51
|
Kuroda J, Itabashi T, Iwane AH, Aramaki T, Kondo S. The Physical Role of Mesenchymal Cells Driven by the Actin Cytoskeleton Is Essential for the Orientation of Collagen Fibrils in Zebrafish Fins. Front Cell Dev Biol 2020; 8:580520. [PMID: 33154970 PMCID: PMC7591588 DOI: 10.3389/fcell.2020.580520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrous collagen imparts physical strength and flexibility to tissues by forming huge complexes. The density and orientation of collagen fibers must be correctly specified for the optimal physical property of the collagen complex. However, little is known about its underlying cellular mechanisms. Actinotrichia are collagen fibers aligned at the fin-tip of bony fish and are easily visible under the microscope due to their thick, linear structure. We used the actinotrichia as a model system to investigate how cells manipulate collagen fibers. The 3D image obtained by focused ion beam scanning electron microscopy (FIB-SEM) showed that the pseudopodia of mesenchymal cells encircle the multiple actinotrichia. We then co-incubated the mesenchymal cells and actinotrichia in vitro, and time-lapse analysis revealed how cells use pseudopods to align collagen fiber orientation. This in vitro behavior is dependent on actin polymerization in mesenchymal cells. Inhibition of actin polymerization in mesenchymal cells results in mis-orientation of actinotrichia in the fin. These results reveal how mesenchymal cells are involved in fin formation and have important implications for the physical interaction between cells and collagen fibers.
Collapse
Affiliation(s)
- Junpei Kuroda
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Atsuko H. Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| |
Collapse
|
52
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
53
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
54
|
He C, Song W, Weston TA, Tran C, Kurtz I, Zuckerman JE, Guagliardo P, Miner JH, Ivanov SV, Bougoure J, Hudson BG, Colon S, Voziyan PA, Bhave G, Fong LG, Young SG, Jiang H. Peroxidasin-mediated bromine enrichment of basement membranes. Proc Natl Acad Sci U S A 2020; 117:15827-15836. [PMID: 32571911 PMCID: PMC7354931 DOI: 10.1073/pnas.2007749117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br, 81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.
Collapse
Affiliation(s)
- Cuiwen He
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Wenxin Song
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Caitlyn Tran
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Ira Kurtz
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, 6009 Perth, Australia
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sergey V Ivanov
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, 6009 Perth, Australia
| | - Billy G Hudson
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - Selene Colon
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212
| | - Paul A Voziyan
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Gautam Bhave
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212
- Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095;
- Department of Human Genetics, University of California, Los Angeles, CA 90095
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, 6009 Perth, Australia;
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
55
|
Abstract
Cadherin-based cell-cell junctions help metazoans form polarized sheets of cells, which are necessary for the development of organs and the compartmentalization of functions. The components of the protein complexes that generate cadherin-based junctions have ancient origins, with conserved elements shared between animals as diverse as sponges and vertebrates. In invertebrates, the formation and function of epithelial sheets depends on classical cadherin-containing adherens junctions, which link actin to the plasma membrane through α-, β- and p120 catenins. Vertebrates also have a new type of cadherin-based intercellular junction called the desmosome, which allowed for the creation of more complex and effective tissue barriers against environmental stress. While desmosomes have a molecular blueprint that is similar to that of adherens junctions, desmosomal cadherins - called desmogleins and desmocollins - link intermediate filaments (IFs) rather than actin to the plasma membrane through protein complexes comprising relatives of β-catenin (plakoglobin) and p120 catenin (plakophilins). In turn, desmosomal catenins interact with members of the IF-binding plakin family to create the desmosome-IF linking complex. In this Minireview, we discuss when and how desmosomal components evolved, and how their ability to anchor the highly elastic and tough IF cytoskeleton endowed vertebrates with robust tissues capable of not only resisting but also properly responding to environmental stress.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | - Quinn Roth-Carter
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Center for Molecule Medicine Cologne, University of Cologne, Cologne, Germany
| | - Scott A Nichols
- Department of Biological Sciences, 2101 E. Wesley Ave. SGM 203, University of Denver, CO 80210, USA.
| |
Collapse
|
56
|
Moreland RT, Nguyen AD, Ryan JF, Baxevanis AD. The Mnemiopsis Genome Project Portal: integrating new gene expression resources and improving data visualization. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5834871. [PMID: 32386298 DOI: 10.1093/database/baaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/22/2020] [Indexed: 11/13/2022]
Abstract
Following the completion of the genome sequencing and gene prediction of Mnemiopsis leidyi, a lobate ctenophore that is native to the coastal waters of the western Atlantic Ocean, we developed and implemented the Mnemiopsis Genome Project Portal (MGP Portal), a comprehensive Web-based data portal for navigating the genome sequence and gene annotations. In the years following the first release of the MGP Portal, it has become evident that the inclusion of data from significant published studies on Mnemiopsis has been critical to its adoption as the centralized resource for this emerging model organism. With this most recent update, the Portal has significantly expanded to include in situ images, temporal developmental expression profiles and single-cell expression data. Recent enhancements also include implementations of an updated BLAST interface, new graphical visualization tools and updates to gene pages that integrate all new data types. Database URL: https://research.nhgri.nih.gov/mnemiopsis/.
Collapse
Affiliation(s)
- R Travis Moreland
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anh-Dao Nguyen
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
57
|
Pastor-Pareja JC. Atypical basement membranes and basement membrane diversity - what is normal anyway? J Cell Sci 2020; 133:133/8/jcs241794. [PMID: 32317312 DOI: 10.1242/jcs.241794] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The evolution of basement membranes (BMs) played an essential role in the organization of animal cells into tissues and diversification of body plans. The archetypal BM is a compact extracellular matrix polymer containing laminin, nidogen, collagen IV and perlecan (LNCP matrix) tightly packed into a homogenously thin planar layer. Contrasting this clear-cut morphological and compositional definition, there are numerous examples of LNCP matrices with unusual characteristics that deviate from this planar organization. Furthermore, BM components are found in non-planar matrices that are difficult to categorize as BMs at all. In this Review, I discuss examples of atypical BM organization. First, I highlight atypical BM structures in human tissues before describing the functional dissection of a plethora of BMs and BM-related structures in their tissue contexts in the fruit fly Drosophila melanogaster To conclude, I summarize our incipient understanding of the mechanisms that provide morphological, compositional and functional diversity to BMs. It is becoming increasingly clear that atypical BMs are quite prevalent, and that even typical planar BMs harbor a lot of diversity that we do not yet comprehend.
Collapse
Affiliation(s)
- José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing 100084, China .,Peking-Tsinghua Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
58
|
The novel missense mutation Met48Lys in FKBP22 changes its structure and functions. Sci Rep 2020; 10:497. [PMID: 31949249 PMCID: PMC6965642 DOI: 10.1038/s41598-019-57374-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the FKBP14 gene encoding FKBP22 (FK506 Binding Protein 22 kDa) cause kyphoscoliotic Ehlers-Danlos Syndrome (kEDS). The first clinical report showed that a lack of FKBP22 protein due to mutations causing nonsense-mediated decay of the mRNA leads to a wide spectrum of clinical phenotypes including progressive kyphoscoliosis, joint hypermobility, hypotonia, hyperelastic skin, hearing loss and aortic rupture. Our previous work showed that these phenotypic features could be correlated with the functions of FKBP22, which preferentially binds to type III, VI and X collagens, but not to type I, II or V collagens. We also showed that FKBP22 catalyzed the folding of type III collagen through its prolyl isomerase activity and acted as a molecular chaperone for type III collagen. Recently, a novel missense mutation Met48Lys in FKBP22 was identified in a patient with kEDS. In this report, we expand the list of substrates of FKBP22 and also demonstrate that the Met48Lys mutation diminishes the activities of FKBP22, indicating that pathology can arise from absence of FKBP22, or partial loss of its function.
