51
|
Esposito F, Fasano E, De Vivo A, Velotto S, Sarghini F, Cirillo T. Processing effects on acrylamide content in roasted coffee production. Food Chem 2020; 319:126550. [PMID: 32169765 DOI: 10.1016/j.foodchem.2020.126550] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/05/2020] [Accepted: 03/01/2020] [Indexed: 12/22/2022]
Abstract
Acrylamide is a toxic compound that develops during the roasting process of coffee beans. According to literature, the levels of acrylamide in coffee vary with the percentage of Robusta type in the mix and with the time-temperature parameters during the roasting process. Therefore, this study aimed to find the best roasting conditions in order to mitigate acrylamide formation. Two types of roasted coffee (Arabica and Robusta) were analyzed through GC-MS and two clean-up methods were compared. The best roasting conditions were optimized on an industrial scale and the median levels of acrylamide decreased from the range 170-484 µg kg-1 to 159-351 µg kg-1, after the optimization of roasting parameters. Therefore, the choice of the best conditions, according to the percentage of Robusta type in the finished product, could be an efficient mitigation strategy for acrylamide formation in coffee, maintaining the manufacturer's requirements of the finished product.
Collapse
Affiliation(s)
- Francesco Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Evelina Fasano
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Angela De Vivo
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma "San Raffaele", via di Val Cannuta, 247, 00166 Roma, Italy
| | - Fabrizio Sarghini
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy.
| |
Collapse
|
52
|
Rifai L, Saleh FA. A Review on Acrylamide in Food: Occurrence, Toxicity, and Mitigation Strategies. Int J Toxicol 2020; 39:93-102. [PMID: 32013673 DOI: 10.1177/1091581820902405] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Acrylamide (AA) is a food contaminant present in a wide range of frequently consumed foods, which makes human exposure to this toxicant unfortunately unavoidable. However, efforts to reduce the formation of AA in food have resulted in some success. This review aims to summarize the occurrence of AA and the potential mitigation strategies of its formation in foods. Formation of AA in foods is mainly linked to Maillard reaction, which is the first feasible route that can be manipulated to reduce AA formation. Furthermore, manipulating processing conditions such as time and temperature of the heating process, and including certain preheating treatments such as soaking and blanching, can further reduce AA formation. Due to the high exposure to AA, recognition of its toxic effect is necessary, especially in developing countries where awareness about AA health risks is still very low. Therefore, this review also focuses on the different toxic effects of AA exposure, including neurotoxicity, genotoxicity, carcinogenicity, reproductive toxicity, hepatotoxicity, and immunotoxicity.
Collapse
Affiliation(s)
- Lubna Rifai
- Department of Nutrition & Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Fatima A Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
53
|
Sui X, Yang J, Zhang G, Yuan X, Li W, Long J, Luo Y, Li Y, Wang Y. NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology 2020; 432:152392. [PMID: 32014472 DOI: 10.1016/j.tox.2020.152392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Acrylamide (AA) constitutes an important industrial chemical agent and well-known neurotoxin. However, the mechanism underlying AA-mediated neurotoxicity is extremely complicated and controversial. In this study, we found that activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome and its subsequent downstream inflammatory responses plays an important role in AA-induced neurotoxicity mechanisms. In vitro experiments revealed that AA (2.5 mM) induced BV2 microglial cytotoxicity and triggered NLRP3 inflammasome activation along with downstream proinflammatory cytokine interleukin-1β and interleukin-18 expression. Treatment with inhibitor or NLRP3 siRNA efficiently protected BV2 microglial cells against AA-induced cytotoxicity and reversed NLRP3 inflammasome activation and its mediated inflammatory reaction. Similarly, AA exposure (50 mg/kg) for 10 consecutive days caused significant activation of NLRP3 inflammasomes and neuroinflammation in C57BL/6 mice, whereas inhibiting these effects through specific NLRP3 inflammasome blocker MCC950 (5 mg/kg) intervention or NLRP3 knock-out significantly ameliorated AA-induced ataxia, cerebellar Purkinje cells degeneration, and apoptosis. Furthermore, we demonstrated that antagonism of NLRP3 could also up-regulate the Nrf2 signalling pathway and related antioxidant genes. In conclusion, our findings indicate that activation of the NLRP3 inflammasome pathway is involved in AA-induced neurotoxicity, whereas MCC950 treatment or NLRP3 knock-out could effectively protect against AA-induced neurotoxic injury through the inhibition of neuroinflammation and activation of the Nrf2 antioxidant pathway. Therefore, the NLRP3 inflammasome might serve as a promising therapeutic target, with drugs designed to specifically inhibit this pathway potentially providing new avenues for preventing or ameliorating AA poisoning.
Collapse
Affiliation(s)
- Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Guangzhou Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - XiaoFeng Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - WanHua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - JianHai Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| | - Yunfeng Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
54
|
Trabelsi W, Chetoui I, Fouzai C, Bejaoui S, Rabeh I, Telahigue K, Chalghaf M, El Cafsi M, Soudani N. Redox status and fatty acid composition of Mactra corallina digestive gland following exposure to acrylamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22197-22208. [PMID: 31148000 DOI: 10.1007/s11356-019-05492-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Acrylamide (ACR), a ubiquitous agent, has various chemical and industrial applications, and it is found in backed or fried carbohydrate-rich food. It has been related to multiple toxicological effects, and it causes high cytotoxicity through oxidative stress. The present study aimed to investigate the potential effect of ACR toxicity administered at different concentrations (5, 10, and 20 mg/L), during 5 days, in order to evaluate the fatty acid (FA) composition and redox state in the digestive gland of Mactra corallina. The results showed, in ACR-treated clams, a significant increase in malondialdehyde, hydrogen peroxide, protein carbonyl, and metallothionein levels, as well as an alteration of the enzymatic (superoxide dismutase, glutathione peroxidase, and catalase) and non-enzymatic (reduced glutathione and ascorbic acid) antioxidant status. However, acetylcholinesterase activity was inhibited in a concentration-dependent manner. In our experiment, the n-3 (Omega-3) and n-6 (Omega-6) polyunsaturated fatty acid levels were significantly changed in all ACR-treated groups. A decrease in eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA) was observed in 10-mg/L and 20-mg/L ACR-treated groups. Nevertheless, arachidonic acid (C20:4n-6, ARA) and its precursor linoleic acid (C18:2n-6, LA) were increased. Besides oxidative stress parameters, FA composition may be an additional tool for assessing ACR contamination.
