51
|
Tran TTH, Tran HS, Le BTN, Van Nguyen S, Vu HA, Kim OTP. Novel single nucleotide polymorphisms of insulin-like growth factor-binding protein 7 (IGFBP7) gene significantly associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878). Mol Genet Genomics 2023; 298:883-893. [PMID: 37097322 DOI: 10.1007/s00438-023-02016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Breeding program to improve economically important growth traits in striped catfish (Pangasianodon hypophthalmus) requires effective molecular markers. This study was conducted to identify single nucleotide polymorphisms (SNPs) of Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) gene which plays multiple roles in regulating growth, energy metabolism and development. The association between SNPs in IGFBP7 gene and growth traits in striped catfish was analyzed in order to uncover the SNPs that have potential to be valuable markers for improving growth traits. Firstly, fragments of IGFBP7 gene from ten fast-growing fish and ten slow-growing fish were sequenced in order to discover SNPs. After filtering the detected SNPs, an intronic SNP (2060A > G) and two non-synonymous SNPs (344 T > C and 4559C > A) causing Leu78Pro and Leu189Met in protein, respectively, were subjected to further validated by individual genotyping in 70 fast-growing fish and 70 slow-growing fish using single base extension method. Our results showed that two SNPs (2060A > G and 4559 C > A (p. Leu189Met)) were significantly associated with the growth in P. hypophthalmus (p < 0.001), thus being candidate SNP markers for the growth traits of this fish. Moreover, linkage disequilibrium and association analysis with growth traits of haplotypes generated from the 3 filtered SNPs (344 T > C, 2060 A > G and 4559 C > A) were examined. These revealed that the non-coding SNP locus (2060A > G) had higher genetic diversity at which the G allele was predominant over the A allele in the fast-growing fish. Furthermore, the results of qPCR showed that expression of IGFBP7 gene with genotype GG (at locus 2060) in fast-growing group was significantly higher than that with genotype AA in slow-growing group (p < 0.05). Our study provides insights into the genetic variants of IGFBP7 gene and useful data source for development molecular marker for growth traits in breeding of the striped catfish.
Collapse
Affiliation(s)
- Trang Thi Huyen Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Hoang Son Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Binh Thi Nguyen Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Sang Van Nguyen
- Research Institute of Aquaculture, No.2, 116 Nguyen Dinh Chieu Str, District 1, Ho Chi Minh City, Vietnam
| | - Hai-Anh Vu
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Oanh Thi Phuong Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
52
|
Jia P, Liu J, Yan R, Yang K, Dong Q, Luan H, Zhang X, Li H, Guo S, Qi G. Systematical Characterization of the AT-Hook Gene Family in Juglans regia L. and the Functional Analysis of the JrAHL2 in Flower Induction and Hypocotyl Elongation. Int J Mol Sci 2023; 24:ijms24087244. [PMID: 37108407 PMCID: PMC10138636 DOI: 10.3390/ijms24087244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
AT-hook motif nuclear localization (AHL) proteins play essential roles in various plant biological processes. Yet, a comprehensive understanding of AHL transcription factors in walnut (Juglans regia L.) is missing. In this study, 37 AHL gene family members were first identified in the walnut genome. Based on the evolutionary analysis, JrAHL genes were grouped into two clades, and their expansion may occur due to segmental duplication. The stress-responsive nature and driving of developmental activities of JrAHL genes were revealed by cis-acting elements and transcriptomic data, respectively. Tissue-specific expression analysis showed that JrAHLs had a profound transcription in flower and shoot tip, JrAHL2 in particular. Subcellular localization showed that JrAHL2 is anchored to the nucleus. Overexpression of JrAHL2 in Arabidopsis adversely affected hypocotyl elongation and delayed flowering. Our study, for the first time, presented a detailed analysis of JrAHL genes in walnut and provided theoretical knowledge for future genetic breeding programs.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Kaiyu Yang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
53
|
Sun X, Liu Z, Li Z, Zeng Z, Peng W, Zhu J, Zhao J, Zhu C, Zeng C, Stearrett N, Crandall KA, Bachali P, Grammer AC, Lipsky PE. Abnormalities in intron retention characterize patients with systemic lupus erythematosus. Sci Rep 2023; 13:5141. [PMID: 36991079 PMCID: PMC10060252 DOI: 10.1038/s41598-023-31890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Regulation of intron retention (IR), a form of alternative splicing, is a newly recognized checkpoint in gene expression. Since there are numerous abnormalities in gene expression in the prototypic autoimmune disease systemic lupus erythematosus (SLE), we sought to determine whether IR was intact in patients with this disease. We, therefore, studied global gene expression and IR patterns of lymphocytes in SLE patients. We analyzed RNA-seq data from peripheral blood T cell samples from 14 patients suffering from systemic lupus erythematosus (SLE) and 4 healthy controls and a second, independent data set of RNA-seq data from B cells from16 SLE patients and 4 healthy controls. We identified intron retention levels from 26,372 well annotated genes as well as differential gene expression and tested for differences between cases and controls using unbiased hierarchical clustering and principal component analysis. We followed with gene-disease enrichment analysis and gene-ontology enrichment analysis. Finally, we then tested for significant differences in intron retention between cases and controls both globally and with respect to specific genes. Overall decreased IR was found in T cells from one cohort and B cells from another cohort of patients with SLE and was associated with increased expression of numerous genes, including those encoding spliceosome components. Different introns within the same gene displayed both up- and down-regulated retention profiles indicating a complex regulatory mechanism. These results indicate that decreased IR in immune cells is characteristic of patients with active SLE and may contribute to the abnormal expression of specific genes in this autoimmune disease.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Computer Science Department, George Washington University, Washington, DC, 20052, USA
| | - Zhichao Liu
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zongzhu Li
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zhouhao Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Weiqun Peng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Jun Zhu
- Mokobio Biotechnology R&D Center, 1445 Research Blvd, Suite 150, Rockville, MD, 20850, USA
| | - Joel Zhao
- Walt Whitman High School, Bethesda, MD, 20817, USA
| | | | - Chen Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA.
| | - Nathaniel Stearrett
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA.
| | - Prathyusha Bachali
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Amrie C Grammer
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA.
| |
Collapse
|
54
|
Lee S, Yoo SS, Choi JE, Hong MJ, Do SK, Lee JH, Lee WK, Park JE, Choi SH, Seo H, Lee J, Lee SY, Cha SI, Kim CH, Kang HG, Park JY. Genetic variants of NEUROD1 target genes are associated with clinical outcomes of small-cell lung cancer patients. Thorac Cancer 2023; 14:1145-1152. [PMID: 36935366 PMCID: PMC10151137 DOI: 10.1111/1759-7714.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Neurogenic differentiation factor 1 (NEUROD1) is frequently overexpressed in small-cell lung cancer (SCLC). NEUROD1 plays an important role in promoting malignant behavior and survival. METHODS In this study, we evaluated the association between putative functional polymorphisms in 45 NEUROD1 target genes and chemotherapy response and survival outcomes in 261 patients with SCLC. Among the 100 single nucleotide polymorphisms (SNPs) studied, two were significantly associated with both chemotherapy response and overall survival (OS) of patients with SCLC. RESULTS The SNP rs3806915C⟩A in semaphorin 6A (SEMA6A) gene was significantly associated with better chemotherapy response and OS (p = 0.04 and p = 0.04, respectively). The SNP rs11265375C⟩T in nescient helix-loop helix 1 (NHLH1) gene was also associated with better chemotherapy response and OS (p = 0.04 and p = 0.02, respectively). Luciferase assay showed a significantly higher promoter activity of SEMA6A with the rs3806915 A allele than C allele in H446 lung cancer cells (p = 4 × 10-6 ). The promoter activity of NHLH1 showed a significantly higher with the rs11265375 T allele than C allele (p = 0.001). CONCLUSION These results suggest that SEMA6A rs3806915C>A and NHLH1 rs11265375C>T polymorphisms affect the promoter activity and expression of the genes, which may affect the survival outcome of patients with SCLC.
Collapse
Affiliation(s)
- Sunwoong Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Kyung Do
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Ki Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
55
|
Wang L, Fu H, Zhao J, Wang J, Dong S, Yuan X, Li X, Chen M. Genome-Wide Identification and Expression Profiling of Glutathione S-Transferase Gene Family in Foxtail Millet ( Setaria italica L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1138. [PMID: 36904001 PMCID: PMC10005783 DOI: 10.3390/plants12051138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Glutathione S-transferases (GSTs) are a critical superfamily of multifunctional enzymes in plants. As a ligand or binding protein, GSTs regulate plant growth and development and detoxification. Foxtail millet (Setaria italica (L.) P. Beauv) could respond to abiotic stresses through a highly complex multi-gene regulatory network in which the GST family is also involved. However, GST genes have been scarcely studied in foxtail millet. Genome-wide identification and expression characteristics analysis of the foxtail millet GST gene family were conducted by biological information technology. The results showed that 73 GST genes (SiGSTs) were identified in the foxtail millet genome and were divided into seven classes. The chromosome localization results showed uneven distribution of GSTs on the seven chromosomes. There were 30 tandem duplication gene pairs belonging to 11 clusters. Only one pair of SiGSTU1 and SiGSTU23 were identified as fragment duplication genes. A total of ten conserved motifs were identified in the GST family of foxtail millet. The gene structure of SiGSTs is relatively conservative, but the number and length of exons of each gene are still different. The cis-acting elements in the promoter region of 73 SiGST genes showed that 94.5% of SiGST genes possessed defense and stress-responsive elements. The expression profiles of 37 SiGST genes covering 21 tissues suggested that most SiGST genes were expressed in multiple organs and were highly expressed in roots and leaves. By qPCR analysis, we found that 21 SiGST genes were responsive to abiotic stresses and abscisic acid (ABA). Taken together, this study provides a theoretical basis for identifying foxtail millet GST family information and improving their responses to different stresses.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China
| | - Juan Zhao
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jiagang Wang
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Shuqi Dong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaorui Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
56
|
Zheng R, Dunlap M, Lyu J, Gonzalez-Figueroa C, Bobkov G, Harvey SE, Chan TW, Quinones-Valdez G, Choudhury M, Vuong A, Flynn RA, Chang HY, Xiao X, Cheng C. LINE-associated cryptic splicing induces dsRNA-mediated interferon response and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529804. [PMID: 36865202 PMCID: PMC9980139 DOI: 10.1101/2023.02.23.529804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
RNA splicing plays a critical role in post-transcriptional gene regulation. Exponential expansion of intron length poses a challenge for accurate splicing. Little is known about how cells prevent inadvertent and often deleterious expression of intronic elements due to cryptic splicing. In this study, we identify hnRNPM as an essential RNA binding protein that suppresses cryptic splicing through binding to deep introns, preserving transcriptome integrity. Long interspersed nuclear elements (LINEs) harbor large amounts of pseudo splice sites in introns. hnRNPM preferentially binds at intronic LINEs and represses LINE-containing pseudo splice site usage for cryptic splicing. Remarkably, a subgroup of the cryptic exons can form long dsRNAs through base-pairing of inverted Alu transposable elements scattered in between LINEs and trigger interferon immune response, a well-known antiviral defense mechanism. Notably, these interferon-associated pathways are found to be upregulated in hnRNPM-deficient tumors, which also exhibit elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity. Targeting hnRNPM in tumors may be used to trigger an inflammatory immune response thereby boosting cancer surveillance.