Collapse
|
59
|
Deng B, Tang D, Qiang Y, Zheng X. Down-regulation of microRNA-31 suppresses hepatic fibrosis induced by carbon tetrachloride. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220942630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MicroRNA-31 (miR-31) is among the most frequently altered microRNAs in human diseases, and altered expression of miR-31 has been detected in a large variety of diseases types. miR-31 could also regulate a variety of cell functions including hepatic fibrosis. Hepatic stellate cells (HSCs) are regarded as the major cell type involved in hepatic fibrosis. Male BALB/c mice (five mice per group aged 6 weeks) received 200 μL of body weight of carbon tetrachloride (10% CCl4) mixed with olive oil intraperitoneally, and the first dose was doubled. To induce hepatic fibrosis, carbon tetrachloride was injected twice a week for 4, 6, 8, and 10 weeks. Control animals were injected with an equal volume of olive oil at the same time intervals. We found that miR-31 expression and fibrosis-related factors in four hepatic fibrosis stages. However, we noted that inhibition of miR-31 was down-regulated fibrosis-related factor expression in F1–F3 stages, but no F4 stage. Thus, we hypothesize that miR-31 may mediate hepatic fibrosis. In this research, we found that inhibition of miR-31 expression significantly inhibited HSC activation. The biological function of miR-31 during HSC activation might be through targeting hypoxia-inducible factor 1-alpha inhibitor (HIF1AN). Inhibition of miR-31 can reduce the transcription factor activity of hypoxia inducible factor 1 (HIF-1) by targeting the biological effects of HIF1AN with the condition of hypoxia. In later hepatic fibrosis could be rescue combining with inhibition of miR-31 and adding heparin-binding EGF-like growth factor (HBEGF).
Collapse
Affiliation(s)
- Bing Deng
- Department of Hepatobiliary Surgery, Second People’s Hospital of Jingmen, Jingmen, P.R. China
| | - Detao Tang
- Department of Gastrointestinal Surgery, Second People’s Hospital of Jingmen, Jingmen, P.R. China
| | - Yong Qiang
- Department of Hepatobiliary Surgery, Second People’s Hospital of Jingmen, Jingmen, P.R. China
| | - Xiang Zheng
- Department of Gastrointestinal Surgery, Second People’s Hospital of Jingmen, Jingmen, P.R. China
| |
Collapse
|
60
|
Rheault MN, Savige J, Randles MJ, Weinstock A, Stepney M, Turner AN, Parziale G, Gross O, Flinter FA, Miner JH, Lagas S, Gear S, Lennon R. The importance of clinician, patient and researcher collaborations in Alport syndrome. Pediatr Nephrol 2020; 35:733-742. [PMID: 31044288 PMCID: PMC7096363 DOI: 10.1007/s00467-019-04241-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Alport syndrome is caused by mutations in the genes COL4A3, COL4A4 or COL4A5 and is characterised by progressive glomerular disease, sensorineural hearing loss and ocular defects. Occurring in less than 1:5000, Alport syndrome is a rare genetic disorder but still accounts for > 1% of the prevalent population receiving renal replacement therapy. There is also increasing awareness about the risk of chronic kidney disease in individuals with heterozygous mutations in Alport syndrome genes. The mainstay of current therapy is the use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, yet potential new therapies are now entering clinical trials. The 2017 International Workshop on Alport Syndrome in Glasgow was a pre-conference workshop ahead of the 50th anniversary meeting of the European Society for Pediatric Nephrology. It focussed on updates in clinical practice, genetics and basic science and also incorporated patient perspectives. More than 80 international experts including clinicians, geneticists, researchers from academia and industry, and patient representatives took part in panel discussions and breakout groups. This report summarises the workshop proceedings and the relevant contemporary literature. It highlights the unique clinician, patient and researcher collaborations achieved by regular engagement between the groups.
Collapse
Affiliation(s)
- Michelle N. Rheault
- Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN USA
| | - Judith Savige
- Department of Medicine, Royal Melbourne Hospital, Victoria, Australia
| | - Michael J. Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | | | - Melissa Stepney
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - A Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh, UK
| | | | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medicine Goettingen, Goettingen, Germany
| | - Frances A Flinter
- Department of Clinical Genetics, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St Louis, MO USA
| | | | | | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK. .,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
61
|
Ivanov SV, Bauer R, Pokidysheva EN, Boudko SP. Collagen IV Exploits a Cl- Step Gradient for Scaffold Assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:129-141. [PMID: 32979156 DOI: 10.1007/5584_2020_582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collagen molecules are crucial extracellular players in animal tissue development and in functions ranging from ultrafiltration to organism locomotion. Among the 28 types of collagen found in human, type IV collagen stands out as a primordial type found in all species of the animal kingdom. Collagen IV forms smart scaffolds for basement membranes, sheet-like acellular structures that isolate, coordinate, and direct cells during morphogenesis. Collagen IV is also involved in multiple functions in developed tissues. As part of the basement membrane, collagen IV scaffolds provide mechanical strength, spatially tether extracellular macromolecules and directly signal to cells via receptor binding sites. Proper assembly and structure of the scaffolds are critical for development and function of multiple types of basement membranes. Within last 5 years it was established that Cl- concentration is a key factor for initiating collagen IV scaffold assembly. The biological role of Cl- in multiple physiological processes and detailed mechanisms for its signaling and structural impacts are well established. Cl- gradients are generated across the plasma and intracellular organelle membranes. As collagen IV molecules are secreted outside the cell, they experience a switch from low to high Cl- concentration. This transition works as a trigger for collagen IV scaffold assembly. Within the scaffold, collagen IV remains to be a Cl- sensor as its structural integrity continues to depend on Cl- concentration. Here, we review recent findings and set future directions for studies on the role of Cl- in type IV collagen assembly, function, and disease.
Collapse
Affiliation(s)
- Sergey V Ivanov
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan Bauer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elena N Pokidysheva
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
62
|
Fereidouni F, Todd A, Li Y, Chang CW, Luong K, Rosenberg A, Lee YJ, Chan JW, Borowsky A, Matsukuma K, Jen KY, Levenson R. Dual-mode emission and transmission microscopy for virtual histochemistry using hematoxylin- and eosin-stained tissue sections. BIOMEDICAL OPTICS EXPRESS 2019; 10:6516-6530. [PMID: 31853414 PMCID: PMC6913420 DOI: 10.1364/boe.10.006516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/23/2023]
Abstract
In the clinical practice of pathology, trichrome stains are commonly used to highlight collagen and to help evaluate fibrosis. Such stains do delineate collagen deposits but are not molecularly specific and can suffer from staining inconsistencies. Moreover, performing histochemical stain evaluation requires the preparation of additional sections beyond the original hematoxylin- and eosin-stained slides, as well as additional staining steps, which together add cost, time, and workflow complications. We have developed a new microscopy approach, termed DUET (DUal-mode Emission and Transmission) that can be used to extract signals that would typically require special stains or advanced optical methods. Our preliminary analysis demonstrates the potential of using the resulting signals to generate virtual histochemical images that resemble trichrome-stained slides and can support clinical evaluation. We demonstrate advantages of this approach over images acquired from conventional trichrome-stained slides and compare them with images created using second harmonic generation microscopy.
