targets. Front Oncol 2018; 8:203. [PMID: 29922594 PMCID: PMC5996058 DOI: 10.3389/fonc.2018.00203] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors contain heterogeneous populations of cells in various states of proliferation and differentiation. The presence of cancer stem or initiating cells is a well-established concept wherein quiescent and poorly differentiated cells within a tumor mass contribute to drug resistance, and under permissive conditions, are responsible for tumor recurrence and metastasis. A number of studies have identified molecular markers that are characteristic of tissue-specific cancer stem cells (CSCs). Isolation of CSCs has enabled studies on the metabolic status of CSCs. As metabolic plasticity is a hallmark of cancer cell adaptation, the intricacies of CSC metabolism and their phenotypic behavior are critical areas of research. Unlike normal stem cells, which rely heavily on oxidative phosphorylation (OXPHOS) as their primary source of energy, or cancer cells, which are primarily glycolytic, CSCs demonstrate a unique metabolic flexibility. CSCs can switch between OXPHOS and glycolysis in the presence of oxygen to maintain homeostasis and, thereby, promote tumor growth. Here, we review key factors that impact CSC metabolic phenotype including heterogeneity of CSCs across different histologic tumor types, tissue-specific variations, tumor microenvironment, and CSC niche. Furthermore, we discuss how targeting key players of glycolytic and mitochondrial pathways has shown promising results in cancer eradication and attenuation of disease recurrence in preclinical models. In addition, we highlight studies on other potential therapeutic targets including complex interactions within the microenvironment and cellular communications in the CSC niche to interfere with CSC growth, resistance, and metastasis.
Collapse
Affiliation(s)
- Vusala Snyder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tamika C Reed-Newman
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Levi Arnold
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States.,Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shrikant Anant
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
95
|
Martinez AF, McCachren SS, Lee M, Murphy HA, Zhu C, Crouch BT, Martin HL, Erkanli A, Rajaram N, Ashcraft KA, Fontanella AN, Dewhirst MW, Ramanujam N. Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging. Sci Rep 2018. [PMID: 29520098 PMCID: PMC5843602 DOI: 10.1038/s41598-018-22480-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 (“Warburg effect”), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor’s adaptive behavior.
Collapse
Affiliation(s)
- Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | - Marianne Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Helen A Murphy
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alaattin Erkanli
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
96
|
Yuan F, Song B, Huang Z, Liu X, Xia C. Glucose as a stimulation agent in the BOLD functional magnetic resonance imaging for liver cirrhosis and hepatocellular carcinoma: a feasibility study. Abdom Radiol (NY) 2018; 43:607-612. [PMID: 28730273 DOI: 10.1007/s00261-017-1264-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To explore the role of glucose as a stimulation agent in the blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) for liver cirrhosis and hepatocellular carcinoma (HCC). MATERIALS AND METHODS Twenty HCC patients with cirrhosis and 10 healthy volunteers were recruited. BOLD fMRI was performed for all participants prior to and 30 min after oral administration of glucose to measure the T2* values of normal liver parenchyma, HCC liver parenchyma, HCC center, and HCC edge. Variations of the T2*(△T2*) before and after administration were calculated. RESULTS Data from 16 patients and 10 healthy volunteers were reported. Before and after oral administration of glucose, T2* values of the normal liver parenchyma, HCC liver parenchyma, and HCC center were statistically different (p < 0.01), while no statistical difference was found in T2* value of the HCC edge (p = 0.35). △T2* values of the normal liver parenchyma, HCC liver parenchyma, HCC center, and HCC edge were 2.8 ± 1.1 ms, -1.3 ± 1.2 ms, -2.1 ± 1.8 ms, and 0.8 ± 3.2 ms before and after administration, respectively. △T2* value was statistically different in the liver parenchyma between healthy volunteers and HCC patients and between HCC center and HCC edge (both p < 0.01). CONCLUSION Use of glucose as the stimulation agent in BOLD fMRI may facilitate the assessment of liver function for patients with liver cirrhosis. The potential of △T2* to correlate with severity of liver cirrhosis, as well as to evaluate hepatic artery perfusion and bioactivity of HCC center should be further investigated.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| | - Zixing Huang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xijiao Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
97
|
Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung CP, Murphy ME. The p53 Tumor Suppressor in the Control of Metabolism and Ferroptosis. Front Endocrinol (Lausanne) 2018; 9:124. [PMID: 29695998 PMCID: PMC5904197 DOI: 10.3389/fendo.2018.00124] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/12/2018] [Indexed: 01/06/2023] Open
Abstract
The p53 tumor suppressor continues to be distinguished as the most frequently mutated gene in human cancer. It is widely believed that the ability of p53 to induce senescence and programmed cell death underlies the tumor suppressor functions of p53. However, p53 has a number of other functions that recent data strongly implicate in tumor suppression, particularly with regard to the control of metabolism and ferroptosis (iron- and lipid-peroxide-mediated cell death) by p53. As reviewed here, the roles of p53 in the control of metabolism and ferroptosis are complex. Wild-type (WT) p53 negatively regulates lipid synthesis and glycolysis in normal and tumor cells, and positively regulates oxidative phosphorylation and lipid catabolism. Mutant p53 in tumor cells does the converse, positively regulating lipid synthesis and glycolysis. The role of p53 in ferroptosis is even more complex: in normal tissues, WT p53 appears to positively regulate ferroptosis, and this pathway appears to play a role in the ability of basal, unstressed p53 to suppress tumor initiation and development. In tumors, other regulators of ferroptosis supersede p53's role, and WT p53 appears to play a limited role; instead, mutant p53 sensitizes tumor cells to ferroptosis. By clearly elucidating the roles of WT and mutant p53 in metabolism and ferroptosis, and establishing these roles in tumor suppression, emerging research promises to yield new therapeutic avenues for cancer and metabolic diseases.
