51
|
Hontani Y, Xia F, Xu C. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. SCIENCE ADVANCES 2021; 7:eabf3531. [PMID: 33731355 PMCID: PMC7968831 DOI: 10.1126/sciadv.abf3531] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Abstract
Multiphoton fluorescence microscopy is a powerful technique for deep-tissue observation of living cells. In particular, three-photon microscopy is highly beneficial for deep-tissue imaging because of the long excitation wavelength and the high nonlinear confinement in living tissues. Because of the large spectral separation of fluorophores of different color, multicolor three-photon imaging typically requires multiple excitation wavelengths. Here, we report a new three-photon excitation scheme: excitation to a higher-energy electronic excited state instead of the conventional excitation to the lowest-energy excited state, enabling multicolor three-photon fluorescence imaging with deep-tissue penetration in the living mouse brain using single-wavelength excitation. We further demonstrate that our excitation method results in ≥10-fold signal enhancement for some of the common red fluorescent molecules. The multicolor imaging capability and the possibility of enhanced three-photon excitation cross section will open new opportunities for life science applications of three-photon microscopy.
Collapse
Affiliation(s)
- Yusaku Hontani
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
52
|
Daria VR, Castañares ML, Bachor HA. Spatio-temporal parameters for optical probing of neuronal activity. Biophys Rev 2021; 13:13-33. [PMID: 33747244 PMCID: PMC7930150 DOI: 10.1007/s12551-021-00780-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/01/2021] [Indexed: 12/28/2022] Open
Abstract
The challenge to understand the complex neuronal circuit functions in the mammalian brain has brought about a revolution in light-based neurotechnologies and optogenetic tools. However, while recent seminal works have shown excellent insights on the processing of basic functions such as sensory perception, memory, and navigation, understanding more complex brain functions is still unattainable with current technologies. We are just scratching the surface, both literally and figuratively. Yet, the path towards fully understanding the brain is not totally uncertain. Recent rapid technological advancements have allowed us to analyze the processing of signals within dendritic arborizations of single neurons and within neuronal circuits. Understanding the circuit dynamics in the brain requires a good appreciation of the spatial and temporal properties of neuronal activity. Here, we assess the spatio-temporal parameters of neuronal responses and match them with suitable light-based neurotechnologies as well as photochemical and optogenetic tools. We focus on the spatial range that includes dendrites and certain brain regions (e.g., cortex and hippocampus) that constitute neuronal circuits. We also review some temporal characteristics of some proteins and ion channels responsible for certain neuronal functions. With the aid of the photochemical and optogenetic markers, we can use light to visualize the circuit dynamics of a functioning brain. The challenge to understand how the brain works continue to excite scientists as research questions begin to link macroscopic and microscopic units of brain circuits.
Collapse
Affiliation(s)
- Vincent R. Daria
- Research School of Physics, The Australian National University, Canberra, Australia
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | - Hans-A. Bachor
- Research School of Physics, The Australian National University, Canberra, Australia
| |
Collapse
|
53
|
Farinella DM, Roy A, Liu CJ, Kara P. Improving laser standards for three-photon microscopy. NEUROPHOTONICS 2021; 8:015009. [PMID: 33693052 PMCID: PMC7937945 DOI: 10.1117/1.nph.8.1.015009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Significance: Three-photon excitation microscopy has double-to-triple the penetration depth in biological tissue over two-photon imaging and thus has the potential to revolutionize the visualization of biological processes in vivo. However, unlike the plug-and-play operation and performance of lasers used in two-photon imaging, three-photon microscopy presents new technological challenges that require a closer look at the fidelity of laser pulses. Aim: We implemented state-of-the-art pulse measurements and developed innovative techniques for examining the performance of lasers used in three-photon microscopy. We then demonstrated how these techniques can be used to provide precise measurements of pulse shape, pulse energy, and pulse-to-pulse intensity variability, all of which ultimately impact imaging. Approach: We built inexpensive tools, e.g., a second harmonic generation frequency-resolved optical gating (SHG-FROG) device and a deep-memory diode imaging (DMDI) apparatus to examine laser pulse fidelity. Results: First, SHG-FROG revealed very large third-order dispersion (TOD). This extent of phase distortion prevents the efficient temporal compression of laser pulses to their theoretical limit. Furthermore, TOD cannot be quantified when using a conventional method of obtaining the laser pulse duration, e.g., when using an autocorrelator. Finally, DMDI showed the effectiveness of detecting pulse-to-pulse intensity fluctuations on timescales relevant to three-photon imaging, which were otherwise not captured using conventional instruments and statistics. Conclusions: The distortion of individual laser pulses caused by TOD poses significant challenges to three-photon imaging by preventing effective compression of laser pulses and decreasing the efficiency of nonlinear excitation. Moreover, an acceptably low pulse-to-pulse amplitude variability should not be assumed. Particularly for low repetition rate laser sources used in three-photon microscopy, pulse-to-pulse variability also degrades image quality. If three-photon imaging is to become mainstream, our diagnostics may be used by laser manufacturers to improve system design and by end-users to validate the performance of their current and future imaging systems.
Collapse
Affiliation(s)
- Deano M. Farinella
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| | - Arani Roy
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| | - Chao J. Liu
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| | - Prakash Kara
- University of Minnesota, Department of Neuroscience and Center for Magnetic Resonance Research, Minneapolis, Minnesota, United States
| |
Collapse
|
54
|
Fernández A, Straw A, Distel M, Leitgeb R, Baltuska A, Verhoef AJ. Dynamic real-time subtraction of stray-light and background for multiphoton imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:288-302. [PMID: 33659077 PMCID: PMC7899518 DOI: 10.1364/boe.403255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
We introduce a new approach to reduce uncorrelated background signals from fluorescence imaging data, using real-time subtraction of background light. This approach takes advantage of the short fluorescence lifetime of most popular fluorescent activity reporters, and the low duty-cycle of ultrafast lasers. By synchronizing excitation and recording, laser-induced multiphoton fluorescence can be discriminated from background light levels with each laser pulse. We demonstrate the ability of our method to - in real-time - remove image artifacts that in a conventional imaging setup lead to clipping of the signal. In other words, our method enables imaging under conditions that in a conventional setup would yield corrupted data from which no accurate information can be extracted. This is advantageous in experimental setups requiring additional light sources for applications such as optogenetic stimulation.
Collapse
Affiliation(s)
- A Fernández
- IQSE and Department of Soil and Crop Sciences, Texas A&M University, 4242 TAMU, College Station, TX 77843, USA
- Photonics Institute, TU Wien, Gusshausstrasse 27-29/387, 1040 Vienna, Austria
- Centro Regional Universitario de Coclé, Universidad de Panamá, Penonomé, Coclé, Panama
| | - A Straw
- Institute of Biology I and Bernstein Center Freiburg, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - M Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - R Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20/4L, 1090 Vienna, Austria
| | - A Baltuska
- Photonics Institute, TU Wien, Gusshausstrasse 27-29/387, 1040 Vienna, Austria
| | - A J Verhoef
- IQSE and Department of Soil and Crop Sciences, Texas A&M University, 4242 TAMU, College Station, TX 77843, USA
- Photonics Institute, TU Wien, Gusshausstrasse 27-29/387, 1040 Vienna, Austria
- Centro Regional Universitario de Coclé, Universidad de Panamá, Penonomé, Coclé, Panama
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20/4L, 1090 Vienna, Austria
| |
Collapse
|
55
|
Abstract
Widefield fluorescence microscopy is used to monitor the spiking of populations of neurons in the brain. Widefield fluorescence can originate from indicator molecules at all depths in cortex and the relative contributions from somata, dendrites, and axons are often unknown. Here, I simulate widefield illumination and fluorescence collection and determine the main sources of fluorescence for several GCaMP mouse lines. Scattering strongly affects illumination and collection. One consequence is that illumination intensity is greatest ~300-400 µm below the pia, not at the brain surface. Another is that fluorescence from a source deep in cortex may extend across a diameter of 3-4 mm at the brain surface, severely limiting lateral resolution. In many mouse lines, the volume of tissue contributing to fluorescence extends through the full depth of cortex and fluorescence at most surface locations is a weighted average across multiple cortical columns and often more than one cortical area.
Collapse
Affiliation(s)
- Jack Waters
- Allen Institute for Brain ScienceSeattleUnited States
| |
Collapse
|
56
|
Ersumo NT, Yalcin C, Antipa N, Pégard N, Waller L, Lopez D, Muller R. A micromirror array with annular partitioning for high-speed random-access axial focusing. LIGHT, SCIENCE & APPLICATIONS 2020; 9:183. [PMID: 33298828 PMCID: PMC7596532 DOI: 10.1038/s41377-020-00420-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
Dynamic axial focusing functionality has recently experienced widespread incorporation in microscopy, augmented/virtual reality (AR/VR), adaptive optics and material processing. However, the limitations of existing varifocal tools continue to beset the performance capabilities and operating overhead of the optical systems that mobilize such functionality. The varifocal tools that are the least burdensome to operate (e.g. liquid crystal, elastomeric or optofluidic lenses) suffer from low (≈100 Hz) refresh rates. Conversely, the fastest devices sacrifice either critical capabilities such as their dwelling capacity (e.g. acoustic gradient lenses or monolithic micromechanical mirrors) or low operating overhead (e.g. deformable mirrors). Here, we present a general-purpose random-access axial focusing device that bridges these previously conflicting features of high speed, dwelling capacity and lightweight drive by employing low-rigidity micromirrors that exploit the robustness of defocusing phase profiles. Geometrically, the device consists of an 8.2 mm diameter array of piston-motion and 48-μm-pitch micromirror pixels that provide 2π phase shifting for wavelengths shorter than 1100 nm with 10-90% settling in 64.8 μs (i.e., 15.44 kHz refresh rate). The pixels are electrically partitioned into 32 rings for a driving scheme that enables phase-wrapped operation with circular symmetry and requires <30 V per channel. Optical experiments demonstrated the array's wide focusing range with a measured ability to target 29 distinct resolvable depth planes. Overall, the features of the proposed array offer the potential for compact, straightforward methods of tackling bottlenecked applications, including high-throughput single-cell targeting in neurobiology and the delivery of dense 3D visual information in AR/VR.
Collapse
Affiliation(s)
- Nathan Tessema Ersumo
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Cem Yalcin
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Nick Antipa
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Nicolas Pégard
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Laura Waller
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Daniel Lopez
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Rikky Muller
- The University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
57
|
Zhang Q, Lu X, Cao H, Wang H, Zhu T, Tian X, Li D, Zhou H, Wu J, Tian Y. Multiphoton Absorption Iridium(III)–Organotin(IV) Dimetal Complex with AIE Behavior for Both Sensitive Detection of Tyrosine and Antibacterial Activity. ACS APPLIED BIO MATERIALS 2020; 3:8105-8112. [DOI: 10.1021/acsabm.0c01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qiong Zhang
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Xin Lu
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Tong Zhu
- School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Dandan Li
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Jieying Wu
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
58
|
Takahashi T, Zhang H, Kawakami R, Yarinome K, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. PEO-CYTOP Fluoropolymer Nanosheets as a Novel Open-Skull Window for Imaging of the Living Mouse Brain. iScience 2020; 23:101579. [PMID: 33083745 PMCID: PMC7554658 DOI: 10.1016/j.isci.2020.101579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
In vivo two-photon deep imaging with a broad field of view has revealed functional connectivity among brain regions. Here, we developed a novel observation method that utilizes a polyethylene-oxide-coated CYTOP (PEO-CYTOP) nanosheet with a thickness of ∼130 nm that exhibited a water retention effect and a hydrophilized adhesive surface. PEO-CYTOP nanosheets firmly adhered to brain surfaces, which suppressed bleeding from superficial veins. By taking advantage of the excellent optical properties of PEO-CYTOP nanosheets, we performed in vivo deep imaging in mouse brains at high resolution. