51
|
Liu CM, Chen GB, Lin LH, Zhang JB, Guo SM, Sheng MX. Mesoporous silica nanoparticles with surface transformation ability for prostate cancer treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Zou H, Zhang J, Wu C, He B, Hu Y, Sung HHY, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Making Aggregation-Induced Emission Luminogen More Valuable by Gold: Enhancing Anticancer Efficacy by Suppressing Thioredoxin Reductase Activity. ACS NANO 2021; 15:9176-9185. [PMID: 33939413 DOI: 10.1021/acsnano.1c02882] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gold complexes have been recognized as potential anticancer agents against various kinds of diseases due to their inherent suppressions of antioxidant thioredoxin reductase (TrxR) activity. Herein, a powerful aggregation-induced emission luminogen (AIEgen), TBP-Au, was designed and synthesized by integrating an anticancer Au(I) moiety with an AIE-active photosensitizer (TBP), in which both the production and consumption routes of reactive oxygen species (ROS) were elaborately considered simultaneously to boost the anticancer efficacy. It has been demonstrated that TBP-Au could realize superior two-photon fluorescence imaging in tumor tissues with high resolution and deep penetration as well as long-term imaging in live animals due to its AIE property. In addition, the introduction of a special Au(I) moiety could tune the organelle specificity and efficiently facilitate the ROS-determined photodynamic therapy (PDT). More impressively, TBP-Au could efficiently eliminate cancer cells under light irradiation through the preconceived synergetic approaches from the PDT and the effective suppression of TrxR, demonstrating that TBP-Au holds great potential for precise cancer theranostics.
Collapse
Affiliation(s)
- Hang Zou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Changmeng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area Hi-tech Park, Nanshan, Shenzhen 518057, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
53
|
Hou L, Li H, Wang H, Ma D, Liu J, Ma L, Wang Z, Yang Z, Wang F, Xia H. The circadian clock gene PER2 enhances chemotherapeutic efficacy in nasopharyngeal carcinoma when combined with a targeted nanosystem. J Mater Chem B 2021; 8:5336-5350. [PMID: 32458942 DOI: 10.1039/d0tb00595a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment failure occurs in more than 40% of advanced nasopharyngeal carcinoma (NPC) patients including local recurrence and distant metastasis due to chemoradioresistance. Circadian clock genes were identified as regulating cancer progression and chemoradiosensitivity in a time-dependent manner. A novel nanosystem can ensure the accumulation and controllable release of chemotherapeutic agents at the tumour site at a set time. In this study, we investigated the expression of circadian clock genes and identified that period circadian regulator 2 (PER2) as a tumour suppressor plays a key role in NPC progression. A label-free proteomic approach showed that PER2 overexpression can inhibit the ERK/MAPK pathway. The chemotherapeutic effect of PER2 overexpression was assessed in NPC together with the nanosystem comprising folic acid (FA), upconverting nanoparticles covalently coupled with Rose Bengal (UCNPs-RB), 10-hydroxycamptothecin (HCPT) and lipid-perfluorohexane (PFH) (FURH-PFH-NPs). PER2 overexpression combined with the targeted and controlled release of nanoagents elevated chemotherapeutic efficacy in NPC, which has potential application value for the chronotherapy of tumours.
Collapse
Affiliation(s)
- Li Hou
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China and Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China.
| | - Hailiang Li
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China. and Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Haiyan Wang
- Department of Gynaecology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Dede Ma
- Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Jing Liu
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Zhihua Wang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Faxuan Wang
- School of Public Health, Ningxia Medical University, Yin Chuan, 750004 Ningxia, P. R. China
| | - Hechun Xia
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China. and Department of Neurosurgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| |
Collapse
|
54
|
Hanley T, Vankayala R, Lee CH, Tang JC, Burns JM, Anvari B. Phototheranostics Using Erythrocyte-Based Particles. Biomolecules 2021; 11:729. [PMID: 34068081 PMCID: PMC8152750 DOI: 10.3390/biom11050729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent increase in the development of delivery systems based on red blood cells (RBCs) for light-mediated imaging and therapeutic applications. These constructs are able to take advantage of the immune evasion properties of the RBC, while the addition of an optical cargo allows the particles to be activated by light for a number of promising applications. Here, we review some of the common fabrication methods to engineer these constructs. We also present some of the current light-based applications with potential for clinical translation, and offer some insight into future directions in this exciting field.
Collapse
Affiliation(s)
- Taylor Hanley
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
- Radoptics, Limited Liability Company, 1002 Health Sciences Road, East, Suite P214, Irvine, CA 92612, USA
| | - Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Jack C. Tang
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| |
Collapse
|
55
|
Zhang X, An L, Tian Q, Lin J, Yang S. Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. J Mater Chem B 2021; 8:4738-4747. [PMID: 32124909 DOI: 10.1039/d0tb00030b] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) absorption and fluorescent agents have attracted great attention because they can overcome the penetration limitation of the first near-infrared window (NIR-I, 750-1000 nm). However, these always "on" agents face the severe problem of being susceptible to retention and phagocytosis by the reticuloendothelial system after intravenous administration, which results in signal interference during diagnosis and side effects during treatment. Accordingly, tumor microenvironment-responsive smart agents (smart NIR-II agents), whose imaging and therapeutic functions can only be triggered in tumors, can overcome this limitation. Thus, NIR-II smart agents, which exhibit a combined response to the tumor microenvironment and NIR-II, make full use of the advantages of both triggers and improve the precision diagnosis and effective treatment of cancer. This review summarizes the recent advances in tumor microenvironment-activated NIR-II agents for tumor diagnosis and treatment, including smart NIR-II fluorescence imaging, photoacoustic imaging, photothermal therapy and photodynamic therapy. Finally, the challenges and perspectives of NIR-II smart agents for tumor diagnosis and treatment are proposed.