Collapse
Affiliation(s)
- Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
- Graduate Group in Biochemistry and Molecular Biophysics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
| | - Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
| | - Che-Pei Kung
- Department of Internal Medicine, School of Medicine, Washington University in St. Louis, St Louis, MO, United States
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
- *Correspondence: Maureen E. Murphy,
| |
Collapse
|
98
|
Jung JG, Le A. Targeting Metabolic Cross Talk between Cancer Cells and Cancer-Associated Fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1063:167-178. [PMID: 29946783 DOI: 10.1007/978-3-319-77736-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although tumorigenesis has classically been regarded as a genetic disease of uncontrolled cell growth, the importance of the tumor microenvironment (TME) is continuously emphasized by the accumulating evidence that cancer growth is not simply dependent on the cancer cells themselves [1, 2] but also dependent on angiogenesis [3–6], inflammation [7, 8], and the supporting roles of cancer-associated fibroblasts (CAFs) [9, 10]. After the discovery that CAFs are able to remodel the tumor matrix within the TME and provide the nutrients and chemicals to promote cancer cell growth [11], many studies have aimed to uncover the cross talk between cancer and CAFs. Moreover, a new paradigm in cancer metabolism shows how cancer cells act like “metabolic parasites” to uptake the high-energy metabolites, such as lactate, ketone bodies, free fatty acid, and glutamine from supporting cells, including CAFs and cancer-associated adipocytes (CAAs) [12, 13]. This chapter provides an overview of the metabolic coupling between CAFs and cancer to further define the therapeutic options to disrupt the CAF-cancer cell interactions.
Collapse
Affiliation(s)
- Jin G Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
99
|
Collateral Damage Intended-Cancer-Associated Fibroblasts and Vasculature Are Potential Targets in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18112355. [PMID: 29112161 PMCID: PMC5713324 DOI: 10.3390/ijms18112355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
After oncogenic transformation, tumor cells rewire their metabolism to obtain sufficient energy and biochemical building blocks for cell proliferation, even under hypoxic conditions. Glucose and glutamine become their major limiting nutritional demands. Instead of being autonomous, tumor cells change their immediate environment not only by their metabolites but also by mediators, such as juxtacrine cell contacts, chemokines and other cytokines. Thus, the tumor cells shape their microenvironment as well as induce resident cells, such as fibroblasts and endothelial cells (ECs), to support them. Fibroblasts differentiate into cancer-associated fibroblasts (CAFs), which produce a qualitatively and quantitatively different extracellular matrix (ECM). By their contractile power, they exert tensile forces onto this ECM, leading to increased intratumoral pressure. Moreover, along with enhanced cross-linkage of the ECM components, CAFs thus stiffen the ECM. Attracted by tumor cell- and CAF-secreted vascular endothelial growth factor (VEGF), ECs sprout from pre-existing blood vessels during tumor-induced angiogenesis. Tumor vessels are distinct from EC-lined vessels, because tumor cells integrate into the endothelium or even mimic and replace it in vasculogenic mimicry (VM) vessels. Not only the VM vessels but also the characteristically malformed EC-lined tumor vessels are typical for tumor tissue and may represent promising targets in cancer therapy.
Collapse
|
100
|
Osipov AV, Terpinskaya TI, Kuznetsova TE, Ryzhkovskaya EL, Lukashevich VS, Rudnichenko JA, Ulashchyk VS, Starkov VG, Utkin YN. Cobra Venom Factor and Ketoprofen Abolish the Antitumor Effect of Nerve Growth Factor from Cobra Venom. Toxins (Basel) 2017; 9:274. [PMID: 28878143 PMCID: PMC5618207 DOI: 10.3390/toxins9090274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/07/2023] Open
Abstract
We showed recently that nerve growth factor (NGF) from cobra venom inhibited the growth of Ehrlich ascites carcinoma (EAC) inoculated subcutaneously in mice. Here, we studied the influence of anti-complementary cobra venom factor (CVF) and the non-steroidal anti-inflammatory drug ketoprofen on the antitumor NGF effect, as well as on NGF-induced changes in EAC histological patterns, the activity of lactate and succinate dehydrogenases in tumor cells and the serum level of some cytokines. NGF, CVF and ketoprofen reduced the tumor volume by approximately 72%, 68% and 30%, respectively. The antitumor effect of NGF was accompanied by an increase in the lymphocytic infiltration of the tumor tissue, the level of interleukin 1β and tumor necrosis factor α in the serum, as well as the activity of lactate and succinate dehydrogenases in tumor cells. Simultaneous administration of NGF with either CVF or ketoprofen abolished the antitumor effect and reduced all other effects of NGF, whereas NGF itself significantly decreased the antitumor action of both CVF and ketoprofen. Thus, the antitumor effect of NGF critically depended on the status of the immune system and was abolished by the disturbance of the complement system; the disturbance of the inflammatory response canceled the antitumor effect as well.
Collapse
Affiliation(s)
- Alexey V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| | - Tatiana I Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Tatiana E Kuznetsova
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Elena L Ryzhkovskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Vladimir S Lukashevich
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Julia A Rudnichenko
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Vladimir S Ulashchyk
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, Minsk 220072, Belarus.
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia.
| |
Collapse
|