Collapse
Affiliation(s)
- Wafa Trabelsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Imene Chetoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Chaima Fouzai
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Imen Rabeh
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Khaoula Telahigue
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Mohamed Chalghaf
- Aquatic Environment Exploitation Resources Unit, Higher Institute Fishing and Fish Farming of Bizerte, Bizerte, Tunisia
| | - Mhamed El Cafsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
55
|
Matoso V, Bargi-Souza P, Ivanski F, Romano MA, Romano RM. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem 2019; 283:422-430. [DOI: 10.1016/j.foodchem.2019.01.054] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 11/27/2022]
|
56
|
Gerssen A, Bovee TH, van Ginkel LA, van Iersel ML, Hoogenboom RL. Food and feed safety: Cases and approaches to identify the responsible toxins and toxicants. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
57
|
Komoike Y, Matsuoka M. In vitro and in vivo studies of oxidative stress responses against acrylamide toxicity in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:430-439. [PMID: 30453236 DOI: 10.1016/j.jhazmat.2018.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Acrylamide (AA) is widely used in soil stabilization, water treatment, and industrial products and found in certain foods; however, its toxicity is an expanding global concern. Thus, to reveal the mechanisms involved in the development of, or protection from AA-induced toxicity has important significance. For this purpose, here we explored the intracellular stress response signaling pathways activated by AA exposure in zebrafish model. BRF41 cells derived from zebrafish were exposed to AA, and changes in the expression levels of 31 genes, including endoplasmic reticulum stress response-, oxidative stress response-, osmotic stress response-, and DNA damage and repair-related genes, were analyzed by PCR array. 12 genes upregulated in AA-exposed BRF41 cells were analyzed in zebrafish larvae by quantitative real time PCR, and the expression of all tested oxidative stress response-related genes was upregulated. Spatial expression patterns of these genes were visualized and found that their expression was upregulated and ectopically induced. In addition, AA-induced toxicity in BRF41 cells and the expression of glutathione S-transferase pi 1 (gstp1) in zebrafish larvae were reduced by N-acetylcysteine. Furthermore, inhibition of Gst activity enhanced AA toxicity. From these results, we concluded that the elicited oxidative stress response critically contributes to the protection from AA-induced toxicity.
Collapse
Affiliation(s)
- Yuta Komoike
- Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Masato Matsuoka
- Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
58
|
Karimani A, Hosseinzadeh H, Mehri S, Jafarian AH, Kamali SA, Hooshang Mohammadpour A, Karimi G. Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1566263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
59
|
Protective effect of calpeptin on acrylamide-induced microtubule injury in sciatic nerve. Toxicology 2018; 409:103-111. [DOI: 10.1016/j.tox.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/12/2018] [Accepted: 08/04/2018] [Indexed: 12/16/2022]
|
60
|
Parvate S, Mahanwar P. Advances in self-crosslinking of acrylic emulsion: what we know and what we would like to know. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1472012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sumit Parvate
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Prakash Mahanwar
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, Maharashtra, India
| |
Collapse
|
61
|
Cao C, Shi H, Zhang M, Bo L, Hu L, Li S, Chen S, Jia S, Liu YJ, Liu YL, Zhao X, Zhang L. Metabonomic analysis of toxic action of long-term low-level exposure to acrylamide in rat serum. Hum Exp Toxicol 2018; 37:1282-1292. [DOI: 10.1177/0960327118769708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study assessed the effects of long-term, low-dose acrylamide (AA) administration in rats using ultra-performance liquid chromatography–mass spectrometry. Forty male Wistar rats were randomly divided into the following four groups: control, low-dose AA (0.2 mg/kg BW), middle-dose AA (1 mg/kg BW), and high-dose AA (5 mg/kg BW). AA was administered to rats via drinking water ad libitum. After 16-week treatment, rat serum was collected for metabonomic analysis. Biochemical tests were further conducted to verify metabolic alterations. Eleven metabolites were identified with significant changes in intensities (increased or reduced) as a result of treatment. These metabolites included citric acid, pantothenic acid, isobutyryl-l-carnitine, eicosapentaenoic acid, docosahexaenoic acid, sphingosine 1-phosphate, LysoPC(20:4), LysoPC(22:6), LysoPE(20:3), undecanedioic acid, and dodecanedioic acid. Results indicate that chronic exposure to AA at no observed adverse effect level does not exert a toxic effect on rats at the body metabolism level. AA disturbed the metabolism of lipids and energy, affected the nervous system of rats, and induced oxidative stress and liver dysfunction.
Collapse
Affiliation(s)
- C Cao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - H Shi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - M Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Bo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Hu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - YJ Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - YL Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - X Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Zhang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
62
|
Kumar J, Das S, Teoh SL. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front Nutr 2018; 5:14. [PMID: 29541638 PMCID: PMC5835509 DOI: 10.3389/fnut.2018.00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Acrylamide (AA) is a water soluble white crystalline solid commonly used in industries. It was listed as an industrial chemical with potential carcinogenic properties. However to date, AA was used to produce polyacrylamide polymer, which was widely used as a coagulant in water treatment; additives during papermaking; grouting material for dams, tunnels, and other underground building constructions. AA in food could be formed during high-temperature cooking via several mechanisms, i.e., formation via acrylic acid which may be derived from the degradation of lipid, carbohydrates, or free amino acids; formation via the dehydration/decarboxylation of organic acids (malic acid, lactic acid, and citric acid); and direct formation from amino acids. The big debate is whether this compound is toxic to human beings or not. In the present review, we discuss the formation of AA in food products, its consumption, and possible link to the development of any cancers. We discuss the body enzymatic influence on AA and mechanism of action of AA on hormone, calcium signaling pathways, and cytoskeletal filaments. We also highlight the deleterious effects of AA on nervous system, reproductive system, immune system, and the liver. The present and future mitigation strategies are also discussed. The present review on AA may be beneficial for researchers, food industry, and also medical personnel.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
63
|
Zhang Y, Wang Q, Zhang G, Jia W, Ren Y, Wu Y. Biomarker analysis of hemoglobin adducts of acrylamide and glycidamide enantiomers for mid-term internal exposure assessment by isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018; 178:825-833. [DOI: 10.1016/j.talanta.2017.09.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 11/26/2022]
|
64
|
Sissoko F, Brunet D, Cointot ML, Pillière F, Maître A, Sari-Minodier I, Viau C. Élaboration des valeurs biologiques françaises en vue de la mise à disposition de valeurs biologiques d’interprétation pour la surveillance biologique des expositions professionnelles. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2017.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
65
|
Gao ZC, Lin YL, Xu B, Pan Y, Xia SJ, Gao NY, Zhang TY, Chen M. Degradation of acrylamide by the UV/chlorine advanced oxidation process. CHEMOSPHERE 2017; 187:268-276. [PMID: 28854381 DOI: 10.1016/j.chemosphere.2017.08.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 109 M-1 s-1. The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated.