Collapse
Affiliation(s)
- Xue Zhang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
56
|
Javed S, Alshehri S, Shoaib A, Ahsan W, Sultan MH, Alqahtani SS, Kazi M, Shakeel F. Chronicles of Nanoerythrosomes: An Erythrocyte-Based Biomimetic Smart Drug Delivery System as a Therapeutic and Diagnostic Tool in Cancer Therapy. Pharmaceutics 2021; 13:368. [PMID: 33802156 PMCID: PMC7998655 DOI: 10.3390/pharmaceutics13030368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Saad Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| |
Collapse
|
57
|
Yang RQ, Lou KL, Wang PY, Gao YY, Zhang YQ, Chen M, Huang WH, Zhang GJ. Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. SMALL METHODS 2021; 5:e2001066. [PMID: 34927825 DOI: 10.1002/smtd.202001066] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/30/2020] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) fluorescence imaging is an emerging noninvasive imaging modality, with unique advantages in guiding tumor resection surgery, thanks to its high sensitivity and instantaneity. In the past decade, studies on the conventional NIR window (NIR-I, 750-900 nm) have gradually focused on the second NIR window (NIR-II, 1000-1700 nm). With its reduced light scattering, photon absorption, and auto-fluorescence qualities, NIR-II fluorescence imaging significantly improves penetration depths and signal-to-noise ratios in bio-imaging. Recently, several studies have applied NIR-II imaging to navigating cancer surgery, including localizing cancers, assessing surgical margins, tracing lymph nodes, and mapping important anatomical structures. These studies have exemplified the significant prospects of this new approach. In this review, several NIR-II fluorescence agents and some of the complex applications for guiding cancer surgeries are summarized. Future prospects and the challenges of clinical translation are also discussed.
Collapse
Affiliation(s)
- Rui-Qin Yang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Kang-Liang Lou
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Pei-Yuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350000, China
| | - Yi-Yang Gao
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Yong-Qu Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Min Chen
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Wen-He Huang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Guo-Jun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
58
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
59
|
Pan H, Shi H, Fu P, Shi P, Yang J. Liposomal Dendritic Cell Vaccine in Breast Cancer Immunotherapy. ACS OMEGA 2021; 6:3991-3998. [PMID: 33585776 PMCID: PMC7876850 DOI: 10.1021/acsomega.0c05924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 05/24/2023]
Abstract
Cancer vaccine is well recognized as a promising approach for immunotherapy of cancers. Since dendritic cells (DCs) are capable of processing and presenting antigens to initiate the immune response cascade, the development of DC vaccines is considered as a good choice for the treatment of cancer. Herein, a folic acid (FA)-modified liposome was constructed and loaded with chlorin e6 (Ce6) as a DC vaccine (FA-Lipo-Ce6). It was suggested that the loaded Ce6 within FA-Lipo-Ce6 can be activated under laser irradiation. The photodynamic therapy (PDT) of Ce6 was expected to create on-demand reactive oxygen species (ROS) in situ, which causes cell death and trigger the exposure of tumor-associated antigen (TAA). In addition, the produced ROS can mimic the inflammatory responses for the employment of DC for better antigen presentation and immune response. Most importantly, the employment of DC can recognize the exposed TAA to stimulate DC for effective vaccination in situ. Our results demonstrated the powerful capacity of FA-Lipo-Ce6 to induce DC activation, leading to effective suppression of the growth of breast cancers.
Collapse
|
60
|
Li L, Fu J, Wang X, Chen Q, Zhang W, Cao Y, Ran H. Biomimetic "Nanoplatelets" as a Targeted Drug Delivery Platform for Breast Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3605-3621. [PMID: 33449625 DOI: 10.1021/acsami.0c19259] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Breast cancer is a major threat to health and lives of females. Biomimetic nanotechnology brought brighter hope for early diagnosis and treatment of breast cancer. Here, we proposed a platelet (PLT) membrane-derived strategy for enhanced photoacoustic (PA)/ultrasonic (US)/fluorescence (FL) multimodal imaging and augmented synergistic photothermal/chemotherapeutic efficacy in tumor cells. A PA imaging contrast and photothermal agent, nanocarbons (CNs), a chemotherapeutic and FL material, doxorubicin (DOX), and perfluoropentane (PFP) were coencapsulated into the poly(lactic-co-glycolic) acid (PLGA) skeletons. Then, the PLT membranes were coated onto the PLGA NPs, which were named as "nanoplatelets" (DOX-PFP-CNs@PLGA/PM NPs). The "nanoplatelets", which conserved the structural advantages and inherent properties of PLTs, could not only escape from phagocytosis of macrophages but also actively targeted tumor cells by the way of antigen-antibody interactions between P-selectin on the PM and CD44 receptors of the tumor cells. With CNs and DOX loaded in, these "nanoplatelets" could serve as an excellent contrast agent for PA/FL imaging. Under laser irradiation, the "nanoplatelets" could turn light energy into heat energy. The laser-triggered photothermal effect, on the one hand, could ablate the tumor cells immediately, and on the other hand, could initiate the optical droplet vaporization of PFP, which subsequently enhanced US imaging and promoted the discharge of encapsulated DOX from the "nanoplatelets" for remarkably strengthening photothermal therapeutic power in turn. In this work, as compared with the bare drug-loaded nanoparticles, the "nanoplatelets" exhibited much more accumulation in the tumor cells, demonstrating superior multimodal imaging capability and preferable synergistic therapeutic performance. In conclusion, the "nanoplatelets" could serve as contrast agents for US imaging and PA imaging to guide the therapy. What is more, the bioinspired PLT-derived, targeted, and nontoxic "nanoplatelets", which were exploited for multimodal PA/US/FL imaging-guided synergistic photothermal/chemo therapy, will be of great value to breast cancer theranostics in the days to come.
Collapse
Affiliation(s)
- Lin Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jian Fu
- Vascular Surgery Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Qiaoqi Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
61
|
Liu Q, Tian J, Tian Y, Sun Q, Sun D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Near-Infrared-II Nanoparticles for Cancer Imaging of Immune Checkpoint Programmed Death-Ligand 1 and Photodynamic/Immune Therapy. ACS NANO 2021; 15:515-525. [PMID: 33426893 DOI: 10.1021/acsnano.0c05317] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Development of second near-infrared (NIR-II) nanoparticles (NPs) with high biocompatibility, low toxicity, and high singlet oxygen quantum yield (ΦΔ) to prevent tumor recurrence is highly desirable in molecular imaging and photodynamic/immune combination therapy. Here, theranostic photosensitizer BODIPY (BDP)-I-N-anti-PD-L1 NPs were developed by encapsulating the photosensitizer BDP-I-N with amphipathic poly(styrene-co-chloromethylstyrene)-graft-poly(ethylene glycol) nanocarriers through self-assembly functionalization with programmed cell death-ligand 1 (PD-L1) monoclonal antibody. These NPs exhibit highly intensive luminescence in the NIR-II window (1000-1700 nm) to real-time imaging of immune checkpoint PD-L1, high singlet oxygen quantum yield (ΦΔ = 73%), and an eliminating effect of primary cancers. The NPs also allow for profiling PD-L1 expression as well as accumulating in MC38 tumor and enabling molecular imaging in vivo. Upon an 808 nm laser excitation, the targeted NPs produce an emission wavelength above 1200 nm to image a tumor to a normal tissue signal ratio (T/NT) at an approximate value of 14.1. Moreover, the MC38 tumors in mice are eliminated by combining photodynamic therapy and immunotherapy within 30 days, with no tumor recurrence within a period of 40 days. In addition, the tumors do not grow in the rechallenged mice within 7 days of inoculation. Such a strategy shows a durable immune memory effect against tumor rechallenging without toxic side effects to major organs.
