51
|
Basrur NS, De Obaldia ME, Morita T, Herre M, von Heynitz RK, Tsitohay YN, Vosshall LB. Fruitless mutant male mosquitoes gain attraction to human odor. eLife 2020; 9:e63982. [PMID: 33284111 PMCID: PMC7806257 DOI: 10.7554/elife.63982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
The Aedesaegypti mosquito shows extreme sexual dimorphism in feeding. Only females are attracted to and obtain a blood-meal from humans, which they use to stimulate egg production. The fruitless gene is sex-specifically spliced and encodes a BTB zinc-finger transcription factor proposed to be a master regulator of male courtship and mating behavior across insects. We generated fruitless mutant mosquitoes and showed that males failed to mate, confirming the ancestral function of this gene in male sexual behavior. Remarkably, fruitless males also gain strong attraction to a live human host, a behavior that wild-type males never display, suggesting that male mosquitoes possess the central or peripheral neural circuits required to host-seek and that removing fruitless reveals this latent behavior in males. Our results highlight an unexpected repurposing of a master regulator of male-specific sexual behavior to control one module of female-specific blood-feeding behavior in a deadly vector of infectious diseases.
Collapse
Affiliation(s)
- Nipun S Basrur
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Maria Elena De Obaldia
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Ricarda K von Heynitz
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Yael N Tsitohay
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
52
|
Li HL, Wang XY, Zheng XL, Lu W. Research Progress on Oviposition-Related Genes in Insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6047614. [PMID: 33367730 PMCID: PMC7759734 DOI: 10.1093/jisesa/ieaa137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 05/05/2023]
Abstract
Oviposition-related genes have remained a consistent focus of insect molecular biology. Previous research has gradually clarified our mechanistic understanding of oviposition-related genes, including those related to oviposition-gland-related genes, oogenesis-related genes, oviposition-site-selection-related genes, and genes related to ovulation and hatching. Moreover, some of this research has revealed how the expression of single oviposition-related genes affects the expression of related genes, and more importantly, how individual node genes function to link the expression of upstream and downstream genes. However, the research to date is not sufficient to completely explain the overall interactions among the genes of the insect oviposition system. Through a literature review of a large number of studies, this review provides references for future research on oviposition-related genes in insects and the use of RNAi or CRISPR/Cas9 technology to verify the functions of oviposition-related genes and to prevent and control harmful insects.
Collapse
Affiliation(s)
- Hai-Lin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- Corresponding author, e-mail:
| |
Collapse
|
53
|
Abstract
Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.
Collapse
Affiliation(s)
- Hayden R Schmidt
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
54
|
Hol FJH, Lambrechts L, Prakash M. BiteOscope, an open platform to study mosquito biting behavior. eLife 2020; 9:e56829. [PMID: 32960173 PMCID: PMC7535929 DOI: 10.7554/elife.56829] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/05/2020] [Indexed: 01/16/2023] Open
Abstract
Female mosquitoes need a blood meal to reproduce, and in obtaining this essential nutrient they transmit deadly pathogens. Although crucial for the spread of mosquito-borne diseases, blood feeding remains poorly understood due to technological limitations. Indeed, studies often expose human subjects to assess biting behavior. Here, we present the biteOscope, a device that attracts mosquitoes to a host mimic which they bite to obtain an artificial blood meal. The host mimic is transparent, allowing high-resolution imaging of the feeding mosquito. Using machine learning, we extract detailed behavioral statistics describing the locomotion, pose, biting, and feeding dynamics of Aedes aegypti, Aedes albopictus, Anopheles stephensi, and Anopheles coluzzii. In addition to characterizing behavioral patterns, we discover that the common insect repellent DEET repels Anopheles coluzzii upon contact with their legs. The biteOscope provides a new perspective on mosquito blood feeding, enabling the high-throughput quantitative characterization of this lethal behavior.