Collapse
Affiliation(s)
- Ze-Chen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Sheng-Ji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ming Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
66
|
Duke TJ, Ruestow PS, Marsh GM. The influence of demographic, physical, behavioral, and dietary factors on hemoglobin adduct levels of acrylamide and glycidamide in the general U.S. population. Crit Rev Food Sci Nutr 2017; 58:700-710. [PMID: 28956625 DOI: 10.1080/10408398.2016.1215289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aims to better understand the individual characteristics and dietary factors that affect the relationship between estimated consumption of acrylamide and measured acrylamide hemoglobin adduct levels (HbAA) and glycidamide hemoglobin adduct levels (HbGA). METHODS Acrylamide levels in individual food items, estimated by the U.S. Food and Drug Administration, were linked to data collected in the 2003-2004 National Health and Nutrition Examination Survey. Multivariable linear regression was used to evaluate the relationship between estimated consumption of acrylamide and HbAA. RESULTS A significant association between acrylamide intake and HbAA was observed, after adjustment for gender, race/ethnicity, smoking status, age, and BMI (R2 = 0.34). Across quartiles of acrylamide consumption, HbAA and HbGA levels increased monotonically. Among nonsmokers, an evaluation of three heavily consumed, high AA concentration foods showed a positive trend between the consumed amount of fried potatoes and HbAA in children, adolescents, and adults. A significant positive trend between the consumed amount of potato chips or coffee was indicated in adolescents, adults, and seniors. CONCLUSIONS Consumption of some individual foods affects HbAA concentrations more strongly and in an age-dependent manner. Our results suggest that effective dietary guidelines for controlling acrylamide intake should be subpopulation specific.
Collapse
Affiliation(s)
| | | | - Gary M Marsh
- b Department of Biostatistics , University of Pittsburgh , Pittsburgh , Pennsylvania , USA.,c Cardno ChemRisk , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
67
|
Katen AL, Sipilä P, Mitchell LA, Stanger SJ, Nixon B, Roman SD. Epididymal CYP2E1 plays a critical role in acrylamide-induced DNA damage in spermatozoa and paternally mediated embryonic resorptions†. Biol Reprod 2017; 96:921-935. [DOI: 10.1093/biolre/iox021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/28/2017] [Indexed: 01/21/2023] Open
|
68
|
Aras D, Cakar Z, Ozkavukcu S, Can A, Cinar O. In Vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide. PLoS One 2017; 12:e0172026. [PMID: 28182799 PMCID: PMC5300229 DOI: 10.1371/journal.pone.0172026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/30/2017] [Indexed: 01/07/2023] Open
Abstract
High acrylamide (ACR) content in heat-processed carbohydrate-rich foods, as well as roasted products such as coffee, almonds etc., has been found to be as a risk factor for carcinogenicity and genotoxicity by The World Health Organization. Glycidamide (GLY), the epoxide metabolite of ACR, is processed by the cytochrome P-450 enzyme system and has also been found to be a genotoxic agent. The aim of this study was to determine whether ACR and/or GLY have any detrimental effect on the meiotic cell division of oocytes. For this purpose, germinal vesicle-stage mouse oocytes were treated with 0, 100, 500, or 1000 μM ACR or 0, 25, or 250 μM GLY in vitro. In vivo experiments were performed after an intraperitoneal injection of 25 mg/kg/day ACR of female BALB/c mice for 7 days. The majority of in vitro ACR-treated oocytes reached the metaphase-II stage following 18 hours of incubation, which was not significantly different from the control group. Maturation of the oocytes derived from in vivo ACR-treated mice was impaired significantly. Oocytes, reaching the M-II stage in the in vivo ACR-treated group, were characterized by a decrease in meiotic spindle mass and an increase in chromosomal disruption. In vitro GLY treatment resulted in the degeneration of all oocytes, indicating that ACR toxicity on female germ cells may occur through its metabolite, GLY. Thus, ACR exposure must be considered, together with its metabolite GLY, when female fertility is concerned.
Collapse
Affiliation(s)
- Duru Aras
- Laboratories for Stem Cells and Reproductive Biology, Department of Histology and Embryology, Ankara University School of Medicine, Sihhiye, Ankara, Turkey
| | - Zeynep Cakar
- Laboratories for Stem Cells and Reproductive Biology, Department of Histology and Embryology, Ankara University School of Medicine, Sihhiye, Ankara, Turkey
| | - Sinan Ozkavukcu
- Centre for Assisted Reproduction, Department of Obstetrics and Gynecology, Ankara University School of Medicine, Cebeci, Ankara, Turkey
| | - Alp Can
- Laboratories for Stem Cells and Reproductive Biology, Department of Histology and Embryology, Ankara University School of Medicine, Sihhiye, Ankara, Turkey
| | - Ozgur Cinar
- Laboratories for Stem Cells and Reproductive Biology, Department of Histology and Embryology, Ankara University School of Medicine, Sihhiye, Ankara, Turkey
- * E-mail:
| |
Collapse
|
69
|
Gutzkow KB, Duale N, Danielsen T, von Stedingk H, Shahzadi S, Instanes C, Olsen AK, Steffensen IL, Hofer T, Törnqvist M, Brunborg G, Lindeman B. Enhanced susceptibility of obese mice to glycidamide-induced sperm chromatin damage without increased oxidative stress. Andrology 2016; 4:1102-1114. [DOI: 10.1111/andr.12233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Affiliation(s)
- K. B. Gutzkow
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - N. Duale
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - T. Danielsen
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - H. von Stedingk
- Department of Environmental Science and Analytical Chemistry; Stockholm University; Stockholm Sweden
| | - S. Shahzadi
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - C. Instanes
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - A.-K. Olsen
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - I.-L. Steffensen
- Division of Environmental Medicine; Department of Food, Water and Cosmetics; Norwegian Institute of Public Health; Oslo Norway
| | - T. Hofer
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - M. Törnqvist
- Department of Environmental Science and Analytical Chemistry; Stockholm University; Stockholm Sweden
| | - G. Brunborg
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - B. Lindeman
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| |
Collapse
|
70
|
Mojska H, Gielecińska I, Zielińska A, Winiarek J, Sawicki W. Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:288-295. [PMID: 25827310 DOI: 10.1038/jes.2015.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
We determined metabolites of acrylamide and glycidamide concentrations (AAMA and GAMA, respectively) in urine of 93 women within the first days after delivery, using LC-MS/MS. The median AAMA and GAMA levels in urine were 20.9 μg/l (2.3÷399.0 μg/l) and 8.6 μg/l (1.3÷85.0 μg/l), respectively. In smokers we found significantly (P<0.01) higher levels of metabolites in comparison with the non-smoking women. As demonstrated by the 24-h dietary recall, acrylamide intake was low (median: 7.04 μg/day). Estimated exposure to acrylamide based on AAMA and GAMA levels in the whole group of women was 0.16 μg/kg b.w./day (1.15 μg/kg b.w./day, P95). We found significantly (P<0.05) higher exposure in women who consumed higher amount of acrylamide in the diet (≥10 μg/day vs <10 μg/day). A weak but significant positive correlation between acrylamide intake calculated on the basis of urinary levels of AAMA and GAMA and estimated on the basis of 24-h dietary recall (r=0.26, P<0.05) was found. The estimated margin of exposure values were below 10 000 and ranged from 156 for 95th percentile to 1938 for median acrylamide intake. Our results have shown that even a low dietary acrylamide intake may be associated with health risk.