Collapse
Affiliation(s)
- Qiang Liu
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dan Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Feifei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Guoliang Ying
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
62
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
63
|
Yu Y, Huang Y, Feng W, Yang M, Shao B, Li J, Ye F. NIR-triggered upconversion nanoparticles@thermo-sensitive liposome hybrid theranostic nanoplatform for controlled drug delivery. RSC Adv 2021; 11:29065-29072. [PMID: 35478587 PMCID: PMC9038103 DOI: 10.1039/d1ra04431a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
A novel hybrid photothermal theranostic nanoplatform UCNPs@Bi@SiO2@GE HP-lips is developed. Upon NIR irradiation, the nanoplatform could photothermally trigger controlled drug release and present bright upconversion luminescence.
Collapse
Affiliation(s)
- Yibin Yu
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Yida Huang
- Institute of Advanced Materials for Nano-bio Applications, Wenzhou Medical University, Wenzhou 325027, China
| | - Wanqian Feng
- Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Mei Yang
- Institute of Advanced Materials for Nano-bio Applications, Wenzhou Medical University, Wenzhou 325027, China
| | - Baiqi Shao
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fangfu Ye
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
64
|
Xiao J, Weng J, Wen F, Ye J. Red Blood Cell Membrane-Coated Silica Nanoparticles Codelivering DOX and ICG for Effective Lung Cancer Therapy. ACS OMEGA 2020; 5:32861-32867. [PMID: 33403246 PMCID: PMC7774068 DOI: 10.1021/acsomega.0c01541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/16/2020] [Indexed: 06/12/2023]
Abstract
The effective chemotherapy of cancer is usually hindered by the unsatisfied cell internalization of the drug delivery systems (DDS) as well as drug resistance of cancer cells. In order to solve these dilemmas in one design, red blood cell membrane (RBM)-coated silica nanoparticles (RS) were fabricated to codeliver doxorubicin (Dox) and indocyanine green (ICG) to effectively treat the model lung cancer using photothermal-assisted chemotherapy. Our results demonstrated that the RS/I-D was the nanoparticle at around 100 nm with superior stability and biocompatibility. Especially, the photothermal effects of ICG were well preserved and could be applied to accelerate the drug release from the DDS. More importantly, the RBM modification can mediate enhanced cell internalization of drugs as compared to their free forms, which finally resulted in enhanced anticancer efficacy in Dox-resistant A549 cells (A549/Dox) both in vitro and in vivo with enhanced cell apoptosis and cell arrest.
Collapse
Affiliation(s)
- Jia Xiao
- Department
of Clinical Oncology, The First People’s
Hospital of Yueyang, No. 39 of Dongmaoling Road, Yueyang, Hunan Province 414000, P. R. China
| | - Jie Weng
- Department
of Clinical Oncology, The First People’s
Hospital of Yueyang, No. 39 of Dongmaoling Road, Yueyang, Hunan Province 414000, P. R. China
| | - Fang Wen
- Department
of Clinical Oncology, The First People’s
Hospital of Yueyang, No. 39 of Dongmaoling Road, Yueyang, Hunan Province 414000, P. R. China
| | - Juan Ye
- Department
of Head and Neck Oncology, The Second Affiliated
Hospital of Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou Province 563000, P. R. China
| |
Collapse
|
65
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
66
|
Qin Y, Cao B, Li J, Liao S, Lin C, Qing X, Zhang Q, Yu X. An Oxygen-Enriched Photodynamic Nanospray for Postsurgical Tumor Regression. ACS Biomater Sci Eng 2020; 6:6415-6423. [PMID: 33449640 DOI: 10.1021/acsbiomaterials.0c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Postoperative local recurrence and metastasis are non-negligible challenges in clinical cancer treatment. Photodynamic therapy (PDT) has presented a great potential in preventing cancer recurrence owing to its noninvasiveness and high specificity for local irradiation of tumor sites. However, the application of conventional PDT is often limited by insufficient oxygen supply, making it difficult to achieve high PDT efficacy. Herein, we combined liposomes with photosensitizer indocyanine green (ICG) and perfluorooctyl bromide (PFOB) to develop a new oxygen-enriched photodynamic nanospray (Lip-PFOB-ICG) for cancer postoperative treatment. The Lip-PFOB-ICG not only has good biocompatibility but also enhanced the PDT effect under near-infrared light. More importantly, PFOB can continuously absorb oxygen, thus improving the collision energy transfer between the ICG photosensitizer and oxygen, and significantly inhibit local tumor recurrence in the subcutaneous tumor recurrence model. This oxygen-enriched photodynamic nanospray strategy may open up new avenues for effective postoperative cancer therapy in the clinic.
Collapse
Affiliation(s)
- Yi Qin
- Department of Spine Orthopedics, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Boling Cao
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Jiamin Li
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Shuting Liao
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Chuxin Lin
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Xueqin Qing
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiangrong Yu
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| |
Collapse
|
67
|
Hanley TM, Vankayala R, Mac JT, Lo DD, Anvari B. Acute Immune Response of Micro- and Nanosized Erythrocyte-Derived Optical Particles in Healthy Mice. Mol Pharm 2020; 17:3900-3914. [PMID: 32820927 PMCID: PMC9844151 DOI: 10.1021/acs.molpharmaceut.0c00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythrocyte-derived particles activated by near-infrared (NIR) light present a platform for various phototheranostic applications. We have engineered such a platform with indocyanine green as the NIR-activated agent. A particular feature of these particles is that their diameters can be tuned from micro- to nanoscale, providing a potential capability for broad clinical utility ranging from vascular to cancer-related applications. An important issue related to clinical translation of these particles is their immunogenic effects. Herein, we have evaluated the early-induced innate immune response of these particles in healthy Swiss Webster mice following tail vein injection by measurements of specific cytokines in blood serum, the liver, and the spleen following euthanasia. In particular, we have investigated the effects of particle size and relative dose, time-dependent cytokine response for up to 6 h postinjection, functionalization of the nanosized particles with folate or Herceptin, and dual injections of the particles 1 week apart. Mean concentrations of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 in response to injection of microsized particles at the investigated relative doses were significantly lower than the corresponding mean concentrations induced by lipopolysaccharide (positive control) at 2 h. All investigated doses of the nanosized particles induced significantly higher concentrations of MCP-1 in the liver and the spleen as compared to phosphate buffer saline (PBS) (negative control) at 2 h. In response to micro- and nanosized particles at the highest investigated dose, there were significantly higher levels of TNF-α in blood serum at 2 and 6 h postinjection as compared to the levels associated with PBS treatment at these times. Whereas the mean concentration of TNF-α in the liver significantly increased between 2 and 6 h postinjection in response to the injection of the microsized particles, it was significantly reduced during this time interval in response to the injection of the nanosized particles. In general, functionalization of the nanosized particles was associated with a reduction of IL-6 and MCP-1 in blood serum, the liver, and the spleen, and TNF-α in blood serum. With the exception of IL-10 in the spleen in response to nanosized particles, the second injection of micro- or nanosized particles did not lead to significantly higher concentrations of other cytokines at the investigated dose as compared to a single injection.
Collapse
Affiliation(s)
- Taylor M. Hanley
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - David D. Lo
- Department of Biomedical Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
68
|
Jiang Q, Zeng Y, Xu Y, Xiao X, Liu H, Zhou B, Kong Y, Saw PE, Luo B. Ultrasound Molecular Imaging as a Potential Non-invasive Diagnosis to Detect the Margin of Hepatocarcinoma via CSF-1R Targeting. Front Bioeng Biotechnol 2020; 8:783. [PMID: 32760707 PMCID: PMC7371923 DOI: 10.3389/fbioe.2020.00783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023] Open
Abstract
Though radiofrequency ablation (RFA) is considered to be an effective treatment for hepatocellular carcinoma (HCC), but more than 30% of patients may suffer insufficient RFA (IRFA), which can promote more aggressive of the residual tumor. One possible method to counter this is to accurately identify the margin of the HCC. Colony-stimulating factor 1 receptor (CSF-1R) has been found to be restrictively expressed by tumor associated macrophages (TAMs) and monocytes which more prefer to locate at the boundary of HCC. Using biotinylation method, we developed a CSF-1R-conjugated nanobubble CSF-1R (NBCSF–1R) using a thin-film hydration method for margin detection of HCC. CSF-1R expression was higher in macrophages than in HCC cell lines. Furthermore, immunofluorescence showed that CSF-1R were largely located in the margin of xenograft tumor and IFRA models. In vitro, NBCSF–1R was stable and provided a clear ultrasound image even after being stored for 6 months. In co-culture, NBCSF–1R adhered to macrophages significantly better than HCC cells (p = 0.05). In in vivo contrast-enhanced ultrasound imaging, the washout half-time of the NBCSF–1R was significantly greater than that of NBCTRL and Sonovue® (p = 0.05). The signal intensity of the tumor periphery was higher than the tumor center or non-tumor region after NBCSF–1R injection. Taken together, NBCSF–1R may potentially be used as a non-invasive diagnostic modality in the margin detection of HCC, thereby improving the efficiency of RFA. This platform may also serve as a complement method to detect residual HCC after RFA; and may also be used for targeted delivery of therapeutic drugs or genes.
Collapse
Affiliation(s)
- Qiongchao Jiang
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunting Zeng
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanni Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hejun Liu
- Department of Hyperbaric Oxygen, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boyang Zhou
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Kong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
69
|
Li C, Chen G, Zhang Y, Wu F, Wang Q. Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications. J Am Chem Soc 2020; 142:14789-14804. [DOI: 10.1021/jacs.0c07022] [Citation(s) in RCA: 516] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- University of Science and Technology of China, Hefei 230036, China
| |
Collapse
|
70
|
Wan J, Wang J, Zhou M, Rao Z, Ling X. A cell membrane vehicle co-delivering sorafenib and doxorubicin remodel the tumor microenvironment and enhance immunotherapy by inducing immunogenic cell death in lung cancer cells. J Mater Chem B 2020; 8:7755-7765. [PMID: 32735004 DOI: 10.1039/d0tb01052a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer immunotherapy is a promising approach for cancer therapy but is usually hindered by the inhibition of the tumor microenvironment (TME). Herein, we developed a cell membrane vehicle (CV) to co-deliver doxorubicin (Dox) and sorafenib (Sfn) as a drug delivery system (CV/D-S) to regulate the TME and sensitize the immunogenic cell death (ICD)-induced immune response against tumors. The CV/D-S showed high stability, acid-responsive drug release, high biocompatibility with tumor-specific cellular uptake, and target-ability that preferably resulted in the in vitro and in vivo anticancer performance. Most importantly, the Dox in the DDS can induce significant ICD while Sfn was able to remodel the TME, downregulate Treg, activate effector T cells and relieve programmed cell death protein 1 (PD-1) expression. As a result, the synergistic effect of Dox and Sfn achieved strong immune response in CV/D-S treated mice, which is believed to open a new window for the design and development of future platforms for the more effective immunotherapy of cancer.