Collapse
Affiliation(s)
- Felix JH Hol
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRSParisFrance
- Center for research and Interdisciplinarity, U1284 INSERM, Université de ParisParisFrance
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRSParisFrance
| | - Manu Prakash
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
55
|
Cas9-Mediated Gene-Editing in the Malaria Mosquito Anopheles stephensi by ReMOT Control. G3-GENES GENOMES GENETICS 2020; 10:1353-1360. [PMID: 32122959 PMCID: PMC7144067 DOI: 10.1534/g3.120.401133] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by Anopheles mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially Anopheles) are difficult and inefficient, particularly for non-specialist laboratories. Here, we adapted the ReMOT Control (Receptor-mediated Ovary Transduction of Cargo) technique to deliver Cas9 ribonucleoprotein complex to adult mosquito ovaries, generating targeted and heritable mutations in the malaria vector Anopheles stephensi without injecting embryos. In Anopheles, ReMOT Control gene editing was as efficient as standard embryo injections. The application of ReMOT Control to Anopheles opens the power of CRISPR/Cas9 methods to malaria laboratories that lack the equipment or expertise to perform embryo injections and establishes the flexibility of ReMOT Control for diverse mosquito species.
Collapse
|
56
|
Matthews BJ, Vosshall LB. How to turn an organism into a model organism in 10 'easy' steps. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb218198. [PMID: 32034051 DOI: 10.1242/jeb.218198] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many of the major biological discoveries of the 20th century were made using just six species: Escherichia coli bacteria, Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, Caenorhabditis elegans nematodes, Drosophila melanogaster flies and Mus musculus mice. Our molecular understanding of the cell division cycle, embryonic development, biological clocks and metabolism were all obtained through genetic analysis using these species. Yet the 'big 6' did not start out as genetic model organisms (hereafter 'model organisms'), so how did they mature into such powerful systems? First, these model organisms are abundant human commensals: they are the bacteria in our gut, the yeast in our beer and bread, the nematodes in our compost pile, the flies in our kitchen and the mice in our walls. Because of this, they are cheaply, easily and rapidly bred in the laboratory and in addition were amenable to genetic analysis. How and why should we add additional species to this roster? We argue that specialist species will reveal new secrets in important areas of biology and that with modern technological innovations like next-generation sequencing and CRISPR-Cas9 genome editing, the time is ripe to move beyond the big 6. In this review, we chart a 10-step path to this goal, using our own experience with the Aedes aegypti mosquito, which we built into a model organism for neurobiology in one decade. Insights into the biology of this deadly disease vector require that we work with the mosquito itself rather than modeling its biology in another species.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute, New York, NY 10065, USA.,Kavli Neural Systems Institute, New York, NY 10065, USA
| |
Collapse
|
57
|
Abstract
In the last few years, single-cell profiling of taste cells and ganglion cells has advanced our understanding of transduction, encoding, and transmission of information from taste buds as relayed to the central nervous system. This review focuses on new knowledge from these molecular approaches and attempts to place this in the context of previous questions and findings in the field. The individual taste cells within a taste bud are molecularly specialized for detection of one of the primary taste qualities: salt, sour, sweet, umami, and bitter. Transduction and transmitter release mechanisms differ substantially for taste cells transducing sour (Type III cells) compared with those transducing the qualities of sweet, umami, or bitter (Type II cells), although ultimately all transmission of taste relies on activation of purinergic P2X receptors on the afferent nerves. The ganglion cells providing innervation to the taste buds also appear divisible into functional and molecular subtypes, and each ganglion cell is primarily but not exclusively responsive to one taste quality.
Collapse
Affiliation(s)
- Sue C. Kinnamon
- Rocky Mountain Taste & Smell Center, Department of Otolaryngology and Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Thomas E. Finger
- Rocky Mountain Taste & Smell Center, Department of Otolaryngology and Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
58
|
Mansourian S, Fandino RA, Riabinina O. Progress in the use of genetic methods to study insect behavior outside Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:45-56. [PMID: 31494407 DOI: 10.1016/j.cois.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In the span of a decade we have seen a rapid progress in the application of genetic tools and genome editing approaches in 'non-model' insects. It is now possible to target sensory receptor genes and neurons, explore their functional roles and manipulate behavioral responses in these insects. In this review, we focus on the latest examples from Diptera, Lepidoptera and Hymenoptera of how applications of genetic tools advanced our understanding of diverse behavioral phenomena. We further discuss genetic methods that could be applied to study insect behavior in the future.