Collapse
Affiliation(s)
- Hanna Mojska
- Department of Food and Food Supplements, National Food and Nutrition Institute, Warsaw, Poland
| | - Iwona Gielecińska
- Department of Food and Food Supplements, National Food and Nutrition Institute, Warsaw, Poland
| | - Aleksandra Zielińska
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Winiarek
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Włodzimierz Sawicki
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
71
|
Gao JJ, Peng RH, Zhu B, Wang B, Wang LJ, Xu J, Sun M, Yao QH. Phytoremediation potential of Arabidopsis with reference to acrylamide and microarray analysis of acrylamide-response genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:360-8. [PMID: 26112177 DOI: 10.1016/j.ecoenv.2015.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 05/23/2023]
Abstract
Acrylamide (ACR) is a widely used industrial chemical. However, it is a dangerous compound because it showed neurotoxic effects in humans and act as reproductive toxicant and carcinogen in many animal species. In the environment, acrylamide has high soil mobility and may travel via groundwater. Phytoremediation is an effective method to remove the environmental pollutants, but the mechanism of plant response to acrylamide remains unknown. With the purpose of assessing remediation potentials of plants for acrylamide, we have examined acrylamide uptake by the model plant Arabidopsis grown on contaminated substrates with high performance liquid chromatography (HPLC) analysis. The result revealed that acrylamide could be absorbed and degraded by Arabidopsis. Further microarray analysis showed that 527 transcripts were up-regulated within 2-days under acrylamide exposure condition. We have found many potential acrylamide-induced genes playing a major role in plant metabolism and phytoremediation.
Collapse
Affiliation(s)
- Jian-Jie Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | - Bo Zhu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | - Bo Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | - Li-Juan Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | - Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | - Miao Sun
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, China.
| |
Collapse
|
72
|
Hariri E, Abboud MI, Demirdjian S, Korfali S, Mroueh M, Taleb RI. Carcinogenic and neurotoxic risks of acrylamide and heavy metals from potato and corn chips consumed by the Lebanese population. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
73
|
Lebda MA, Gad SB, Rashed RR. The effect of lipoic acid on acrylamide-induced neuropathy in rats with reference to biochemical, hematological, and behavioral alterations. PHARMACEUTICAL BIOLOGY 2015; 53:1207-1213. [PMID: 25853975 DOI: 10.3109/13880209.2014.970288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Acrylamide (ACR) is a well-known neurotoxicant and carcinogenic agent which poses a greater risk for human and animal health. OBJECTIVE The present study evaluates the beneficial effects of α-lipoic acid (LA) on ACR-induced neuropathy. MATERIALS AND METHODS A total of 40 male rats were divided into four groups: a placebo group; LA-treated group, administered orally 1% (w/w) LA mixed with diet; ACR-treated group, given 0.05% (w/v) ACR dissolved in drinking water; and LA + ACR-treated group, given LA 1% 7 d before and along with ACR 0.05% for 21 d. After 28 d, blood samples were collected, the rats were decapitated, and the tissues were excised for the measurement of brain biomarkers, antioxidant status, and hematological analysis. Also, the gait score of rats was evaluated. RESULTS ACR-exposed rats exhibited abnormal gait deficits with significant (p < 0.05) decline in acetylcholine esterase (AChE) and creatine kinase in serum and brain tissues, respectively. However, the lactate dehydrogenase activity was increased in serum by 123%, although it decreased in brain tissues by -74%. ACR significantly (p < 0.05) increased the malondialdehyde level by 273% with subsequent depletion of glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and reduced the glutathione (GSH) level in brain tissue. Interestingly, LA significantly (p < 0.05) improved brain enzymatic biomarkers, attenuated lipid peroxidation (LPO), and increased antioxidant activities compared with the ACR-treated group. DISCUSSION AND CONCLUSION These results suggested that LA may have a role in the management of ACR-induced oxidative stress in brain tissues through its antioxidant activity, attenuation of LPO, and improvement of brain biomarkers.
Collapse
|
74
|
Katen AL, Roman SD. The genetic consequences of paternal acrylamide exposure and potential for amelioration. Mutat Res 2015; 777:91-100. [PMID: 25989052 DOI: 10.1016/j.mrfmmm.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Acrylamide is a toxin that humans are readily exposed to due to its formation in many carbohydrate rich foods cooked at high temperatures. Acrylamide is carcinogenic, neurotoxic and causes reproductive toxicity when high levels of exposure are reached in mice and rats. Acrylamide induced effects on fertility occur predominantly in males. Acrylamide exerts its reproductive toxicity via its metabolite glycidamide, a product which is only formed via the cytochrome P450 detoxifying enzyme CYP2E1. Glycidamide is highly reactive and forms adducts with DNA. Chronic low dose acrylamide exposure in mice relevant to human exposure levels results in significantly increased levels of DNA damage in terms of glycidamide adducts in spermatocytes, the specific germ cell stage where Cyp2e1 is expressed. Since cells in the later stages of spermatogenesis are unable to undergo DNA repair, and this level of acrylamide exposure causes no reduction in fertility, there is potential for this damage to persist until sperm maturation and fertilisation. Cyp2e1 is also present within epididymal cells, allowing for transiting spermatozoa to be exposed to glycidamide. This could have consequences for future generations in terms of predisposition to diseases such as cancer, with growing indications that paternal DNA damage can be propagated across multiple generations. Since glycidamide is the major contributor to DNA damage, a mechanism for preventing these effects is inhibiting the function of Cyp2e1. Resveratrol is an example of an inhibitor of Cyp2e1 which has shown success in reducing damage caused by acrylamide treatment in mice.
Collapse
Affiliation(s)
- Aimee L Katen
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; The Australian Research Council Centre of Excellence in Biotechnology and Development, Callaghan, New South Wales 2308, Australia; The Priority Research Centres for Reproductive Sciences and Chemical Biology, University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
75
|
|
76
|
Manjanatha MG, Guo LW, Shelton SD, Doerge DR. Acrylamide-induced carcinogenicity in mouse lung involves mutagenicity: cII gene mutations in the lung of big blue mice exposed to acrylamide and glycidamide for up to 4 weeks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:446-456. [PMID: 25639614 DOI: 10.1002/em.21939] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Potential health risks for humans from exposure to acrylamide (AA) and its epoxide metabolite glycidamide (GA) have garnered much attention lately because substantial amounts of AA are present in a variety of fried and baked starchy foods. AA is tumorigenic in rodents, and a large number of in vitro and in vivo studies indicate that AA is genotoxic. A recent cancer bioassay on AA demonstrated that the lung was one of the target organs for tumor induction in mice; however, the mutagenicity of AA in this tissue is unclear. Therefore, to investigate whether or not gene mutation is involved in the etiology of AA- or GA-induced mouse lung carcinogenicity, we screened for cII mutant frequency (MF) in lungs from male and female Big Blue (BB) mice administered 0, 1.4, and 7.0 mM AA or GA in drinking water for up to 4 weeks (19-111 mg/kg bw/days). Both doses of AA and GA produced significant increases in cII MFs, with the high doses producing responses 2.7-5.6-fold higher than the corresponding controls (P ≤ 0.05; control MFs = 17.2 ± 2.2 and 15.8 ± 3.5 × 10(-6) in males and females, respectively). Molecular analysis of the mutants from high doses indicated that AA and GA produced similar mutation spectra and that these spectra were significantly different from the spectra in control mice (P ≤ 0.01). The predominant types of mutations in the lung cII gene from AA- and GA-treated mice were A:T → T:A, and G:C → C:G transversions, and -1/+1 frameshifts at a homopolymeric run of Gs. The MFs and types of mutations induced by AA and GA in the lung are consistent with AA exerting its genotoxicity via metabolism to GA. These results suggest that AA is a mutagenic carcinogen in mouse lungs and therefore further studies on its potential health risk to humans are warranted. Environ. Mol. Mutagen. 56:446-456, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| | - Li-Wu Guo
- Division of Genetic and Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| | - Sharon D Shelton
- Division of Genetic and Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| | - Daniel R Doerge
- Division of Biochemical Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| |
Collapse
|
77
|
Pan X, Guo X, Xiong F, Cheng G, Lu Q, Yan H. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system. Toxicol Lett 2015; 236:60-8. [PMID: 25943760 DOI: 10.1016/j.toxlet.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/25/2022]
Abstract
Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.