Collapse
Affiliation(s)
- Farzad Fereidouni
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Austin Todd
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Yuheng Li
- Department of Computer Science, UC Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Keith Luong
- Department of Electrical and Computer Engineering, UC Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Avi Rosenberg
- Renal Pathology, Department of Pathology, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Yong-Jae Lee
- Department of Computer Science, UC Davis, One Shields Avenue, Davis, CA 95616, USA
| | - James W. Chan
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Alexander Borowsky
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| | - Richard Levenson
- Department of Pathology and Laboratory Medicine, UC Davis Health, 4400 V Street, Sacramento, CA 95817, USA
| |
Collapse
|
63
|
Kirkness MWH, Lehmann K, Forde NR. Mechanics and structural stability of the collagen triple helix. Curr Opin Chem Biol 2019; 53:98-105. [DOI: 10.1016/j.cbpa.2019.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
|
64
|
Arnellos A, Keijzer F. Bodily Complexity: Integrated Multicellular Organizations for Contraction-Based Motility. Front Physiol 2019; 10:1268. [PMID: 31680996 PMCID: PMC6803425 DOI: 10.3389/fphys.2019.01268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023] Open
Abstract
Compared to other forms of multicellularity, the animal case is unique. Animals-barring some exceptions-consist of collections of cells that are connected and integrated to such an extent that these collectives act as unitary, large free-moving entities capable of sensing macroscopic properties and events. This animal configuration is so well-known that it is often taken as a natural one that 'must' have evolved, given environmental conditions that make large free-moving units 'obviously' adaptive. Here we question the seemingly evolutionary inevitableness of animals and introduce a thesis of bodily complexity: The multicellular organization characteristic for typical animals requires the integration of a multitude of intrinsic bodily features between its sensorimotor, physiological, and developmental aspects, and the related contraction-based tissue- and cellular-level events and processes. The evolutionary road toward this bodily complexity involves, we argue, various intermediate organizational steps that accompany and support the wider transition from cilia-based to contraction/muscle-based motility, and which remain insufficiently acknowledged. Here, we stress the crucial and specific role played by muscle-based and myoepithelial tissue contraction-acting as a physical platform for organizing both the multicellular transmission of mechanical forces and multicellular signaling-as key foundation of animal motility, sensing and maintenance, and development. We illustrate and discuss these bodily features in the context of the four basal animal phyla-Porifera, Ctenophores, Placozoans, and Cnidarians-that split off before the bilaterians, a supergroup that incorporates all complex animals.
Collapse
Affiliation(s)
- Argyris Arnellos
- IAS-Research Centre for Life, Mind & Society, Department of Logic and Philosophy of Science, University of the Basque Country, San Sebastián, Spain.,Department of Product and Systems Design Engineering, Complex Systems and Service Design Lab, University of the Aegean, Syros, Greece
| | - Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
65
|
Bich L, Pradeu T, Moreau JF. Understanding Multicellularity: The Functional Organization of the Intercellular Space. Front Physiol 2019; 10:1170. [PMID: 31620013 PMCID: PMC6759637 DOI: 10.3389/fphys.2019.01170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
The aim of this paper is to provide a theoretical framework to understand how multicellular systems realize functionally integrated physiological entities by organizing their intercellular space. From a perspective centered on physiology and integration, biological systems are often characterized as organized in such a way that they realize metabolic self-production and self-maintenance. The existence and activity of their components rely on the network they realize and on the continuous management of the exchange of matter and energy with their environment. One of the virtues of the organismic approach focused on organization is that it can provide an understanding of how biological systems are functionally integrated into coherent wholes. Organismic frameworks have been primarily developed by focusing on unicellular life. Multicellularity, however, presents additional challenges to our understanding of biological systems, related to how cells are capable to live together in higher-order entities, in such a way that some of their features and behaviors are constrained and controlled by the system they realize. Whereas most accounts of multicellularity focus on cell differentiation and increase in size as the main elements to understand biological systems at this level of organization, we argue that these factors are insufficient to provide an understanding of how cells are physically and functionally integrated in a coherent system. In this paper, we provide a new theoretical framework to understand multicellularity, capable to overcome these issues. Our thesis is that one of the fundamental theoretical principles to understand multicellularity, which is missing or underdeveloped in current accounts, is the functional organization of the intercellular space. In our view, the capability to be organized in space plays a central role in this context, as it enables (and allows to exploit all the implications of) cell differentiation and increase in size, and even specialized functions such as immunity. We argue that the extracellular matrix plays a crucial active role in this respect, as an evolutionary ancient and specific (non-cellular) control subsystem that contributes as a key actor to the functional specification of the multicellular space and to modulate cell fate and behavior. We also analyze how multicellular systems exert control upon internal movement and communication. Finally, we show how the organization of space is involved in some of the failures of multicellular organization, such as aging and cancer.
Collapse
Affiliation(s)
- Leonardo Bich
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Thomas Pradeu
- ImmunoConcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
- CNRS UMR8590, Institut d’Histoire et de Philosophie des Sciences et des Techniques, Pantheon-Sorbonne University, Paris, France
| | - Jean-François Moreau
- ImmunoConcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
- CHU Bordeaux, Bordeaux, France
| |
Collapse
|
66
|
Extracellular matrix and morphogenesis in cnidarians: a tightly knit relationship. Essays Biochem 2019; 63:407-416. [PMID: 31462530 DOI: 10.1042/ebc20190021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Cnidarians, members of an early-branching metazoan phylum, possess an extracellular matrix (ECM) between their two epithelial cell layers, called the mesoglea. The cnidarian ECM, which is best studied in Hydra, contains matrix components reflective of both interstitial matrix and basement membrane. The identification of core matrisome components in cnidarian genomes has led to the notion that the basic composition of vertebrate ECM is of highly conserved nature and can be traced back to pre-bilaterians. While in vertebrate classes ECM factors have often diverged and acquired specialized functions in the context of organ development, cnidarians with their simple body plan retained direct links between ECM and morphogenesis. Recent advances in genetic manipulation techniques have provided tools for systematically studying cnidarian ECM function in body axis patterning and regeneration.
Collapse
|
67
|
Jayadev R, Chi Q, Keeley DP, Hastie EL, Kelley LC, Sherwood DR. α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. J Cell Biol 2019; 218:3098-3116. [PMID: 31387941 PMCID: PMC6719451 DOI: 10.1083/jcb.201903124] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/βPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/βPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Eric L Hastie
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
68
|
Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem 2019; 63:389-405. [DOI: 10.1042/ebc20180048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
AbstractAnimals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.
Collapse
|
69
|
Newman SA. Inherent forms and the evolution of evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:331-338. [PMID: 31380606 DOI: 10.1002/jez.b.22895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
John Bonner presented a provocative conjecture that the means by which organisms evolve has itself evolved. The elements of his postulated nonuniformitarianism in the essay under discussion-the emergence of sex, the enhanced selection pressures on larger multicellular forms-center on a presumed close mapping of genotypic to phenotypic change. A different view emerges from delving into earlier work of Bonner's in which he proposed the concept of "neutral phenotypes" and "neutral morphologies" allied to D'Arcy Thompson's analysis of physical determinants of form and studied the conditional elicitation of intrinsic organizational properties of cell aggregates in social amoebae. By comparing the shared and disparate mechanistic bases of morphogenesis and developmental outcomes in the embryos of metazoans (animals), closely related nonmetazoan holozoans, more distantly related dictyostelids, and very distantly related volvocine algae, I conclude, in agreement with Bonner's earlier proposals, that understanding the evolution of multicellular evolution requires knowledge of the inherent forms of diversifying lineages, and that the relevant causative factors extend beyond genes and adaptation to the physics of materials.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
70
|
Chang J, Chaudhuri O. Beyond proteases: Basement membrane mechanics and cancer invasion. J Cell Biol 2019; 218:2456-2469. [PMID: 31315943 PMCID: PMC6683740 DOI: 10.1083/jcb.201903066] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
In epithelial cancers, cells must invade through basement membranes (BMs) to metastasize. The BM, a thin layer of extracellular matrix underlying epithelial and endothelial tissues, is primarily composed of laminin and collagen IV and serves as a structural barrier to cancer cell invasion, intravasation, and extravasation. BM invasion has been thought to require protease degradation since cells, which are typically on the order of 10 µm in size, are too large to squeeze through the nanometer-scale pores of the BM. However, recent studies point toward a more complex picture, with physical forces generated by cancer cells facilitating protease-independent BM invasion. Moreover, collective cell interactions, proliferation, cancer-associated fibroblasts, myoepithelial cells, and immune cells are all implicated in regulating BM invasion through physical forces. A comprehensive understanding of BM structure and mechanics and diverse modes of BM invasion may yield new strategies for blocking cancer progression and metastasis.