Collapse
|
57
|
Association of the STAT4 Gene rs7574865 Polymorphism with IFN-γ Levels in Patients with Systemic Lupus Erythematosus. Genes (Basel) 2023; 14:genes14030537. [PMID: 36980810 PMCID: PMC10048585 DOI: 10.3390/genes14030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
STAT4 plays an important role in disease activity in SLE patients. STAT4 particles have the capacity to activate the transcription of genes associated with the production of TH1 and Th17 lymphocytes, with a greater predominance on the production of IFN-γ and IL-17A. The presence of variants in STAT4 genes has a major impact on the generation of autoimmunity. However, there are few studies evaluating the impact of these variants on the production of proinflammatory cytokines such as IFN-γ and IL-17A. Methods—A case–control study was carried out with 206 Mexican mestizo patients residing in Western Mexico with a diagnosis of SLE and a group of 80 patients without autoimmune diseases was captured to determine the cut-off point for high IFN-γ levels. In this study, SLE patients with high IFN-γ levels were considered as cases (cut-off > 15.6 pg/mL), and SLE patients with normal IFN-γ levels were considered as controls (cut-off ≤ 15.6 pg/mL). Disease activity was identified from the systemic lupus erythematosus disease activity index (SLEDAI). For the determination of levels of cytokines IFN-γ, IL-12, and IL17A, commercial ELISA kits were used. Genotyping of STAT4 rs7574865 (G > T) was performed by quantitative polymerase chain reaction (qPCR) using TaqMan probes. Results—The patients with SLE had a median age of 45 years with a range of disease duration from 4 years to 18 years; 45.6% were identified as having disease activity. In this sample, we identified a high IFN-γ prevalence of 35.4%. The levels of IFN-γ were higher in the patients with genotype TT than GG. We found that TT genotype conferred a higher risk of high IFN-γ when compared to the GG and GT genotypes. Conclusions—In this study, we identified that the polymorphic genotype TT of the STAT4 gene rs7574865 polymorphism is associated with increased levels of IFN-γ. However, its strength of association was weak, so complementary studies are needed to evaluate its impact on SLE patients.
Collapse
|
58
|
Yang W, Dong X, Yuan Z, Zhang Y, Li X, Wang Y. Genome-Wide Identification and Expression Analysis of the Ammonium Transporter Family Genes in Soybean. Int J Mol Sci 2023; 24:3991. [PMID: 36835403 PMCID: PMC9960152 DOI: 10.3390/ijms24043991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Ammonium transporters (AMTs) are responsible for ammonium absorption and utilization in plants. As a high-nitrogen-demand crop and a legume, soybean can also obtain ammonium from symbiotic root nodules in which nitrogen-fixing rhizobia convert atmospheric nitrogen (N2) into ammonium. Although increasing evidence implicates vital roles of ammonium transport in soybean, no systematic analyses of AMTs in soybean (named GmAMTs) or functional analyses of GmAMTs are available. In this study, we aimed to identify all GmAMT family genes and gain a better understanding of the characteristics of GmAMT genes in soybean. Here, due to the improved genome assembly and annotation of soybean, we tried to generate a phylogenetic tree of 16 GmAMTs based on new information. Consistent with reported data, GmAMT family members can be divided into two subfamilies of GmAMT1 (6 genes) and GmAMT2 (10 genes). Interestingly, unlike Arabidopsis, which has only one AMT2, soybean has substantially increased the number of GmAMT2s, suggesting enhanced demand for ammonium transport. These genes were distributed on nine chromosomes, of which GmAMT1.3, GmAMT1.4, and GmAMT1.5 were three tandem repeat genes. The gene structures and conserved protein motifs of the GmAMT1 and GmAMT2 subfamilies were different. All the GmAMTs were membrane proteins with varying numbers of transmembrane domains ranging from 4 to 11. Promoter analysis found that these GmAMT genes have phytohormone-, circadian control-, and organ expression-related cis-elements in their promoters, and notably, there were nodulation-specific and nitrogen-responsive elements in the promoters of the GmAMT1 and GmAMT2 genes. Further expression data showed that these GmAMT family genes exhibited different spatiotemporal expression patterns across tissues and organs. In addition, GmAMT1.1, GmAMT1.2, GmAMT2.2, and GmAMT2.3 were responsive to nitrogen treatment, while GmAMT1.2, GmAMT1.3, GmAMT1.4, GmAMT1.5, GmAMT1.6, GmAMT2.1, GmAMT2.2, GmAMT2.3, GmAMT3.1, and GmAMT4.6 showed circadian rhythms in transcription. RT-qPCR validated the expression patterns of GmAMTs in response to different forms of nitrogen and exogenous ABA treatments. Gene expression analysis also confirmed that GmAMTs are regulated by key nodulation gene GmNINa, indicating a role of GmAMTs in symbiosis. Together, these data indicate that GmAMTs may differentially and/or redundantly regulate ammonium transport during plant development and in response to environmental factors. These findings provide a basis for future research on the functions of GmAMTs and the mechanisms through which GmAMTs regulate ammonium metabolism and nodulation in soybean.
Collapse
Affiliation(s)
- Wei Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxu Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhanxin Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youning Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
59
|
Rabaan AA, Eljaaly K, Alfouzan WA, Mutair AA, Alhumaid S, Alfaraj AH, Aldawood Y, Alsaleh AA, Albayat H, Azmi RA, AlKaabi N, Alzahrani SJ, AlBahrani S, Sulaiman T, Alshukairi AN, Abuzaid AA, Garout M, Ahmad R, Muhammad J. Psychogenetic, genetic and epigenetic mechanisms in Candida auris: Role in drug resistance. J Infect Public Health 2023; 16:257-263. [PMID: 36608452 DOI: 10.1016/j.jiph.2022.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, we are facing the challenge of drug resistance emergence in fungi. The availability of limited antifungals and development of multi-drug resistance in fungal pathogens has become a serious concern in the past years in the health sector. Although several cellular, molecular, and genetic mechanisms have been proposed to explain the drug resistance mechanism in fungi, but a complete understanding of the molecular and genetic mechanisms is still lacking. Besides the genetic mechanism, epigenetic mechanisms are pivotal in the fungal lifecycle and disease biology. However, very little is understood about the role of epigenetic mechanisms in the emergence of multi-drug resistance in fungi, especially in Candida auris (C. auris). The current narrative review summaries the clinical characteristics, genomic organization, and molecular/genetic/epigenetic mechanisms underlying the emergence of drug resistance in C. auris. A very few studies have attempted to evaluate the role of epigenetic mechanisms in C. auris. Furthermore, advanced genetic tools such as the CRISP-Cas9 system can be utilized to elucidate the epigenetic mechanisms and their role in the emergence of multi-drug resistance in C. auris.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Yahya Aldawood
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Reyouf Al Azmi
- Infection Prevention and Control, Eastern Health Cluster, Dammam 32253, Saudi Arabia
| | - Nawal AlKaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Samira J Alzahrani
- Molecular Diagnostic Laboratory, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia
| | - Salma AlBahrani
- Infectious Disease Unit, Specialty Internal Medicine, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Rafiq Ahmad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
60
|
Nakwan N, Kunhapan P, Chaiyasung T, Satproedprai N, Singkhamanan K, Mahasirimongkol S, Charalsawadi C. Genome-wide association study identifies WWC2 as a possible locus associated with persistent pulmonary hypertension of the newborn in the Thai population. Transl Pediatr 2023; 12:1-12. [PMID: 36798934 PMCID: PMC9926135 DOI: 10.21037/tp-22-280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND There is known to be significant genetic involvement in persistent pulmonary hypertension of the newborn (PPHN), but to date there is not a clear understanding of this situation, and clarifying that involvement would be of considerable assistance in devising effective treatments for the disease. This case-control study was undertaken to search for genetic variants associated with PPHN in the Thai population using a genome-wide association study (GWAS). METHODS A 659,184 single nucleotide polymorphisms from 387 participants (54 PPHN cases and 333 healthy participants) were genotyped across the human genome using an Illumina Asian Screening Array-24 v1.0 BeadChip Array. After quality control, we obtained 443,063 autosomal SNPs for the GWAS analysis. The FaST-LMM and R packages were used for all statistical analyses. RESULTS For the case-control analysis, the genomic inflation factor (λ) was 1.016, rs149768622 T>C in the first intron of WWC2 gene showed the strongest association with a P value of 3.76E-08 and odds ratio (OR) of 13.24 (95% CI: 3.91-44.78). The variants at the LOC102723906/LOC105377599, CADM4, GPM6A, CIT, RIMBP2, LOC105374510, LOC105375193, PTPRN2, CDK14, and LCORL loci showed suggestive evidence of associations with PPHN (P<1E-05). CONCLUSIONS This GWAS found that rs149768622 T>C in the WWC2 gene was possibly associated with PPHN. However, replication and functional studies are needed to validate this association and further explore the role(s) of the WWC2 gene in PPHN.