Collapse
Affiliation(s)
- Xiaoqi Pan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiongxiong Guo
- Shenzhen Luohu Institute of Health Inspection, Shenzhen 518000, China
| | - Fei Xiong
- Chongqing Jiulongpo Municipal Center for Disease and Prevention, Chongqing 400039, China
| | - Guihong Cheng
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
78
|
Yamauchi T, Yamano Y, Yamanaka K, Hata A, Nakadate T, Kuroda Y, Endo Y, Endo G. Possible production of arsenic hemoglobin adducts via exposure to arsine. J Occup Health 2015; 57:161-8. [PMID: 25735624 DOI: 10.1539/joh.14-0148-oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Arsine is an arsenic compound generated as a by-product in metal refineries. Accidental poisoning occurs sporadically; however, the administrative level for workers has not been established. Thus, it is essential to identify a highly specific biomarker for risk management in the workplace. The aim of this study was to identify an arsenic adduct, a potential biomarker, in the plasma. METHODS Preserved mouse blood was exposed to arsine in vitro, and the plasma was separated. The residual clot of the control sample was hemolyzed using ultrapure water, and the supernatant was collected. Plasma from mice exposed to arsine in vivo was also separated from blood. Immunoprecipitation assays were conducted using all samples after ultrafiltration, and three fractions were collected. The total arsenic concentration in each fraction was quantified using inductively coupled plasma mass spectrometry (ICP-MS). The three in vitro samples and the eluate fraction from immunoprecipitation were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). RESULTS In the exposed samples, the arsenic concentration in the fraction containing immunocomplexes was higher when immunoprecipitation was conducted with an anti-globin antibody. Three peaks were specifically observed in arsine-exposed samples after MALDI-TOF-MS analysis. Two of them were around m/z 15,000, and the other was m/z 15,700. The latter peak was confirmed even after immunoprecipitation. CONCLUSIONS Globin forms an adduct with arsenic after both in vitro and in vivo exposure to arsine. This adduct together with hemoglobinuria could be a candidate biomarker of acute arsine poisoning in plasma.
Collapse
Affiliation(s)
- Takenori Yamauchi
- Department of Public Health Faculty of Medicine, University of Miyazaki
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Toxic neuropathy, although rare, is an important consideration in the setting of a known or suspected toxic exposure in the workplace or other environment. This chapter discusses the clinical and electrodiagnostic evaluation of peripheral neuropathies, highlighting findings that direct further workup and may point to specific toxins as etiology. The difficulty of establishing causality of a toxin in relation to peripheral neuropathy is discussed; guidelines for establishing causality are presented. Examples of common industrial toxins are listed, including their typical industrial uses and their mechanisms of action in producing neuropathy. Characteristic clinical presentations of specific toxic neuropathies are highlighted with selected case studies.
Collapse
Affiliation(s)
- Ann A Little
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI, USA
| | - James W Albers
- Department of Neurology, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
80
|
Zhou S, Wang D, Zhang C, Zhao Y, Zhao M, Wu Y. A novel interaction mode between acrylamide and its specific antibody. J Immunoassay Immunochem 2014; 36:295-311. [PMID: 25215894 DOI: 10.1080/15321819.2014.947432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the discovery of high-level acrylamide (Acr) contamination in food, extensive international studies have focused on its toxicity and detection. By using a novel antigen synthetic strategy, we have successfully obtained a specific antibody towards acrylamide (Acr-Ab). Herein, the Acr-Ab and its interactions with Acr were characterized. Enzyme-linked immunosorbent assay (ELISA) and dynamic light scattering (DLS) investigations revealed that the conformational structure of Acr-Ab was sensitive to buffers. It showed a satisfied immunoreactivity in phosphate buffered saline (PBS), but denatured in water. In natural state, Acr-Ab had a trend of getting aggregation through their complementarity determining regions (CDRs). Adding Acr leaded to their disassembling. While mixed with Acr, Acr-Ab exhibits not only a fast, high-specific, and reversible non covalent binding (by surface plasmon resonance, SPR), but also a covalent alkylation with Acr through cysteine and histidine residues on its surface, as demonstrated by high-performance liquid chromatography (HPLC). Neither of the two reactions involves conformational change in secondary or tertiary structures as shown in circular dichroism spectra (CD). These special properties of Acr-Ab and the entirely new interaction mode with Acr will extend our knowledge of Acr related biosystem and facilitate the development of new detection strategies for Acr.