Collapse
Affiliation(s)
- Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
71
|
Colgren J, Nichols SA. The significance of sponges for comparative studies of developmental evolution. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e359. [PMID: 31352684 DOI: 10.1002/wdev.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
Sponges, ctenophores, placozoans, and cnidarians have key evolutionary significance in that they bracket the time interval during which organized animal tissues were first assembled, fundamental cell types originated (e.g., neurons and myocytes), and developmental patterning mechanisms evolved. Sponges in particular have often been viewed as living surrogates for early animal ancestors, largely due to similarities between their feeding cells (choanocytes) with choanoflagellates, the unicellular/colony-forming sister group to animals. Here, we evaluate these claims and highlight aspects of sponge biology with comparative value for understanding developmental evolution, irrespective of the purported antiquity of their body plan. Specifically, we argue that sponges strike a different balance between patterning and plasticity than other animals, and that environmental inputs may have prominence over genetically regulated developmental mechanisms. We then present a case study to illustrate how contractile epithelia in sponges can help unravel the complex ancestry of an ancient animal cell type, myocytes, which sponges lack. Sponges represent hundreds of millions of years of largely unexamined evolutionary experimentation within animals. Their phylogenetic placement lends them key significance for learning about the past, and their divergent biology challenges current views about the scope of animal cell and developmental biology. This article is characterized under: Comparative Development and Evolution > Evolutionary Novelties Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, Colorado
| |
Collapse
|
72
|
Nielsen C. Early animal evolution: a morphologist's view. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190638. [PMID: 31417759 PMCID: PMC6689584 DOI: 10.1098/rsos.190638] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 05/15/2023]
Abstract
Two hypotheses for the early radiation of the metazoans are vividly discussed in recent phylogenomic studies, the 'Porifera-first' hypothesis, which places the poriferans as the sister group of all other metazoans, and the 'Ctenophora-first' hypothesis, which places the ctenophores as the sister group to all other metazoans. It has been suggested that an analysis of morphological characters (including specific molecules) could throw additional light on the controversy, and this is the aim of this paper. Both hypotheses imply independent evolution of nervous systems in Planulozoa and Ctenophora. The Porifera-first hypothesis implies no homoplasies or losses of major characters. The Ctenophora-first hypothesis shows no important synapomorphies of Porifera, Planulozoa and Placozoa. It implies either independent evolution, in Planulozoa and Ctenophora, of a new digestive system with a gut with extracellular digestion, which enables feeding on larger organisms, or the subsequent loss of this new gut in the Poriferans (and the re-evolution of the collar complex). The major losses implied in the Ctenophora-first theory show absolutely no adaptational advantages. Thus, morphology gives very strong support for the Porifera-first hypothesis.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
73
|
Newman SA. Inherency of Form and Function in Animal Development and Evolution. Front Physiol 2019; 10:702. [PMID: 31275153 PMCID: PMC6593199 DOI: 10.3389/fphys.2019.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
I discuss recent work on the origins of morphology and cell-type diversification in Metazoa – collectively the animals – and propose a scenario for how these two properties became integrated, with the help of a third set of processes, cellular pattern formation, into the developmental programs seen in present-day metazoans. Inherent propensities to generate familiar forms and cell types, in essence a parts kit for the animals, are exhibited by present-day organisms and were likely more prominent in primitive ones. The structural motifs of animal bodies and organs, e.g., multilayered, hollow, elongated and segmented tissues, internal and external appendages, branched tubes, and modular endoskeletons, can be accounted for by the properties of mesoscale masses of metazoan cells. These material properties, in turn, resulted from the recruitment of “generic” physical forces and mechanisms – adhesion, contraction, polarity, chemical oscillation, diffusion – by toolkit molecules that were partly conserved from unicellular holozoan antecedents and partly novel, distributed in the different metazoan phyla in a fashion correlated with morphological complexity. The specialized functions of the terminally differentiated cell types in animals, e.g., contraction, excitability, barrier function, detoxification, excretion, were already present in ancestral unicellular organisms. These functions were implemented in metazoan differentiation in some cases using the same transcription factors as in single-celled ancestors, although controlled by regulatory mechanisms that were hybrids between earlier-evolved processes and regulatory innovations, such as enhancers. Cellular pattern formation, mediated by released morphogens interacting with biochemically responsive and excitable tissues, drew on inherent self-organizing processes in proto-metazoans to transform clusters of holozoan cells into animal embryos and organs.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
74
|
Shoemark DK, Ziegler B, Watanabe H, Strompen J, Tucker RP, Özbek S, Adams JC. Emergence of a Thrombospondin Superfamily at the Origin of Metazoans. Mol Biol Evol 2019; 36:1220-1238. [PMID: 30863851 PMCID: PMC6526912 DOI: 10.1093/molbev/msz060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) is considered central to the evolution of metazoan multicellularity; however, the repertoire of ECM proteins in nonbilaterians remains unclear. Thrombospondins (TSPs) are known to be well conserved from cnidarians to vertebrates, yet to date have been considered a unique family, principally studied for matricellular functions in vertebrates. Through searches utilizing the highly conserved C-terminal region of TSPs, we identify undisclosed new families of TSP-related proteins in metazoans, designated mega-TSP, sushi-TSP, and poriferan-TSP, each with a distinctive phylogenetic distribution. These proteins share the TSP C-terminal region domain architecture, as determined by domain composition and analysis of molecular models against known structures. Mega-TSPs, the only form identified in ctenophores, are typically >2,700 aa and are also characterized by N-terminal leucine-rich repeats and central cadherin/immunoglobulin domains. In cnidarians, which have a well-defined ECM, Mega-TSP was expressed throughout embryogenesis in Nematostella vectensis, with dynamic endodermal expression in larvae and primary polyps and widespread ectodermal expression in adult Nematostella vectensis and Hydra magnipapillata polyps. Hydra Mega-TSP was also expressed during regeneration and siRNA-silencing of Mega-TSP in Hydra caused specific blockade of head regeneration. Molecular phylogenetic analyses based on the conserved TSP C-terminal region identified each of the TSP-related groups to form clades distinct from the canonical TSPs. We discuss models for the evolution of the newly defined TSP superfamily by gene duplications, radiation, and gene losses from a debut in the last metazoan common ancestor. Together, the data provide new insight into the evolution of ECM and tissue organization in metazoans.
Collapse
Affiliation(s)
| | - Berenice Ziegler
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jennifer Strompen
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
75
|
Zverkov OA, Mikhailov KV, Isaev SV, Rusin LY, Popova OV, Logacheva MD, Penin AA, Moroz LL, Panchin YV, Lyubetsky VA, Aleoshin VV. Dicyemida and Orthonectida: Two Stories of Body Plan Simplification. Front Genet 2019; 10:443. [PMID: 31178892 PMCID: PMC6543705 DOI: 10.3389/fgene.2019.00443] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/29/2019] [Indexed: 01/22/2023] Open
Abstract
Two enigmatic groups of morphologically simple parasites of invertebrates, the Dicyemida (syn. Rhombozoa) and the Orthonectida, since the 19th century have been usually considered as two classes of the phylum Mesozoa. Early molecular evidence suggested their relationship within the Spiralia (=Lophotrochozoa), however, high rates of dicyemid and orthonectid sequence evolution led to contradicting phylogeny reconstructions. Genomic data for orthonectids revealed that they are highly simplified spiralians and possess a reduced set of genes involved in metazoan development and body patterning. Acquiring genomic data for dicyemids, however, remains a challenge due to complex genome rearrangements including chromatin diminution and generation of extrachromosomal circular DNAs, which are reported to occur during the development of somatic cells. We performed genomic sequencing of one species of Dicyema, and obtained transcriptomic data for two Dicyema spp. Homeodomain (homeobox) transcription factors, G-protein-coupled receptors, and many other protein families have undergone a massive reduction in dicyemids compared to other animals. There is also apparent reduction of the bilaterian gene complements encoding components of the neuromuscular systems. We constructed and analyzed a large dataset of predicted orthologous proteins from three species of Dicyema and a set of spiralian animals including the newly sequenced genome of the orthonectid Intoshia linei. Bayesian analyses recovered the orthonectid lineage within the Annelida. In contrast, dicyemids form a separate clade with weak affinity to the Rouphozoa (Platyhelminthes plus Gastrotricha) or (Entoprocta plus Cycliophora) suggesting that the historically proposed Mesozoa is a polyphyletic taxon. Thus, dramatic simplification of body plans in dicyemids and orthonectids, as well as their intricate life cycles that combine metagenesis and heterogony, evolved independently in these two lineages.
Collapse
Affiliation(s)
- Oleg A. Zverkov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V. Isaev
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Y. Rusin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V. Popova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria D. Logacheva
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey A. Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Yuri V. Panchin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vassily A. Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V. Aleoshin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
76
|
Labelle-Dumais C, Schuitema V, Hayashi G, Hoff K, Gong W, Dao DQ, Ullian EM, Oishi P, Margeta M, Gould DB. COL4A1 Mutations Cause Neuromuscular Disease with Tissue-Specific Mechanistic Heterogeneity. Am J Hum Genet 2019; 104:847-860. [PMID: 31051113 DOI: 10.1016/j.ajhg.2019.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Collagen type IV alpha 1 and alpha 2 chains form heterotrimers ([α1(IV)]2α2(IV)) that represent a fundamental basement membrane constituent. Dominant COL4A1 and COL4A2 mutations cause a multisystem disorder that is marked by clinical heterogeneity and variable expressivity and that is generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular involvement. Despite the fact that muscle pathology is reported in up to one-third of individuals with COL4A1 and COL4A2 mutations and in animal models with mutations in COL4A1 and COL4A2 orthologs, the pathophysiological mechanisms underlying COL4A1-related myopathy are unknown. In general, mutations are thought to impair [α1(IV)]2α2(IV) secretion. Whether pathogenesis results from intracellular retention, extracellular deficiency, or the presence of mutant proteins in basement membranes represents an important gap in knowledge and a major obstacle for developing targeted interventions. We report that Col4a1 mutant mice develop progressive neuromuscular pathology that models human disease. We demonstrate that independent muscular, neural, and vascular insults contribute to neuromyopathy and that there is mechanistic heterogeneity among tissues. Importantly, we provide evidence of a COL4A1 functional subdomain with disproportionate significance for tissue-specific pathology and demonstrate that a potential therapeutic strategy aimed at promoting [α1(IV)]2α2(IV) secretion can ameliorate or exacerbate myopathy in a mutation-dependent manner. These data have important translational implications for prediction of clinical outcomes based on genotype, development of mechanism-based interventions, and genetic stratification for clinical trials. Collectively, our data underscore the importance of the [α1(IV)]2α2(IV) network as a multifunctional signaling platform and show that allelic and tissue-specific mechanistic heterogeneities contribute to the variable expressivity of COL4A1 and COL4A2 mutations.
Collapse
|
77
|
Rodríguez-Pascual F. How evolution made the matrix punch at the multicellularity party. J Biol Chem 2019; 294:770-771. [PMID: 30659161 DOI: 10.1074/jbc.h118.006972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The basement membrane is a specialized sheet-like form of the extracellular matrix that provides structural support to epithelial cells and tissues, while influencing multiple biological functions, and was essential in the transition to multicellularity. By exploring a variety of genomes, Darris et al. provide evidence that the emergence and divergence of a multifunctional Goodpasture antigen-binding protein (GPBP), a basement membrane constituent, played a role in this transition. These findings help to explain how GPBP contributed to the formation of these extracellular matrices and to more precisely define the transition to multicellular organisms.
Collapse
Affiliation(s)
- Fernando Rodríguez-Pascual
- From the Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (C.S.I.C.), Universidad Autónoma de Madrid (U.A.M.), Nicolás Cabrera 1, Madrid, E28049 Spain
| |
Collapse
|
78
|
Howard AM, LaFever KS, Fenix AM, Scurrah CR, Lau KS, Burnette DT, Bhave G, Ferrell N, Page-McCaw A. DSS-induced damage to basement membranes is repaired by matrix replacement and crosslinking. J Cell Sci 2019; 132:jcs.226860. [PMID: 30837285 DOI: 10.1242/jcs.226860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Basement membranes are an ancient form of animal extracellular matrix. As important structural and functional components of tissues, basement membranes are subject to environmental damage and must be repaired while maintaining functions. Little is known about how basement membranes get repaired. This paucity stems from a lack of suitable in vivo models for analyzing such repair. Here, we show that dextran sodium sulfate (DSS) directly damages the gut basement membrane when fed to adult Drosophila DSS becomes incorporated into the basement membrane, promoting its expansion while decreasing its stiffness, which causes morphological changes to the underlying muscles. Remarkably, two days after withdrawal of DSS, the basement membrane is repaired by all measures of analysis. We used this new damage model to determine that repair requires collagen crosslinking and replacement of damaged components. Genetic and biochemical evidence indicates that crosslinking is required to stabilize the newly incorporated repaired Collagen IV rather than to stabilize the damaged Collagen IV. These results suggest that basement membranes are surprisingly dynamic.
Collapse
Affiliation(s)
- Angela M Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly S LaFever
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA
| | - Cherie' R Scurrah
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gautam Bhave
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240-7935, USA .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
79
|
Pedchenko V, Bauer R, Pokidysheva EN, Al-Shaer A, Forde NR, Fidler AL, Hudson BG, Boudko SP. A chloride ring is an ancient evolutionary innovation mediating the assembly of the collagen IV scaffold of basement membranes. J Biol Chem 2019; 294:7968-7981. [PMID: 30923125 PMCID: PMC6527180 DOI: 10.1074/jbc.ra119.007426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Collagen IV scaffold is a principal component of the basement membrane (BM), a specialized extracellular matrix that is essential for animal multicellularity and tissue evolution. Scaffold assembly begins with the trimerization of α-chains into protomers inside the cell, which then are secreted and undergo oligomerization outside the cell. For the ubiquitous scaffold composed of α1- and α2-chains, both intracellular and extracellular stages are mediated by the noncollagenous domain (NC1). The association of protomers is chloride-dependent, whereby chloride ions induce interactions of the protomers' trimeric NC1 domains leading to NC1 hexamer formation. Here, we investigated the mechanisms, kinetics, and functionality of the chloride ion-mediated protomer assembly by using a single-chain technology to produce a stable NC1 trimer comprising α1, α2, and α1 NC1 monomers. We observed that in the presence of chloride, the single-chain NC1-trimer self-assembles into a hexamer, for which the crystal structure was determined. We discovered that a chloride ring, comprising 12 ions, induces the assembly of and stabilizes the NC1 hexamer. Furthermore, we found that the chloride ring is evolutionarily conserved across all animals, first appearing in cnidarians. These findings reveal a fundamental role for the chloride ring in the assembly of collagen IV scaffolds of BMs, a critical event enabling tissue evolution and development. Moreover, the single-chain technology is foundational for generating trimeric NC1 domains of other α-chain compositions to investigate the α121, α345, and α565 collagen IV scaffolds and to develop therapies for managing Alport syndrome, Goodpasture's disease, and cancerous tumor growth.
Collapse
Affiliation(s)
- Vadim Pedchenko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ryan Bauer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Elena N Pokidysheva
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alaa Al-Shaer
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nancy R Forde
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Aaron L Fidler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of AspirnautTM Program, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of AspirnautTM Program, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232; Department of Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232; Department of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| |
Collapse
|
80
|
Nathaniel Clarke D, Lowe CJ, James Nelson W. The cadherin-catenin complex is necessary for cell adhesion and embryogenesis in Nematostella vectensis. Dev Biol 2019; 447:170-181. [PMID: 30629955 PMCID: PMC6433513 DOI: 10.1016/j.ydbio.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
Abstract
The cadherin-catenin complex is a conserved, calcium-dependent cell-cell adhesion module that is necessary for normal development and the maintenance of tissue integrity in bilaterian animals. Despite longstanding evidence of a deep ancestry of calcium-dependent cell adhesion in animals, the requirement of the cadherin-catenin complex to coordinate cell-cell adhesion has not been tested directly in a non-bilaterian organism. Here, we provide the first analysis of classical cadherins and catenins in the Starlet Sea Anemone, Nematostella vectensis. Gene expression, protein localization, siRNA-mediated knockdown of α-catenin, and calcium-dependent cell aggregation assays provide evidence that a bonafide cadherin-catenin complex is present in the early embryo, and that α-catenin is required for normal embryonic development and the formation of cell-cell adhesions between cells dissociated from whole embryos. Together these results support the hypothesis that the cadherin-catenin complex was likely a complete and functional cell-cell adhesion module in the last common cnidarian-bilaterian ancestor. SUMMARY STATEMENT: Embryonic manipulations and ex vivo adhesion assays in the sea anemone, Nematostella vectensis, indicate that the necessity of the cadherin-catenin complex for mediating cell-cell adhesion is deeply conserved in animal evolution.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - Christopher J Lowe
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - W James Nelson
- Department of Biology, Stanford University, Stanford CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford CA 94305, United States.
| |
Collapse
|
81
|
The in-silico characterization of the Caenorhabditis elegans matrisome and proposal of a novel collagen classification. Matrix Biol Plus 2019; 1:100001. [PMID: 33543001 PMCID: PMC7852208 DOI: 10.1016/j.mbplus.2018.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Proteins are the building blocks of life. While proteins and their localization within cells and sub-cellular compartments are well defined, the proteins predicted to be secreted to form the extracellular matrix - or matrisome - remain elusive in the model organism C. elegans. Here, we used a bioinformatic approach combining gene orthology and protein structure analysis and an extensive curation of the literature to define the C. elegans matrisome. Similar to the human genome, we found that 719 out of ~20,000 genes (~4%) of the C. elegans genome encodes matrisome proteins, including 181 collagens, 35 glycoproteins, 10 proteoglycans, and 493 matrisome-associated proteins. We report that 173 out of the 181 collagen genes are unique to nematodes and are predicted to encode cuticular collagens, which we are proposing to group into five clusters. To facilitate the use of our lists and classification by the scientific community, we developed an automated annotation tool to identify ECM components in large datasets. We also established a novel database of all C. elegans collagens (CeColDB). Last, we provide examples of how the newly defined C. elegans matrisome can be used for annotations and gene ontology analyses of transcriptomic, proteomic, and RNAi screening data. Because C. elegans is a widely used model organism for high throughput genetic and drug screens, and to study biological and pathological processes, the conserved matrisome genes may aid in identifying potential drug targets. In addition, the nematode-specific matrisome may be exploited for targeting parasitic infection of man and crops. Pipeline combining gene- and protein-sequence analysis to predict the C. elegans matrisome The in-silicoC. elegans matrisome comprises 719 genes. The 185 C. elegans collagen-domain-containing proteins are classified into 4 groups. The 173 cuticular collagens are further classified into 5 clusters based on their domain organization. The C. elegans Matrisome Annotator is an online tool to identify matrisome genes and proteins in large datasets.
Collapse
|
82
|
Kelley LC, Chi Q, Cáceres R, Hastie E, Schindler AJ, Jiang Y, Matus DQ, Plastino J, Sherwood DR. Adaptive F-Actin Polymerization and Localized ATP Production Drive Basement Membrane Invasion in the Absence of MMPs. Dev Cell 2019; 48:313-328.e8. [PMID: 30686527 PMCID: PMC6372315 DOI: 10.1016/j.devcel.2018.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with decreased patient prognosis but have failed as anti-invasive drug targets despite promoting cancer cell invasion. Through time-lapse imaging, optical highlighting, and combined genetic removal of the five MMPs expressed during anchor cell (AC) invasion in C. elegans, we find that MMPs hasten invasion by degrading basement membrane (BM). Though irregular and delayed, AC invasion persists in MMP- animals via adaptive enrichment of the Arp2/3 complex at the invasive cell membrane, which drives formation of an F-actin-rich protrusion that physically breaches and displaces BM. Using a large-scale RNAi synergistic screen and a genetically encoded ATP FRET sensor, we discover that mitochondria enrich within the protrusion and provide localized ATP that fuels F-actin network growth. Thus, without MMPs, an invasive cell can alter its BM-breaching tactics, suggesting that targeting adaptive mechanisms will be necessary to mitigate BM invasion in human pathologies.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rodrigo Cáceres
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Adam J Schindler
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Yue Jiang
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Julie Plastino
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
83
|
Keeley DP, Sherwood DR. Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biol 2019; 75-76:58-71. [PMID: 29803937 PMCID: PMC6252152 DOI: 10.1016/j.matbio.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
84
|
Ramos-Lewis W, LaFever KS, Page-McCaw A. A scar-like lesion is apparent in basement membrane after wound repair in vivo. Matrix Biol 2018; 74:101-120. [PMID: 29981372 PMCID: PMC6250587 DOI: 10.1016/j.matbio.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023]
Abstract
Basement membrane is a highly conserved sheet-like extracellular matrix in animals, underlying simple and complex epithelia, and wrapping around tissues like muscles and nerves. Like the tissues they support, basement membranes become damaged by environmental insults. Although it is clear that basement membranes are repaired after damage, virtually nothing is known about this process. For example, it is not known how repaired basement membranes compare to undamaged ones, whether basement membrane components are necessary for epithelial wound closure, or whether there is a hierarchy of assembly that repairing basement membranes follow, similar to the hierarchy of assembly of embryonic basement membranes. In this report, we address these questions using the basement membrane of the Drosophila larval epidermis as a model system. By analyzing the four main basement membrane proteins - laminin, collagen IV, perlecan, and nidogen - we find that although basement membranes are repaired within a day after mechanical damage in vivo, thickened and disorganized matrix scars are evident with all four protein components. The new matrix proteins that repair damaged basement membranes are provided by distant adipose and muscle tissues rather than by the local epithelium, the same distant tissues that provide matrix proteins for growth of unwounded epithelial basement membranes. To identify a hierarchy of repair, we tested the dependency of each of the basement membrane proteins on the others for incorporation after damage. For proper incorporation after damage, nidogen requires laminin, and perlecan requires collagen IV, but surprisingly collagen IV does not to depend on laminin. Thus, the rules of basement membrane repair are subtly different than those of de novo assembly.
Collapse
Affiliation(s)
- William Ramos-Lewis
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kimberly S LaFever
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
85
|
Casino P, Gozalbo-Rovira R, Rodríguez-Díaz J, Banerjee S, Boutaud A, Rubio V, Hudson BG, Saus J, Cervera J, Marina A. Structures of collagen IV globular domains: insight into associated pathologies, folding and network assembly. IUCRJ 2018; 5:765-779. [PMID: 30443360 PMCID: PMC6211539 DOI: 10.1107/s2052252518012459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/04/2018] [Indexed: 05/17/2023]
Abstract
Basement membranes are extracellular structures of epithelia and endothelia that have collagen IV scaffolds of triple α-chain helical protomers that associate end-to-end, forming networks. The molecular mechanisms by which the noncollagenous C-terminal domains of α-chains direct the selection and assembly of the α1α2α1 and α3α4α5 hetero-oligomers found in vivo remain obscure. Autoantibodies against the noncollagenous domains of the α3α4α5 hexamer or mutations therein cause Goodpasture's or Alport's syndromes, respectively. To gain further insight into oligomer-assembly mechanisms as well as into Goodpasture's and Alport's syndromes, crystal structures of non-collagenous domains produced by recombinant methods were determined. The spontaneous formation of canonical homohexamers (dimers of trimers) of these domains of the α1, α3 and α5 chains was shown and the components of the Goodpasture's disease epitopes were viewed. Crystal structures of the α2 and α4 non-collagenous domains generated by recombinant methods were also determined. These domains spontaneously form homo-oligomers that deviate from the canonical architectures since they have a higher number of subunits (dimers of tetramers and of hexamers, respectively). Six flexible structural motifs largely explain the architectural variations. These findings provide insight into noncollagenous domain folding, while supporting the in vivo operation of extrinsic mechanisms for restricting the self-assembly of noncollagenous domains. Intriguingly, Alport's syndrome missense mutations concentrate within the core that nucleates the folding of the noncollagenous domain, suggesting that this syndrome, when owing to missense changes, is a folding disorder that is potentially amenable to pharmacochaperone therapy.
Collapse
Affiliation(s)
- Patricia Casino
- Department of Biochemistry and Molecular Biology/ERI BIOTECMED, Universitat de València, Dr Moliner 50, Burjassot, 46100 Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV–CSIC), Jaume Roig 11, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER–ISCIII), Spain
| | - Roberto Gozalbo-Rovira
- Laboratorio de Reconocimiento Molecular, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- Departamento de Microbiología, Facultad de Medicina at Universitat de València, Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Laboratorio de Reconocimiento Molecular, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- Departamento de Microbiología, Facultad de Medicina at Universitat de València, Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Sreedatta Banerjee
- Department of Defense, Center for Prostate Disease Research, Bethesda, Maryland, USA
| | | | - Vicente Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV–CSIC), Jaume Roig 11, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER–ISCIII), Spain
| | - Billy G. Hudson
- Department of Medicine at Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Juan Saus
- Departamento de Bioquímica y Biología Molecular at Facultad de Medicina y Odontología, Universitat de València, Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Javier Cervera
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV–CSIC), Jaume Roig 11, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER–ISCIII), Spain
- Laboratorio de Reconocimiento Molecular, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV–CSIC), Jaume Roig 11, 46010 Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER–ISCIII), Spain
| |
Collapse
|
86
|
Darris C, Revert F, Revert-Ros F, Gozalbo-Rovira R, Feigley A, Fidler A, Lopez-Pascual E, Saus J, Hudson BG. Unicellular ancestry and mechanisms of diversification of Goodpasture antigen-binding protein. J Biol Chem 2018; 294:759-769. [PMID: 30377252 DOI: 10.1074/jbc.ra118.006225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 01/21/2023] Open
Abstract
The emergence of the basement membrane (BM), a specialized form of extracellular matrix, was essential in the unicellular transition to multicellularity. However, the mechanism is unknown. Goodpasture antigen-binding protein (GPBP), a BM protein, was uniquely poised to play diverse roles in this transition owing to its multiple isoforms (GPBP-1, -2, and -3) with varied intracellular and extracellular functions (ceramide trafficker and protein kinase). We sought to determine the evolutionary origin of GPBP isoforms. Our findings reveal the presence of GPBP in unicellular protists, with GPBP-2 as the most ancient isoform. In vertebrates, GPBP-1 assumed extracellular function that is further enhanced by membrane-bound GPBP-3 in mammalians, whereas GPBP-2 retained intracellular function. Moreover, GPBP-2 possesses a dual intracellular/extracellular function in cnidarians, an early nonbilaterian group. We conclude that GPBP functioning both inside and outside the cell was of fundamental importance for the evolutionary transition to animal multicellularity and tissue evolution.
Collapse
Affiliation(s)
- Carl Darris
- From the Department of Medicine/Division of Nephrology and Hypertension and Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232,
| | - Fernando Revert
- Fibrostatin, SL, Scientific Park of the University of Valencia, 46980 Paterna, Valencia, Spain
| | - Francisco Revert-Ros
- Fibrostatin, SL, Scientific Park of the University of Valencia, 46980 Paterna, Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Fibrostatin, SL, Scientific Park of the University of Valencia, 46980 Paterna, Valencia, Spain
| | - Andrew Feigley
- From the Department of Medicine/Division of Nephrology and Hypertension and Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232.,the Aspirnaut Program
| | - Aaron Fidler
- From the Department of Medicine/Division of Nephrology and Hypertension and Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232.,the Aspirnaut Program
| | - Ernesto Lopez-Pascual
- Fibrostatin, SL, Scientific Park of the University of Valencia, 46980 Paterna, Valencia, Spain
| | - Juan Saus
- Fibrostatin, SL, Scientific Park of the University of Valencia, 46980 Paterna, Valencia, Spain.,the Department of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, University of València, 46010 Valencia, Spain, and
| | - Billy G Hudson
- From the Department of Medicine/Division of Nephrology and Hypertension and Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232, .,the Aspirnaut Program.,Center for Matrix Biology.,Department of Pathology, Microbiology, and Immunology.,Department of Cell and Developmental Biology.,Department of Biochemistry.,Vanderbilt-Ingram Cancer Center, and.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
87
|
Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, Giribet G. Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. eLife 2018; 7:e36278. [PMID: 30373720 PMCID: PMC6277202 DOI: 10.7554/elife.36278] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria + Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.
Collapse
Affiliation(s)
- Christopher E Laumer
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
| | | | - Michael G Hadfield
- Kewalo Marine LaboratoryPacific Biosciences Research Center and the University of Hawaii-ManoaHonoluluUnited States
| | - Vicki B Pearse
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzUnited States
| | - Ana Riesgo
- Invertebrate Division, Life Sciences DepartmentThe Natural History MuseumLondonUnited Kingdom
| | - John C Marioni
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
88
|
Eswarappa SM, Potdar AA, Sahoo S, Sankar S, Fox PL. Metabolic origin of the fused aminoacyl-tRNA synthetase, glutamyl-prolyl-tRNA synthetase. J Biol Chem 2018; 293:19148-19156. [PMID: 30309984 DOI: 10.1074/jbc.ra118.004276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/03/2018] [Indexed: 11/06/2022] Open
Abstract
About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form EPRS, forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.
Collapse
Affiliation(s)
- Sandeep M Eswarappa
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India,
| | - Alka A Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, and
| | - Sarthak Sahoo
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Santhosh Sankar
- From the Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
89
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
90
|
Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol 2018; 89:136-146. [PMID: 30076963 DOI: 10.1016/j.semcdb.2018.07.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
An extracellular matrix (ECM) is a prerequisite for multicellular life. It is adapted to tissues and constantly undergoes changes to preserve microenvironmental homeostasis. The ECM acts as a structural scaffold that establishes tissue architecture and provides tensile strength. It has cell-instructive functions by serving as a reservoir and presenter of soluble agents, being directly signaling, integrating transmission of mechanical and biological cues, or serving as a co-factor potentiating signaling. The skin contains a highly developed, mechanically tough, but yet flexible ECM. The tissue-specific features of this ECM are largely attributed by minor ECM components. A large number of genetic and acquired ECM diseases with skin manifestations, provide an illustrative testament to the importance of correct assembly of the ECM for dermal homeostasis. Here, we will present the composition and features of the skin ECM during homeostasis and regeneration. We will discuss genetic and acquired ECM diseases affecting skin, and provide a short outlook to therapeutic strategies for them.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
91
|
Renard E, Leys SP, Wörheide G, Borchiellini C. Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics: The disconnect between gene content and body plan evolution. Bioessays 2018; 40:e1700237. [PMID: 30070368 DOI: 10.1002/bies.201700237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.,Aix Marseille Univ., CNRS, UMR 7288, IBDM, Marseille, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| | - Carole Borchiellini
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
92
|
Nauroy P, Guiraud A, Chlasta J, Malbouyres M, Gillet B, Hughes S, Lambert E, Ruggiero F. Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane. Matrix Biol 2018; 75-76:82-101. [PMID: 30031067 DOI: 10.1016/j.matbio.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
How some animals regenerate missing body parts is not well understood. Taking advantage of the zebrafish caudal fin model, we performed a global unbiased time-course transcriptomic analysis of fin regeneration. Biostatistics analyses identified extracellular matrix (ECM) as the most enriched gene sets. Basement membranes (BMs) are specialized ECM structures that provide tissues with structural cohesion and serve as a major extracellular signaling platform. While the embryonic formation of BM has been extensively investigated, its regeneration in adults remains poorly studied. We therefore focused on BM gene expression kinetics and showed that it recapitulates many aspects of development. As such, the re-expression of the embryonic col14a1a gene indicated that col14a1a is part of the regeneration-specific program. We showed that laminins and col14a1a genes display similar kinetics and that the corresponding proteins are spatially and temporally controlled during regeneration. Analysis of our CRISPR/Cas9-mediated col14a1a knockout fish showed that collagen XIV-A contributes to timely deposition of laminins. As changes in ECM organization can affect tissue mechanical properties, we analyzed the biomechanics of col14a1a-/- regenerative BM using atomic force microscopy (AFM). Our data revealed a thinner BM accompanied by a substantial increase of the stiffness when compared to controls. Further AFM 3D-reconstructions showed that BM is organized as a checkerboard made of alternation of soft and rigid regions that is compromised in mutants leading to a more compact structure. We conclude that collagen XIV-A transiently acts as a molecular spacer responsible for BM structure and biomechanics possibly by helping laminins integration within regenerative BM.
Collapse
Affiliation(s)
- Pauline Nauroy
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandre Guiraud
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Julien Chlasta
- BioMeca, ENSL, Université de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Marilyne Malbouyres
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Benjamin Gillet
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Sandrine Hughes
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Elise Lambert
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Florence Ruggiero
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France.
| |
Collapse
|
93
|
Luan D, Gao X, Kong F, Song X, Zheng A, Liu X, Xu K, Tang B. Cyclic Regulation of the Sulfilimine Bond in Peptides and NC1 Hexamers via the HOBr/H 2Se Conjugated System. Anal Chem 2018; 90:9523-9528. [PMID: 29938494 DOI: 10.1021/acs.analchem.8b02228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sulfilimine bond (-S═N-), found in the collagen IV scaffold, significantly stabilizes the architecture via the formation of sulfilimine cross-links. However, precisely governing the formation and breakup process of the sulfilimine bond in living organisms for better life functions still remains a challenge. Hence, we established a new way to regulate the breaking and formation of the sulfilimine bond through hydrogen selenide (H2Se) and hypobromous acid (HOBr), which can be easily controlled at simulated physiological conditions. This novel strategy provides a circulation regulation system to modulate the sulfilimine bond in peptides and NC1 hexamers, which can offer a substantial system for further study of the physiological function of collagen IV.
Collapse
Affiliation(s)
- Dongrui Luan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaoxiao Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Aishan Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|
94
|
Belahbib H, Renard E, Santini S, Jourda C, Claverie JM, Borchiellini C, Le Bivic A. New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics 2018; 19:393. [PMID: 29793430 PMCID: PMC5968619 DOI: 10.1186/s12864-018-4715-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. Results To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologues in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologues of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore orthologue exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. Conclusions These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia. Altogether, our results raise doubt on the homology of protein complexes and structures involved in cell polarity and adhesive-type junctions between Ctenophora and Bilateria epithelia. Electronic supplementary material The online version of this article (10.1186/s12864-018-4715-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hassiba Belahbib
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| | - Sébastien Santini
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Cyril Jourda
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
| |
Collapse
|
95
|
Ramos-Lewis W, Page-McCaw A. Basement membrane mechanics shape development: Lessons from the fly. Matrix Biol 2018; 75-76:72-81. [PMID: 29656148 DOI: 10.1016/j.matbio.2018.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Basement membrane plays a foundational role in the structure and maintenance of many tissues throughout the animal kingdom. In addition to signaling to cells through cell-surface receptors, basement membrane directly influences the development and maintenance of organ shape via its mechanical properties. The mechanical properties of basement membrane are dictated by its composition, geometry, and crosslinking. Distinguishing between the ways the basement membrane influences morphology in vivo poses a major challenge. Drosophila melanogaster, already established as a powerful model for the analysis of cell signaling, has in recent years emerged as a tractable model for understanding the roles of basement membrane stiffness in vivo, in shaping and maintaining the morphology of tissues and organs. In addition to the plethora of genetic tools available in flies, the major proteins found in vertebrate basement membranes are all present in Drosophila. Furthermore, Drosophila has fewer copies of the genes encoding these proteins, making flies more amenable to genetic manipulation than vertebrate models. Because the development of Drosophila organs has been well-characterized, these different organ systems offer a variety of contexts for analyzing the role of basement membrane in development. The developing egg chamber and central nervous system, for example, have been important models for assessing the role of basement membrane stiffness in influencing organ shape. Studies in the nervous system have also shown how basement membrane stiffness can influence cellular migration in vivo. Finally, work in the imaginal wing disc has illuminated a distinct mechanism by which basement membrane can alter organ shape and size, by sequestering signaling ligands. This mini-review highlights the recent discoveries pertaining to basement membrane mechanics during Drosophila development.
Collapse
Affiliation(s)
- William Ramos-Lewis
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
96
|
Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci 2018; 131:jcs203950. [PMID: 29632050 PMCID: PMC5963836 DOI: 10.1242/jcs.203950] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution.
Collapse
Affiliation(s)
- Aaron L Fidler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
97
|
Gotenstein JR, Koo CC, Ho TW, Chisholm AD. Genetic Suppression of Basement Membrane Defects in Caenorhabditis elegans by Gain of Function in Extracellular Matrix and Cell-Matrix Attachment Genes. Genetics 2018; 208:1499-1512. [PMID: 29440357 PMCID: PMC5887144 DOI: 10.1534/genetics.118.300731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/05/2018] [Indexed: 11/18/2022] Open
Abstract
Basement membranes are extracellular matrices essential for embryonic development in animals. Peroxidasins are extracellular peroxidases implicated in the unique sulfilimine cross-links between type IV basement membrane collagens. Loss of function in the Caenorhabditis elegans peroxidasin PXN-2 results in fully penetrant embryonic or larval lethality. Using genetic suppressor screening, we find that the requirement for PXN-2 in development can be bypassed by gain of function in multiple genes encoding other basement membrane components, or proteins implicated in cell-matrix attachment. We identify multiple alleles of let-805, encoding the transmembrane protein myotactin, which suppress phenotypes of pxn-2 null mutants and of other basement membrane mutants such as F-spondin/spon-1 These let-805 suppressor alleles cause missense alterations in two pairs of FNIII repeats in the extracellular domain; they act dominantly and have no detectable phenotypes alone, suggesting they cause gain of function. We also identify suppressor missense mutations affecting basement membrane components type IV collagen (emb-9, let-2) and perlecan (unc-52), as well as a mutation affecting spectraplakin (vab-10), a component of the epidermal cytoskeleton. These suppressor alleles do not bypass the developmental requirement for core structural proteins of the basement membrane such as laminin or type IV collagen. In conclusion, putative gain-of-function alterations in matrix proteins or in cell-matrix receptors can overcome the requirement for certain basement membrane proteins in embryonic development, revealing previously unknown plasticity in the genetic requirements for the extracellular matrix.
Collapse
Affiliation(s)
- Jennifer R Gotenstein
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Cassidy C Koo
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Tiffany W Ho
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
98
|
Abstract
The basement membrane is a thin but dense, sheet-like specialized type of extracellular matrix that has remarkably diverse functions tailored to individual tissues and organs. Tightly controlled spatial and temporal changes in its composition and structure contribute to the diversity of basement membrane functions. These different basement membranes undergo dynamic transformations throughout animal life, most notably during development. Numerous developmental mechanisms are regulated or mediated by basement membranes, often by a combination of molecular and mechanical processes. A particularly important process involves cell transmigration through a basement membrane because of its link to cell invasion in disease. While developmental and disease processes share some similarities, what clearly distinguishes the two is dysregulation of cells and extracellular matrices in disease. With its relevance to many developmental and disease processes, the basement membrane is a vitally important area of research that may provide novel insights into biological mechanisms and development of innovative therapeutic approaches. Here we present a review of developmental and disease dynamics of basement membranes in Caenorhabditis elegans, Drosophila, and vertebrates.
Collapse
|
99
|
Ehrlich H, Wysokowski M, Żółtowska-Aksamitowska S, Petrenko I, Jesionowski T. Collagens of Poriferan Origin. Mar Drugs 2018; 16:E79. [PMID: 29510493 PMCID: PMC5867623 DOI: 10.3390/md16030079] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/03/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis, structural diversity, and functionality of collagens of sponge origin are still paradigms and causes of scientific controversy. This review has the ambitious goal of providing thorough and comprehensive coverage of poriferan collagens as a multifaceted topic with intriguing hypotheses and numerous challenging open questions. The structural diversity, chemistry, and biochemistry of collagens in sponges are analyzed and discussed here. Special attention is paid to spongins, collagen IV-related proteins, fibrillar collagens from demosponges, and collagens from glass sponge skeletal structures. The review also focuses on prospects and trends in applications of sponge collagens for technology, materials science and biomedicine.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany;
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| | - Iaroslav Petrenko
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany;
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| |
Collapse
|
100
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing a Nitrogen-Sulfur Bond. JOURNAL OF NATURAL PRODUCTS 2018; 81:423-446. [PMID: 29364663 DOI: 10.1021/acs.jnatprod.7b00921] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - William Bains
- Rufus Scientific , 37 The Moor, Melbourn, Royston, Herts SG8 6ED, U.K
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|