Collapse
Affiliation(s)
| | - Richard A Fandino
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
59
|
Holmes CJ, Benoit JB. Biological Adaptations Associated with Dehydration in Mosquitoes. INSECTS 2019; 10:insects10110375. [PMID: 31661928 PMCID: PMC6920799 DOI: 10.3390/insects10110375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/05/2022]
Abstract
Diseases that are transmitted by mosquitoes are a tremendous health and socioeconomic burden with hundreds of millions of people being impacted by mosquito-borne illnesses annually. Many factors have been implicated and extensively studied in disease transmission dynamics, but knowledge regarding how dehydration impacts mosquito physiology, behavior, and resulting mosquito-borne disease transmission remain underdeveloped. The lapse in understanding on how mosquitoes respond to dehydration stress likely obscures our ability to effectively study mosquito physiology, behavior, and vectorial capabilities. The goal of this review is to develop a profile of factors underlying mosquito biology that are altered by dehydration and the implications that are related to disease transmission.
Collapse
Affiliation(s)
- Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
60
|
Shragai T, Harrington L, Alfonso-Parra C, Avila F. Oviposition site attraction of Aedes albopictus to sites with conspecific and heterospecific larvae during an ongoing invasion in Medellín, Colombia. Parasit Vectors 2019; 12:455. [PMID: 31533784 PMCID: PMC6751627 DOI: 10.1186/s13071-019-3710-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes aegypti and Aedes albopictus are two globally invasive vectors with similar ecological niches. Encounters between them can result in either competitive exclusion or stable co-existence, but it is unclear what drives these variable outcomes. Larval competition in favor of Ae. albopictus is a main hypothesis for the competitive exclusion of Ae. aegypti observed in some regions. However, the role of oviposition preference in determining the degree of competitive larval interactions in the field is not well understood. In this study, we used a combination of mark-release-recapture methods with ovitraps in the open-field and a semi-field cage to test whether gravid Ae. albopictus seek oviposition sites in response to the presence, species, and density of either conspecific or heterospecific Ae. aegypti larvae in the aquatic habitat. We conducted our study in Medellín, Colombia, where Ae. aegypti is a long-term resident and Ae. albopictus is a recent invader. RESULTS In the open-field and semi-field cage experiments, gravid Ae. albopictus showed strong preference for ovitraps with larvae over those without. They consistently preferred ovitraps with higher density of conspecific (Ae. albopictus) larvae and low density of heterospecific (Ae. aegypti) larvae over traps with no larvae or high density of heterospecific (Ae. aegypti) larvae. In the semi-field cage experiment, traps with low density of Ae. albopictus were not preferred more or less than any other trap, but in the open-field experiment they were preferred over traps without larvae. CONCLUSIONS We demonstrate, through open-field and semi-field cage experiments, that Ae. albopictus are more attracted to oviposition sites with larvae and that the combination of species and density of larvae influence attraction. This demonstrated preference could increase interspecific larval competition as Ae. albopictus actively seek containers with conspecific and heterospecific larvae. Any resulting competition with Ae. aegypti may favor one species over the other and alter the distribution or abundance of both. Because these species vary in vectorial capacity and insecticide resistance, effects of interspecific competition could ultimately impact arbovirus transmission rates and the success of vector control efforts .
Collapse
Affiliation(s)
- Talya Shragai
- Department of Entomology, Cornell University, Ithaca, NY USA
| | | | - Catalina Alfonso-Parra
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, 055450 Antioquia Colombia
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010 Antioquia Colombia
| | - Frank Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010 Antioquia Colombia
| |
Collapse
|
61
|
Tracey WD. The taste of water. eLife 2019; 8:48654. [PMID: 31246169 PMCID: PMC6597237 DOI: 10.7554/elife.48654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Female mosquitos require a specific ion-channel protein to sense the presence of fresh water in which they can lay their eggs.
Collapse
Affiliation(s)
- W Daniel Tracey
- Linda and Jack Gill Center, Indiana University, Bloomington, United States.,Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|