Collapse
Affiliation(s)
- Jun Wan
- Department of Thoracic Surgery, The Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong 518020, P. R. China
| | | | | | | | | |
Collapse
|
71
|
Wu L, Zou H, Wang H, Zhang S, Liu S, Jiang Y, Chen J, Li Y, Shao M, Zhang R, Li X, Dong J, Yang L, Wang K, Zhu X, Sun X. Update on the development of molecular imaging and nanomedicine in China: Optical imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1660. [PMID: 32725869 DOI: 10.1002/wnan.1660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Molecular imaging has received increased attention worldwide, including in China, because it offers noninvasive characterization of widely diverse clinically significant pathologies. To achieve these goals, nanomedicine has evolved into a broad interdisciplinary field with flexible designs to accommodate and concentrate imaging and therapeutic payloads into pathological cells through selective binding to disease specific cell membrane biomarkers. This concept of personalized medicine reflects the vision of "magic bullets" proposed by German biochemist Paul Ehrlich over 100 years ago. As happening worldwide, Chinese scientists are contributing to this tsunami of science and technologies through impactful national programs and international research collaborations. This review provides a comprehensive update of Chinese innovations to address intractable unmet medical need in China and worldwide in the optical sciences. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Hongyan Zou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | | | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Ying Jiang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Chen
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yingbo Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Mengping Shao
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Ruixin Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xiaona Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Dong
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lili Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
72
|
Yang B, Hao A, Chen L. Mirror siRNAs loading for dual delivery of doxorubicin and autophagy regulation siRNA for multidrug reversing chemotherapy. Biomed Pharmacother 2020; 130:110490. [PMID: 32712530 DOI: 10.1016/j.biopha.2020.110490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
The multidrug resistance (MDR) which widely observed in multiple cancer types is responsible for the poor chemotherapy benefits of doxorubicin (Dox). Here in our study, Dox was firstly loaded into a scramble siRNA and then condensed by polyethyleneimine (PEI) 25k together with anti-autophagy siRNA, the obtained PEI/Si-D containing mirror RNAs was further coated with hyaluronic acid (HA) to shield the surface charge of PEI and offer tumor-homing property that finally developed a platform for effective cancer chemotherapy (HP/Si-D). Our results revealed that the obtained HP/Si-D was showed high stability and biocompatibility with promising transfection profile. As a result, the anti-autophagy siRNA downregulated autophagy level of target cells, which further decreased ATP supply to enhance drug retention and cell cycle arrest. These results contributed significantly to reverse the MDR of A549/Dox (Dox resistance A549 cell line) cells with promising in vitro and in vivo results, which suggested the potential of effective MDR cancer therapy using synergistic anti-autophagy and chemotherapy.
Collapse
Affiliation(s)
- Bo Yang
- Department of Thoracic Surgery, Anyang Tumour Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan 455000, China
| | - Anlin Hao
- Department of Thoracic Surgery, Anyang Tumour Hospital (The Fourth Affiliated Hospital of Henan University of Science and Technology), Anyang, Henan 455000, China
| | - Lin Chen
- Department of Respiratory and Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
73
|
Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Xu C, Zhu J, Fan L. Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomater Sci 2020; 8:4595-4602. [PMID: 32700684 DOI: 10.1039/d0bm00678e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Solid tumor cells in hypoxic regions resist chemotherapy treatment with conventional antitumor drugs (such as paclitaxel, PTX) because the inadequate O2 attenuates the intracellular generation of reactive oxygen species (ROS) and upregulates multidrug resistance protein expression. Hyperbaric O2 therapy concentrates on improving O2 delivery to the hypoxic tumor area, thereby enhancing the sensitivity of cancer cells to chemotherapy drugs. However, the implementation of this therapy often elicits immune response or potentiates toxicity of the drugs toward normal cells. In this work, we successfully fabricated RBC-based micro-vehicles for precise hypoxia-activated O2 delivery under the 980 nm laser irradiation. Interestingly, the subsequent chemotherapy of PTX for ovarian tumors was significantly enhanced owing to the alleviation of hypoxia tumor microenvironment. Meanwhile, the RBC-based micro-vehicles have low side tissue effects, superior biocompatibility, and ultra-low immune response. Overall, the RBC-based drug delivery system holds a fascinating perspective towards O2 delivery for chemotherapy enhancement in other clinical solid malignancies.
Collapse
Affiliation(s)
- Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
75
|
Li T, Qin X, Li Y, Shen X, Li S, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Cell Membrane Coated-Biomimetic Nanoplatforms Toward Cancer Theranostics. Front Bioeng Biotechnol 2020; 8:371. [PMID: 32411690 PMCID: PMC7202082 DOI: 10.3389/fbioe.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Research of nanotechnology for cancer therapy and diagnosis extends beyond drug delivery into the targeted site or surveillance the distribution of nanodrugs in vivo or distinction tumor tissue from normal tissue. To satisfy the clinic needs, nanotheranostic platform should hide the surveillance by immune system and the sequestration by filtration organs (i.e., liver and spleen). Use of biologically derived cellular components in the fabrication of nanoparticles can hide these barriers. In this review, we update the recent progress on cell membrane-coated nanoparticles for cancer theranostics. We hope this review paper can inspire further innovations in biomimetic nanomedicine.
Collapse
Affiliation(s)
- Tingting Li
- Department of Biophysics, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Qin
- Department of Biophysics, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yichao Li
- Department of Biophysics, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Shen
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Shun Li
- Department of Biophysics, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Biophysics, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhui Wu
- Department of Biophysics, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Zheng
- Department of Cancer Research, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhu
- Department of Cancer Research, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Department of Cancer Research, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyao Liu
- Department of Biophysics, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Cancer Research, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
76
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
77
|
Jensen MM, Barber ZB, Khurana N, Isaacson KJ, Steinhauff D, Green B, Cappello J, Pulsipher A, Ghandehari H, Alt JA. A dual-functional Embolization-Visualization System for Fluorescence image-guided Tumor Resection. Theranostics 2020; 10:4530-4543. [PMID: 32292513 PMCID: PMC7150499 DOI: 10.7150/thno.39700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Intraoperative bleeding impairs physicians' ability to visualize the surgical field, leading to increased risk of surgical complications and reduced outcomes. Bleeding is particularly challenging during endoscopic-assisted surgical resection of hypervascular tumors in the head and neck. A tool that controls bleeding while marking tumor margins has the potential to improve gross tumor resection, reduce surgical morbidity, decrease blood loss, shorten procedure time, prevent damage to surrounding tissues, and limit postoperative pain. Herein, we develop and characterize a new system that combines pre-surgical embolization with improved visualization for endoscopic fluorescence image-guided tumor resection. Methods: Silk-elastinlike protein (SELP) polymers were employed as liquid embolic vehicles for delivery of a clinically used near-infrared dye, indocyanine green (ICG). The biophysical properties of SELP, including gelation kinetics, modulus of elasticity, and viscosity, in response to ICG incorporation using rheology, were characterized. ICG release from embolic SELP was modeled in tissue phantoms and via fluorescence imaging. The embolic capability of the SELP-ICG system was then tested in a microfluidic model of tumor vasculature. Lastly, the cytotoxicity of the SELP-ICG system in L-929 fibroblasts and human umbilical vein endothelial cells (HUVEC) was assessed. Results: ICG incorporation into SELP accelerated gelation and increased its modulus of elasticity. The SELP embolic system released 83 ± 8% of the total ICG within 24 hours, matching clinical practice for pre-surgical embolization procedures. Adding ICG to SELP did not reduce injectability, but did improve the gelation kinetics. After simulated embolization, ICG released from SELP in tissue phantoms diffused a sufficient distance to deliver dye throughout a tumor. ICG-loaded SELP was injectable through a clinical 2.3 Fr microcatheter and demonstrated deep penetration into 50-µm microfluidic-simulated blood vessels with durable occlusion. Incorporation of ICG into SELP improved biocompatibility with HUVECs, but had no effect on L-929 cell viability. Principle Conclusions: We report the development and characterization of a new, dual-functional embolization-visualization system for improving fluorescence-imaged endoscopic surgical resection of hypervascular tumors.