Collapse
Affiliation(s)
- Shuang Zhou
- a Beijing National Laboratory for Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering, Peking University , Beijing , China
| | | | | | | | | | | |
Collapse
|
81
|
Hellwig M, Henle T. Backen, Altern, Diabetes: eine kurze Geschichte der Maillard-Reaktion. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
82
|
Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed Engl 2014; 53:10316-29. [PMID: 25044982 DOI: 10.1002/anie.201308808] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/12/2013] [Indexed: 01/11/2023]
Abstract
The reaction of reducing carbohydrates with amino compounds described in 1912 by Louis-Camille Maillard is responsible for the aroma, taste, and appearance of thermally processed food. The discovery that non-enzymatic conversions also occur in organisms led to intensive investigation of the pathophysiological significance of the Maillard reaction in diabetes and ageing processes. Dietary Maillard products are discussed as "glycotoxins" and thus as a nutritional risk, but also increasingly with regard to positive effects in the human body. In this Review we give an overview of the most important discoveries in Maillard research since it was first described and show that the complex reaction, even after over one hundred years, has lost none of its interdisciplinary actuality.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden (Germany) http://www.chm.tu-dresden.de/lc1
| | | |
Collapse
|
83
|
Matthäus B, Haase NU. Acrylamide - Still a matter of concern for fried potato food?*. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bertrand Matthäus
- Department of Safety and Quality of Cereals; Max Rubner-Institut, Federal Research Institute of Nutrition and Food; Detmold Germany
| | - Norbert U. Haase
- Department of Safety and Quality of Cereals; Max Rubner-Institut, Federal Research Institute of Nutrition and Food; Detmold Germany
| |
Collapse
|
84
|
The determination of acrylamide in environmental and drinking waters by large-volume injection – hydrophilic-interaction liquid chromatography and tandem mass spectrometry. J Chromatogr A 2014; 1334:72-8. [DOI: 10.1016/j.chroma.2014.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 02/02/2014] [Indexed: 11/23/2022]
|
85
|
Pedreschi F, Mariotti MS, Granby K. Current issues in dietary acrylamide: formation, mitigation and risk assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:9-20. [PMID: 23939985 DOI: 10.1002/jsfa.6349] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 05/07/2023]
Abstract
Acrylamide (AA) is known as a neurotoxin in humans and it is classified as a probable human carcinogen by the International Agency of Research on Cancer. AA is produced as by-product of the Maillard reaction in starchy foods processed at high temperatures (>120 °C). This review includes the investigation of AA precursors, mechanisms of AA formation and AA mitigation technologies in potato, cereal and coffee products. Additionally, most relevant issues of AA risk assessment are discussed. New technologies tested from laboratory to industrial scale face, as a major challenge, the reduction of AA content of browned food, while still maintaining its attractive organoleptic properties. Reducing sugars such as glucose and fructose are the major contributors to AA in potato-based products. On the other hand, the limiting substrate of AA formation in cereals and coffee is the free amino acid asparagine. For some products the addition of glycine or asparaginase reduces AA formation during baking. Since, for potatoes, the limiting substrate is reducing sugars, increases in sugar content in potatoes during storage then introduce some difficulties and potentially quite large variations in the AA content of the final product. Sugars in potatoes may be reduced by blanching. Levels of AA in different foods show large variations and no general upper limit is easily applicable, since some formation will always occur. Current policy is that practical measures should be taken voluntarily to reduce AA formation in vulnerable foods since AA is considered a health risk at the concentrations found in foods.
Collapse
Affiliation(s)
- Franco Pedreschi
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago, Chile; ASIS-UC Interdisciplinary Research Program on Tasty and Healthy Foods, Pontificia Universidad Catoĺica de Chile, Santiago, Chile
| | | | | |
Collapse
|
86
|
Abstract
Acrylamide, a food contaminant, belongs to a large class of structurally similar toxic chemicals, 'type-2 alkenes', to which humans are widely exposed. Besides, occupational exposure to acrylamide has received wide attention through the last decades. It is classified as a neurotoxin and there are three important hypothesis considering acrylamide neurotoxicity: inhibition of kinesin-based fast axonal transport, alteration of neurotransmitter levels, and direct inhibition of neurotransmission. While many researchers believe that exposure of humans to relatively low levels of acrylamide in the diet will not result in clinical neuropathy, some neurotoxicologists are concerned about the potential for its cumulative neurotoxicity. It has been shown in several studies that the same neurotoxic effects can be observed at low and high doses of acrylamide, with the low doses simply requiring longer exposures. This review is focused on the neurotoxicity of acrylamide and its possible outcomes.
Collapse
|
87
|
Guth S, Habermeyer M, Baum M, Steinberg P, Lampen A, Eisenbrand G. Thermally induced process-related contaminants: the example of acrolein and the comparison with acrylamide: opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol Nutr Food Res 2013; 57:2269-82. [PMID: 23970446 DOI: 10.1002/mnfr.201300418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
α,β-Unsaturated aliphatic carbonyl compounds are naturally widespread in food, but are also formed during the thermal treatment of food. This applies, for example, to the genotoxic carcinogen acrylamide (AA), but also to acrolein (AC), the simplest α,β-unsaturated aldehyde. First observations indicate that human exposure to AC may be higher than the exposure to AA. The DFG Senate Commission on Food Safety therefore compared data on AC and AA available in the scientific literature, evaluating current knowledge on formation, occurrence, exposure, metabolism, biological effects, toxicity, and carcinogenicity and defined knowledge gaps as well as research needs in an opinion on November 19, 2012, in German. The English version was agreed on April 17, 2013.
Collapse
Affiliation(s)
- Sabine Guth
- Department of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Ji K, Kang S, Lee G, Lee S, Jo A, Kwak K, Kim D, Kho D, Lee S, Kim S, Kim S, Hiuang YF, Wu KY, Choi K. Urinary levels of N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA), an acrylamide metabolite, in Korean children and their association with food consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 456-457:17-23. [PMID: 23584029 DOI: 10.1016/j.scitotenv.2013.03.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Acrylamide (AA), a probable human carcinogen, is present in high-temperature-processed foods, and has frequently been detected in humans worldwide. In the present study, the levels of a major AA metabolite, N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) were measured in urine samples collected in two separate events with 3d interval from Korean children (n=31, 10-13 years old), and their diets were surveyed for 4d period prior to the second urine sampling. Daily AA intake was estimated from AAMA urinary levels and the influence of food consumption on urinary AAMA levels was investigated. The concentrations of metabolite AAMA in urine ranged between 15.4 and 196.3 ng/mL, with a median level of 68.1 ng/mL, and the levels varied by day considerably even in a given child. Children who were exposed to environmental smoke at home exhibited significantly higher levels of AAMA in urine, suggesting the importance of passive smoking as a source of AA exposure among children. Median (95th percentile) values of daily AA intake in Korean children were 1.04 (2.47)μg/kgbodyweight/day, which is higher than those reported elsewhere. After adjustment for gender, body mass index, and smoking status of family members, the consumptions of cracker and chocolate were identified to be significantly associated with the concentrations of AAMA in urine. The result of this study will provide information useful for developing public health and safety management for AA.
Collapse
Affiliation(s)
- Kyunghee Ji
- School of Public Health, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Joseph P, Umbright C, Sellamuthu R. Blood transcriptomics: applications in toxicology. J Appl Toxicol 2013; 33:1193-202. [PMID: 23456664 DOI: 10.1002/jat.2861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023]
Abstract
The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article.
