51
|
Pellerino A, Davidson TM, Bellur SS, Ahluwalia MS, Tawbi H, Rudà R, Soffietti R. Prevention of Brain Metastases: A New Frontier. Cancers (Basel) 2024; 16:2134. [PMID: 38893253 PMCID: PMC11171378 DOI: 10.3390/cancers16112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
This review discusses the topic of prevention of brain metastases from the most frequent solid tumor types, i.e., lung cancer, breast cancer and melanoma. Within each tumor type, the risk of brain metastasis is related to disease status and molecular subtype (i.e., EGFR-mutant non-small cell lung cancer, HER2-positive and triple-negative breast cancer, BRAF and NRAF-mutant melanoma). Prophylactic cranial irradiation is the standard of care in patients in small cell lung cancer responsive to chemotherapy but at the price of late neurocognitive decline. More recently, several molecular agents with the capability to target molecular alterations driving tumor growth have proven as effective in the prevention of secondary relapse into the brain in clinical trials. This is the case for EGFR-mutant or ALK-rearranged non-small cell lung cancer inhibitors, tucatinib and trastuzumab-deruxtecan for HER2-positive breast cancer and BRAF inhibitors for melanoma. The need for screening with an MRI in asymptomatic patients at risk of brain metastases is emphasized.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience ‘Rita Levi Montalcini’, University and City of Health and Science Hospital, 10126 Turin, Italy;
| | - Tara Marie Davidson
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; (T.M.D.); (H.T.)
| | - Shreyas S. Bellur
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL 33176, USA; (S.S.B.); (M.S.A.)
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL 33176, USA; (S.S.B.); (M.S.A.)
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; (T.M.D.); (H.T.)
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience ‘Rita Levi Montalcini’, University and City of Health and Science Hospital, 10126 Turin, Italy;
| | | |
Collapse
|
52
|
Gorlov IP, Gorlova OY, Tsavachidis S, Amos CI. Strength of selection in lung tumors correlates with clinical features better than tumor mutation burden. Sci Rep 2024; 14:12732. [PMID: 38831004 PMCID: PMC11148192 DOI: 10.1038/s41598-024-63468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA.
| | - Olga Y Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Spyridon Tsavachidis
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| |
Collapse
|
53
|
Dessai A, Nayak UY, Nayak Y. Precision nanomedicine to treat non-small cell lung cancer. Life Sci 2024; 346:122614. [PMID: 38604287 DOI: 10.1016/j.lfs.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Lung cancer is a major cause of death worldwide, being often detected at a later stage due to the non-appearance of early symptoms. Therefore, specificity of the treatment is of utmost importance for its effective treatment. Precision medicine is a personalized therapy based on the genomics of the patient to design a suitable drug approach. Genetic mutations render the tumor resistant to specific mutations and the therapy is in vain even though correct medications are prescribed. Therefore, Precision medicine needs to be explored for the treatment of Non-small cell lung cancer (NSCLC). Nanoparticles are widely explored to give personalized interventions to treat lung cancer due to their various advantages like the ability to reach cancer cells, enhanced permeation through tissues, specificity, increased bioavailability, etc. Various nanoparticles (NPs) including gold nanoparticles, carbon nanotubes, aptamer-based NPs etc. were conjugated with biomarkers/diagnostic agents specific to cancer type and were delivered. Various biomarker genes have been identified through precision techniques for the diagnosis and treatment of NSCLC like EGFR, RET, KRAS, ALK, ROS-1, NTRK-1, etc. By incorporating of drug with the nanoparticle through bioconjugation, the specificity of the treatment can be enhanced with this revolutionary treatment. Additionally, integration of theranostic cargos in the nanoparticle would allow diagnosis as well as treatment by targeting the site of disease progression. Therefore, to target NSCLC effectively precision nanomedicine has been adopted in recent times. Here, we present different nanoparticles that are used as precision nanomedicine and their effectiveness against NSCLC disease.
Collapse
Affiliation(s)
- Akanksha Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
54
|
Cheunkarndee T, Guo MZ, Houseknecht S, Feliciano JL, Hann CL, Lam VK, Levy BP, Murray JC, Brahmer JR, Forde PM, Marrone KA, Scott SC. First-line Osimertinib for Lung Cancer With Uncommon EGFR Exon 19 Mutations and EGFR Compound Mutations. JTO Clin Res Rep 2024; 5:100686. [PMID: 38975613 PMCID: PMC11225339 DOI: 10.1016/j.jtocrr.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Up to 20% of EGFR-mutated NSCLC cases harbor uncommon EGFR mutations, including atypical exon 19 and compound mutations. Relatively little is known about the efficacy of osimertinib in these cases. Methods Patients treated with first-line osimertinib for NSCLC with rare EGFR exon 19 (non E746_A750del) or compound mutations were included. Response assessment and time to progression were determined using Response Evaluation Criteria in Solid Tumors version 1.1 criteria. Kaplan-Meier analyses were used to estimate progression-free survival (PFS), time to treatment discontinuation (TTD), and overall survival (OS). Results Thirty-seven patients with NSCLC harboring an atypical EGFR exon 19 mutation or compound mutation were treated with first-line osimertinib at Johns Hopkins from 2016 to 2021. Overall response rate (ORR) was 76% and median PFS, TTD, and OS were 13 months (95% confidence interval [CI]: 10-15), 22 months (95% CI: 17-32) and 36 months (95% CI, 29-48), respectively. Among atypical exon 19 mutations (n = 25), ORR was 80%, median PFS was 12 months (95% CI: 10-15), median TTD was 19 months (95% CI: 17-38), and median OS was 48 months (95% CI: 25-not reached). Compound mutations (n = 12) had an ORR of 67%, median PFS of 14 months (95% CI: 5-22), median TTD of 26 months (95% CI: 5-36), and median OS of 36 months (95% CI: 20-46). Twelve patients (32%) continued first-line osimertinib after local therapy for oligoprogression. Conclusions Osimertinib exhibited favorable outcomes for rare EGFR exon 19 and compound mutations. The heterogeneity in outcomes among these groups of tumors with similar mutations underscores the need for continued reporting and further study of outcomes among rare variants to optimize management for each patient.
Collapse
Affiliation(s)
- Tia Cheunkarndee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Matthew Z. Guo
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | | | | | - Christine L. Hann
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Vincent K. Lam
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Benjamin P. Levy
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Joseph C. Murray
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Julie R. Brahmer
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Patrick M. Forde
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Kristen A. Marrone
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Susan C. Scott
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
55
|
Mohanty P, Pande B, Acharya R, Bhaskar LVKS, Verma HK. Unravelling the Triad of Lung Cancer, Drug Resistance, and Metabolic Pathways. Diseases 2024; 12:93. [PMID: 38785748 PMCID: PMC11119248 DOI: 10.3390/diseases12050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer, characterized by its heterogeneity, presents a significant challenge in therapeutic management, primarily due to the development of resistance to conventional drugs. This resistance is often compounded by the tumor's ability to reprogram its metabolic pathways, a survival strategy that enables cancer cells to thrive in adverse conditions. This review article explores the complex link between drug resistance and metabolic reprogramming in lung cancer, offering a detailed analysis of the molecular mechanisms and treatment strategies. It emphasizes the interplay between drug resistance and changes in metabolic pathways, crucial for developing effective lung cancer therapies. This review examines the impact of current treatments on metabolic pathways and the significance of considering metabolic factors to combat drug resistance. It highlights the different challenges and metabolic alterations in non-small-cell lung cancer and small-cell lung cancer, underlining the need for subtype-specific treatments. Key signaling pathways, including PI3K/AKT/mTOR, MAPK, and AMPK, have been discussed for their roles in promoting drug resistance and metabolic changes, alongside the complex regulatory networks involved. This review article evaluates emerging treatments targeting metabolism, such as metabolic inhibitors, dietary management, and combination therapies, assessing their potential and challenges. It concludes with insights into the role of precision medicine and metabolic biomarkers in crafting personalized lung cancer treatments, advocating for metabolic targeting as a promising approach to enhance treatment efficacy and overcome drug resistance. This review underscores ongoing advancements and hurdles in integrating metabolic considerations into lung cancer therapy strategies.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492099, India;
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, IngolstädterLandstraße 1, 85764 Oberschleißheim, 85764 Munich, Bayren, Germany
| |
Collapse
|
56
|
Liu G, Mazieres J, Stratmann J, Ou SHI, Mok T, Grizzard M, Goto Y, Felip E, Solomon BJ, Bauer TM. A pragmatic guide for management of adverse events associated with lorlatinib. Lung Cancer 2024; 191:107535. [PMID: 38554546 DOI: 10.1016/j.lungcan.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
Lorlatinib is a brain-penetrant, third-generation tyrosine kinase inhibitor (TKI) indicated for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC). In clinical trials, lorlatinib has shown durable efficacy and a manageable safety profile in treatment-naive patients and in those who have experienced progression while receiving first- and/or second-generation ALK TKIs. Lorlatinib has a distinct safety profile from other ALK TKIs, including hyperlipidemia and central nervous system effects. Clinical trial data showed that most adverse events (AEs) can be managed effectively or reversed with dose modifications (such as dose interruptions or reductions) or with concomitant medications without compromising clinical efficacy or quality of life for patients. A pragmatic approach to managing AEs related to lorlatinib is required. We present patient-focused recommendations for the evaluation and management of select AEs associated with lorlatinib developed by clinicians and nurses with extensive lorlatinib expertise in routine clinical practice. The recommendations follow the general framework of "prepare, monitor, manage, reassess" to streamline AE management and assist in practical, actionable, and personalized patient care.
Collapse
Affiliation(s)
- Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Julien Mazieres
- Thoracic Oncology Department, Toulouse University Hospital, Toulouse, France.
| | - Jan Stratmann
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt, and National Network Genomic Medicine Lung Cancer, Cologne, Germany.
| | - Sai-Hong Ignatius Ou
- Chao Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, USA.
| | - Tony Mok
- State Key Laboratory of South China, Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, China.
| | - Mary Grizzard
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA.
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | | | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA.
| |
Collapse
|
57
|
Phillips WJ, Leighl NB, Blais N, Wheatley-Price P. Oral targeted therapy for the treatment of non-small cell lung carcinoma. CMAJ 2024; 196:E558-E561. [PMID: 38684283 PMCID: PMC11057882 DOI: 10.1503/cmaj.231562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Affiliation(s)
- William J Phillips
- Department of Medicine (Phillips, Wheatley-Price), University of Ottawa, Ottawa, Ont.; Department of Medicine (Leighl), Princess Margaret Cancer Centre, University of Toronto, Toronto, Ont.; Department of Medicine (Blais), Centre hospitalier de l'Université de Montréal, University of Montreal, Montréal, Que.; the Ottawa Hospital Research Institute (Wheatley-Price), Ottawa, Ont
| | - Natasha B Leighl
- Department of Medicine (Phillips, Wheatley-Price), University of Ottawa, Ottawa, Ont.; Department of Medicine (Leighl), Princess Margaret Cancer Centre, University of Toronto, Toronto, Ont.; Department of Medicine (Blais), Centre hospitalier de l'Université de Montréal, University of Montreal, Montréal, Que.; the Ottawa Hospital Research Institute (Wheatley-Price), Ottawa, Ont
| | - Normand Blais
- Department of Medicine (Phillips, Wheatley-Price), University of Ottawa, Ottawa, Ont.; Department of Medicine (Leighl), Princess Margaret Cancer Centre, University of Toronto, Toronto, Ont.; Department of Medicine (Blais), Centre hospitalier de l'Université de Montréal, University of Montreal, Montréal, Que.; the Ottawa Hospital Research Institute (Wheatley-Price), Ottawa, Ont
| | - Paul Wheatley-Price
- Department of Medicine (Phillips, Wheatley-Price), University of Ottawa, Ottawa, Ont.; Department of Medicine (Leighl), Princess Margaret Cancer Centre, University of Toronto, Toronto, Ont.; Department of Medicine (Blais), Centre hospitalier de l'Université de Montréal, University of Montreal, Montréal, Que.; the Ottawa Hospital Research Institute (Wheatley-Price), Ottawa, Ont.
| |
Collapse
|
58
|
Ziółkowska-Suchanek I, Żurawek M. FOXP3: A Player of Immunogenetic Architecture in Lung Cancer. Genes (Basel) 2024; 15:493. [PMID: 38674427 PMCID: PMC11050689 DOI: 10.3390/genes15040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is considered to be a prominent component of the immune system expressed in regulatory T cells (Tregs). Tregs are immunosuppressive cells that regulate immune homeostasis and self-tolerance. FOXP3 was originally thought to be a Tregs-specific molecule, but recent studies have pinpointed that FOXP3 is expressed in a diversity of benign tumors and carcinomas. The vast majority of the data have shown that FOXP3 is correlated with an unfavorable prognosis, although there are some reports indicating the opposite function of this molecule. Here, we review recent progress in understanding the FOXP3 role in the immunogenetic architecture of lung cancer, which is the leading cause of cancer-related death. We discuss the prognostic significance of tumor FOXP3 expression, tumor-infiltrating FOXP3-lymphocytes, tumor FOXP3 in tumor microenvironments and the potential of FOXP3-targeted therapy.
Collapse
|
59
|
Wu YL, Dziadziuszko R, Ahn JS, Barlesi F, Nishio M, Lee DH, Lee JS, Zhong W, Horinouchi H, Mao W, Hochmair M, de Marinis F, Migliorino MR, Bondarenko I, Lu S, Wang Q, Ochi Lohmann T, Xu T, Cardona A, Ruf T, Noe J, Solomon BJ. Alectinib in Resected ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med 2024; 390:1265-1276. [PMID: 38598794 DOI: 10.1056/nejmoa2310532] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
BACKGROUND Platinum-based chemotherapy is the recommended adjuvant treatment for patients with resectable, ALK-positive non-small-cell lung cancer (NSCLC). Data on the efficacy and safety of adjuvant alectinib as compared with chemotherapy in patients with resected ALK-positive NSCLC are lacking. METHODS We conducted a global, phase 3, open-label, randomized trial in which patients with completely resected, ALK-positive NSCLC of stage IB (tumors ≥4 cm), II, or IIIA (as classified according to the seventh edition of the Cancer Staging Manual of the American Joint Committee on Cancer and Union for International Cancer Control) were randomly assigned in a 1:1 ratio to receive oral alectinib (600 mg twice daily) for 24 months or intravenous platinum-based chemotherapy in four 21-day cycles. The primary end point was disease-free survival, tested hierarchically among patients with stage II or IIIA disease and then in the intention-to-treat population. Other end points included central nervous system (CNS) disease-free survival, overall survival, and safety. RESULTS In total, 257 patients were randomly assigned to receive alectinib (130 patients) or chemotherapy (127 patients). The percentage of patients alive and disease-free at 2 years was 93.8% in the alectinib group and 63.0% in the chemotherapy group among patients with stage II or IIIA disease (hazard ratio for disease recurrence or death, 0.24; 95% confidence interval [CI], 0.13 to 0.45; P<0.001) and 93.6% and 63.7%, respectively, in the intention-to-treat population (hazard ratio, 0.24; 95% CI, 0.13 to 0.43; P<0.001). Alectinib was associated with a clinically meaningful benefit with respect to CNS disease-free survival as compared with chemotherapy (hazard ratio for CNS disease recurrence or death, 0.22; 95% CI, 0.08 to 0.58). Data for overall survival were immature. No unexpected safety findings were observed. CONCLUSIONS Among patients with resected ALK-positive NSCLC of stage IB, II, or IIIA, adjuvant alectinib significantly improved disease-free survival as compared with platinum-based chemotherapy. (Funded by F. Hoffmann-La Roche; ALINA ClinicalTrials.gov number, NCT03456076.).
Collapse
Affiliation(s)
- Yi-Long Wu
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Rafal Dziadziuszko
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Jin Seok Ahn
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Fabrice Barlesi
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Makoto Nishio
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Dae Ho Lee
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Jong-Seok Lee
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Wenzhao Zhong
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Hidehito Horinouchi
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Weimin Mao
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Maximilian Hochmair
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Filippo de Marinis
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - M Rita Migliorino
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Igor Bondarenko
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Shun Lu
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Qun Wang
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Tania Ochi Lohmann
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Tingting Xu
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Andres Cardona
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Thorsten Ruf
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Johannes Noe
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| | - Benjamin J Solomon
- From the Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou (Y.-L.W., W.Z.), the Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou (W.M.), and the Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine (S.L.), the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Q.W.), and the Department of Clinical Science, Roche (China) Holding (T.X.), Shanghai - all in China; the Department of Oncology and Radiotherapy and the Early Phase Clinical Trials Center, Medical University of Gdansk, Gdansk, Poland (R.D.); the Department of Hematology and Oncology, Samsung Medical Center (J.S.A.), and Asan Medical Center (D.H.L.), Seoul, and Seoul National University Bundang Hospital, Seongnam (J.-S.L.) - all in South Korea; the Department of Medical Oncology, International Center for Thoracic Cancers, Gustave Roussy, Villejuif, and Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre - both in France (F.B.); the Cancer Institute Hospital, Japanese Foundation for Cancer Research (M.N.), and the Department of Thoracic Oncology, National Cancer Center Hospital (H.H.) - both in Tokyo; the Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna (M.H.); the Thoracic Oncology Division, European Institute of Oncology, IRCCS, Milan (F.M.); the Pneumo-Oncology Unit, San Camillo Forlanini Hospital, Rome (M.R.M.); the Oncology and Medical Radiology Department, Dnipropetrovsk State Medical Academy, Dnipro, Ukraine (I.B.); PD Oncology (T.O.L.), Data and Statistical Sciences (A.C.), PD Safety Risk Management (T.R.), and Translational Medicine (J.N.), F. Hoffmann-La Roche, Basel, Switzerland; and the Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.)
| |
Collapse
|
60
|
İNCİ TG, ACAR S, TURGUT-BALIK D. Nonsmall-cell lung cancer treatment: current status of drug repurposing and nanoparticle-based drug delivery systems. Turk J Biol 2024; 48:112-132. [PMID: 39051063 PMCID: PMC11265851 DOI: 10.55730/1300-0152.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 04/03/2024] [Indexed: 07/27/2024] Open
Abstract
Drug repurposing is the strategy of drug utilization for a treatment option other than the intended indications. This strategy has witnessed increased adoption over the past decades, especially within cancer nanomedicine. Cancer nanomedicine has been facilitated through nanoparticle-based (NP-based) delivery systems which can combat nonsmall-cell lung cancer (NSCLC) via recent advances in nanotechnology and apply its benefits to existing drugs. The repurposing of drugs, coupled with NP-based drug delivery systems, presents a promising avenue for achieving effective therapeutic solutions with accelerated outcomes. This review aims to present an overview of NSCLC treatments, with a specific focus on drug repurposing. It seeks to elucidate the latest advances in clinical studies and the utilization of NP-based drug delivery systems tailored for NSCLC treatment. First, the molecular mechanisms of Food and Drug Administration (FDA)-approved drugs for NSCLC, including ROS1 tyrosine kinase inhibitors (TKI) like repotrectinib, approved in November 2023, are detailed. Further, in vitro studies employing a combination strategy of drug repurposing and NP-based drug delivery systems as a treatment approach against NSCLC are listed. It includes the latest study on nanoparticle-based drug delivery systems loaded with repurposed drugs.
Collapse
Affiliation(s)
- Tuğba Gül İNCİ
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul,
Turkiye
| | - Serap ACAR
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul,
Turkiye
| | - Dilek TURGUT-BALIK
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul,
Turkiye
| |
Collapse
|
61
|
Moulson R, Law J, Sacher A, Liu G, Shepherd FA, Bradbury P, Eng L, Iczkovitz S, Abbie E, Elia-Pacitti J, Ewara EM, Mokriak V, Weiss J, Pettengell C, Leighl NB. Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence. Curr Oncol 2024; 31:1947-1960. [PMID: 38668049 PMCID: PMC11049467 DOI: 10.3390/curroncol31040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Real-world evidence for patients with advanced EGFR-mutated non-small cell lung cancer (NSCLC) in Canada is limited. This study's objective was to use previously validated DARWENTM artificial intelligence (AI) to extract data from electronic heath records of patients with non-squamous NSCLC at University Health Network (UHN) to describe EGFR mutation prevalence, treatment patterns, and outcomes. Of 2154 patients with NSCLC, 613 had advanced disease. Of these, 136 (22%) had common sensitizing EGFR mutations (cEGFRm; ex19del, L858R), 8 (1%) had exon 20 insertions (ex20ins), and 338 (55%) had EGFR wild type. One-year overall survival (OS) (95% CI) for patients with cEGFRm, ex20ins, and EGFR wild type tumours was 88% (83, 94), 100% (100, 100), and 59% (53, 65), respectively. In total, 38% patients with ex20ins received experimental ex20ins targeting treatment as their first-line therapy. A total of 57 patients (36%) with cEGFRm received osimertinib as their first-line treatment, and 61 (39%) received it as their second-line treatment. One-year OS (95% CI) following the discontinuation of osimertinib was 35% (17, 75) post-first-line and 20% (9, 44) post-second-line. In this real-world AI-generated dataset, survival post-osimertinib was poor in patients with cEGFR mutations. Patients with ex20ins in this cohort had improved outcomes, possibly due to ex20ins targeting treatment, highlighting the need for more effective treatments for patients with advanced EGFRm NSCLC.
Collapse
Affiliation(s)
- Ruth Moulson
- Pentavere, 460 College Street, Toronto, ON M6G 1A1, Canada; (R.M.)
| | - Jennifer Law
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Adrian Sacher
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Geoffrey Liu
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Frances A. Shepherd
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Penelope Bradbury
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Lawson Eng
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | | | | | | | | | | | - Jessica Weiss
- Pentavere, 460 College Street, Toronto, ON M6G 1A1, Canada; (R.M.)
| | | | - Natasha B. Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
62
|
Gálffy G, Morócz É, Korompay R, Hécz R, Bujdosó R, Puskás R, Lovas T, Gáspár E, Yahya K, Király P, Lohinai Z. Targeted therapeutic options in early and metastatic NSCLC-overview. Pathol Oncol Res 2024; 30:1611715. [PMID: 38605928 PMCID: PMC11006988 DOI: 10.3389/pore.2024.1611715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.
Collapse
|
63
|
Batteson R, Hook E, Wheat H, Hatswell AJ, Vioix H, McLean T, Alexopoulos ST, Baijal S, Paik PK. Modelling the Effectiveness of Tepotinib in Comparison to Standard-of-Care Treatments in Patients with Advanced Non-small Cell Lung Cancer (NSCLC) Harbouring METex14 Skipping in the UK. Target Oncol 2024; 19:191-201. [PMID: 38492157 DOI: 10.1007/s11523-024-01038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Patients with non-small cell lung cancer harbouring mesenchymal-epithelial transition exon 14 (METex14) skipping typically demonstrate poorer prognosis than overall non-small cell lung cancer. Until recently, no targeted treatments were available for patients with non-small cell lung cancer harbouring METex14 skipping in the UK, with limited treatments available. OBJECTIVE This study estimates the long-term survival and quality-adjusted life-year benefit of MET inhibitor tepotinib versus current standard of care from a UK perspective. METHODS A partitioned-survival model assessed the survival and quality-adjusted life-year benefits of tepotinib versus immunotherapy ± chemotherapy and chemotherapy for untreated and previously treated patients, respectively, using evidence from the single-arm VISION trial (NCT02864992). Two approaches were used to inform an indirect treatment comparison: (1) published clinical trials in overall non-small cell lung cancer and (2) real-world evidence in the METex14 skipping population. Results are presented as median and total quality-adjusted life-year gain and survival for progression-free survival and overall survival. Survival curves were validated against the external literature and uncertainty assessed using a probabilistic sensitivity analysis. RESULTS Using the indirect treatment comparison against the published literature, tepotinib is estimated to have a median progression-free survival gain versus pembrolizumab ± chemotherapy (11.0 and 9.2 months) in untreated patients, and docetaxel ± nintedanib (5.1 and 6.4 months) in previously treated patients. Across the populations, tepotinib is estimated to have a median survival gain of 15.4 and 9.2 months versus pembrolizumab ± chemotherapy in untreated patients and 12.8 and 5.1 months versus docetaxel ± nintedanib in previously treated patients. The total quality-adjusted life-year gain ranges between 0.56 and 1.17 across the untreated and previously treated populations. Results from the real-world evidence of indirect treatment comparisons are consistent with these findings. CONCLUSIONS Despite the limitations of the evidence base, the numerous analyses conducted have consistently indicated positive outcomes for tepotinib versus the current standard of care.
Collapse
Affiliation(s)
| | | | | | - Anthony J Hatswell
- Delta Hat Ltd, Nottingham, UK
- Department of Statistical Science, UCL, London, UK
| | - Helene Vioix
- Global Evidence and Value Department, Merck Healthcare KGaA, Darmstadt, Germany
| | - Thomas McLean
- Merck Serono Ltd., an affiliate of Merck KGaA, Feltham, UK
| | | | - Shobhit Baijal
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Paul K Paik
- Weill Cornell Medical College, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
64
|
Lee B, Chern A, Fu AY, Zhang A, Sha MY. A Highly Sensitive XNA-Based RT-qPCR Assay for the Identification of ALK, RET, and ROS1 Fusions in Lung Cancer. Diagnostics (Basel) 2024; 14:488. [PMID: 38472960 DOI: 10.3390/diagnostics14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Lung cancer is often triggered by genetic alterations that result in the expression of oncogenic tyrosine kinases. Specifically, ALK, RET, and ROS1 chimeric receptor tyrosine kinases are observed in approximately 5-7%, 1-2%, and 1-2% of NSCLC patients, respectively. The presence of these fusion genes determines the response to tyrosine kinase inhibitors. Thus, accurate detection of these gene fusions is essential in cancer research and precision oncology. To address this need, we have developed a multiplexed RT-qPCR assay using xeno nucleic acid (XNA) molecular clamping technology to detect lung cancer fusions. This assay can quantitatively detect thirteen ALK, seven ROS1, and seven RET gene fusions in FFPE samples. The sensitivity of the assay was established at a limit of detection of 50 copies of the synthetic template. Our assay has successfully identified all fusion transcripts using 50 ng of RNA from both reference FFPE samples and cell lines. After validation, a total of 77 lung cancer patient FFPE samples were tested, demonstrating the effectiveness of the XNA-based fusion gene assay with clinical samples. Importantly, this assay is adaptable to highly degraded RNA samples with low input amounts. Future steps involve expanding the testing to include a broader range of clinical samples as well as cell-free RNAs to further validate its applicability and reliability.
Collapse
Affiliation(s)
- Bongyong Lee
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Andrew Chern
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Andrew Y Fu
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Aiguo Zhang
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Michael Y Sha
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| |
Collapse
|
65
|
Saito A, Terai H, Kim T, Emoto K, Kawano R, Nakamura K, Hayashi H, Takaoka H, Ogata A, Kinoshita K, Ito F, Shigematsu L, Okada M, Fukushima T, Mitsuishi A, Shinozaki T, Ohgino K, Ikemura S, Yasuda H, Kawada I, Soejima K, Nishihara H, Fukunaga K. Clinical utility of the Oncomine Dx Target Test multi-CDx system and the possibility of utilizing those original sequence data. Cancer Med 2024; 13:e7077. [PMID: 38457233 PMCID: PMC10922029 DOI: 10.1002/cam4.7077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Companion diagnostic tests play a crucial role in guiding treatment decisions for patients with non-small cell lung cancer (NSCLC). The Oncomine Dx Target Test (ODxTT) Multi-CDx System has emerged as a prominent companion diagnostic method. However, its efficacy in detecting driver gene mutations, particularly rare mutations, warrants investigation. AIMS This study aimed to assess the performance of the ODxTT in detecting driver gene mutations in NSCLC patients. Specifically, we aimed to evaluate its sensitivity in detecting epidermal growth factor receptor (EGFR) mutations, a key determinant of treatment selection in NSCLC. MATERIALS AND METHODS We conducted a retrospective analysis of NSCLC patients who underwent testing with the ODxTT at Keio University Hospital between May 2020 and March 2022. Patient samples were subjected to both DNA and RNA tests. Driver gene mutation status was assessed, and instances of missed mutations were meticulously examined. RESULTS Of the 90 patients, five had nucleic acid quality problems, while 85 underwent both DNA and RNA tests. Driver gene mutations were detected in 56/90 (62.2%) patients. Of the 34 patient specimens, driver mutations were not detected using the ODxTT; however, epidermal growth factor receptor (EGFR) mutations were detected using polymerase chain reaction-based testing in two patients, and a KRAS mutation was detected by careful examination of the sequence data obtained using the ODxTT in one patient. For the above three cases, carefully examining the gene sequence information obtained using the ODxTT could identify driver mutations that were not mentioned in the returned test results. Additionally, we confirmed comparable instances of overlook results for EGFR mutations in the dataset from South Korea, implying that this type of oversight could occur in other countries using the ODxTT. EGFR mutation was missed in ODxTT in Japan (6.3%, 2/32), South Korea (2.0%, 1/49), and overall (3.7%, 3/81). CONCLUSION Even if sufficient tumor samples are obtained, rare EGFR mutations (which are excluded from the ODxTT's genetic mutation list) might not be detected using the current ODxTT system due to the program used for sequence analysis. However, such rare EGFR mutations can still be accurately detected on ODxTT's sequence data using next-generation sequencing.
Collapse
Affiliation(s)
- Ayaka Saito
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Hideki Terai
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
- Cancer Center, School of MedicineKeio UniversityTokyoJapan
| | - Tae‐Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary Hospital, College of MedicineThe Catholic University of KoreaSeoulSouth Korea
| | - Katsura Emoto
- Division of Diagnostic Pathology, School of MedicineKeio UniversityTokyoJapan
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer Center, School of MedicineKeio UniversityTokyoJapan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, School of MedicineKeio UniversityTokyoJapan
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, School of MedicineKeio UniversityTokyoJapan
| | - Hatsuyo Takaoka
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Akihiko Ogata
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Katsuhito Kinoshita
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Fumimaro Ito
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Lisa Shigematsu
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Masahiko Okada
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Takahiro Fukushima
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Akifumi Mitsuishi
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Taro Shinozaki
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Keiko Ohgino
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Shinnosuke Ikemura
- Cancer Center, School of MedicineKeio UniversityTokyoJapan
- Department of Respiratory Medicine, Graduate School of MedicineUniversity of YamanashiYamanashiJapan
| | - Hiroyuki Yasuda
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| | - Ichiro Kawada
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
- Keio University Health CenterKeio UniversityTokyoJapan
| | - Kenzo Soejima
- Department of Respiratory Medicine, Graduate School of MedicineUniversity of YamanashiYamanashiJapan
- Clinical Translational Research CenterKeio University HospitalTokyoJapan
| | - Hiroshi Nishihara
- Division of Diagnostic Pathology, School of MedicineKeio UniversityTokyoJapan
| | - Koichi Fukunaga
- Department of Internal Medicine (Pulmonary Medicine), School of MedicineKeio UniversityTokyoJapan
| |
Collapse
|
66
|
Jeon DS, Park C, Kim SJ, Park CK, Chang YS, Jung CY, Lee SY, Lee S, Ryu J, Lee JE, Lee KY, Jang TW, Jang SH, Yoon SH, Lee SH, Choi C, Kim HR, Kim YJ. Real-world outcome of crizotinib for anaplastic lymphoma kinase-positive lung cancer: Multicenter retrospective analysis in South Korea. Thorac Cancer 2024; 15:448-457. [PMID: 38171544 PMCID: PMC10883859 DOI: 10.1111/1759-7714.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND About 3%-5% of non-small cell lung cancer (NSCLC) presents positive anaplastic lymphoma kinase (ALK). Recently, several target agents have been approved as a treatment for ALK-positive NSCLC. This study aimed to analyze the real-world efficacy and outcome when administered crizotinib, the first approved target agent for ALK-positive NSCLC, according to first- or late-line treatment. METHODS A total of 290 patients with ALK-positive advanced NSCLC who were treated with crizotinib in 15 institutions in South Korea from January 2009 to December 2018 were enrolled. RESULTS The median age of patients was 57.0 years, and 50.3% were male. The median follow-up duration was 29.3 months. Among them, 113 patients received crizotinib as first-line therapy. The objective response rate (ORR) was 60.1% (57.0% for first-line recipients, 61.8% for second-/later-line). Median (95% CI) progression-free survival (PFS) was 13.7 (11.6-17.0) months. For first-line recipients, overall survival (OS) was 26.3 (17.6-35.0) months. No significant difference in ORR, PFS and OS, according to the setting of crizotinib initiation, was observed. In a multivariate Cox regression analysis, old age, male gender, initially metastatic, and number of metastatic organs were associated with poor PFS and OS. The most common adverse events were nausea and vomiting, and severe adverse event leading to dose adjustment was hepatotoxicity. CONCLUSIONS ORR, PFS, OS, and adverse event profiles were comparable to previous clinical trials. Our findings could aid in the efficient management of ALK-positive lung cancer patients.
Collapse
Affiliation(s)
- Da Som Jeon
- Department of Pulmonary and Critical Care MedicineNowon Eulji Medical Center, University of EuljiSeoulSouth Korea
| | - Cheol‐kyu Park
- Department of Pulmonary and Critical Care MedicineChonnam National University Hwasun hospital, Chonnam National UniversityJeollanam‐doRepublic of Korea
| | - Seung Joon Kim
- Department of Internal MedicinePostech‐Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| | - Chan Kwon Park
- Department of Pulmonary and Critical Care MedicineCatholic University of Korean Yeouido Saint Mary's HospitalSeoulKorea
| | - Yoon Soo Chang
- Department of Internal MedicineYonsei University College of Medicine, 8th Floor Annex Building, Yongdong Severance HospitalSeoulRepublic of Korea
| | - Chi Young Jung
- Department of Internal MedicineDaegu Catholic University School of MedicineDaeguKorea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of MedicineSeoulKorea
| | - Shin‐Yup Lee
- Division of Pulmonary and Critical Care MedicineKyungpook National University Chilgok HospitalDaeguKorea
| | - Jeong‐Seon Ryu
- Department of Pulmonary and Critical Care MedicineInha University HospitalIncheonRepublic of Korea
| | - Jeong Eun Lee
- Department of Internal MedicineChungnam National University HospitalDaejeonRepublic of Korea
| | - Kye Young Lee
- Department of Pulmonary MedicineKonkuk University School of MedicineSeoulRepublic of Korea
| | - Tae Won Jang
- Department of Internal MedicineKosin University Medical CollegePusanKorea
| | - Seung Hun Jang
- Department of PulmonaryAllergy and Critical Care Medicine, Hallym University Sacred Heart HospitalAnyangRepublic of Korea
| | - Seong Hoon Yoon
- Department of Internal MedicineSchool of Medicine, Pusan National UniversityYangsanRepublic of Korea
| | - Sang Hoon Lee
- Division of Pulmonology, Institute of Chest Disease, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Chang‐min Choi
- Department of Pulmonary and Critical Care MedicineAsan Medical Centre, University of Ulsan College of MedicineSeoulRepublic of Korea
- Department of OncologyAsan Medical Centre, University of Ulsan College of MedicineSeoulRepublic of Korea
| | - Hyeong Ryul Kim
- Department of Pulmonary and Critical Care MedicineAsan Medical Centre, University of Ulsan College of MedicineSeoulRepublic of Korea
| | - Yeon Joo Kim
- Department of Pulmonary and Critical Care MedicineNowon Eulji Medical Center, University of EuljiSeoulSouth Korea
| |
Collapse
|
67
|
Zeng A, Xiong Y, Zhang J, Yu H, Zhang L, Bian D, Han L, Wang J, Chen Y, Shaik MS, Zhang P, Dai J. Prognostic factors of resectable anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) patients: a retrospective analysis based on a single center. Transl Lung Cancer Res 2024; 13:16-33. [PMID: 38405002 PMCID: PMC10891410 DOI: 10.21037/tlcr-23-606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Background Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) exhibited a higher propensity for lymph node metastasis (LNM). This study aimed to investigate risk factors of occult lymph node metastasis (OLNM) and recurrence in resectable ALK-rearranged NSCLC patients. Methods This retrospective analysis included patients with ALK-rearranged NSCLC receiving lung resections at Shanghai Pulmonary Hospital from June 2016 to August 2021. Logistic regression analysis was used to ascertain predictors of OLNM, and Cox regression analysis to identify risk factors of recurrence. Results A total of 603 resectable ALK-rearranged NSCLC patients were included. The mean age was 55 years old. There were 171 patients (28.4%) pathologically confirmed to have LNM, 51.5% of which were occult. Logistic regression analysis identified clinical tumor size and computed tomography (CT) density as independent factors for OLNM. Cox regression analysis showed that pleural invasion and pathological tumor size were independent prognosticators for recurrence in pathologically nodal negative patients. Among pathologically nodal positive patients, adjuvant ALK-tyrosine kinase inhibitors (TKI) showed a similar recurrence-free survival (RFS) to chemotherapy (hazard ratio, 0.454; 95% confidence interval, 0.111-1.864). Conclusions Assessing the potential risk of OLNM is required for ALK-rearranged NSCLC patients with large tumors characterized by high CT densities. Patients with large pathological tumor size or pleural infiltration should be closely monitored despite being pathologically nodal negative. Additionally, adjuvant ALK-TKI may present a comparable RFS to chemotherapy in pathologically nodal positive patients.
Collapse
Affiliation(s)
- Ao Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yicheng Xiong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huansha Yu
- Department of Animal Experiment Center, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongliang Bian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Han
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jue Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
68
|
Chen Q, Jia G, Zhang X, Ma W. Targeting HER3 to overcome EGFR TKI resistance in NSCLC. Front Immunol 2024; 14:1332057. [PMID: 38239350 PMCID: PMC10794487 DOI: 10.3389/fimmu.2023.1332057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) play a crucial role in cellular signaling and oncogenic progression. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) patients with EGFR-sensitizing mutations, but resistance frequently emerges between 10 to 14 months. A significant factor in this resistance is the role of human EGFR 3 (HER3), an EGFR family member. Despite its significance, effective targeting of HER3 is still developing. This review aims to bridge this gap by deeply examining HER3's pivotal contribution to EGFR TKI resistance and spotlighting emerging HER3-centered therapeutic avenues, including monoclonal antibodies (mAbs), TKIs, and antibody-drug conjugates (ADCs). Preliminary results indicate combining HER3-specific treatments with EGFR TKIs enhances antitumor effects, leading to an increased objective response rate (ORR) and prolonged overall survival (OS) in resistant cases. Embracing HER3-targeting therapies represents a transformative approach against EGFR TKI resistance and emphasizes the importance of further research to optimize patient stratification and understand resistance mechanisms.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Gang Jia
- Department of Medical Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xilin Zhang
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
69
|
Cosso F, Roviello G, Catalano M, Botteri C, Comin CE, Castiglione F, Ferrari K, Baldini E, Mini E. A case report of a lung cancer patient with two uncommon EGFR mutations and a review of the literature: two sides of the same coin. Anticancer Drugs 2024; 35:76-80. [PMID: 37067984 DOI: 10.1097/cad.0000000000001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Lung cancer is the malignancy with the highest morbidity and mortality worldwide. Approximately 60% of non-small cell lung cancer (NSCLC) presents driver alterations most of which are targetable. Nowadays, limited clinical data are available regarding the efficacy of epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors in patients with NSCLC harboring uncommon EGFR mutations, considering their heterogeneity. Herein, we report a rare case of EGFR-mutated lung adenocarcinoma which has developed into squamous cell carcinoma with uncommon EGFR (Ex18) compound mutations and phosphatidylinositol 3-kinase mutation receiving afatinib at the forefront.
Collapse
Affiliation(s)
| | | | | | | | - Camilla Eva Comin
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital
| | | | - Katia Ferrari
- Respiratory Medicine Unit, Careggi University Hospital, Florence
| | - Editta Baldini
- Department of Medical Oncology, San Luca Hospital, Lucca, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence
| |
Collapse
|
70
|
Kusumaningrum AE, Makaba S, Ali E, Singh M, Fenjan MN, Rasulova I, Misra N, Al-Musawi SG, Alsalamy A. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance. Cell Biochem Funct 2024; 42:e3906. [PMID: 38269502 DOI: 10.1002/cbf.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.
Collapse
Affiliation(s)
| | - Sarce Makaba
- Researcher and lecturer, Universitas Cenderawasih Jayapura, Jayapura, Indonesia
| | - Eyhab Ali
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Mandeep Singh
- Directorate of Sports and Physical Education, University of Jammu, Jammu, India
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Sada G Al-Musawi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
71
|
Baer X, Chevallier M, Rey Cobo J, Plojoux J, De Vito C, Addeo A. Rare Synchronous Lung Cancers in a Nonsmoker with Epidermal Growth Factor Receptor and Mesenchymal-Epithelial Transition Alterations: A Case Report. Case Rep Oncol 2024; 17:549-555. [PMID: 38618277 PMCID: PMC11014720 DOI: 10.1159/000538019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction Lung cancer is the second most common cancer; however, synchronous lung cancer is rare and challenging to treat. Case Presentation We report the case of an 80-year-old female patient who presented with two lung lesions with primary tumor characteristics, which revealed squamous cell carcinoma and synchronous adenocarcinoma after histological sampling. Next-generation sequencing (NGS) analysis revealed a MET Exon 14 skipping mutation in squamous cell carcinoma and an epidermal growth factor receptor mutation in adenocarcinoma. Capmatinib and stereotactic radiotherapy were initiated for the adenocarcinoma with a good clinical response. Capmatinib treatment had to be discontinued because of stage 3 edema of the lower limbs, after which a left lobectomy was performed. Currently, the patient is considered to be in remission. Conclusion This case highlights the need for histological analysis of every lung lesion with primary tumor characteristics, as well as for NGS analysis in search of specific mutations enabling the introduction of targeted therapies. mesenchymal-epithelial transition.
Collapse
Affiliation(s)
- Xavier Baer
- Department of Internal Medicine, University Hospital Geneva, Geneva, Switzerland
| | | | - Juliana Rey Cobo
- Department of Respiratory Medicine, University Hospital Geneva, Geneva, Switzerland
| | - Jérôme Plojoux
- Department of Respiratory Medicine, University Hospital Geneva, Geneva, Switzerland
| | - Claudio De Vito
- Department of Pathology, University Hospital Geneva, Geneva, Switzerland
| | - Alfredo Addeo
- Department of Oncology, University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
72
|
Bestvina CM, Waters D, Morrison L, Emond B, Lafeuille MH, Hilts A, Lefebvre P, He A, Vanderpoel J. Cost of genetic testing, delayed care, and suboptimal treatment associated with polymerase chain reaction versus next-generation sequencing biomarker testing for genomic alterations in metastatic non-small cell lung cancer. J Med Econ 2024; 27:292-303. [PMID: 38391239 DOI: 10.1080/13696998.2024.2314430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS To assess US payers' per-patient cost of testing associated with next-generation sequencing (NGS) versus polymerase chain reaction (PCR) biomarker testing strategies among patients with metastatic non-small cell lung cancer (mNSCLC), including costs of testing, delayed care, and suboptimal treatment initiation. METHODS A decision tree model considered biomarker testing for genomic alterations using either NGS, sequential PCR testing, or hotspot panel PCR testing. Literature-based model inputs included time-to-test results, costs for testing/medical care, costs of delaying care, costs of immunotherapy [IO]/chemotherapy [CTX] initiation prior to receiving test results, and costs of suboptimal treatment initiation after test results (i.e. costs of first-line IO/CTX in patients with actionable mutations that were undetected by PCR that would have been identified with NGS). The proportion of patients testing positive for a targetable alteration, time to appropriate therapy initiation, and per-patient costs were estimated for NGS and PCR strategies combined. RESULTS In a modeled cohort of 1,000,000 members (25% Medicare, 75% commercial), an estimated 1,119 had mNSCLC and received testing. The proportion of patients testing positive for a targetable alteration was 45.9% for NGS and 40.0% for PCR testing. Mean per-patient costs were lowest for NGS ($8,866) compared to PCR ($18,246), with lower delayed care costs of $1,301 for NGS compared to $3,228 for PCR, and lower costs of IO/CTX initiation prior to receiving test results (NGS: $2,298; PCR:$5,991). Cost savings, reaching $10,496,220 at the 1,000,000-member plan level, were driven by more rapid treatment with appropriate therapy for patients tested with NGS (2.1 weeks) compared to PCR strategies (5.2 weeks). LIMITATIONS Model inputs/assumptions were based on published literature or expert opinion. CONCLUSIONS NGS testing was associated with greater cost savings versus PCR, driven by more rapid results, shorter time to appropriate therapy initiation, and minimized use of inappropriate therapies while awaiting and after test results.
Collapse
Affiliation(s)
- Christine M Bestvina
- University of Chicago Comprehensive Cancer Center; Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Dexter Waters
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| | | | | | | | | | | | - Andy He
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| | - Julie Vanderpoel
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| |
Collapse
|
73
|
Loeffler E, Ancel J, Dalstein V, Deslée G, Polette M, Nawrocki-Raby B. HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life (Basel) 2023; 14:64. [PMID: 38255679 PMCID: PMC10820545 DOI: 10.3390/life14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties. In this review, we focus on the different HER2 dysregulation mechanisms that have been observed in non-small cell lung cancer (NSCLC): gene mutation, gene amplification, protein overexpression and protein hyper-phosphorylation, the latter suggesting that HER2 dysregulation can occur independently of any molecular aberration. These HER2 alterations inevitably have consequences on tumor biology. Here, we discuss how they are not only involved in abnormal proliferation and survival of cancer cells but also potentially in increased angiogenic properties, mesenchymal features and tumor immune escape. Finally, we review the impact of these HER2 alterations in various therapeutic approaches. While standard chemotherapy and groundbreaking immunotherapy seem rather ineffective for HER2-altered NSCLCs, the development of HER2-targeted therapies such as tyrosine kinase inhibitors, anti-HER2 antibodies and especially antibody-drug conjugates could provide new hopes for patients.
Collapse
Affiliation(s)
- Emma Loeffler
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| | - Julien Ancel
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Véronique Dalstein
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Myriam Polette
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Béatrice Nawrocki-Raby
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| |
Collapse
|
74
|
Choi DH, Jung HA, Park S, Sun JM, Ahn JS, Ahn MJ, Lee SH. Effectiveness and safety of amivantamab in EGFR exon 20 insertion (E20I) mutations in non-small cell lung cancer (NSCLC). Transl Lung Cancer Res 2023; 12:2448-2459. [PMID: 38205202 PMCID: PMC10775014 DOI: 10.21037/tlcr-23-643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Background In non-small cell lung cancer (NSCLC), the epidermal growth factor receptor (EGFR) mutation is a representative oncogenic driver mutation. Only about 12% of EGFR mutation patients have the exon 20 insertion mutation, which is the third most frequent mutation among EGFR mutation NSCLC. Amivantamab, an EGFR and MET proto-oncogene, receptor tyrosine kinase (MET) bispecific antibody, was approved for NSCLC patients with the EGFR exon 20 insertion (E20I) mutation. In this study, we described the real-world, single-center efficacy and safety data of amivantamab in E20I mutation patients. Methods This study included metastatic NSCLC patients with EGFR E20I mutations. From January 2018 to June 2022, patients with EGFR E20I mutations who were treated with amivantamab were analyzed at Samsung Medical Center as part of the clinical trial or the early access program (EAP). We collected the patients' characteristics [age, sex, smoking history, location of mutation, sites of metastasis, programmed death-ligand 1 (PD-L1) expression status, etc.] and analyzed progression-free survival (PFS) and overall survival (OS) stratified by PD-L1 expression status, co-mutation such as tumor protein p53 (TP53), and metastasis sites. Results A total of 42 patients were analyzed, of which 16 patients were enrolled in the phase 1 study, and 26 patients received amivantamab through EAP. There were 14 (33%) patients with partial remission, 18 (43%) patients with stable disease, and 10 (24%) patients with disease progression. The objective response rate (ORR) was 33%, and the disease control rate (DCR) was 76%. PFS was analyzed by dividing the near and far loop for 31 patients whose mutation location was known. The two groups had no statistically significant difference in PFS [median (range): 11.8 (2.3-21.3) vs. 11.3 (3.4-19.2) months, P=0.69]. For 29 patients with TP53 mutation data, there was no significant difference in PFS between the two groups [median (range): 5.9 (0-18.0) vs. 12.6 (6.9-18.3) months, P=0.11]. When analyzing PFS in 37 patients with PD-L1 expression data, PD-L1 (+) patients showed a poor prognosis [median (range): 11.3 (5.0-17.6) vs. 19.5 (5.3-33.7) months, P=0.04; hazard ratio (HR), 0.44; 95% confidence interval (CI): 0.20-0.98]. Conclusions The efficacy of amivantamab was confirmed for the real-world population for EGFR E20I-mutated NSCLC. PD-L1 status could be a poor predictive factor, which should be further validated.
Collapse
Affiliation(s)
- Dae-Ho Choi
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
75
|
Larsen TV, Maansson CT, Daugaard TF, Andresen BS, Sorensen BS, Nielsen AL. Trans-Regulation of Alternative PD-L1 mRNA Processing by CDK12 in Non-Small-Cell Lung Cancer Cells. Cells 2023; 12:2844. [PMID: 38132164 PMCID: PMC10741404 DOI: 10.3390/cells12242844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Immunotherapy using checkpoint inhibitors targeting the interaction between PD-1 on T cells and PD-L1 on cancer cells has shown significant results in non-small-cell lung cancer (NSCLC). Not all patients respond to the therapy, and PD-L1 expression heterogeneity is proposed to be one determinant for this. The alternative processing of PD-L1 RNA, which depends on an alternative poly-A site in intron 4, generates a shorter mRNA variant (PD-L1v4) encoding soluble PD-L1 (sPD-L1), relative to the canonical PD-L1v1 mRNA encoding membrane-associated PD-L1 (mPD-L1). This study aimed to identify factors influencing the ratio between these two PD-L1 mRNAs in NSCLC cells. First, we verified the existence of the alternative PD-L1 RNA processing in NSCLC cells, and from in silico analyses, we identified a candidate list of regulatory factors. Examining selected candidates showed that CRISPR/Cas9-generated loss-of-function mutations in CDK12 increased the PD-L1v4/PD-L1v1 mRNA ratio and, accordingly, the sPD-L1/mPD-L1 balance. The CDK12/13 inhibitor THZ531 could also increase the PD-L1v4/PD-L1v1 mRNA ratio and impact the PD-L1 transcriptional response to IFN-γ stimulation. The fact that CDK12 regulates PD-L1 transcript variant formation in NSCLC cells is consistent with CDK12's role in promoting transcriptional elongation over intron-located poly-A sites. This study lays the groundwork for clinical investigations to delineate the implications of the CDK12-mediated balancing of sPD-L1 relative to mPD-L1 for immunotherapeutic responses in NSCLC.
Collapse
Affiliation(s)
- Trine V. Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Christoffer T. Maansson
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Tina F. Daugaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| | - Brage S. Andresen
- Department of Biology and Molecular Biology, Southern University of Denmark, 5230 Odense, Denmark;
| | - Boe S. Sorensen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anders L. Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.V.L.); (C.T.M.); (T.F.D.)
| |
Collapse
|
76
|
Kim D, Min D, Kim J, Kim MJ, Seo Y, Jung BH, Kwon SH, Ro H, Lee S, Sa JK, Lee JY. Nutlin-3a induces KRAS mutant/p53 wild type lung cancer specific methuosis-like cell death that is dependent on GFPT2. J Exp Clin Cancer Res 2023; 42:338. [PMID: 38093368 PMCID: PMC10720203 DOI: 10.1186/s13046-023-02922-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Oncogenic KRAS mutation, the most frequent mutation in non-small cell lung cancer (NSCLC), is an aggressiveness risk factor and leads to the metabolic reprogramming of cancer cells by promoting glucose, glutamine, and fatty acid absorption and glycolysis. Lately, sotorasib was approved by the FDA as a first-in-class KRAS-G12C inhibitor. However, sotorasib still has a derivative barrier, which is not effective for other KRAS mutation types, except for G12C. Additionally, resistance to sotorasib is likely to develop, demanding the need for alternative therapeutic strategies. METHODS KRAS mutant, and wildtype NSCLC cells were used in vitro cell analyses. Cell viability, proliferation, and death were measured by MTT, cell counting, colony analyses, and annexin V staining for FACS. Cell tracker dyes were used to investigate cell morphology, which was examined by holotomograpy, and confocal microscopes. RNA sequencing was performed to identify key target molecule or pathway, which was confirmed by qRT-PCR, western blotting, and metabolite analyses by UHPLC-MS/MS. Zebrafish and mouse xenograft model were used for in vivo analysis. RESULTS In this study, we found that nutlin-3a, an MDM2 antagonist, inhibited the KRAS-PI3K/Akt-mTOR pathway and disrupted the fusion of both autophagosomes and macropinosomes with lysosomes. This further elucidated non-apoptotic and catastrophic macropinocytosis associated methuosis-like cell death, which was found to be dependent on GFPT2 of the hexosamine biosynthetic pathway, specifically in KRAS mutant /p53 wild type NSCLC cells. CONCLUSION These results indicate the potential of nutlin-3a as an alternative agent for treating KRAS mutant/p53 wild type NSCLC cells.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Dongwha Min
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| | - Yerim Seo
- Center for Advanced Biomolecular Recognition, Korea Instiute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Instiute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul Center, Seoul, South Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Seoee Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Ji-Yun Lee
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, South Korea.
| |
Collapse
|
77
|
Bellur S, Khosla AA, Ozair A, Kotecha R, McDermott MW, Ahluwalia MS. Management of Brain Metastases: A Review of Novel Therapies. Semin Neurol 2023; 43:845-858. [PMID: 38011864 DOI: 10.1055/s-0043-1776782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Brain metastases (BMs) represent the most common intracranial tumors in adults, and most commonly originate from lung, followed by breast, melanoma, kidney, and colorectal cancer. Management of BM is individualized based on the size and number of brain metastases, the extent of extracranial disease, the primary tumor subtype, neurological symptoms, and prior lines of therapy. Until recently, treatment strategies were limited to local therapies, like surgical resection and radiotherapy, the latter in the form of whole-brain radiotherapy or stereotactic radiosurgery. The next generation of local strategies includes laser interstitial thermal therapy, magnetic hyperthermic therapy, post-resection brachytherapy, and focused ultrasound. New targeted therapies and immunotherapies with documented intracranial activity have transformed clinical outcomes. Novel systemic therapies with intracranial utility include new anaplastic lymphoma kinase inhibitors like brigatinib and ensartinib; selective "rearranged during transfection" inhibitors like selpercatinib and pralsetinib; B-raf proto-oncogene inhibitors like encorafenib and vemurafenib; Kirsten rat sarcoma viral oncogene inhibitors like sotorasib and adagrasib; ROS1 gene rearrangement (ROS1) inhibitors, anti-neurotrophic tyrosine receptor kinase agents like larotrectinib and entrectinib; anti-human epidermal growth factor receptor 2/epidermal growth factor receptor exon 20 agent like poziotinib; and antibody-drug conjugates like trastuzumab-emtansine and trastuzumab-deruxtecan. This review highlights the modern multidisciplinary management of BM, emphasizing the integration of systemic and local therapies.
Collapse
Affiliation(s)
- Shreyas Bellur
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Rupesh Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, Florida
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
78
|
Juncu SŞ, Trifan AV, Minea H, Avram RI, Cojocariu C, Sîngeap AM. From spotlight to shadow: ALK inhibitor-induced acute liver failure in a patient with non-small cell lung cancer. Arch Clin Cases 2023; 10:160-163. [PMID: 38026106 PMCID: PMC10660242 DOI: 10.22551/2023.41.1004.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Simona Ştefania Juncu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” University Emergency County Hospital, Iasi, Romania
| | - Anca Victorita Trifan
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” University Emergency County Hospital, Iasi, Romania
| | - Horia Minea
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” University Emergency County Hospital, Iasi, Romania
| | | | - Camelia Cojocariu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” University Emergency County Hospital, Iasi, Romania
| | - Ana-Maria Sîngeap
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” University Emergency County Hospital, Iasi, Romania
| |
Collapse
|
79
|
Nawas AF, Solmonson A, Gao B, DeBerardinis RJ, Minna JD, Conacci-Sorrell M, Mendelson CR. IL-1β mediates the induction of immune checkpoint regulators IDO1 and PD-L1 in lung adenocarcinoma cells. Cell Commun Signal 2023; 21:331. [PMID: 37985999 PMCID: PMC10658741 DOI: 10.1186/s12964-023-01348-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023] Open
Abstract
INTRODUCTION Inflammation plays a significant role in various cancers, including lung cancer, where the inflammatory cytokine IL-1β is often elevated in the tumor microenvironment. Patients with lung adenocarcinoma show higher levels of serum IL-1β compared to healthy individual. Moreover, IL-1β blockade reduces the incidence and mortality of lung cancer. Our prior studies revealed that alveolar type-II cells, the precursors for lung adenocarcinoma, display an induction in the expression of the enzyme tryptophan 2,3-dioxygenase (TDO2) during normal lung development. This induction of TDO2 coincides with an increase in IL-1β levels and is likely caused by IL-1β. Given that cancer cells can co-opt developmentally regulated pathways, we hypothesized that IL-1β may exert its pro-tumoral function by stimulating TDO2 and indoleamine 2, 3-dioxygenase-1 (IDO1), parallel enzymes involved in the conversion of tryptophan (Trp) into the immune-suppressive oncometabolite kynurenine (Kyn). Our goal was to determine whether IL-1β is a common upstream regulator of immune checkpoint regulators. METHODS To determine whether IL-1β regulates IDO1, TDO2, PD-L1, and PD-L2, we measured mRNA and protein levels in lung adenocarcinoma cells lines (A549, H1792, H1838, H2347, H2228, HCC364 and HCC827) grown in 2D or 3D and in immortalized normal lung epithelial cells (HBEC3-KT and HSAEC1-KT). To determine the importance of the NFκB pathway in mediating IL-1β -regulated cellular effects, we used siRNA to knockdown RelA/p65 in IL-1β treated cells. The levels of Trp and Kyn in the IL-1β-treated cells and media were measured by mass spectrometry. RESULTS Upon IL-1β stimulation, lung adenocarcinoma cells exhibited significant increases in IDO1 mRNA and protein levels, a response that depended on the NFκB pathway. Interestingly, this induction was more pronounced in 3D spheroid cultures compared to monolayer cultures and was not observed in normal immortalized lung epithelial cells. Furthermore, the conversion of Trp to Kyn increased in cells exposed to IL-1β, aligning with the heightened IDO1 expression. Remarkably, IL-1β also upregulated the expression of programmed death ligand-1 (PD-L1) and PD-L2 in multiple cell lines, indicating that IL-1β triggers parallel immune-suppressive mechanisms in lung adenocarcinoma cells. CONCLUSIONS Our studies demonstrate that lung adenocarcinoma cells, but not normal immortalized lung epithelial cells, respond to IL-1β signaling by inducing the expression of parallel immune checkpoint proteins that have the potential to promote immune evasion. Video Abstract.
Collapse
Affiliation(s)
- Afshan Fathima Nawas
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maralice Conacci-Sorrell
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Department of Obstetrics and Gynecology and North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| |
Collapse
|
80
|
Stephens EKH, Guayco Sigcha J, Lopez-Loo K, Yang IA, Marshall HM, Fong KM. Biomarkers of lung cancer for screening and in never-smokers-a narrative review. Transl Lung Cancer Res 2023; 12:2129-2145. [PMID: 38025810 PMCID: PMC10654441 DOI: 10.21037/tlcr-23-291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Background and Objective Lung cancer is the leading cause of cancer-related mortality worldwide, partially attributed to late-stage diagnoses. In order to mitigate this, lung cancer screening (LCS) of high-risk patients is performed using low dose computed tomography (CT) scans, however this method is burdened by high false-positive rates and radiation exposure for patients. Further, screening programs focus on individuals with heavy smoking histories, and as such, never-smokers who may otherwise be at risk of lung cancer are often overlooked. To resolve these limitations, biomarkers have been posited as potential supplements or replacements to low-dose CT, and as such, a large body of research in this area has been produced. However, comparatively little information exists on their clinical efficacy and how this compares to current LCS strategies. Methods Here we conduct a search and narrative review of current literature surrounding biomarkers of lung cancer to supplement LCS, and biomarkers of lung cancer in never-smokers (LCINS). Key Content and Findings Many potential biomarkers of lung cancer have been identified with varying levels of sensitivity, specificity, clinical efficacy, and supporting evidence. Of the markers identified, multi-target panels of circulating microRNAs, lipids, and metabolites are likely the most clinically efficacious markers to aid current screening programs, as these provide the highest sensitivity and specificity for lung cancer detection. However, circulating lipid and metabolite levels are known to vary in numerous systemic pathologies, highlighting the need for further validation in large cohort randomised studies. Conclusions Lung cancer biomarkers is a fast-expanding area of research and numerous biomarkers with potential clinical applications have been identified. However, in all cases the level of evidence supporting clinical efficacy is not yet at a level at which it can be translated to clinical practice. The priority now should be to validate existing candidate markers in appropriate clinical contexts and work to integrating these into clinical practice.
Collapse
Affiliation(s)
- Edward K. H. Stephens
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jazmin Guayco Sigcha
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kenneth Lopez-Loo
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ian A. Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Henry M. Marshall
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Kwun M. Fong
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
81
|
Jablonska PA, Das A. Management of brain metastases in non-small cell lung cancer without actionable driver mutations-the need to dive deeper in the right 'pool'. Transl Lung Cancer Res 2023; 12:1966-1971. [PMID: 38025807 PMCID: PMC10654432 DOI: 10.21037/tlcr-23-571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Paola Anna Jablonska
- Radiation Oncology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Avipsa Das
- Department of Clinical Oncology, St Luke’s Cancer Centre, Royal Surrey NHS Foundation Trust, Guildford, UK
| |
Collapse
|
82
|
Alamery S, AlAjmi A, Wani TA, Zargar S. In Silico and In Vitro Exploration of Poziotinib and Olmutinib Synergy in Lung Cancer: Role of hsa-miR-7-5p in Regulating Apoptotic Pathway Marker Genes. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1923. [PMID: 38003971 PMCID: PMC10673591 DOI: 10.3390/medicina59111923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Background and objectives: Non-small cell lung cancer (NSCLC) is often caused by EGFR mutations, leading to overactive cell growth pathways. Drug resistance is a significant challenge in lung cancer treatment, affecting therapy effectiveness and patient survival. However, combining drugs in research shows promise in addressing or delaying resistance, offering a more effective approach to cancer treatment. In this study, we investigated the potential alterations in the apoptotic pathway in A549 cells induced by a combined targeted therapy using tyrosine kinase inhibitors (TKIs) olmutinib and poziotinib, focusing on cell proliferation, differential gene expression, and in silico analysis of apoptotic markers. Methods: A combined targeted therapy involving olmutinib and poziotinib was investigated for its impact on the apoptotic pathway in A549 cells. Cell proliferation, quantitative differential gene expression, and in silico analysis of apoptotic markers were examined. A549 cells were treated with varying concentrations (1, 2.5, and 5 μM) of poziotinib, olmutinib, and their combination. Results: Treatment with poziotinib, olmutinib, and their combination significantly reduced cell proliferation, with the most pronounced effect at 2.5 μM (p < 0.005). A synergistic antiproliferative effect was observed with the combination of poziotinib and olmutinib (p < 0.0005). Quantitative differential gene expression showed synergistic action of the drug combination, impacting key apoptotic genes including STK-11, Bcl-2, Bax, and the Bax/Bcl-2 ratio. In silico analysis revealed direct interactions between EGFR and ERBB2 genes, accounting for 77.64% of their interactions, and 8% co-expression with downstream apoptotic genes. Molecular docking indicated strong binding of poziotinib and olmutinib to extrinsic and intrinsic apoptotic pathway markers, with binding energies of -9.4 kcal/mol and -8.5 kcal/mol, respectively, on interacting with STK-11. Conclusions: Combining poziotinib and olmutinib therapies may significantly improve drug tolerance and conquer drug resistance more effectively than using them individually in lung cancer patients, as suggested by this study's mechanisms.
Collapse
Affiliation(s)
- Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (A.A.)
| | - Anfal AlAjmi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (A.A.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (A.A.)
| |
Collapse
|
83
|
Shin DH, Jo JY, Choi M, Kim KH, Bae YK, Kim SS. Oncogenic KRAS mutation confers chemoresistance by upregulating SIRT1 in non-small cell lung cancer. Exp Mol Med 2023; 55:2220-2237. [PMID: 37779142 PMCID: PMC10618295 DOI: 10.1038/s12276-023-01091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 10/03/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homologue (KRAS) is a frequent oncogenic driver of solid tumors, including non-small cell lung cancer (NSCLC). The treatment and outcomes of KRAS-mutant cancers have not been dramatically revolutionized by direct KRAS-targeted therapies because of the lack of deep binding pockets for specific small molecule inhibitors. Here, we demonstrated that the mRNA and protein levels of the class III histone deacetylase SIRT1 were upregulated by the KRASMut-Raf-MEK-c-Myc axis in KRASMut lung cancer cells and in lung tumors of a mouse model with spontaneous KrasG12D expression. KRASMut-induced SIRT1 bound to KRASMut and stably deacetylated KRASMut at lysine 104, which increased KRASMut activity. SIRT1 knockdown (K/D) or the SIRT1H363Y mutation increased KRASMut acetylation, which decreased KRASMut activity and sensitized tumors to the anticancer effects of cisplatin and erlotinib. Furthermore, in KrasG12D/+;Sirt1co/co mice, treatment with cisplatin and erlotinib robustly reduced the tumor burden and increased survival rates compared with those in spontaneous LSL-KrasG12D/+;Sirt1+/+ mice and mice in each single-drug treatment group. Then, we identified p300 as a KRASMut acetyltransferase that reinforced KRASMut lysine 104 acetylation and robustly decreased KRASMut activity. KRASMut lysine 104 acetylation by p300 and deacetylation by SIRT1 were confirmed by LC‒MS/MS. Consistent with this finding, the SIRT1 inhibitor EX527 suppressed KRASMut activity, which synergistically abolished cell proliferation and colony formation, as well as the tumor burden in KRASMut mice, when combined with cisplatin or erlotinib. Our data reveal a novel pathway critical for the regulation of KRASMut lung cancer progression and provide important evidence for the potential application of SIRT1 inhibitors and p300 activators for the combination treatment of KRASMut lung cancer patients.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Jeong Yeon Jo
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Minyoung Choi
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung-Hee Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Ki Bae
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Soo Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
84
|
Dogan I, Khanmammadov N, Yıldız A, Ahmed MA, Vatansever S, Saip P, Aydiner A. Predictors of response in EGFR-mutant metastatic non-small cell lung cancer patients treated with tyrosine kinase inhibitors. J Cancer Res Ther 2023; 19:1945-1949. [PMID: 38376301 DOI: 10.4103/jcrt.jcrt_877_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND The goal of the study was to evaluate the efficacy of tyrosine kinase inhibitors in patients with epidermal growth factor receptor (EGFR)-mutant metastatic non-small cell cancer and to determine the factors that predict objective response. MATERIALS AND METHODS In the study, data from metastatic non-small cell lung cancer patients with EGFR mutations treated with tyrosine kinase inhibitors were retrospectively reviewed. Factors predicting objective response were evaluated with logistic regression analysis. RESULTS The study evaluated the data of 105 patients. The most common EGFR mutations detected in patients were exon 19 (56.2%) and exon 21 (23.8%). The median progression-free survival (PFS) associated with EGFR tyrosine kinase inhibitors was 20.1 (95% confidence interval [CI], 13.4-26.7) months. The median overall survival (OS) in the post-metastasis period was found to be 30.8 (95% CI, 20.2-41.4) months. Five- and seven-year OS was determined as 28.7% and 22.9%, respectively. Factors predicting the objective response were analyzed. Presence of drug-related toxicity (P = 0.02), histopathologic type (P = 0.01), metastasis burden (P = 0.03), and EGFR mutation type (P = 0.04) were found to be statistically significant in multivariate analysis. CONCLUSIONS In our study, we found that EGFR tyrosine kinase inhibitors are effective and safe. Better response to EGFR inhibitors was observed in the presence of drug-induced toxicity, adenocarcinoma histology, low metastasis burden, and exon 19 mutation.
Collapse
Affiliation(s)
- Izzet Dogan
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
85
|
Di Federico A, Ricciotti I, Favorito V, Michelina SV, Scaparone P, Metro G, De Giglio A, Pecci F, Lamberti G, Ambrogio C, Ricciuti B. Resistance to KRAS G12C Inhibition in Non-small Cell Lung Cancer. Curr Oncol Rep 2023; 25:1017-1029. [PMID: 37378881 DOI: 10.1007/s11912-023-01436-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE OF REVIEW Although the recent development of direct KRASG12C inhibitors (G12Ci) has improved outcomes in KRAS mutant cancers, responses occur only in a fraction of patients, and among responders acquired resistance invariably develops over time. Therefore, the characterization of the determinants of acquired resistance is crucial to inform treatment strategies and to identify novel therapeutic vulnerabilities that can be exploited for drug development. RECENT FINDINGS Mechanisms of acquired resistance to G12Ci are heterogenous including both on-target and off-target resistance. On-target acquired resistance includes secondary codon 12 KRAS mutations, but also acquired codon 13 and codon 61 alterations, and mutations at drug binding sites. Off-target acquired resistance can derive from activating mutations in KRAS downstream pathway (e.g., MEK1), acquired oncogenic fusions (EML4-ALK, CCDC176-RET), gene level copy gain (e.g., MET amplification), or oncogenic alterations in other pro-proliferative and antiapoptotic pathways (e.g., FGFR3, PTEN, NRAS). In a fraction of patients, histologic transformation can also contribute to the development of acquire resistance. We provided a comprehensive overview of the mechanisms that limit the efficacy of this G12i and reviewed potential strategies to overcome and possibly delay the development of resistance in patients receiving KRAS directed targeted therapies.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Valentina Favorito
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology, Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology, Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria Della Misericordia Hospital, Azienda Ospedaliera di Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Giuseppe Lamberti
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology, Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
86
|
Ilnytskyy Y, Petersen L, McIntyre JB, Konno M, D'Silva A, Dean M, Elegbede A, Golubov A, Kovalchuk O, Kovalchuk I, Bebb G. Genome-wide Detection of Chimeric Transcripts in Early-stage Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2023; 20:417-432. [PMID: 37643782 PMCID: PMC10464939 DOI: 10.21873/cgp.20394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/AIM Lung cancer remains the main culprit in cancer-related mortality worldwide. Transcript fusions play a critical role in the initiation and progression of multiple cancers. Treatment approaches based on specific targeting of discovered driver events, such as mutations in EGFR, and fusions in NTRK, ROS1, and ALK genes led to profound improvements in clinical outcomes. The formation of chimeric proteins due to genomic rearrangements or at the post-transcriptional level is widespread and plays a critical role in tumor initiation and progression. Yet, the fusion landscape of lung cancer remains underexplored. MATERIALS AND METHODS We used the JAFFA pipeline to discover transcript fusions in early-stage non-small cell lung cancer (NSCLC). The set of detected fusions was further analyzed to identify recurrent events, genes with multiple partners and fusions with high predicted oncogenic potential. Finally, we used a generalized linear model (GLM) to establish statistical associations between fusion occurrences and clinicopathological variables. RNA sequencing was used to discover and characterize transcript fusions in 270 NSCLC samples selected from the Glans-Look specimen repository. The samples were obtained during the early stages of disease prior to the initiation of chemo- or radiotherapy. RESULTS We identified a set of 792 fusions where 751 were novel, and 33 were recurrent. Four of the 33 recurrent fusions were significantly associated with clinicopathological variables. Several of the fusion partners were represented by well-established oncogenes ERBB4, BRAF, FGFR2, and MET. CONCLUSION The data presented in this study allow researchers to identify, select, and validate promising candidates for targeted clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Mie Konno
- Alberta Health Services, Calgary, Alberta, Canada
| | | | | | | | | | | | | | - Gwyn Bebb
- University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
87
|
Valencia Soto CM, Martínez Callejo V, García-Avello Fernández-Cueto A, Villacañas Palomares MV, Barbadillo Villanueva S, Ochagavía Sufrategui M, López-Brea Piqueras MF, Valero Domínguez M. Severe hepatotoxicity during treatment with capmatinib. J Oncol Pharm Pract 2023; 29:1484-1488. [PMID: 37157816 DOI: 10.1177/10781552231173120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Capmatinib is a mesenchymal-epithelial transition (MET) inhibitor authorized for metastatic non-small cell lung cancer (NSCLC) with MET exon 14 skipping mutation treatment in adult patients. CASE REPORT We report a case of an elderly female with a diagnosis of metastatic NSCLC with MET exon 14 skipping mutation who developed a severe hepatotoxicity after 7 weeks under treatment with capmatinib. MANAGEMENT & OUTCOME Capmatinib was immediately discontinued. Hepatotoxicity is included as "warning and precautions" in the product information sheet. The patient was admitted with severe acute hepatitis, secondary hypocoagulability and acute deterioration of renal function. She experienced a rapid worsening with a fatal outcome three days after admission. The causal relationship between capmatinib and the appearance of hepatotoxicity was determined as probable according to Naranjo's modified Karch and Lasagna's imputability algorithm. DISCUSSION The recognition and diagnosis of drug-induced liver injury (DILI) are often difficult and delayed. Molecularly targeted agents require careful assessment of liver function both prior to and during therapy. Capmatinib hepatotoxicity is an infrequent but severe adverse drug reaction (ADR). Prescribing information includes recommendations about liver function monitoring. The main approachment for DILI is the removal of the causative agent. Detection and communication of ADRs to the Pharmacovigilance Systems have special relevance for novel drugs, with little data in real life setting.
Collapse
|
88
|
Mazieres J, Vioix H, Pfeiffer BM, Campden RI, Chen Z, Heeg B, Cortot AB. MET Exon 14 Skipping in NSCLC: A Systematic Literature Review of Epidemiology, Clinical Characteristics, and Outcomes. Clin Lung Cancer 2023; 24:483-497. [PMID: 37451931 DOI: 10.1016/j.cllc.2023.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION MET exon 14 (METex14) skipping is a rare oncogenic driver in non-small-cell lung cancer (NSCLC) for which targeted therapy with MET tyrosine kinase inhibitors (TKIs) was recently approved. Given the heterogeneity in published data of METex14 skipping NSCLC, we conducted a systematic literature review to evaluate its frequency, patient characteristics, and outcomes. METHODS On June 13, 2022 we conducted a systematic literature review of publications and conference abstracts reporting frequency, patient characteristics, or outcomes of patients with METex14 skipping NSCLC. RESULTS We included 139 studies reporting frequency or patient characteristics (350,997 patients), and 39 studies reporting clinical outcomes (3989 patients). Median METex14 skipping frequency was 2.0% in unselected patients with NSCLC, with minimal geographic variation. Median frequency was 2.4% in adenocarcinoma or nonsquamous subgroups, 12.0% in sarcomatoid, and 1.3% in squamous histology. Patients with METex14 skipping NSCLC were more likely to be elderly, have adenocarcinoma histology; there was no marked sex or smoking status distribution. In first line of treatment, median objective response rate ranged from 50.7% to 68.8% with targeted therapies (both values correspond to MET TKIs), was 33.3% with immunotherapy, and ranged from 23.1% to 27.0% with chemotherapy. CONCLUSIONS Patients with METex14 skipping are more likely to have certain characteristics, but no patient subgroup can be ruled out; thus, it is crucial to test all patients with NSCLC to identify suitable candidates for MET inhibitor therapy. MET TKIs appeared to result in higher efficacy outcomes, although no direct comparison with chemotherapy or immunotherapy regimens was found.
Collapse
Affiliation(s)
- Julien Mazieres
- CHU de Toulouse, Université Paul Sabatier, Toulouse, France.
| | - Helene Vioix
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | - Zhiyuan Chen
- Ingress Health, A Cytel Company, Rotterdam, The Netherlands
| | - Bart Heeg
- Ingress Health, A Cytel Company, Rotterdam, The Netherlands
| | - Alexis B Cortot
- Université Lille, Centre Hospitalier Universitaire de Lille, Centre national de la recherche scientifique, Inserm, Institute Pasteur de Lille, Lille, France
| |
Collapse
|
89
|
Liang H, Zhang L, Rong J. Potential roles of exosomes in the initiation and metastatic progression of lung cancer. Biomed Pharmacother 2023; 165:115222. [PMID: 37549459 DOI: 10.1016/j.biopha.2023.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Lung cancer (LC) incidence and mortality continue to increase annually worldwide. LC is insidious and readily metastasizes and relapses. Except for its early diagnosis and surgical resection, there is no effective cure for advanced metastatic LC, and the prognosis remains dismal. Exosomes, a class of nano-sized extracellular vesicles produced by healthy or diseased cells, are coated with a bilayer lipid membrane and contain various functional molecules such as proteins, lipids, and nucleic acids. They can be used for intracellular or intercellular signaling or the transportation of biological substances. A growing body of evidence supports that exosomes play multiple crucial roles in the occurrence and metastatic progression of many malignancies, including LC. The elucidation of the potential roles of exosomes in the initiation, invasion, and metastasis of LC and their underlying molecular mechanisms may contribute to improved early diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210 Baita Street, Hunnan District, Shenyang 110001, PR China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China.
| |
Collapse
|
90
|
Nishio K, Sakai K, Nishio M, Seto T, Visseren-Grul C, Carlsen M, Matsui T, Enatsu S, Nakagawa K. Impact of ramucirumab plus erlotinib on circulating cell-free DNA from patients with untreated metastatic non-small cell lung cancer with EGFR-activating mutations (RELAY phase 3 randomized study). Transl Lung Cancer Res 2023; 12:1702-1716. [PMID: 37691865 PMCID: PMC10483085 DOI: 10.21037/tlcr-22-736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Background An exploratory, proof-of-concept, liquid biopsy addendum to examine biomarkers within cell-free DNA (cfDNA) in the RELAY phase 3, randomized, double-blind, placebo-controlled study was conducted. RELAY showed improved progression-free survival (PFS) with ramucirumab (RAM), a human immunoglobulin G1 vascular endothelial growth factor receptor 2 antagonist, plus erlotinib (ERL), a tyrosine kinase inhibitor, compared with placebo (PL) plus ERL. Methods Treatment-naïve patients with endothelial growth factor receptor (EGFR)-mutated metastatic non-small cell lung cancer were randomized (1:1) to RAM + ERL or PL + ERL. Plasma samples were collected at baseline, on treatment, and at 30-day post-study treatment discontinuation follow-up. Baseline and treatment-emergent gene alterations and EGFR-activating mutation allele counts were investigated by next-generation sequencing (NGS) and droplet digital polymerase chain reaction (ddPCR), respectively. cfDNA concentration and fragment size were evaluated by real-time polymerase chain reaction and the BioAnalyzer. Patients with a valid baseline plasma sample were included (70 RAM + ERL, 61 PL + ERL). Results TP53 mutation was the most frequently co-occurring baseline gene alteration (43%). Post-study treatment discontinuation EGFR T790M mutation rates were 54.5% (6/11) and 41.2% (7/17) by ddPCR, and 22.2% (2/9) and 29.4% (5/17) by NGS, in the RAM + ERL and PL + ERL arms, respectively. EGFR-activating mutation allele count decreased at Cycle 4 in both treatment arms and was sustained at follow-up with RAM + ERL. PFS improved for patients with no detectable EGFR-activating mutation at Cycle 4 vs. those with detectable EGFR-activating mutation. Total cfDNA concentration increased from baseline at Cycle 4 and through to follow-up with RAM + ERL. cfDNA fragment size was similar between treatment arms at baseline [mean (standard deviation) base pairs: RAM + ERL, 173.4 (2.6); PL + ERL, 172.9 (3.2)] and was shorter at Cycle 4 with RAM + ERL vs. PL + ERL [169.5 (2.8) vs. 174.1 (3.3), respectively; P<0.0001]. Baseline vs. Cycle 4 paired analysis showed a decrease in cfDNA fragment size for 84% (48/57) and 23% (11/47) of patient samples in the RAM + ERL and PL + ERL arms, respectively. Conclusions EGFR-activating mutation allele count was suppressed, total cfDNA concentration increased, and short fragment-sized cfDNA increased with RAM + ERL, suggesting the additional anti-tumor effect of RAM may contribute to the PFS benefit observed in RELAY with RAM + ERL vs. PL + ERL. Trial Registration ClinicalTrials.gov; identifier: NCT02411448.
Collapse
Affiliation(s)
- Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Seto
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
91
|
Janzic U, Shalata W, Szymczak K, Dziadziuszko R, Jakopovic M, Mountzios G, Płużański A, Araujo A, Charpidou A, Agbarya A. Real-World Experience in Treatment of Patients with Non-Small-Cell Lung Cancer with BRAF or cMET Exon 14 Skipping Mutations. Int J Mol Sci 2023; 24:12840. [PMID: 37629023 PMCID: PMC10454089 DOI: 10.3390/ijms241612840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BRAF and cMET exon 14 skipping are rare mutations of NSCLC. The treatment sequence in these cases for the first and second line is not clear. An international registry was created for patients with advanced NSCLC harboring BRAF or cMET exon 14 skipping mutations, diagnosed from January 2017 to June 2022. Clinicopathological and molecular data and treatment patterns were recorded. Data on 58 patients, from eight centers across five countries, were included in the final analysis. We found that 40 patients had the cMET exon 14 skipping mutation and 18 had the BRAF V600E mutation. In total, 53 and 28 patients received first- and second-line treatments, respectively, among which 52.8% received targeted therapy (TT) in the first line and 53.5% in the second line. The overall response rate (ORR) and disease control rate (DCR) for first-line treatment with TT vs. other treatment such as immune checkpoint inhibitors ± chemotherapy (IO ± CT) were 55.6% vs. 21.7% (p = 0.0084) and 66.7% vs. 39.1% (p = 0.04), respectively. The type of treatment in first-line TT vs. other affected time to treatment discontinuation (TTD) was 11.6 m vs. 4.6 m (p= 0.006). The overall survival for the whole group was 15.4 m and was not statistically affected by the type of treatment (19.2 m vs. 13.5 m; p = 0.83).
Collapse
Affiliation(s)
- Urska Janzic
- Department of Medical Oncology, University Clinic Golnik, 4204 Golnik, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Walid Shalata
- The Legacy Heritage Cancer Center & Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Katarzyna Szymczak
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Rafał Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marko Jakopovic
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia
| | - Giannis Mountzios
- Clinical Trials Unit, Fourth Oncology Department, Henry Dunant Hospital Center, 115 26 Athens, Greece
| | - Adam Płużański
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland
| | - Antonio Araujo
- Department of Medical Oncology, CHUPorto—University Hospitalar Center of Porto, 4099-001 Porto, Portugal
| | - Andriani Charpidou
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Abed Agbarya
- Department of Oncology, Bnai-Zion Medical Center, 47 Golomb Avenue, Haifa 31048, Israel
| |
Collapse
|
92
|
Nkosi D, George GV, Liu H, Buldo M, Velez MJ, Oltvai ZN. Efficient Lung Cancer Molecular Diagnostics by Combining Next Generation Sequencing with Reflex Idylla Genefusion Assay Testing. Genes (Basel) 2023; 14:1551. [PMID: 37628603 PMCID: PMC10454377 DOI: 10.3390/genes14081551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Molecular diagnostics for lung cancer is a well-established standard of care, but how to use the available diagnostic tools for optimal and cost-effective patient care remains unresolved. Here, we show that DNA-only, small gene next-generation sequencing (sNGS) panels (<50 genes) combined with ultra-rapid reflex testing for common fusion transcripts using the Idylla Genefusion assay provide a cost-effective and sufficiently comprehensive testing modality for the majority of lung cancer cases. We also demonstrate the need for additional reflex testing capability on larger DNA and fusion panels for a small subset of lung cancers bearing rare single-nucleotide variants, indels and fusion transcripts and secondary, post-treatment resistance mutations. A similar testing workflow could be adopted for other solid tumor types for which extensive gene/fusion variant profiles are available both in the treatment-naïve and post-therapy settings.
Collapse
Affiliation(s)
| | | | | | | | | | - Zoltán N. Oltvai
- Department of Pathology and Laboratory Medicine, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
93
|
Mahrous M, Omar Jebriel A, Allehebi A, Shafik A, El Karak F, Venturini F, Alhusaini H, Meergans M, Ali Nahit Sendur M, Ouda M, Al-Nassar M, Kilickap S, Al Turki S, Al-Fayea T, Abdel Kader Y. Consensus Recommendations for the Diagnosis, Biomarker Testing, and Clinical Management of Advanced or Metastatic Non-small Cell Lung Cancer With Mesenchymal-Epithelial Transition Exon 14 Skipping Mutations in the Middle East, Africa, and Russia. Cureus 2023; 15:e41992. [PMID: 37492039 PMCID: PMC10365828 DOI: 10.7759/cureus.41992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
Mesenchymal-epithelial transition exon 14 (METex14) skipping mutations occur in about 3%-4% of patients with non-small cell lung cancer (NSCLC). This is an aggressive subtype associated with poor prognosis. METex14 skipping is a potentially targetable mutation. Targeted therapy is a promising treatment modality for patients with advanced/metastatic METex14-mutant NSCLC. Performing systematic molecular testing to detect the driver mutation is essential for initiating targeted therapy. However, there is a lack of guidelines on molecular testing for assessing the eligibility of patients for targeted therapy. Therefore, a multidisciplinary panel consisting of experts from the Middle East, Africa, and Russia convened via a virtual advisory board meeting to provide their insights on various molecular testing techniques for the diagnosis of METex14 skipping mutation, management of patients with targeted therapies, and developing consensus recommendations for improving the processes. The expert panel emphasized performing molecular testing and liquid biopsy before treatment initiation and tissue re-biopsy for patients with failed molecular testing. Liquid biopsy was recommended as complementary to tissue biopsy for disease monitoring and prognosis. Selective MET inhibitors were recommended as the first and subsequent lines of therapy. These consensus recommendations will facilitate the management of METex14 skipping NSCLC in routine practice and warrant optimum outcomes for these patients.
Collapse
Affiliation(s)
- Mervat Mahrous
- Oncology, Minia University, Minia, EGY
- Oncology, Prince Sultan Military Medical City, Riyadh, SAU
| | | | - Ahmed Allehebi
- Oncology, King Faisal Specialist Hospital & Research Center, Jeddah, SAU
| | - Amr Shafik
- Oncology, Faculty of Medicine, Ain Shams University, Cairo, EGY
| | - Fadi El Karak
- Oncology, Saint Joseph University of Beirut, School of Medicine, Beirut, LBN
- Oncology, Hôtel-Dieu de France, Beirut, LBN
- Oncology, Clemenceau Medical Center, Dubai, ARE
| | | | - Hamed Alhusaini
- Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, SAU
| | | | | | - Mohamed Ouda
- Oncology, Merck Serono Middle East FZ-Ltd., Dubai, ARE
| | | | | | | | - Turki Al-Fayea
- Oncology, King Fahad Medical City - Ministry of National Guard, Jeddah, SAU
- Oncology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | | |
Collapse
|
94
|
Molife C, Winfree KB, Bailey H, D'yachkova Y, Forshaw C, Kim S, Taipale KL, Puri T. Patient Characteristics, Testing and Treatment Patterns, and Outcomes in EGFR-Mutated Advanced Non-Small Cell Lung Cancer: A Multinational, Real-World Study. Adv Ther 2023; 40:3135-3168. [PMID: 37221352 PMCID: PMC10204685 DOI: 10.1007/s12325-023-02530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Treatment landscape for advanced/metastatic NSCLC (aNSCLC) has evolved considerably over the past few decades with the advent of targeted therapies for epidermal growth factor receptor-mutated (EGFRm+) aNSCLC treatment. This study described real-world patient and disease characteristics, treatment and practice patterns, and clinical, economic, and patient-reported outcomes (PROs) in patients with EGFRm+ aNSCLC. METHODS Data were derived from the Adelphi NSCLC Disease Specific Programme™ (DSP™), a point-in-time survey conducted between July and December 2020. The survey included oncologists and pulmonologists, and their consulting patients (with physician-confirmed EGFRm+ aNSCLC) from nine countries: the US, Brazil, the UK, Italy, France, Spain, Germany, Japan, and Taiwan. All analyses were descriptive. RESULTS Overall, 542 physicians reported data for 2857 patients (mean age 65.6 years), and most patients were female (56.0%), white (61.0%), and had stage IV disease at initial diagnosis (76.0%), and adenocarcinoma histology (89.0%). Most patients received EGFR-tyrosine kinase inhibitors (TKI) therapy in first- (91.0%), second- (74.0%), and third-line (67.0%). The most common tumor samples and methods for EGFR detection were EGFR-specific mutation detection tests (44.0%) and core needle biopsy (56.0%). Median time to next treatment was 14.0 (IQR 8.0-22.0) months and disease progression was the main physician-reported reason for early discontinuation. The most common physician-reported disease symptoms were cough (51.0%), fatigue (37.0%), and dyspnea (33.0%). In patients assessed for PROs, mean EQ-5D-5L index and FACT-L health utility scores were 0.71 and 83.5, respectively. On average, patients lost 10.6 h of work/week for approximately 29.2 weeks due to EGFRm+ aNSCLC. CONCLUSION This real-world multinational data set showed that most patients with EGFRm+ aNSCLC were treated per the country relevant clinical guidelines, with progression as the main reason for early treatment discontinuation. For the included countries, these findings may offer a useful benchmark for decision makers to determine future allocation of healthcare resources for patients with EGFRm+ aNSCLC.
Collapse
Affiliation(s)
- Cliff Molife
- Value, Evidence, and Outcomes-Oncology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Katherine B Winfree
- Value, Evidence, and Outcomes-Oncology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | | | | | - Sangmi Kim
- Global Patient Safety-Pharmacoepidemiology, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kaisa-Leena Taipale
- Value, Evidence, and Outcomes-International, Eli Lilly and Company, Helsinki, Finland
| | - Tarun Puri
- Lilly International Medical Affairs Oncology, Eli Lilly and Company, Gurgaon, Haryana, India
| |
Collapse
|
95
|
Iso H, Miyanaga A, Kadoma N, Shinbu K, Tozuka T, Murata A, Nishima S, Sato Y, Nakamichi S, Matsumoto M, Noro R, Terasaki Y, Kubota K, Seike M. Remarkable Clinical Response of ALK-Rearranged/ TP53-Mutant Lung Adenocarcinoma with Liver Metastasis to Atezolizumab-Bevacizumab-Carboplatin-Paclitaxel After ALK Inhibitors: A Case Report. Onco Targets Ther 2023; 16:465-470. [PMID: 37384219 PMCID: PMC10296560 DOI: 10.2147/ott.s404035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Anaplastic lymphoma kinase-positive (ALK-positive) lung adenocarcinoma with multiple liver metastases accounts for a relatively small number of cases of non-small cell lung cancer. Several ALK-tyrosine kinase inhibitors (ALK-TKIs) are available for the treatment of lung cancer. However, there is limited evidence on the treatment of multiple liver metastases in patients with lung cancer that are refractory to ALK-TKIs. We report the case of a 42-year-old male patient with ALK-positive lung adenocarcinoma who experienced rapid progression to multiple liver metastases while receiving treatment with alectinib. Biopsy of the liver metastases revealed echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) fusion and tumor protein p53 (TP53) mutation; notably, ALK secondary mutations were not detected. Despite the sequential administration of third-generation ALK-TKIs, the liver metastases did not respond, the serum levels of total bilirubin and biliary enzymes continued to increase, and the patient's general appearance worsened. Finally, the patient exhibited a remarkable clinical response to treatment with a combination of atezolizumab, bevacizumab, carboplatin, and paclitaxel (ABCP). ABCP is one of the optimal options for ALK-positive lung cancer with liver metastasis that is refractory to ALK-TKIs therapy.
Collapse
Affiliation(s)
- Hirokazu Iso
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Naohiro Kadoma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kaoruko Shinbu
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akari Murata
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shunichi Nishima
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yozo Sato
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
96
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
97
|
Tanase BC, Burlacu AI, Nistor CE, Horvat T, Oancea C, Marc M, Tudorache E, Mateescu T, Manolescu D. A Retrospective Analysis Comparing VATS Cost Discrepancies and Outcomes in Primary Lung Cancer vs. Second Primary Lung Cancer Patients. Healthcare (Basel) 2023; 11:1745. [PMID: 37372863 DOI: 10.3390/healthcare11121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to compare the outcomes and cost differences between primary lung cancer (PLC) and second primary lung cancer (SPLC) patients who underwent video-assisted thoracoscopic surgery (VATS). This was a retrospective analysis of 124 patients with lung cancer stages I, II, and III who underwent VATS between January 2018 and January 2023. The patients were divided into two groups based on their cancer status that was matched by age and gender: the PLC group (n = 62) and the SPLC group (n = 62). The results showed that there was no significant difference in the clinical characteristics between the 2 groups, except for the Charlson Comorbidity Index (CCI), with a score above 3 in 62.9% of PLC patients and 80.6% among SPLC patients (p = 0.028). Regarding the surgical outcomes, the operative time for the VATS intervention was significantly higher in the SPLC group, with a median of 300 min, compared with 260 min in the PLC group (p = 0.001), varying by the cancer staging as well. The average duration of hospitalization was significantly longer before and after surgery among patients with SPLC (6.1 days after surgery), compared with 4.2 days after surgery in the PLC group (0.006). Regarding the cost analysis, the total hospitalization cost was significantly higher in the SPLC group (15,400 RON vs. 12,800 RON; p = 0.007). Lastly, there was a significant difference in the survival probability between the two patient groups (log-rank p-value = 0.038). The 2-year survival was 41.9% among PLC patients and only 24.2% among those with SPLC. At the 5-year follow-up, there were only 1.6% survivors in the SPLC group, compared with 11.3% in the PLC group (p-value = 0.028). In conclusion, this study found that VATS is a safe and effective surgical approach for both PLC and SPLC patients. However, SPLC patients have a higher VATS operating time and require more healthcare resources than PLC patients, resulting in higher hospitalization costs. These findings suggest that careful pre-operative evaluation and individualized surgical planning are necessary to optimize the outcomes and cost-effectiveness of VATS for lung cancer patients. Nevertheless, the 5-year survival remains very low and concerning.
Collapse
Affiliation(s)
- Bogdan Cosmin Tanase
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Alin Ionut Burlacu
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Claudiu Eduard Nistor
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Teodor Horvat
- Department of Thoracic Surgery, Oncology Institute "Alexandru Trestioreanu" of Bucharest, Fundeni Street 252, 022328 Bucharest, Romania
| | - Cristian Oancea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Monica Marc
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Tudor Mateescu
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Diana Manolescu
- Department of Radiology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
98
|
Shi Y, Shin DS. Dysregulation of SWI/SNF Chromatin Remodelers in NSCLC: Its Influence on Cancer Therapies including Immunotherapy. Biomolecules 2023; 13:984. [PMID: 37371564 DOI: 10.3390/biom13060984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Molecularly targeted therapeutics and immunotherapy revolutionized the clinical care of NSCLC patients. However, not all NSCLC patients harbor molecular targets (e.g., mutated EGFR), and only a subset benefits from immunotherapy. Moreover, we are lacking reliable biomarkers for immunotherapy, although PD-L1 expression has been mainly used for guiding front-line therapeutic options. Alterations of the SWI/SNF chromatin remodeler occur commonly in patients with NSCLC. This subset of NSCLC tumors tends to be undifferentiated and presents high heterogeneity in histology, and it shows a dismal prognosis because of poor response to the current standard therapies. Catalytic subunits SMARCA4/A2 and DNA binding subunits ARID1A/ARID1B/ARID2 as well as PBRM1 were identified to be the most commonly mutated subunits of SWI/SNF complexes in NSCLC. Mechanistically, alteration of these SWI/SNF subunits contributes to the tumorigenesis of NSCLC through compromising the function of critical tumor suppressor genes, enhancing oncogenic activity as well as impaired DNA repair capacity related to genomic instability. Several vulnerabilities of NSCLCS with altered SWI/SNF subunits were detected and evaluated clinically using EZH2 inhibitors, PROTACs of mutual synthetic lethal paralogs of the SWI/SNF subunits as well as PARP inhibitors. The response of NSCLC tumors with an alteration of SWI/SNF to ICIs might be confounded by the coexistence of mutations in genes capable of influencing patients' response to ICIs. High heterogenicity in the tumor with SWI/SNF deficiency might also be responsible for the seemingly conflicting results of ICI treatment of NSCLC patients with alterations of SWI/SNF. In addition, an alteration of each different SWI/SNF subunit might have a unique impact on the response of NSCLC with deficient SWI/SNF subunits. Prospective studies are required to evaluate how the alterations of the SWI/SNF in the subset of NSCLC patients impact the response to ICI treatment. Finally, it is worthwhile to point out that combining inhibitors of other chromatin modulators with ICIs has been proven to be effective for the treatment of NSCLC with deficient SWI/SNF chromatin remodelers.
Collapse
Affiliation(s)
- Yijiang Shi
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Daniel Sanghoon Shin
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| |
Collapse
|
99
|
Muminovic M, Carracedo Uribe CR, Alvarez-Pinzon A, Shan K, Raez LE. Importance of ROS1 gene fusions in non-small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:332-344. [PMID: 37457125 PMCID: PMC10344718 DOI: 10.20517/cdr.2022.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/22/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Targeted therapy has become one of the standards of care for advanced lung cancer. More than 10 genetic aberrations have been discovered that are actionable and several tyrosine kinase inhibitors (TKIs) have been approved to target each of them. Among several genetic aberrations that are actionable in non-small cell lung cancer (NSCLC), ROS1 translocations also known as gene fusion proteins, are found in only 1%-2% of the patient population. ROS1 mutations can usually be detected using a combination of techniques such as immunohistochemistry (IHC), Fluorescence in-situ testing (FISH), polymerase chain reaction (PCR), and next-generation sequencing (NGS). However, RNA NGS and ctDNA NGS (liquid biopsies) also contribute to the diagnosis. There are currently numerous FDA-approved agents for these tumors, including crizotinib and entrectinib; however, there is in-vitro sensitivity data and clinical data documenting responses to ceritinib and lorlatinib. Clinical responses and survival rates with these agents are frequently among the best compared to other TKIs with genetic aberrations; however, intrinsic or extrinsic mechanisms of resistance may develop, necessitating research for alternative treatment modalities. To combat the mechanisms of resistance, novel agents such as repotrectenib, cabozantinib, talotrectinib, and others are being developed. In this article, we examine the literature pertaining to patients with ROS1 tumors, including epidemiology, clinical outcomes, resistance mechanisms, and treatment options.
Collapse
Affiliation(s)
- Meri Muminovic
- Department of Hematology-Oncology, Memorial Cancer Institute/Memorial Health Care System, Florida International University, Pembroke Pines, FL 33028, USA
| | - Carlos Rodrigo Carracedo Uribe
- Department of Internal Medicine, Memorial Health Care System, Florida International University, Pembroke Pines, FL 33028, USA
| | - Andres Alvarez-Pinzon
- Department of Hematology-Oncology, Memorial Cancer Institute/Memorial Health Care System, Florida International University, Pembroke Pines, FL 33028, USA
- Office of Human Research, Memorial Healthcare System, Pembroke Pines, FL 33028, USA
| | - Khine Shan
- Department of Hematology-Oncology, Memorial Cancer Institute/Memorial Health Care System, Florida International University, Pembroke Pines, FL 33028, USA
| | - Luis E. Raez
- Department of Hematology-Oncology, Memorial Cancer Institute/Memorial Health Care System, Florida International University, Pembroke Pines, FL 33028, USA
| |
Collapse
|
100
|
Wang H, Arulraj T, Kimko H, Popel AS. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. NPJ Precis Oncol 2023; 7:55. [PMID: 37291190 DOI: 10.1038/s41698-023-00405-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Generating realistic virtual patients from a limited amount of patient data is one of the major challenges for quantitative systems pharmacology modeling in immuno-oncology. Quantitative systems pharmacology (QSP) is a mathematical modeling methodology that integrates mechanistic knowledge of biological systems to investigate dynamics in a whole system during disease progression and drug treatment. In the present analysis, we parameterized our previously published QSP model of the cancer-immunity cycle to non-small cell lung cancer (NSCLC) and generated a virtual patient cohort to predict clinical response to PD-L1 inhibition in NSCLC. The virtual patient generation was guided by immunogenomic data from iAtlas portal and population pharmacokinetic data of durvalumab, a PD-L1 inhibitor. With virtual patients generated following the immunogenomic data distribution, our model predicted a response rate of 18.6% (95% bootstrap confidence interval: 13.3-24.2%) and identified CD8/Treg ratio as a potential predictive biomarker in addition to PD-L1 expression and tumor mutational burden. We demonstrated that omics data served as a reliable resource for virtual patient generation techniques in immuno-oncology using QSP models.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Holly Kimko
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, Gaithersburg, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|