Collapse
Affiliation(s)
- Narongsak Nakwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Department of Pediatrics, Hat Yai Medical Education Center, Hat Yai Hospital, Songkhla, Thailand
| | - Punna Kunhapan
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Tassamonwan Chaiyasung
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nusara Satproedprai
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chariyawan Charalsawadi
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
61
|
Mitsis T, Papageorgiou L, Papakonstantinou E, Diakou I, Pierouli K, Dragoumani K, Bacopoulou F, Kino T, Chrousos GP, Eliopoulos E, Vlachakis D. A Genomic Study of the Japanese Population Focusing on the Glucocorticoid Receptor Interactome Highlights Distinct Genetic Characteristics Associated with Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:101-113. [PMID: 37525035 DOI: 10.1007/978-3-031-31978-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
All living organisms have been programmed to maintain a complex inner equilibrium called homeostasis, despite numerous adversities during their lifespan. Any threatening or perceived as such stimuli for homeostasis is termed a stressor, and a highly conserved response system called the stress response system has been developed to cope with these stimuli and maintain or reinstate homeostasis. The glucocorticoid receptor, a transcription factor belonging to the nuclear receptors protein superfamily, has a major role in the stress response system, and research on its interactome may provide novel information regarding the mechanisms underlying homeostasis maintenance. A list of 149 autosomal genes that have an essential role in GR function or are prime examples of GRE-containing genes was composed in order to gain a comprehensive view of the GR interactome. A search for SNPs on those particular genes was conducted on a dataset of 3554 Japanese individuals, with mentioned polymorphisms being annotated with relevant information from the ClinVar, LitVar, and dbSNP databases. Forty-two SNPs of interest and their genomic locations were identified. These SNPs have been associated with drug metabolism and neuropsychiatric, metabolic, and immune system disorders, while most of them were located in intronic regions. The frequencies of those SNPs were later compared with a dataset consisting of 1465 Korean individuals in order to find population-specific characteristics based on some of the identified SNPs of interest. The results highlighted.that rs1043618 frequencies were different in the two populations, with mentioned polymorphism having a potential role in chronic obstructive pulmonary disease in response to environmental stressors. This SNP is located in the HSPA1A gene, which codes for an essential GR co-chaperone, and such information showcases that similar gene may be novel genomic targets for managing or combatting stress-related pathologies.
Collapse
Affiliation(s)
- Thanasis Mitsis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Louis Papageorgiou
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Io Diakou
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, Athens, Greece
- National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Tomoshige Kino
- Department of Human Genetics, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, Athens, Greece
- National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elias Eliopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece.
- University Research Institute of Maternal and Child Health & Precision Medicine, Athens, Greece.
- National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
62
|
Ayala-Ramirez M, MacNell N, McNamee LE, McGrath JA, Akhtari FS, Curry MD, Dunnon AK, Fessler MB, Garantziotis S, Parks CG, Fargo DC, Schmitt CP, Motsinger-Reif AA, Hall JE, Miller FW, Schurman SH. Association of distance to swine concentrated animal feeding operations with immune-mediated diseases: An exploratory gene-environment study. ENVIRONMENT INTERNATIONAL 2023; 171:107687. [PMID: 36527873 PMCID: PMC10962257 DOI: 10.1016/j.envint.2022.107687] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Concentrated animal feeding operations (CAFOs) are a source of environmental pollution and have been associated with a variety of health outcomes. Immune-mediated diseases (IMD) are characterized by dysregulation of the normal immune response and, while they may be affected by gene and environmental factors, their association with living in proximity to a CAFO is unknown. OBJECTIVES We explored gene, environment, and gene-environment (GxE) relationships between IMD, CAFOs, and single nucleotide polymorphisms (SNPs) of prototypical xenobiotic response genes AHR, ARNT, and AHRR and prototypical immune response gene PTPN22. METHODS The exposure analysis cohort consisted of 6,464 participants who completed the Personalized Environment and Genes Study Health and Exposure Survey and a subset of 1,541 participants who were genotyped. We assessed the association between participants' residential proximity to a CAFO in gene, environment, and GxE models. We recombined individual associations in a transethnic model using METAL meta-analysis. RESULTS In White participants, ARNT SNP rs11204735 was associated with autoimmune diseases and rheumatoid arthritis (RA), and ARNT SNP rs1889740 was associated with RA. In a transethnic genetic analysis, ARNT SNPs rs11204735 and rs1889740 and PTPN22 SNP rs2476601 were associated with autoimmune diseases and RA. In participants living closer than one mile to a CAFO, the log-distance to a CAFO was associated with autoimmune diseases and RA. In a GxE interaction model, White participants with ARNT SNPs rs11204735 and rs1889740 living closer than eight miles to a CAFO had increased odds of RA and autoimmune diseases, respectively. The transethnic model revealed similar GxE interactions. CONCLUSIONS Our results suggest increased risk of autoimmune diseases and RA in those living in proximity to a CAFO and a potential role of the AHR-ARNT pathway in conferring risk. We also report the first association of ARNT SNPs rs11204735 and rs1889740 with RA. Our findings, if confirmed, could allow for novel genetically-targeted or other preventive approaches for certain IMD.
Collapse
Affiliation(s)
- Montserrat Ayala-Ramirez
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Nathaniel MacNell
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Lucy E McNamee
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - John A McGrath
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Matthew D Curry
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Askia K Dunnon
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop D2-01, Durham, NC 27709, USA.
| | - Stavros Garantziotis
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, BG 109 RM 109 MSC CU-01, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop A3-05, Durham, NC 27709, USA.
| | - David C Fargo
- Office of Scientific Computing, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop B3-01, Durham, NC 27709, USA.
| | - Charles P Schmitt
- Office of Data Science, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop K2-02, Durham, NC 27709, USA.
| | - Alison A Motsinger-Reif
- PEGS Co-PI, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, RTP 101, Research Triangle Park, NC 27709, USA.
| | - Janet E Hall
- PEGS Co-PI, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, BG 101 RM A222 MSC A2-03. 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Frederick W Miller
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, RTP 101 David P. Rall Building, Research Triangle Park, NC 27709, USA.
| | - Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
63
|
Chelliah A, Arumugam C, Suthanthiram B, Raman T, Subbaraya U. Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp. Funct Integr Genomics 2022; 23:7. [PMID: 36538175 DOI: 10.1007/s10142-022-00925-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Banana is an important food crop that is susceptible to a wide range of pests and diseases that can reduce yield and quality. The primary objective of banana breeding programs is to increase disease resistance, which requires the identification of resistance (R) genes. Despite the fact that resistant sources have been identified in bananas, the genes, particularly the nucleotide-binding site (NBS) family, which play an important role in protecting plants against pathogens, have received little attention. As a result, this study included a thorough examination of the NBS disease resistance gene family's classification, phylogenetic analysis, genome organization, evolution, cis-elements, differential expression, regulation by microRNAs, and protein-protein interaction. A total of 116 and 43 putative NBS genes from M. acuminata and M. balbisiana, respectively, were identified and characterized, and were classified into seven sub-families. Structural analysis of NBS genes revealed the presence of signal peptides, their sub-cellular localization, molecular weight and pI. Eight commonly conserved motifs were found, and NBS genes were unevenly distributed across multiple chromosomes, with the majority of NBS genes being located in chr3 and chr1 of the A and B genomes, respectively. Tandem duplication occurrences have helped bananas' NBS genes spread throughout evolution. Transcriptome analysis of NBS genes revealed significant differences in expression between resistant and susceptible cultivars of fusarium wilt, eumusae leaf spot, root lesion nematode, and drought, implying that they can be used as candidate resistant genes. Ninety miRNAs were discovered to have targets in 104 NBS genes from the A genome, providing important insights into NBS gene expression regulation. Overall, this study offers a valuable genomic resource and understanding of the function and evolution of NBS genes in relation to rapidly evolving pathogens, as well as providing breeders with selection targets for fast-tracking breeding of banana varieties with more durable resistance to pathogens.
Collapse
Affiliation(s)
- Anuradha Chelliah
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India.
| | - Chandrasekar Arumugam
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Backiyarani Suthanthiram
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Thangavelu Raman
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Uma Subbaraya
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| |
Collapse
|
64
|
Cui C, Ma Z, Wan H, Gao J, Zhou B. GhALKBH10 negatively regulates salt tolerance in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:87-100. [PMID: 36215791 DOI: 10.1016/j.plaphy.2022.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The alpha-ketoglutarate-dependent dioxygenase (AlkB) gene family plays an essential role in regulating plant development and stress response. However, the AlkB gene family is still not well understood in cotton. In this study, 40 AlkB genes in cotton and Arabidopsis are identified and classified into three classes based on phylogenetic analysis. Their protein motifs and exon/intron structures are highly conserved. Chromosomal localization and synteny analysis suggested that segmental or whole-genome duplication and polyploidization events contributed to the expansion of the cotton AlkB gene family. Furthermore, the AlkB genes showed dynamic spatiotemporal expression patterns and diverse responses to abiotic stresses. Among them, GhALKBH10 was down-regulated under various abiotic stresses and its subcellular expression was localized in cytoplasm and nucleus. Silencing GhALKBH10 in cotton increased antioxidant capacity and reduced cytoplasmic Na+ concentration, thereby improved the plant tolerance to salinity. Conversely, overexpression (OE) of GhALKBH10 in Arabidopsis markedly weakened the plant tolerance to salinity. The global m6A levels measured in VIGS and OE transgenic lines showed that they were significantly higher in TRV: GhALKBH10 plants (VIGS) than in TRV: 00 plants but significantly lower in OE plants than wild-type plants under salt stress, which could be considered as a potential m6A demethylase in cotton. Our results suggest that the GhALKBH10 gene negatively regulates salt tolerance in plants, which provides information of the cotton AlkB family and an understanding of GhALKBH10 function under salt condition as well as a new gene for salt-tolerant cotton breeding.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
65
|
Bykova M, Hou Y, Eng C, Cheng F. Quantitative trait locus (xQTL) approaches identify risk genes and drug targets from human non-coding genomes. Hum Mol Genet 2022; 31:R105-R113. [PMID: 36018824 PMCID: PMC9989738 DOI: 10.1093/hmg/ddac208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Advances and reduction of costs in various sequencing technologies allow for a closer look at variations present in the non-coding regions of the human genome. Correlating non-coding variants with large-scale multi-omic data holds the promise not only of a better understanding of likely causal connections between non-coding DNA and expression of traits but also identifying potential disease-modifying medicines. Genome-phenome association studies have created large datasets of DNA variants that are associated with multiple traits or diseases, such as Alzheimer's disease; yet, the functional consequences of variants, in particular of non-coding variants, remain largely unknown. Recent advances in functional genomics and computational approaches have led to the identification of potential roles of DNA variants, such as various quantitative trait locus (xQTL) techniques. Multi-omic assays and analytic approaches toward xQTL have identified links between genetic loci and human transcriptomic, epigenomic, proteomic and metabolomic data. In this review, we first discuss the recent development of xQTL from multi-omic findings. We then highlight multimodal analysis of xQTL and genetic data for identification of risk genes and drug targets using Alzheimer's disease as an example. We finally discuss challenges and future research directions (e.g. artificial intelligence) for annotation of non-coding variants in complex diseases.