Collapse
Affiliation(s)
- Pius Joseph
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | | | | |
Collapse
|
90
|
Duarte-Salles T, von Stedingk H, Granum B, Gützkow KB, Rydberg P, Törnqvist M, Mendez MA, Brunborg G, Brantsæter AL, Meltzer HM, Alexander J, Haugen M. Dietary acrylamide intake during pregnancy and fetal growth-results from the Norwegian mother and child cohort study (MoBa). ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:374-379. [PMID: 23204292 PMCID: PMC3621181 DOI: 10.1289/ehp.1205396] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 11/29/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Acrylamide has shown developmental and reproductive toxicity in animals, as well as neurotoxic effects in humans with occupational exposures. Because it is widespread in food and can pass through the human placenta, concerns have been raised about potential developmental effects of dietary exposures in humans. OBJECTIVES We assessed associations of prenatal exposure to dietary acrylamide with small for gestational age (SGA) and birth weight. METHODS This study included 50,651 women in the Norwegian Mother and Child Cohort Study (MoBa). Acrylamide exposure assessment was based on intake estimates obtained from a food frequency questionnaire (FFQ), which were compared with hemoglobin (Hb) adduct measurements reflecting acrylamide exposure in a subset of samples (n = 79). Data on infant birth weight and gestational age were obtained from the Medical Birth Registry of Norway. Multivariable regression was used to estimate associations between prenatal acrylamide and birth outcomes. RESULTS Acrylamide intake during pregnancy was negatively associated with fetal growth. When women in the highest quartile of acrylamide intake were compared with women in the lowest quartile, the multivariable-adjusted odds ratio (OR) for SGA was 1.11 (95% CI: 1.02, 1.21) and the coefficient for birth weight was -25.7 g (95% CI: -35.9, -15.4). Results were similar after excluding mothers who smoked during pregnancy. Maternal acrylamide- and glycidamide-Hb adduct levels were correlated with estimated dietary acrylamide intakes (Spearman correlations = 0.24; 95% CI: 0.02, 0.44; and 0.48; 95% CI: 0.29, 0.63, respectively). CONCLUSIONS Lowering dietary acrylamide intake during pregnancy may improve fetal growth.
Collapse
Affiliation(s)
- Talita Duarte-Salles
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Huang YF, Chiang SY, Liou SH, Chen ML, Chen MF, Uang SN, Wu KY. The modifying effect of CYP2E1, GST, and mEH genotypes on the formation of hemoglobin adducts of acrylamide and glycidamide in workers exposed to acrylamide. Toxicol Lett 2012; 215:92-9. [PMID: 23069881 DOI: 10.1016/j.toxlet.2012.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 09/11/2012] [Accepted: 10/05/2012] [Indexed: 11/25/2022]
Abstract
This study assesses the association of acrylamide (AA) and glycidamide (GA) hemoglobin adducts (AAVal and GAVal) and their ratios with genetic polymorphisms of the metabolic enzymes cytochrome P450 2E1 (CYP2E1), exon 3 and 4 of microsomal epoxide hydrolase (mEH3 and mEH4), glutathione transferase theta (GSTT1), and mu (GSTM1) or/and the combinations of these polymorphisms, involved in the activation and detoxification of AA in humans. Fifty-one AA-exposed workers and 34 controls were recruited and provided a post-shift blood sample. AAVal and GAVal were determined simultaneously using isotope-dilution liquid chromatography-electronspray ionization/tandem mass spectrometry (LC-ESI-MS/MS). Genetic polymorphisms of CYP2E1, mEH3 and 4, GSTT1, and GSTM1 were also analyzed. Our results reveal that the GAVal/AAVal ratio, potentially reflecting the proportion of AA metabolized to GA, ranged from 0.13 to 0.45 with a mean at 0.27. Multivariate regression analysis demonstrates that the joint effect of CYP2E1, GSTM1, and mEH4 genotypes was significantly associated with AAVal and GAVal levels after adjustment for AA exposures. These results suggest that mEH4 and the combined genotypes of CYP2E1, GSTM1 and mEH4 may be associated with the formation of AAVal and GAVal. Further studies may be needed to shed light on the roles that phase I and II enzymes play in AA metabolism.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, College of Public Health, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
92
|
Determination of acrylamide level in commercial baby foods and an assessment of infant dietary exposure. Food Chem Toxicol 2012; 50:2722-8. [DOI: 10.1016/j.fct.2012.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/24/2022]
|
93
|
Jahn S, Faber H, Zazzeroni R, Karst U. Electrochemistry/liquid chromatography/mass spectrometry to demonstrate irreversible binding of the skin allergen p-phenylenediamine to proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1415-1425. [PMID: 22592985 DOI: 10.1002/rcm.6247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE para-Phenylenediamine (PPD) is a potent and well-known allergen, which is commonly used in hair or fur dyes and can cause severe allergic contact dermatitis. In this work, the skin-sensitizing potential of PPD with respect to the conjugation of proteins was evaluated using an approach without animal testing. METHODS Electrochemistry (EC) coupled offline to liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) was employed to convert the pre-hapten PPD into its reactive hapten analogs. A previous study had already shown that this purely instrumental method is suitable for accelerating and simulating the various oxidation processes, which PPD may undergo, and that the emerging products are prone to react with soft thiol groups of small nucleophiles like glutathione and cysteine. RESULTS This investigation was extended by successfully demonstrating adduct formation between EC-generated PPD oxidation products and the three proteins β-lactoglobulin A (β-LGA), human serum albumin and human hemoglobin. A tryptic digest of modified β-LGA provided evidence for irreversible protein binding of monomeric PPD, a PPD dimer and the PPD trimer known as Bandrowski's Base. It was shown that the main oxidation product p-phenylene quinone diimine, and the reactive oligomerized species, primarily attack the free thiol function of proteins rather than other nucleophilic amino acid residues. CONCLUSIONS The pre-hapten PPD was efficiently activated upon EC oxidation and the resulting species were further reacted with different proteins leading to diverse hapten-protein complexes. Thereby, problems related to the complex matrix present in conventional in vitro or in vivo methods could effectively be avoided.