Collapse
Affiliation(s)
- M. Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Zachary B. Barber
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Nitish Khurana
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
| | - Kyle J. Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Douglas Steinhauff
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Bryant Green
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84113
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84113
| | - Jeremiah A. Alt
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112 USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84113
| |
Collapse
|
78
|
Cai Z, Zhu L, Wang M, Roe AW, Xi W, Qian J. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics 2020; 10:4265-4276. [PMID: 32226552 PMCID: PMC7086344 DOI: 10.7150/thno.43533] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Vasculature architecture of the brain can provide revealing information about mental and neurological function and disease. Fluorescence imaging in the second near-infrared (NIR-II) regime with less light scattering is a more promising method for detecting cortical vessels than traditional visible and NIR-I modes. Methods: Clinically approved dye indocyanine green (ICG) was used for NIR-II fluorescence imaging. Here, for the first time, we developed two NIR-II fluorescence microscopy systems for brain vasculature imaging in macaque monkeys. The first is a wide-field microscope with high temporal resolution for measuring blood flow velocity and cardiac impulse period, while the second is a high spatial resolution confocal microscope producing three-dimensional maps of the cortical microvascular network. Both were designed with flexibility to image various cortical locations on the head. Results: Here, ICG was proved to have high brightness in NIR-II region and an 8-fold QY increase in serum than in water. We achieved cerebrovascular functional imaging of monkey with high temporal resolution (25 frames/second) with wide-field microscope. The blood flow velocity of capillaries can be precisely calculated and the cardiac impulse period can be monitored as well. In vivo structural imaging of cerebrovasculature was accomplished with both high spatial lateral resolution (~8 µm) and high signal to background ratio (SBR). Vivid 3D reconstructed NIR-II fluorescence confocal microscopic images up to depth of 470 μm were also realized. Conclusion: This work comprises an important advance towards studies of neurovascular coupling, stroke, and other diseases relevant to neurovascular health in humans.
Collapse
Affiliation(s)
- Zhaochong Cai
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97239, USA
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
79
|
Li T, Geng Y, Zhang H, Wang J, Feng Y, Chen Z, Xie X, Qin X, Li S, Wu C, Liu Y, Yang H. A versatile nanoplatform for synergistic chemo-photothermal therapy and multimodal imaging against breast cancer. Expert Opin Drug Deliv 2020; 17:725-733. [DOI: 10.1080/17425247.2020.1736033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Yue Geng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Hanxi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Jing Wang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Yi Feng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Zhongyuan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Cancer Research, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| |
Collapse
|
80
|
Wu D, Xue D, Zhou J, Wang Y, Feng Z, Xu J, Lin H, Qian J, Cai X. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis. Theranostics 2020; 10:3636-3651. [PMID: 32206113 PMCID: PMC7069080 DOI: 10.7150/thno.41127] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Biliary tract injury remains the most dreaded complication during laparoscopic cholecystectomy. New intraoperative guidance technologies, including near-infrared (NIR) fluorescence cholangiography with indocyanine green (ICG), are under comprehensive evaluation. Previous studies had shown the limitations of traditional NIR light (NIR-I, 700-900 nm) in visualizing the biliary tract structures in specific clinical situations. The aim of this study was to evaluate the feasibility of performing the extrahepatic cholangiography in the second NIR window (NIR-II, 900-1700 nm) and compare it to the conventional NIR-I imaging. Methods: The absorption and emission spectra, as well as fluorescence intensity and photostability of ICG-bile solution in the NIR-II window were recorded and measured. In vitro intralipid® phantom imaging was performed to evaluate tissue penetrating depth in NIR-I and NIR-II window. Different clinical scenarios were modeled by broadening the penetration distance or generating bile duct injuries, and bile duct visualization and lesion site diagnosis in the NIR-II window were evaluated and compared with NIR-I imaging. Results: The fluorescence spectrum of ICG-bile solution extends well into the NIR-II region, exhibiting intense emission value and excellent photostability sufficient for NIR-II biliary tract imaging. Extrahepatic cholangiography using ICG in the NIR-II window obviously reduced background signal and enhanced penetration depth, providing more structural information and improved visualization of the bile duct or lesion location in simulated clinical scenarios, outperforming the NIR-I window imaging. Conclusions: The conventional clinically approved agent ICG is an excellent fluorophore for NIR-II bile duct imaging. Fluorescence cholangiography with ICG in the NIR-II window could provide adequate visualization of the biliary tract structures with increased resolution and penetration depth and might be a valid option to increase the safety of cholecystectomy in difficult cases.
Collapse
Affiliation(s)
- Di Wu
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Dingwei Xue
- Department of Urology, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Xu
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hui Lin
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, 310016, China
| |
Collapse
|
81
|
Wang X, Tong J, He Z, Yang X, Meng F, Liang H, Zhang X, Luo L. Paclitaxel-Potentiated Photodynamic Theranostics for Synergistic Tumor Ablation and Precise Anticancer Efficacy Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5476-5487. [PMID: 31910619 DOI: 10.1021/acsami.9b19073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic theranostics that allows for concurrent photodynamic therapy (PDT) and precise therapeutic response report has emerged as an intriguing direction in the development of precision medicine. An ultra-efficient photodynamic theranostics platform was developed here based on combining and potentiating a theranostic photosensitizer, TPCI, with other therapies for synergistic anticancer effect and synchronous self-reporting of therapeutic response. In this study, TPCI and a chemotherapy agent paclitaxel (PTX) were co-encapsulated in liposomes, which exhibited a superb synergistic anticancer effect against a series of tumor cell lines. The potency of both drugs had been boosted for up to 30-fold compared with sole PDT or chemotherapy. More strikingly, the released TPCI lighted up the nuclei of dead cells, triggered either by PDT or chemotherapy, through binding with the chromatin and activating its aggregation-induced emission, therefore self-reporting the anticancer effect of the combined therapy in real time. The in vivo study using a mouse model bearing PC3 prostate tumor cells demonstrated the effective ablation of tumors with initial sizes of 200 mm3 and the precise early tumor response monitoring by TPCI/PTX@Lipo. This PTX-potentiated photodynamic theranostics strategy herein represented a new prototype of self-reporting nanomedicine for precise tumor therapy.