Collapse
Affiliation(s)
- Marina Bykova
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
66
|
Li R, Radani Y, Ahmad B, Movahedi A, Yang L. Identification and characteristics of SnRK genes and cold stress-induced expression profiles in Liriodendron chinense. BMC Genomics 2022; 23:708. [PMID: 36253733 PMCID: PMC9578244 DOI: 10.1186/s12864-022-08902-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background The sucrose non-fermenting 1 (SNF1)-related protein kinases (SnRKs) play a vivid role in regulating plant metabolism and stress response, providing a pathway for regulation between metabolism and stress signals. Conducting identification and stress response studies on SnRKs in plants contributes to the development of strategies for tree species that are more tolerant to stress conditions. Results In the present study, a total of 30 LcSnRKs were identified in Liriodendron chinense (L. chinense) genome, which was distributed across 15 chromosomes and 4 scaffolds. It could be divided into three subfamilies: SnRK1, SnRK2, and SnRK3 based on phylogenetic analysis and domain types. The LcSnRK of the three subfamilies shared the same Ser/Thr kinase structure in gene structure and motif composition, while the functional domains, except for the kinase domain, showed significant differences. A total of 13 collinear gene pairs were detected in L. chinense and Arabidopsis thaliana (A. thaliana), and 18 pairs were detected in L. chinense and rice, suggesting that the LcSnRK family genes may be evolutionarily more closely related to rice. Cis-regulation element analysis showed that LcSnRKs were LTR and TC-rich, which could respond to different environmental stresses. Furthermore, the expression patterns of LcSnRKs are different at different times under low-temperature stress. LcSnRK1s expression tended to be down-regulated under low-temperature stress. The expression of LcSnRK2s tended to be up-regulated under low-temperature stress. The expression trend of LcSnRK3s under low-temperature stress was mainly up-or down-regulated. Conclusion The results of this study will provide valuable information for the functional identification of the LcSnRK gene in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08902-0.
Collapse
Affiliation(s)
- Rongxue Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Baseer Ahmad
- Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, 25000, Pakistan
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
67
|
Karataş E, Sümbüllü M, Kahraman Ç, Çakmak F. Association between single nucleotide polymorphisms in candidate genes and success of pulpal anesthesia following inferior alveolar nerve block. J Endod 2022; 49:18-25. [PMID: 37185254 DOI: 10.1016/j.joen.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION The present study aimed to investigate the possible association between the single-nucleotide polymorphisms (SNPs) in the SCN9A, SCN10A, SCN11A, OPRM1, and COMT genes and the success rate of pulpal anesthesia after inferior alveolar nerve block (IANB). METHODS A total of 70 patients (45 females and 25 males) presenting mandibular molar teeth with symptomatic irreversible pulpitis were included. Saliva samples were collected from the participants before the application of IANB. A standard IANB was performed with 1.8 mL 4% articaine with 1:100,000 epinephrine. Endodontic treatment was initiated 15 minutes after injection, and the patients were asked to report their pain level during the procedure on a 170-mm Heft-Parker visual analog scale. If the patient recorded a pain level of lower than 54 on the visual analog scale (no pain or mild pain), the anesthesia was considered successful. The DNA isolation and genotyping were performed, and the association between rs4286289, rs6746030, rs6795970, rs6801957, rs11709492, rs1799971, rs1799973, rs4680, rs6269, rs4633, and rs740603 SNPs and the success rate of anesthesia was investigated. RESULTS The anesthesia success rate was significantly lower for the GG genotypes (45%) than the GA and AA genotypes (90%) for rs6795970 in the SCN10A gene. Additionally, the A allele for rs6795970 and the T allele for rs6801957 in the SCN10A gene were significantly associated with higher anesthesia success rates. CONCLUSIONS SNPs in the SCN10A gene affect the success rate of pulpal anesthesia after IANB.
Collapse
|
68
|
Genome-wide identification and development of miniature inverted-repeat transposable elements and intron length polymorphic markers in tea plant (Camellia sinensis). Sci Rep 2022; 12:16233. [PMID: 36171247 PMCID: PMC9519581 DOI: 10.1038/s41598-022-20400-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Marker-assisted breeding and tagging of important quantitative trait loci for beneficial traits are two important strategies for the genetic improvement of plants. However, the scarcity of diverse and informative genetic markers covering the entire tea genome limits our ability to achieve such goals. In the present study, we used a comparative genomic approach to mine the tea genomes of Camellia sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS) to identify the markers to differentiate tea genotypes. In our study, 43 and 60 Camellia sinensis miniature inverted-repeat transposable element (CsMITE) families were identified in these two sequenced tea genomes, with 23,170 and 37,958 putative CsMITE sequences, respectively. In addition, we identified 4912 non-redundant, Camellia sinensis intron length polymorphic (CsILP) markers, 85.8% of which were shared by both the CSS and CSA genomes. To validate, a subset of randomly chosen 10 CsMITE markers and 15 CsILP markers were tested and found to be polymorphic among the 36 highly diverse tea genotypes. These genome-wide markers, which were identified for the first time in tea plants, will be a valuable resource for genetic diversity analysis as well as marker-assisted breeding of tea genotypes for quality improvement.
Collapse
|
69
|
Chhabra R, Muthusamy V, Baveja A, Katral A, Mehta B, Zunjare RU, Hossain F. Allelic variation in shrunken2 gene affecting kernel sweetness in exotic-and indigenous-maize inbreds. PLoS One 2022; 17:e0274732. [PMID: 36136965 PMCID: PMC9498942 DOI: 10.1371/journal.pone.0274732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
Sweet corn has become a popular food worldwide. It possesses six-times more sugar than field corn due to the presence of recessive shrunken2 (sh2) gene. Despite availability of diverse sweet corn germplasm, comprehensive characterization of sh2 has not been undertaken so far. Here, entire Sh2 gene (7320 bp) among five field corn-(Sh2Sh2) and six sweet corn-(sh2sh2) inbreds was sequenced. A total of 686 SNPs and 372 InDels were identified, of which three SNPs differentiated the wild-(Sh2) and mutant-(sh2) allele. Ten InDel markers were developed to assess sh2 gene-based diversity among 23 sweet corn and 25 field corn lines. Twenty-five alleles and 47 haplotypes of sh2 were identified among 48 inbreds. Among markers, MGU-InDel-2, MGU-InDel-3, MGU-InDel-5 and MGU-InDel-8 had PIC>0.5. Major allele frequency varied from 0.458–0.958. The gene sequence of these maize inbreds was compared with 25 orthologues of monocots. Sh2 gene possessed 15–18 exons with 6-225bp among maize, while it was 6–21 exons with 30-441bp among orthologues. While intron length across maize genotypes varied between 67-2069bp, the same among orthologues was 57–2713 bp. Sh2-encoded AGPase domain was more conserved than NTP transferase domain. Nucleotide and protein sequences of sh2 in maize and orthologues revealed that rice orthologue was closer to maize than other monocots. The study also provided details of motifs and domains present in sh2 gene, physicochemical properties and secondary structure of SH2 protein in maize inbreds and orthologues. This study reports detailed characterization and diversity analysis in sh2 gene of maize and related orthologues in various monocots.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aanchal Baveja
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Brijesh Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail:
| |
Collapse
|
70
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
71
|
Variation in Ovine DGAT1 and Its Association with Carcass Muscle Traits in Southdown Sheep. Genes (Basel) 2022; 13:genes13091670. [PMID: 36140837 PMCID: PMC9498694 DOI: 10.3390/genes13091670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that plays a key role in the synthesis of triglycerides. Its gene (DGAT1) is regarded as a candidate gene for variation in milk and meat traits in cattle. The objective of this study was to use a PCR single-strand conformation polymorphism approach to explore sequence variation in two regions of ovine DGAT1 and to assess its effect on meat traits in New Zealand Southdown sheep. Three variant nucleotide sequences were identified in each region, with two single nucleotide polymorphisms (SNPs) and one nucleotide deletion being detected in intron 1 and two SNPs being found in exon 17. The effect of the exon 17 variation was not investigated due to one variant being predominant and the other two variants occurring at low frequencies. In intron 1, one variant (B1) was found to be associated with increase loin meat yield, suggesting that this may have value as a gene marker for improving meat traits.
Collapse
|
72
|
Akhatayeva Z, Cao C, Huang Y, Zhou Q, Zhang Q, Guo Z, Tan S, Yue X, Xu H, Li R, Pan C, Lan X. Newly reported 90-bp deletion within the ovine BMPRIB gene: Does it widely distribute, link to the famous FecB (p.Q249R) mutation, and affect litter size? Theriogenology 2022; 189:222-229. [DOI: 10.1016/j.theriogenology.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/08/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022]
|
73
|
Lin NC, Shih YH, Chiu KC, Li PJ, Yang HW, Lan WC, Hsia SM, Wang TH, Shieh TM. Association of rs9679162 Genetic Polymorphism and Aberrant Expression of Polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14174217. [PMID: 36077753 PMCID: PMC9454803 DOI: 10.3390/cancers14174217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy was performed before surgery. Because the tumor itself and the surrounding vascular bed were not damaged, the chemotherapy we performed could have good drug delivery. After the operation, the volume of the tumor can be reduced to facilitate surgery or radiotherapy. However, neoadjuvant chemotherapy also delays the patient’s time to receive main therapy. The physician must make sure that it has a good response and does not allow disease progression in the patient during neoadjuvant chemotherapy. Therefore, predicting the treatment response of neoadjuvant chemotherapy can shorten the treatment time, reduce the harm of chemotherapy side effects, and avoid the occurrence of drug resistance. The results of this study showed that GALNT14-rs9679162 and mRNA expression were associated with post-treatment survival in head and neck cancer. It can be used as an indicator to predict the treatment response of neoadjuvant chemotherapy. Abstract The polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) rs9679162 and mRNA expression were associated with treatment outcome in various cancers. However, the relation of GALNT14 and head and neck cancer were nuclear. A total of 199 patients with head and neck squamous cell carcinoma (HNSCC) were collected in this study, including oral SCC (OSCC), oropharyngeal SCC (OPSCC), laryngeal SCC (LSCC), and others. The DNA and RNA of cancer tissues were extracted using the TRI Reagent method. The rs9679162 was analyzed using polymerase chain reaction (PCR) and sequencing methods in 199 DNA specimens, and the mRNA expression was analyzed using quantitative reverse transcription PCR (RT-qPCR) methods in 68 paired RNA specimens of non-cancerous matched tissues (NCMT) and tumor tissues. The results showed that the genotype of TT, TG, and GG appeared at 30%, 44%, and 26%, respectively. Non-TT genotype or G alleotype were associated with alcohol, betel nut, and cigarette using among patients with OSCC, and it also affected the treatment and survival of patients with OSCC and LSCC. High GALNT14 mRNA expression levels increased lymphatic metastasis of patients with HNSCC, and treatment and survival in patients with OPSCC. Overall, the GALNT14-rs9679162 genotype and mRNA expression level can be used as indicators of HNSCC treatment prognosis.