Collapse
Affiliation(s)
- Sandra Jahn
- University of Münster, Institute of Inorganic and Analytical Chemistry and NRW Graduate School of Chemistry, Corrensstr. 30, 48149 Münster, Germany
| | | | | | | |
Collapse
|
94
|
Sen A, Ozgun O, Arinç E, Arslan S. Diverse action of acrylamide on cytochrome P450 and glutathione S-transferase isozyme activities, mRNA levels and protein levels in human hepatocarcinoma cells. Cell Biol Toxicol 2012; 28:175-186. [PMID: 22392284 DOI: 10.1007/s10565-012-9214-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/17/2012] [Indexed: 12/08/2022]
Abstract
Humans are exposed to acrylamide in their diet and cigarette smoke. Acrylamide is metabolized into glycidamide by CYP2E1. However, very few studies regarding the effects of acrylamide on cytochrome P450 and Glutathione S-Transferase (GST) isozymes have been pursued. The aim of this study is to elucidate the effects of acrylamide on cytochrome P450 and GST isozymes in HepG2 cell line. Treatment with 1.25 and 2.5 mM acrylamide caused 9.5- and 3.7-fold increases and 4.0- and 3.3-fold increases in CYP1A-associated ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities, respectively. These increases were consistent with increases in mRNA and protein levels of these isozymes. Similarly, CYP2E1-associated aniline 4-hydroxylase (ANH) activity, protein levels, and mRNA levels increased 2.1- and 2.6-fold, 2.4- and 3.2-fold, and 1.4- and 1.9-fold following 1.25 and 2.5 mM acrylamide treatments, respectively. In addition, GST-mu activity was increased 2.4- and 5.1-fold by acrylamide. Moreover, GST-mu mRNA and protein levels increased twofold as a result of acrylamide treatment. In contrast, GST-pi protein and mRNA levels decreased significantly. In conclusion, human cell exposure to acrylamide causes an increase in the levels of carcinogenicity and toxicity and a disturbance in drug metabolism, possibly due to complex effects on P450 and GST isozymes.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Biology, Pamukkale University, 20070, Denizli, Turkey
| | | | | | | |
Collapse
|
95
|
Vikström AC, Warholm M, Paulsson B, Axmon A, Wirfält E, Törnqvist M. Hemoglobin adducts as a measure of variations in exposure to acrylamide in food and comparison to questionnaire data. Food Chem Toxicol 2012; 50:2531-9. [PMID: 22525869 DOI: 10.1016/j.fct.2012.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Measurement of haemoglobin (Hb) adducts from acrylamide (AA) and its metabolite glycidamide (GA) is a possibility to improve the exposure assessment in epidemiological studies of AA intake from food. This study aims to clarify the reliability of Hb-adduct measurement from individual single samples for exposure assessment of dietary AA intake. The intra-individual variations of AA- and GA-adduct levels measured in blood samples collected over 20 months from 13 non-smokers were up to 2-fold and 4-fold, respectively. The corresponding interindividual variations observed between 68 non-smokers, with large differences in AA intake, were 6-fold and 8-fold, respectively. The intra-individual variation of the GA-to-AA-adduct level ratio was up to 3-fold, compared to 11-fold between individuals (n = 68). From AA-adduct levels the average AA daily intake (n = 68) was calculated and compared to that estimated from dietary history methodology: 0.52 and 0.67 μg/kg body weight and day, respectively. At an individual level the measures showed low association (Rs = 0.39). CONCLUSIONS Dietary AA is the dominating source to measured AA-adduct levels and corresponding inter- and intra-individual variations in non-smokers. Measurements from single individual samples are useful for calculation of average AA intake and its variation in a cohort, and for identification of individuals only from extreme intake groups.
Collapse
Affiliation(s)
- Anna C Vikström
- Department of Materials and Environmental Chemistry, Environmental Chemistry Unit, Stockholm University, SE-104 05 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
96
|
Arribas-Lorenzo G, Morales FJ. Recent Insights in Acrylamide as Carcinogen in Foodstuffs. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
97
|
Moorman WJ, Reutman SS, Shaw PB, Blade LM, Marlow D, Vesper H, Clark JC, Schrader SM. Occupational exposure to acrylamide in closed system production plants: air levels and biomonitoring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:100-111. [PMID: 22129237 DOI: 10.1080/15287394.2011.615109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this study was to evaluate biomarkers of acrylamide exposure, including hemoglobin adducts and urinary metabolites in acrylamide production workers. Biomarkers are integrated measures of the internal dose, and it is total acrylamide dose from all routes and sources that may present health risks. Workers from three companies were studied. Workers potentially exposed to acrylamide monomer wore personal breathing-zone air samplers. Air samples and surface-wipe samples were collected and analyzed for acrylamide. General-area air samples were collected in chemical processing units and control rooms. Hemoglobin adducts were isolated from ethylenediamine teraacetic acid (EDTA)-whole blood, and adducts of acrylamide and glycidamide, at the N-terminal valines of hemoglobin, were cleaved from the protein chain by use of a modified Edman reaction. Full work-shift, personal breathing zone, and general-area air samples were collected and analyzed for particulate and acrylamide monomer vapor. The highest general-area concentration of acrylamide vapor was 350 μg/cm(3) in monomer production. Personal breathing zone and general-area concentrations of acrylamide vapor were found to be highest in monomer production operations, and lower levels were in the polymer production operations. Adduct levels varied widely among workers, with the highest in workers in the monomer and polymer production areas. The acrylamide adduct range was 15-1884 pmol/g; glycidamide adducts ranged from 17.8 to 1376 p/mol/g. The highest acrylamide and glycidamide adduct levels were found among monomer production process operators. The primary urinary metabolite N-acetyl-S-(2-carbamoylethyl) cysteine (NACEC) ranged from the limit of detection to 15.4 μg/ml. Correlation of workplace exposure and sentinel health effects is needed to determine and control safe levels of exposure for regulatory standards.
Collapse
|
98
|
Lee T, Manjanatha MG, Aidoo A, Moland CL, Branham WS, Fuscoe JC, Ali AA, Desai VG. Expression analysis of hepatic mitochondria-related genes in mice exposed to acrylamide and glycidamide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:324-339. [PMID: 22480170 DOI: 10.1080/15287394.2012.668160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Acrylamide (AA) is an industrial chemical that has been extensively investigated for central nervous system (CNS), reproductive, and genetic toxicity. However, AA effects on the liver, a major organ of drug metabolism, have not been adequately explored. In addition, the role of mitochondria in AA-mediated toxicity is still unclear. Changes in expression levels of genes associated with hepatic mitochondrial function of male transgenic Big Blue (BB) mice administered 500 mg/L AA or an equimolar concentration (600 mg/L) of its reactive metabolite glycidamide (GA) in drinking water for 3 and 4 wk, respectively, were examined. Transcriptional profiling of 542 mitochondria-related genes indicated a significant downregulation of genes associated with the 3-beta-hydroxysteroid dehydrogenase family in AA- and GA-treated mice, suggesting a possible role of both chemicals in altering hepatic steroid metabolism in BB mice. In addition, genes associated with lipid metabolism were altered by both treatments. Interestingly, only the parental compound (AA) significantly induced expression levels of genes associated with oxidative phosphorylation, in particular ATP synthase, which correlated with elevated ATP levels, indicating an increased energy demand in liver during AA exposure. Acrylamide-treated mice also showed significantly higher activity of glutathione S-transferase in association with decreased levels of reduced glutathione (GSH), which may imply an enhanced rate of conjugation of AA with GSH in liver. These results suggest different hepatic mechanisms of action of AA and GA and provide important insights into the involvement of mitochondria during their exposures.
Collapse
Affiliation(s)
- Taewon Lee
- Department of Information and Mathematics, Korea University, Jochiwon, Chungnam, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Kotova N, Jurén T, Myöhänen K, Cornelius M, Abramsson-Zetterberg L, Backman J, Menzel U, Rydberg P, Kronberg L, Vähäkangas K, Segerbäck D. 32P-HPLC analysis of N1-(2-carboxy-2-hydroxyethyl)deoxyadenosine: A DNA adduct of the acrylamide-derived epoxide glycidamide. Toxicol Lett 2011; 207:18-24. [DOI: 10.1016/j.toxlet.2011.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
100
|
Honda H, Onishi M, Fujii K, Ikeda N, Yamaguchi T, Fujimori T, Nishiyama N, Kasamatsu T. Measurement of glycidol hemoglobin adducts in humans who ingest edible oil containing small amounts of glycidol fatty acid esters. Food Chem Toxicol 2011; 49:2536-40. [DOI: 10.1016/j.fct.2011.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/22/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
|