Collapse
Affiliation(s)
- Xiuxia Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
82
|
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020; 10:2631-2644. [PMID: 32194825 PMCID: PMC7052904 DOI: 10.7150/thno.40808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative image-guided surgery (IGS) has attracted extensive research interests in determination of tumor margins from surrounding normal tissues. Introduction of near infrared (NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high chemical/photochemical stability. The recent advances in elements doping and morphologies controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth nanoparticles hold advantages in reduction of light scattering, photon absorption and autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical applications. In this review, we systematically compared the benefits of RE nanoparticles with other NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises of NIR emissive RE nanoparticles for IGS were also discussed.
Collapse
Affiliation(s)
- Zhibei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
83
|
Cao J, Zhu B, Zheng K, He S, Meng L, Song J, Yang H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front Bioeng Biotechnol 2020; 7:487. [PMID: 32083067 PMCID: PMC7002322 DOI: 10.3389/fbioe.2019.00487] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Fluorescence imaging technology has gradually become a new and promising tool for in vivo visualization detection. Because it can provide real-time sub-cellular resolution imaging results, it can be widely used in the field of biological detection and medical detection and treatment. However, due to the limited imaging depth (1-2 mm) and self-fluorescence background of tissue emitted in the visible region (400-700 nm), it fails to reveal biological complexity in deep tissues. The traditional near infrared wavelength (NIR-I, 650-950 nm) is considered as the first biological window, because it reduces the NIR absorption and scattering from blood and water in organisms. NIR fluorescence bioimaging's penetration is larger than that of visible light. In fact, NIR-I fluorescence bioimaging is still interfered by tissue autofluorescence (background noise), and the existence of photon scattering, which limits the depth of tissue penetration. Recent experimental and simulation results show that the signal-to-noise ratio (SNR) of bioimaging can be significantly improved at the second region near infrared (NIR-II, 1,000-1,700 nm), also known as the second biological window. NIR-II bioimaging is able to explore deep-tissues information in the range of centimeter, and to obtain micron-level resolution at the millimeter depth, which surpass the performance of NIR-I fluorescence imaging. The key of fluorescence bioimaging is to achieve highly selective imaging thanks to the functional/targeting contrast agent (probe). However, the progress of NIR-II probes is very limited. To date, there are a few reports about NIR-II fluorescence probes, such as carbon nanotubes, Ag2S quantum dots, and organic small molecular dyes. In this paper, we surveyed the development of NIR-II imaging contrast agents and their application in cancer imaging, medical detection, vascular bioimaging, and cancer diagnosis. In addition, the hotspots and challenges of NIR-II bioimaging are discussed. It is expected that our findings will lay a foundation for further theoretical research and practical application of NIR-II bioimaging, as well as the inspiration of new ideas in this field.
Collapse
Affiliation(s)
- Jie Cao
- Fuzhou University Postdoctoral Research Station of Chemical Engineering and Technology, Fuzhou University, Fuzhou, China
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Binling Zhu
- Fujian Police College Judicial Expertise Center, Fuzhou, China
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Kefang Zheng
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Songguo He
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Jibin Song
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
84
|
Li C, Yang XQ, An J, Cheng K, Hou XL, Zhang XS, Hu YG, Liu B, Zhao YD. Red blood cell membrane-enveloped O 2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Am J Cancer Res 2020; 10:867-879. [PMID: 31903156 PMCID: PMC6929970 DOI: 10.7150/thno.37930] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
Non-invasive sonodynamic therapy (SDT) was developed because of its advantages of high penetration depth and low side effects; however, tumor hypoxia greatly restricts its therapeutic effect. In this study, we aimed to develop ideal O2 self-supplementing nanoparticles for imaging-guided enhanced sonodynamic therapy of tumors with the adept coalescence of biology with nanotechnology. Methods: Based on the natural enzyme system of red blood cells (RBC), biomimetic nanoparticles (QD@P)Rs were fabricated by encapsulating Ag2S quantum dots (QD) in RBC vesicle membranes. The anti-tumor drug PEITC was employed to increase the intracellular H2O2 concentration in tumor cells. Results: In vitro and in vivo experiments demonstrated excellent biocompatibility and prolonged blood circulation of (QD@P)Rs. Following oral administration of PEITC in mice to improve the H2O2 concentration, the enzyme in the nanoprobe catalyzed endogenous H2O2 to increase O2 content and effectively alleviate tumor hypoxia. Triggered by ultrasound under the guidance of fluorescence imaging, (QD@P)Rs generated reactive oxygen species (ROS) to induce tumor cell death, and the increased content of O2 significantly enhanced the effect of SDT. Conclusion: Ag2S QDs were used, for the first time, as a sonosensitizer in the SDT field. In this study, we integrated the advantages of the natural enzyme system and SDT to develop a novel approach for effective non-invasive treatment of cancer.
Collapse
|
85
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
86
|
Sun D, Chen J, Wang Y, Ji H, Peng R, Jin L, Wu W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019; 9:6885-6900. [PMID: 31660075 PMCID: PMC6815958 DOI: 10.7150/thno.36510] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer remains a daunting and cureless disease, which is responsible for one-sixth of human deaths worldwide. These mortality rates have been expected to rise in the future due to the side effects of conventional treatments (chemotherapy, radiotherapy, and surgery), which can be addressed by applying nanomedicine. In order to escape from biological barriers, such nanomedicine should be mimicked and designed to be stealthy while navigating in the bloodstream. To achieve this, scientists take advantage of erythrocytes (red blood cells; RBCs) as drug carriers and develop RBC membrane (RBCm) coating nanotechnology. Thanks to the significant advances in nanoengineering, various facile surface functionalization methods can be applied to arm RBCm with not only targeting moieties, but also imaging agents, therapeutic agents, and nanoparticles, which are useful for theranostic nanomedicine. This review focuses on refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery.
Collapse
Affiliation(s)
- Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yuan Wang
- Chongqing Business Vocational College, Chongqing, 401331, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Wei Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
87
|
Reece DS, Burnsed OA, Parchinski K, Marr EE, White RM, Salazar-Noratto GE, Lin ASP, Willett NJ, Guldberg RE. Reduced Size Profile of Amniotic Membrane Particles Decreases Osteoarthritis Therapeutic Efficacy. Tissue Eng Part A 2019; 26:28-37. [PMID: 31269875 DOI: 10.1089/ten.tea.2019.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a widespread disease that continues to lack approved and efficacious treatments that modify disease progression. Micronized dehydrated human amnion/chorion membrane (μ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. The objectives of this study were to characterize the particle size distributions of two μ-dHACM formulations and to investigate the influence of these distributions on the in vivo therapeutic efficacy of μ-dHACM. Male Lewis rats underwent medial meniscus transection (MMT) or sham surgery, and intra-articular injections of saline, μ-dHACM, or reduced particle size μ-dHACM (RPS μ-dHACM) were administered at 24 hours postsurgery (n = 9 per treatment group). After 3 weeks, the animals were euthanized, and left legs harvested for equilibrium partitioning of an ionic contrast agent microcomputed tomography and histological analysis. μ-dHACM and RPS μ-dHACM particles were fluorescently tagged and particle clearance was tracked in vivo for up to 42 days postsurgery. Protein elution from both formulations was quantified in vitro. Treatment with μ-HACM, but not RPS μ-dHACM, reduced lesion volume in the MMT model 3 weeks postsurgery. In contrast, RPS μ-dHACM increased cartilage surface roughness and osteophyte cartilage thickness and volume compared to saline treatment. There was no difference of in vivo fluorescently tagged particle clearance between the two μ-dHACM sizes. RPS μ-dHACM showed significantly greater protein elution in vitro over 21 days. Overall, delivery of RPS μ-dHACM did result in an increase of in vivo joint degeneration and in vitro protein elution compared to μ-dHACM, but did not result in differences in joint clearance in vivo. These results suggest that particle size and factor elution may be tailorable factors that are important to optimize for particulate amniotic membrane treatment to be an effective therapy for OA. Impact Statement Osteoarthritis (OA) is a widespread disease that continues to lack treatments that modify the progression of the disease. Micronized dehydrated human amnion/chorion membrane (μ-dHACM) has been shown to be effective in reducing OA progression, but many of the engineering design parameters have not been explored. This work investigates the effects of particle size profile of the μ-dHACM particles and lays out the methods used in these studies. The results of this work will guide engineers in designing μ-dHACM treatments specifically and disease-modifying OA therapeutics generally, and it demonstrates the utility of novel therapeutic evaluation methods such as contrast-enhanced microcomputed tomography.
Collapse
Affiliation(s)
- David S Reece
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Olivia A Burnsed
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Kaley Parchinski
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Elizabeth E Marr
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Roger M White
- W.P. Carey School of Business, Arizona State University, Tempe, Arizona
| | - Giuliana E Salazar-Noratto
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Angela S P Lin
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, Georgia.,Atlanta Veteran's Affairs Medical Center, Decatur, Georgia.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon
| |
Collapse
|
88
|
Li C, Wang Q. Advanced NIR‐II Fluorescence Imaging Technology for In Vivo Precision Tumor Theranostics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900053] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chunyan Li
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabCAS Center for Excellence in Brain ScienceSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of Sciences Suzhou 215123 China
| |
Collapse
|
89
|
Kaplan-Marans E, Fulla J, Tomer N, Bilal K, Palese M. Indocyanine Green (ICG) in Urologic Surgery. Urology 2019; 132:10-17. [PMID: 31129192 DOI: 10.1016/j.urology.2019.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
Abstract
Indocyanine green (ICG) is a dye used for fluorescent-guided surgery. This review article addresses the recent surge in reported uses of ICG in various surgical fields and provides a comprehensive and up to date review of the uses of ICG in urologic surgery.
Collapse
Affiliation(s)
| | - Juan Fulla
- Department of Urology, Mount Sinai Health System, New York, NY
| | - Nir Tomer
- Department of Urology, Mount Sinai Health System, New York, NY
| | - Khawaja Bilal
- Department of Urology, Mount Sinai Health System, New York, NY
| | - Michael Palese
- Department of Urology, Mount Sinai Health System, New York, NY
| |
Collapse
|
90
|
Upputuri PK, Pramanik M. Photoacoustic imaging in the second near-infrared window: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-20. [PMID: 30968648 PMCID: PMC6990072 DOI: 10.1117/1.jbo.24.4.040901] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Photoacoustic (PA) imaging is an emerging medical imaging modality that combines optical excitation and ultrasound detection. Because ultrasound scatters much less than light in biological tissues, PA generates high-resolution images at centimeters depth. In recent years, wavelengths in the second near-infrared (NIR-II) window (1000 to 1700 nm) have been increasingly explored due to its potential for preclinical and clinical applications. In contrast to the conventional PA imaging in the visible (400 to 700 nm) and the first NIR-I (700 to 1000 nm) window, PA imaging in the NIR-II window offers numerous advantages, including high spatial resolution, deeper penetration depth, reduced optical absorption, and tissue scattering. Moreover, the second window allows a fivefold higher light excitation energy density compared to the visible window for enhancing the imaging depth significantly. We highlight the importance of the second window for PA imaging and discuss the various NIR-II PA imaging systems and contrast agents with strong absorption in the NIR-II spectral region. Numerous applications of NIR-II PA imaging, including whole-body animal imaging and human imaging, are also discussed.
Collapse
Affiliation(s)
- Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
91
|
Chen Q, Chen J, He M, Bai Y, Yan H, Zeng N, Liu F, Wen S, Song L, Sheng Z, Liu C, Fang C. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma. Biomater Sci 2019; 7:3165-3177. [DOI: 10.1039/c9bm00528e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The NIR-II PA and PTT nanoparticle based on the IR-1061 dye would benefit early diagnosis and treatment of HCC.
Collapse
|