Collapse
Affiliation(s)
- Nan-Chin Lin
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 500009, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Po-Jung Li
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Hui-Wu Yang
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| |
Collapse
|
74
|
Genes, exposures, and interactions on preterm birth risk: an exploratory study in an Argentine population. J Community Genet 2022; 13:557-565. [PMID: 35976607 DOI: 10.1007/s12687-022-00605-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022] Open
Abstract
Preterm birth (PTB) is the main condition related to perinatal morbimortality worldwide. The aim of this study was to identify associations of spontaneous PTB with genetic variants, exposures, and interactions between and within them. We carried out a retrospective case-control study including parental sociodemographic and obstetric data, and fetal genetic variants. We sequenced the coding and flanking regions of five candidate genes from the placental blood cord of 69 preterm newborns and 61 at term newborns. We identify the characteristics with the greatest predictive power of PTB using penalized regressions, in which we include exposures (E), genetic variants (G), and two-way interactions. Few prenatal visits (< 5) was the main predictor of PTB from 26 G, 35 E, 299 G × G, 564 E × E, and 875 G × E evaluated terms. Within the fetal genetic characteristics, we observed associations of rs4845397 (KCNN3, allele T) variant; G × G interaction between rs12621551 (COL4A3, allele T) and rs73993878 (COL4A3, allele A), which showed sensitivity to anemia; and G × G interaction between rs11680670 (COL4A3, allele T) and rs2074351 (PON1, allele A), which showed sensitivity to vaginal discharge. The results of this exploratory study suggest that social disparities and metabolic pathways linked to uterine relaxation, inflammation/infections, and collagen metabolism would be involved in PTB etiology. Future studies with a larger sample size are necessary to confirm these findings and to analyze a greater number of exposures.
Collapse
|
75
|
Luan YX, Cui Y, Chen WJ, Jin JF, Liu AM, Huang CW, Potapov M, Bu Y, Zhan S, Zhang F, Li S. High-quality genomes reveal significant genetic divergence and cryptic speciation in the model organism Folsomia candida (Collembola). Mol Ecol Resour 2022; 23:273-293. [PMID: 35962787 PMCID: PMC10087712 DOI: 10.1111/1755-0998.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
The collembolan Folsomia candida Willem, 1902, is widely distributed throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However, it is questioned as an ideal "standard" because of differences in reproductive modes and cryptic genetic diversity between strains from various geographical origins. In this study, we obtained two high-quality chromosome-level genomes of F. candida, for a parthenogenetic strain (named as FCDK, 219.08 Mb, 25,139 protein-coding genes) and a sexual strain (named as FCSH, 153.09 Mb, 21,609 protein-coding genes), reannotated the genome of the parthenogenetic strain reported by Faddeeva-Vakhrusheva et al. in 2017 (named as FCBL, 221.7 Mb, 25,980 protein-coding genes), and conducted comparative genomic analyses of three strains. High genome similarities between FCDK and FCBL on synteny, genome architecture, mitochondrial and nuclear gene sequences support they are conspecific. The seven chromosomes of FCDK are each 25-54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related to the broader environmental adaptation of parthenogenetic strains. In addition, FCDK has fewer strain-specific microRNAs than FCSH, and their mitochondrial and nuclear genes have diverged greatly. In conclusion, FCDK/FCBL and FCSH have accumulated independent genetic changes and evolved into distinct species since 10 Mya. Our work provides important genomic resources for studying the mechanisms of rapidly cryptic speciation and soil arthropod adaptation to soil ecosystems.
Collapse
Affiliation(s)
- Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | - Jian-Feng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai-Min Liu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Cheng-Wang Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Yun Bu
- Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
76
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
77
|
Fingerhut JM, Yamashita YM. The regulation and potential functions of intronic satellite DNA. Semin Cell Dev Biol 2022; 128:69-77. [PMID: 35469677 DOI: 10.1016/j.semcdb.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Satellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism. Studies in Drosophila demonstrated that satellite DNA-containing introns are transcribed with the gene and require specialized mechanisms to overcome the burdens imposed by the extremely long stretches of repetitive DNA. Whether intron gigantism confers any benefit or serves any functional purpose for cells and/or organisms remains elusive. Here we review our current understanding of intron gigantism: where it is found, the challenges it imposes, how it is regulated and what purpose it may serve.
Collapse
Affiliation(s)
- Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
78
|
Biallelic and gene-wide genomic substitution for endogenous intron and retroelement mutagenesis in human cells. Nat Commun 2022; 13:4219. [PMID: 35864085 PMCID: PMC9304424 DOI: 10.1038/s41467-022-31982-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Functional annotation of the vast noncoding landscape of the diploid human genome still remains a major challenge of genomic research. An efficient, scarless, biallelic, and gene-wide mutagenesis approach is needed for direct investigation of the functional significance of endogenous long introns in gene regulation. Here we establish a genome substitution platform, the Universal Knock-in System or UKiS, that meets these requirements. For proof of concept, we first used UKiS on the longest intron of TP53 in the pseudo-diploid cell line HCT116. Complete deletion of the intron, its substitution with mouse and zebrafish syntenic introns, and specific removal of retrotransposon-derived elements (retroelements) were all efficiently and accurately achieved in both alleles, revealing a suppressive role of intronic Alu elements in TP53 expression. We also used UKiS for TP53 intron deletion in human induced pluripotent stem cells without losing their stemness. Furthermore, UKiS enabled biallelic removal of all introns from three human gene loci of ~100 kb and longer to demonstrate that intron requirements for transcriptional activities vary among genes. UKiS is a standard platform with which to pursue the design of noncoding regions for genome writing in human cells.
Collapse
|
79
|
Abstract
BACKGROUND The evolution of spliceosomal introns has been widely studied among various eukaryotic groups. Researchers nearly reached the consensuses on the pattern and the mechanisms of intron losses and gains across eukaryotes. However, according to previous studies that analyzed a few genes or genomes, Nematoda seems to be an eccentric group. RESULTS Taking advantage of the recent accumulation of sequenced genomes, we extensively analyzed the intron losses and gains using 104 nematode genomes across all the five Clades of the phylum. Nematodes have a wide range of intron density, from less than one to more than nine per kbp coding sequence. The rates of intron losses and gains exhibit significant heterogeneity both across different nematode lineages and across different evolutionary stages of the same lineage. The frequency of intron losses far exceeds that of intron gains. Five pieces of evidence supporting the model of cDNA-mediated intron loss have been observed in ten Caenorhabditis species, the dominance of the precise intron losses, frequent loss of adjacent introns, high-level expression of the intron-lost genes, preferential losses of short introns, and the preferential losses of introns close to 3'-ends of genes. Like studies in most eukaryotic groups, we cannot find the source sequences for the limited number of intron gains detected in the Caenorhabditis genomes. CONCLUSIONS These results indicate that nematodes are a typical eukaryotic group rather than an outlier in intron evolution.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Ji Xia
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kun-Xian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
80
|
Lai D, Fan Y, Xue G, He A, Yang H, He C, Li Y, Ruan J, Yan J, Cheng J. Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet (Setaria italica). BMC Genomics 2022; 23:389. [PMID: 35596144 PMCID: PMC9122484 DOI: 10.1186/s12864-022-08633-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Among the major transcription factors, SPL plays a crucial role in plant growth, development, and stress response. Foxtail millet (Setaria italica), as a C4 crop, is rich in nutrients and is beneficial to human health. However, research on the foxtail millet SPL (SQUAMOSA PROMOTER BINDING-LIKE) gene family is limited. RESULTS: In this study, a total of 18 SPL genes were identified for the comprehensive analysis of the whole genome of foxtail millet. These SiSPL genes were divided into seven subfamilies (I, II, III, V, VI, VII, and VIII) according to the classification of the Arabidopsis thaliana SPL gene family. Structural analysis of the SiSPL genes showed that the number of introns in subfamilies I and II were much larger than others, and the promoter regions of SiSPL genes were rich in different cis-acting elements. Among the 18 SiSPL genes, nine genes had putative binding sites with foxtail millet miR156. No tandem duplication events were found between the SiSPL genes, but four pairs of segmental duplications were detected. The SiSPL genes expression were detected in different tissues, which was generally highly expressed in seeds development process, especially SiSPL6 and SiSPL16, which deserve further study. The results of the expression levels of SiSPL genes under eight types of abiotic stresses showed that many stress responsive genes, especially SiSPL9, SiSPL10, and SiSPL16, were highly expressed under multiple stresses, which deserves further attention. CONCLUSIONS In this research, 18 SPL genes were identified in foxtail millet, and their phylogenetic relationships, gene structural features, duplication events, gene expression and potential roles in foxtail millet development were studied. The findings provide a new perspective for the mining of the excellent SiSPL gene and the molecular breeding of foxtail millet.
Collapse
Affiliation(s)
- Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
- School of Food and Biological Engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Chunlin He
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, People's Republic of China
| | - Yijing Li
- Henan Cancer Hospital, Zhengzhou, 450001, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Jun Yan
- School of Food and Biological Engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, People's Republic of China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China.
| |
Collapse
|
81
|
Identification, Characterization and Comparison of the Genome-Scale UTR Introns from Six Citrus Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ever since their discovery, introns within the coding sequence (CDS) of transcripts have been paid great attention. However, the introns located in the untranslated regions (UTRs) are often ignored. Here, we identified, characterized and compared the UTR introns (UIs) from six citrus species. Results showed that the average intron number of UTRs is greatly lower than that of CDSs. Among all six citrus species, the number and density of 5′UTR introns (5UIs) are higher than those of 3′UTR introns (3UIs). The UI densities varied greatly among different citrus species. There are 11 and 9 types of splice site (SS) pairs for the UIs of C. sinensis and C. medica, respectively. However, the UIs of the other four citrus species all own only three kinds of SS pairs. The ‘GT-AG’, accounting for more than 95% of both 5UIs and 3UIs SS pairs for all the six species, is the most popular type. Moreover, 81 5UIs and 26 3UIs were identified as common UIs among the six citrus species, and the transcripts containing these common UIs were mostly involved in gene expression or gene expression regulation. Our study revealed that the UIs’ length, abundance, density and SS pair types varied among different citrus species and that many UI-containing genes play important roles in gene expression regulation. Our findings have great implications for future citrus UI function research.
Collapse
|
82
|
Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene X 2022; 821:146334. [PMID: 35181501 DOI: 10.1016/j.gene.2022.146334] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Pathogenesis related protein-1 (PR-1) is the most abundantly produced protein during defense response against many biotic and abiotic stresses. However, knowledge on PR-1 gene family and its evolutionary relationship in banana is very limited. In order to study the potential role of PR-1 genes in banana, genome wide identification, structure analysis and expressions were performed. A total of 15 and 11 PR-1 genes were identified from A and B genomes of banana and the proteins encoded by this gene family are of varying lengths and harbor conserved domains and motifs. PR-1 genes are unevenly dispersed on 11 chromosomes with segmental duplication in both A and B genome, suggesting an important contribution of duplication in expansion of PR-1 gene family in banana. qRT-PCR analysis of PR-1 gene showed positive correlation with the RNAseq data under various stresses and examination of expression pattern of selected MaPR-1 genes in banana revealed its role in biotic and abiotic stresses in general and fusarium wilt in particular. This study provides significant insight into the functions of PR-1 genes which can be further exploited as a promising candidate for developing multiple stress tolerant banana varieties.
Collapse
|
83
|
Varathan P, Gorijala P, Jacobson T, Chasioti D, Nho K, Risacher SL, Saykin AJ, Yan J. Integrative analysis of eQTL and GWAS summary statistics reveals transcriptomic alteration in Alzheimer brains. BMC Med Genomics 2022; 15:93. [PMID: 35461270 PMCID: PMC9035239 DOI: 10.1186/s12920-022-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Large-scale genome-wide association studies have successfully identified many genetic variants significantly associated with Alzheimer's disease (AD), such as rs429358, rs11038106, rs723804, rs13591776, and more. The next key step is to understand the function of these SNPs and the downstream biology through which they exert the effect on the development of AD. However, this remains a challenging task due to the tissue-specific nature of transcriptomic and proteomic data and the limited availability of brain tissue.In this paper, instead of using coupled transcriptomic data, we performed an integrative analysis of existing GWAS findings and expression quantitative trait loci (eQTL) results from AD-related brain regions to estimate the transcriptomic alterations in AD brain. RESULTS We used summary-based mendelian randomization method along with heterogeneity in dependent instruments method and were able to identify 32 genes with potential altered levels in temporal cortex region. Among these, 10 of them were further validated using real gene expression data collected from temporal cortex region, and 19 SNPs from NECTIN and TOMM40 genes were found associated with multiple temporal cortex imaging phenotype. CONCLUSION Significant pathways from enriched gene networks included neutrophil degranulation, Cell surface interactions at the vascular wall, and Regulation of TP53 activity which are still relatively under explored in Alzheimer's Disease while also encouraging a necessity to bind further trans-eQTL effects into this integrative analysis.
Collapse
Affiliation(s)
- Pradeep Varathan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Priyanka Gorijala
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Tanner Jacobson
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danai Chasioti
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
84
|
Backiyarani S, Anuradha C, Thangavelu R, Chandrasekar A, Renganathan B, Subeshkumar P, Giribabu P, Muthusamy M, Uma S. Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses. 3 Biotech 2022; 12:101. [PMID: 35463044 PMCID: PMC8960517 DOI: 10.1007/s13205-021-03106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Expansin, a cell wall-modifying gene family, has been well characterized and its role in biotic and abiotic stress resistance has been proven in many monocots, but not yet studied in banana, a unique model crop. Banana is one of the staple food crops in developing countries and its production is highly influenced by various biotic and abiotic factors. Characterizing the expansin genes of the ancestor genome (M. acuminata and M. balbisiana) of present day cultivated banana will enlighten their role in growth and development, and stress responses. In the present study, 58 (MaEXPs) and 55 (MbaEXPs) putative expansin genes were identified in A and B genome, respectively, and were grouped in four subfamilies based on phylogenetic analysis. Gene structure and its duplications revealed that EXPA genes are highly conserved and are under negative selection whereas the presence of more number of introns in other subfamilies revealed that they are diversifying. Expression profiling of expansin genes showed a distinct expression pattern for biotic and abiotic stress conditions. This study revealed that among the expansin subfamilies, EXPAs contributed significantly towards stress-resistant mechanism. The differential expression of MaEXPA18 and MaEXPA26 under drought stress conditions in the contrasting cultivar suggested their role in drought-tolerant mechanism. Most of the MaEXPA genes are differentially expressed in the root lesion nematode contrasting cultivars which speculated that this expansin subfamily might be the susceptible factor. The downregulation of MaEXPLA6 in resistant cultivar during Sigatoka leaf spot infection suggested that by suppressing this gene, resistance may be enhanced in susceptible cultivar. Further, in-depth studies of these genes will lead to gain insight into their role in various stress conditions in banana. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-021-03106-x.
Collapse
Affiliation(s)
- Suthanthiram Backiyarani
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Chelliah Anuradha
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Raman Thangavelu
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Arumugam Chandrasekar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Baratvaj Renganathan
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Parasuraman Subeshkumar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Palaniappan Giribabu
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju, 54874 Korea
| | - Subbaraya Uma
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
85
|
Genome-wide identification, phylogenetic and expression pattern analysis of MADS-box family genes in foxtail millet (Setaria italica). Sci Rep 2022; 12:4979. [PMID: 35322041 PMCID: PMC8943164 DOI: 10.1038/s41598-022-07103-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Foxtail millet (Setaria italica) is rich in nutrients and extremely beneficial to human health. We identified and comprehensively analyzed 89 MADS-box genes in the foxtail millet genome. According to the classification of MADS-box genes in Arabidopsis thaliana and rice, the SiMADS-box genes were divided into M-type (37) and MIKC-type (52). During evolution, the differentiation of MIKC-type MADS-box genes occurred before that of monocotyledons and dicotyledons. The SiMADS-box gene structure has undergone much differentiation, and the number of introns in the MIKC-type subfamily is much greater than that in the M-type subfamily. Analysis of gene duplication events revealed that MIKC-type MADS-box gene segmental duplication accounted for the vast majority of gene duplication events, and MIKC-type MADS-box genes played a major role in the amplification of SiMADS-box genes. Collinearity analysis showed highest collinearity between foxtail millet and maize MADS-box genes. Analysis of tissue-specific expression showed that SiMADS-box genes are highly expressed throughout the grain-filling process. Expression analysis of SiMADS-box genes under eight different abiotic stresses revealed many stress-tolerant genes, with induced expression of SiMADS33 and SiMADS78 under various stresses warranting further attention. Further, some SiMADS-box proteins may interact under external stress. This study provides insights for MADS-box gene mining and molecular breeding of foxtail millet in the future.
Collapse
|
86
|
Chhipi-Shrestha JK, Schneider-Poetsch T, Suzuki T, Mito M, Khan K, Dohmae N, Iwasaki S, Yoshida M. Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns. Cell Chem Biol 2022; 29:259-275.e10. [PMID: 34520743 PMCID: PMC8857039 DOI: 10.1016/j.chembiol.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022]
Abstract
Chemical splicing modulators that bind to the spliceosome have provided an attractive avenue for cancer treatment. Splicing modulators induce accumulation and subsequent translation of a subset of intron-retained mRNAs. However, the biological effect of proteins containing translated intron sequences remains unclear. Here, we identify a number of truncated proteins generated upon treatment with the splicing modulator spliceostatin A (SSA) via genome-wide ribosome profiling and bio-orthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry. A subset of these truncated proteins has intrinsically disordered regions, forms insoluble cellular condensates, and triggers the proteotoxic stress response through c-Jun N-terminal kinase (JNK) phosphorylation, thereby inhibiting the mTORC1 pathway. In turn, this reduces global translation. These findings indicate that creating an overburden of condensate-prone proteins derived from introns represses translation and prevents further production of harmful truncated proteins. This mechanism appears to contribute to the antiproliferative and proapoptotic activity of splicing modulators.
Collapse
Affiliation(s)
- Jagat K. Chhipi-Shrestha
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Khalid Khan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan.
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
87
|
New Genomic Signals Underlying the Emergence of Human Proto-Genes. Genes (Basel) 2022; 13:genes13020284. [PMID: 35205330 PMCID: PMC8871994 DOI: 10.3390/genes13020284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
De novo genes are novel genes which emerge from non-coding DNA. Until now, little is known about de novo genes’ properties, correlated to their age and mechanisms of emergence. In this study, we investigate four related properties: introns, upstream regulatory motifs, 5′ Untranslated regions (UTRs) and protein domains, in 23,135 human proto-genes. We found that proto-genes contain introns, whose number and position correlates with the genomic position of proto-gene emergence. The origin of these introns is debated, as our results suggest that 41% of proto-genes might have captured existing introns, and 13.7% of them do not splice the ORF. We show that proto-genes which emerged via overprinting tend to be more enriched in core promotor motifs, while intergenic and intronic genes are more enriched in enhancers, even if the TATA motif is most commonly found upstream in these genes. Intergenic and intronic 5′ UTRs of proto-genes have a lower potential to stabilise mRNA structures than exonic proto-genes and established human genes. Finally, we confirm that proteins expressed by proto-genes gain new putative domains with age. Overall, we find that regulatory motifs inducing transcription and translation of previously non-coding sequences may facilitate proto-gene emergence. Our study demonstrates that introns, 5′ UTRs, and domains have specific properties in proto-genes. We also emphasize that the genomic positions of de novo genes strongly impacts these properties.
Collapse
|
88
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
89
|
Li M, Ma J, Liu H, Ou M, Ye H, Zhao P. Identification and Characterization of Wall-Associated Kinase (WAK) and WAK-like (WAKL) Gene Family in Juglans regia and Its Wild Related Species Juglans mandshurica. Genes (Basel) 2022; 13:genes13010134. [PMID: 35052474 PMCID: PMC8775259 DOI: 10.3390/genes13010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinase (WAK) and WAK-like kinase (WAKL) are receptor-like kinases (RLKs), which play important roles in signal transduction between the cell wall and the cytoplasm in plants. WAK/WAKLs have been studied in many plants, but were rarely studied in the important economic walnut tree. In this study, 27 and 14 WAK/WAKL genes were identified in Juglans regia and its wild related species Juglans mandshurica, respectively. We found tandem duplication might play a critical role in the expansion of WAK/WAKL gene family in J. regia, and most of the WAK/WAKL homologous pairs underwent purified selection during evolution. All WAK/WAKL proteins have the extracellular WAK domain and the cytoplasmic protein kinase domain, and the latter was more conserved than the former. Cis-acting elements analysis showed that WAK/WAKL might be involved in plant growth and development, plant response to abiotic stress and hormones. Gene expression pattern analysis further indicated that most WAK/WAKL genes in J. regia might play a role in the development of leaves and be involved in plant response to biotic stress. Our study provides a new perspective for the evolutionary analysis of gene families in tree species and also provides potential candidate genes for studying WAK/WAKL gene function in walnuts.
Collapse
|
90
|
Zhang D, Lan S, Yin WL, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of KNOX Gene Family in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:901089. [PMID: 35712569 PMCID: PMC9197187 DOI: 10.3389/fpls.2022.901089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
The establishment of lateral organs and subsequent plant architecture involves factors intrinsic to the stem apical meristem (SAM) from which they are derived. KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors that especially act in determining stem cell fate in SAM. Although KNOXs have been studied in many land plants for decades, there is a dearth of knowledge on KNOX's role in Orchidaceae, the largest and most diverse lineage of flowering plants. In this study, a total of 32 putative KNOX genes were identified in the genomes of five orchid species and further designated into two classes (Class I and Class II) based on phylogenetic relationships. Sequence analysis showed that most orchid KNOX proteins retain four conserved domains (KNOX1, KNOX2, ELK, and Homeobox_KN). Comparative analysis of gene structure showed that the exon-intron structure is conserved in the same clade but most orchids exhibited longer intron, which may be a unique feature of Orchidaceae. Cis-elements identified in the promoter region of orchid KNOXs were found mostly enriched in a function of light responsiveness, followed by MeJA and ABA responsiveness, indicative of their roles in modulating light and phytohormones. Collinear analysis unraveled a one-to-one correspondence among KNOXs in orchids, and all KNOX genes experienced strong purifying selection, indicating the conservation of this gene family has been reinforced across the Orchidaceae lineage. Expression profiles based on transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) revealed a stem-specific expression of KNOX Class I genes and a broader expression pattern of Class II genes. Taken together, our results provided a comprehensive analysis to uncover the underlying function of KNOX genes in Orchidaceae.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Wei-Lun Yin,
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhong-Jian Liu,
| |
Collapse
|
91
|
Sabir IA, Manzoor MA, Shah IH, Liu X, Jiu S, Wang J, Alam P, Abdullah M, Zhang C. Identification and Comprehensive Genome-Wide Analysis of Glutathione S-Transferase Gene Family in Sweet Cherry ( Prunus avium) and Their Expression Profiling Reveals a Likely Role in Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:938800. [PMID: 35903236 PMCID: PMC9315441 DOI: 10.3389/fpls.2022.938800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 05/08/2023]
Abstract
Glutathione S-transferases (GSTs) in plants are multipurpose enzymes that are involved in growth and development and anthocyanins transportation. However, members of the GST gene family were not identified in sweet cherry (Prunus avium). To identify the GST genes in sweet cherry, a genome-wide analysis was conducted. In this study, we identified 67 GST genes in P. avium genome and nomenclature according to chromosomal distribution. Phylogenetic tree analysis revealed that PavGST genes were classified into seven chief subfamily: TCHQD, Theta, Phi, Zeta, Lambda, DHAR, and Tau. The majority of the PavGST genes had a relatively well-maintained exon-intron and motif arrangement within the same group, according to gene structure and motif analyses. Gene structure (introns-exons) and conserved motif analysis revealed that the majority of the PavGST genes showed a relatively well-maintained motif and exons-introns configuration within the same group. The chromosomal localization, GO enrichment annotation, subcellular localization, syntenic relationship, Ka/Ks analysis, and molecular characteristics were accomplished using various bioinformatics tools. Mode of gene duplication showed that dispersed duplication might play a key role in the expansion of PavGST gene family. Promoter regions of PavGST genes contain numerous cis-regulatory components, which are involved in multiple stress responses, such as abiotic stress and phytohormones responsive factors. Furthermore, the expression profile of sweet cherry PavGSTs showed significant results under LED treatment. Our findings provide the groundwork for future research into induced LED anthocyanin and antioxidants deposition in sweet cherries.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Caixi Zhang,
| |
Collapse
|
92
|
Manzoor MA, Li G, Abdullah M, Han W, Wenlong H, Yang Z, Xinya W, Yu Z, Xiaofeng F, Qing J, Shafique MS, Cai Y. Genome-wide investigation and comparative analysis of MATE gene family in Rosaceae species and their regulatory role in abiotic stress responses in Chinese pear (Pyrus bretschneideri). PHYSIOLOGIA PLANTARUM 2021; 173:1163-1178. [PMID: 34363225 DOI: 10.1111/ppl.13511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
The Multidrug and Toxic Compound Extrusion (MATE) protein belongs to a secondary transporter gene family, which plays a primary role in transporting many kinds of substrates such as organic compounds, secondary metabolites, and phytohormones. MATE protein members exist in both prokaryotes and eukaryotes. However, evolution and comprehensive analysis of the MATE genes has not been performed in Rosaceae species. In the present study, a total of 404 MATEs genes were identified from six Rosaceae genomes (Prunus avium, Pyrus bretschneideri, Prunus persica, Fragaria vesca, Prunus mume, and Malus domestica) and classified into eight main subfamilies (I-VII) based on structural and phylogenetic analysis. Microcollinearity analysis showed that whole-genome duplication events might play a vital role in the expansion of the MATE genes family. The Ka/Ks analysis, chromosomal localization, subcellular localization, and molecular characteristics (length, weight, and pI) were performed using various bioinformatics tools. Furthermore, different subfamilies have different introns-exons structures, cis-acting elements, and conserved motifs analysis, indicating functional divergence in the MATE family. Subsequently, RNA-seq analysis and real-time qRT-PCR were conducted during Chinese pear fruit development. Moreover, PbMATE genes were significantly expressed under hormonal treatments of MeJA (methyl jasmonate), SA (salicylic acid), and ABA (abscisic acid). Overall, our results provide helpful insights into the functions, expansion complexity, and evolutions of the MATE genes in Chinese pear and five Rosaceae species.
Collapse
Affiliation(s)
| | - Guohui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wang Han
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Han Wenlong
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wang Xinya
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhao Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Feng Xiaofeng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jin Qing
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
93
|
Mendonça MS, Mangiavacchi PM, Rios ÁFL. Regulatory functions of FKBP5 intronic regions associated with psychiatric disorders. J Psychiatr Res 2021; 143:1-8. [PMID: 34433110 DOI: 10.1016/j.jpsychires.2021.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022]
Abstract
The FKBP5 gene codifies a co-chaperone protein associated with the modulation of glucocorticoid receptor interaction involved in the adaptive stress response. The FKBP5 intracellular concentration affects the binding affinity of the glucocorticoid receptor (GR) to glucocorticoids (GCs). This gene has glucocorticoid response elements (GREs) located in introns 2, 5 and 7, which affect its expression. Recent studies have examined GRE activity and the effects of genetic variants on transcript efficiency and their contribution to susceptibility to behavioral disorders. Epigenetic changes and environmental factors can influence the effects of these allele-specific variants, impacting the response to GCs of the FKBP5 gene. The main epigenetic mark investigated in FKBP5 intronic regions is DNA methylation, however, few studies have been performed for all GREs located in these regions. One of the major findings was the association of low DNA methylation levels in the intron 7 of FKBP5 in patients with psychiatric disorders. To date, there are no reports of DNA methylation in introns 2 and 5 of the gene associated with diagnoses of psychiatric disorders. This review highlights what has been discovered so far about the relationship between polymorphisms and epigenetic targets in intragenic regions, and reveals the gaps that need to be explored, mainly concerning the role of DNA methylation in these regions and how it acts in psychiatric disease susceptibility.
Collapse
Affiliation(s)
- Mariana S Mendonça
- Laboratory of Biotechnology (LBT), Center of Bioscience and Biotechnology -CBB, North Fluminense State University, Rio de Janeiro, Brazil
| | - Paula M Mangiavacchi
- Laboratory of Reproduction and Animal Breeding - LRMGA. Center for Agricultural Technological Sciences - CCTA, North Fluminense State University, Rio de Janeiro, Brazil
| | - Álvaro F L Rios
- Laboratory of Biotechnology (LBT), Center of Bioscience and Biotechnology -CBB, North Fluminense State University, Rio de Janeiro, Brazil.
| |
Collapse
|
94
|
Muzafar S, Sharma RD, Chauhan N, Prasad R. Intron distribution and emerging role of alternative splicing in fungi. FEMS Microbiol Lett 2021; 368:6414529. [PMID: 34718529 DOI: 10.1093/femsle/fnab135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Spliceosomal introns are noncoding sequences that are spliced from pre-mRNA. They are ubiquitous in eukaryotic genomes, although the average number of introns per gene varies considerably between different eukaryotic species. Fungi are diverse in terms of intron numbers ranging from 4% to 99% genes with introns. Alternative splicing is one of the most common modes of posttranscriptional regulation in eukaryotes, giving rise to multiple transcripts from a single pre-mRNA and is widespread in metazoans and drives extensive proteome diversity. Earlier, alternative splicing was considered to be rare in fungi, but recently, increasing numbers of studies have revealed that alternative splicing is also widespread in fungi and has been implicated in the regulation of fungal growth and development, protein localization and the improvement of survivability, likely underlying their unique capacity to adapt to changing environmental conditions. However, the role of alternative splicing in pathogenicity and development of drug resistance is only recently gaining attention. In this review, we describe the intronic landscape in fungi. We also present in detail the newly discovered functions of alternative splicing in various cellular processes and outline areas particularly in pathogenesis and clinical drug resistance for future studies that could lead to the development of much needed new therapeutics.
Collapse
Affiliation(s)
- Suraya Muzafar
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon, Gurgaon 122413, Haryana, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon, Gurgaon 122413, Haryana, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon, Gurgaon 122413, Haryana, India
| |
Collapse
|
95
|
Zepeda-Batista JL, Núñez-Domínguez R, Ramírez-Valverde R, Jahuey-Martínez FJ, Herrera-Ojeda JB, Parra-Bracamonte GM. Discovering of Genomic Variations Associated to Growth Traits by GWAS in Braunvieh Cattle. Genes (Basel) 2021; 12:genes12111666. [PMID: 34828272 PMCID: PMC8618990 DOI: 10.3390/genes12111666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
A genome-wide association study (GWAS) was performed to elucidate genetic architecture of growth traits in Braunvieh cattle. Methods: The study included 300 genotyped animals by the GeneSeek® Genomic Profiler Bovine LDv.4 panel; after quality control, 22,734 SNP and 276 animals were maintained in the analysis. The examined phenotypic data considered birth (BW), weaning (WW), and yearling weights. The association analysis was performed using the principal components method via the egscore function of the GenABEL version 1.8-0 package in the R environment. The marker rs133262280 located in BTA 22 was associated with BW, and two SNPs were associated with WW, rs43668789 (BTA 11) and rs136155567 (BTA 27). New QTL associated with these liveweight traits and four positional and functional candidate genes potentially involved in variations of the analyzed traits were identified. The most important genes in these genomic regions were MCM2 (minichromosome maintenance complex component 2), TPRA1 (transmembrane protein adipocyte associated 1), GALM (galactose mutarotase), and NRG1 (neuregulin 1), related to embryonic cleavage, bone and tissue growth, cell adhesion, and organic development. This study is the first to present a GWAS conducted in Braunvieh cattle in Mexico providing evidence for genetic architecture of assessed growth traits. Further specific analysis of found associated genes and regions will clarify its contribution to the genetic basis of growth-related traits.
Collapse
Affiliation(s)
- José Luis Zepeda-Batista
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Kilometro 40 Autopista Colima-Manzanillo, Tecomán 28100, Colima, Mexico;
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Rafael Núñez-Domínguez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Rodolfo Ramírez-Valverde
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Francisco Joel Jahuey-Martínez
- Facultad de Zootecnia y Ecologa, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua 33820, Chihuahua, Mexico;
| | - Jessica Beatriz Herrera-Ojeda
- Departamento de Ciencias Básicas, Instituto Tecnológico del Valle de Morelia, Instituto Tecnológico Nacional, Morelia 58100, Michoacán, Mexico;
| | - Gaspar Manuel Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro S/N esq. Elías Piña, Col. Narciso Mendoza, Ciudad Reynosa 88710, Tamaulipas, Mexico
- Correspondence: ; Tel.: +52-899-924-3627 (ext. 87709)
| |
Collapse
|
96
|
Schroor MM, Mokhtar FBA, Plat J, Mensink RP. Associations between SNPs in Intestinal Cholesterol Absorption and Endogenous Cholesterol Synthesis Genes with Cholesterol Metabolism. Biomedicines 2021; 9:biomedicines9101475. [PMID: 34680591 PMCID: PMC8533139 DOI: 10.3390/biomedicines9101475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) have been associated with cholesterol metabolism and may partly explain large inter-individual variability in intestinal cholesterol absorption and endogenous cholesterol synthesis rates. This cross-sectional study therefore examined whether SNPs in genes encoding for proteins involved in intestinal cholesterol absorption (ABCG5, ABCG8, and NPC1L1) and endogenous cholesterol synthesis (CYP51A1, DHCR7, DHCR24, HMGCR, HSD17B7, LBR, and MSMO1) were associated with intestinal cholesterol absorption markers (total cholesterol (TC) standardized campesterol and sitosterol levels), an endogenous cholesterol synthesis marker (TC-standardized lathosterol levels), and serum low-density lipoprotein cholesterol (LDL-C) concentrations in a European cohort. ABCG5 (rs4245786) and the tag SNP ABCG8 (rs4245791) were significantly associated with serum campesterol and/or sitosterol levels. In contrast, NPC1L1 (rs217429 and rs217416) were significantly associated with serum lathosterol levels. The tag SNP in HMGCR (rs12916) and a SNP in LBR (rs12141732) were significantly associated with serum LDL-C concentrations. SNPs in the cholesterol absorption genes were not associated with serum LDL-C concentrations. SNPs in CYP51A1, DHCR24, HSD17B7, and MSMO1 were not associated with the serum non-cholesterol sterols and LDL-C concentrations. Given the variable efficiency of cholesterol-lowering interventions, the identification of SNPs associated with cholesterol metabolism could be a step forward towards personalized approaches.
Collapse
Affiliation(s)
- Maite M. Schroor
- Correspondence: (M.M.S.); (F.B.A.M.); Tel.: +31-(0)43-3884258 (M.M.S.); +31-(0)43-3881313 (F.B.A.M.)
| | - Fatma B. A. Mokhtar
- Correspondence: (M.M.S.); (F.B.A.M.); Tel.: +31-(0)43-3884258 (M.M.S.); +31-(0)43-3881313 (F.B.A.M.)
| | | | | |
Collapse
|
97
|
Mani MS, Dsouza VL, Dsouza HS. Evaluation of divalent metal transporter 1 (DMT1) (rs224589) polymorphism on blood lead levels of occupationally exposed individuals. Toxicol Lett 2021; 353:13-19. [PMID: 34626817 DOI: 10.1016/j.toxlet.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 01/28/2023]
Abstract
Lead (Pb) is an environmental and public health toxicant. It affects various organ systems of the body, thereby disrupting their normal functions. To date, several genes that are known to influence the mechanism of action of lead and toxicity have been studied. Among them, the iron transporter gene, SLC11A2 (Solute Carrier 11 group A member 2) which codes for the transmembrane protein, DMT1 (Divalent Metal Transporter 1) has shown to transport other metals including zinc, copper, and lead. We investigated the influence of DMT1 polymorphism (rs224589) on blood lead (Pb-B) levels. In the present study, we enrolled 113 lead-exposed workers and performed a comprehensive biochemical analysis and genetic composition. The frequency of DMT1 variants observed in the total subjects (n = 113) was 42 % for homozygous CC wild type, 54 % for heterozygous CA, and 4 % for homozygous AA mutant. The heterozygous CA carriers presented higher Pb-B levels compared to wild type CC and mutant AA carriers. Further, a negative association was observed between Pb-B levels and hemoglobin in heterozygous CA carriers. Hence, C allele may be the risk allele that contributes to increased susceptibility to high Pb-B retention, and genotyping of DMT1 in lead exposed subjects might be used as a prognostic marker to impede organ damage due to lead toxicity.
Collapse
Affiliation(s)
- Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Venzil Lavie Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
98
|
In Silico Study of the RSH ( RelA/ SpoT Homologs) Gene Family and Expression Analysis in Response to PGPR Bacteria and Salinity in Brassica napus. Int J Mol Sci 2021; 22:ijms221910666. [PMID: 34639007 PMCID: PMC8509286 DOI: 10.3390/ijms221910666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Among several mechanisms involved in the plant stress response, synthesis of guanosine tetra and pentaphosphates (alarmones), homologous to the bacterial stringent response, is of crucial importance. Plant alarmones affect, among others, photosynthetic activity, metabolite accumulation, and nutrient remobilization, and thus regulate plant growth and development. The plant RSH (RelA/SpoT homolog) genes, that encode synthetases and/or hydrolases of alarmones, have been characterized in a limited number of plant species, e.g., Arabidopsis thaliana, Oryza sativa, and Ipomoea nil. Here, we used dry-to-wet laboratory research approaches to characterize RSH family genes in the polyploid plant Brassica napus. There are 12 RSH genes in the genome of rapeseed that belong to four types of RSH genes: 6 RSH1, 2 RSH2, 3 RSH3, and 1 CRSH. BnRSH genes contain 13-24 introns in RSH1, 2-6 introns in RSH2, 1-6 introns in RSH3, and 2-3 introns in the CRSH genes. In the promoter regions of the RSH genes, we showed the presence of regulatory elements of the response to light, plant hormones, plant development, and abiotic and biotic stresses. The wet-lab analysis showed that expression of BnRSH genes is generally not significantly affected by salt stress, but that the presence of PGPR bacteria, mostly of Serratia sp., increased the expression of BnRSH significantly. The obtained results show that BnRSH genes are differently affected by biotic and abiotic factors, which indicates their different functions in plants.
Collapse
|
99
|
Comparative and Systematic Omics Revealed Low Cd Accumulation of Potato StMTP9 in Yeast: Suggesting a New Mechanism for Heavy Metal Detoxification. Int J Mol Sci 2021; 22:ijms221910478. [PMID: 34638819 PMCID: PMC8508701 DOI: 10.3390/ijms221910478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 01/08/2023] Open
Abstract
The metal tolerance protein (MTP) family is a very old family with evolutionary conservation and less specific amplification. It seems to retain the original functions of the ancestral genes and plays an important role in maintaining metal homeostasis in plant cells. We identified the potato MTP family members for the first time, the specific and conservative StMPTs were discovered by using systematic and comparative omics. To be surprised, members of the StMTP family seem to have mutated before the evolution of dicotyledon and monocotyledon, and even the loss of the entire subfamily (subfamily G6, G7). Interestingly, StMTP9 represents the conserved structure of the entire subfamily involved in toxic metal regulation. However, the gene structure and transmembrane domain of StMTP8 have undergone specific evolution, showing that the transmembrane domain (Motif13) located at the NH2 terminal has been replaced by the signal peptide domain, so it was selected as the control gene of StMTP9. Through real-time fluorescence quantitative analysis of StMTPs under Cd and Zn stress, a co-expression network was constructed, and it was found that StMTP9 responded significantly to Cd stress, while StMTP8 did the opposite. What excites us is that by introducing StMTPs 8/9 into the ∆ycf1 yeast cadmium-sensitive mutant strain, the functional complementation experiment proved that StMTPs 8/9 can restore Cd tolerance. In particular, StMTP9 can greatly reduce the cadmium content in yeast cells, while StMTP8 cannot. These findings provide a reference for further research on the molecular mechanism of potato toxic metal accumulation.
Collapse
|
100
|
The Expanding Role of Alternative Splicing in Vascular Smooth Muscle Cell Plasticity. Int J Mol Sci 2021; 22:ijms221910213. [PMID: 34638554 PMCID: PMC8508619 DOI: 10.3390/ijms221910213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) display extraordinary phenotypic plasticity. This allows them to differentiate or dedifferentiate, depending on environmental cues. The ability to ‘switch’ between a quiescent contractile phenotype to a highly proliferative synthetic state renders VSMCs as primary mediators of vascular repair and remodelling. When their plasticity is pathological, it can lead to cardiovascular diseases such as atherosclerosis and restenosis. Coinciding with significant technological and conceptual innovations in RNA biology, there has been a growing focus on the role of alternative splicing in VSMC gene expression regulation. Herein, we review how alternative splicing and its regulatory factors are involved in generating protein diversity and altering gene expression levels in VSMC plasticity. Moreover, we explore how recent advancements in the development of splicing-modulating therapies may be applied to VSMC-related pathologies.
Collapse
|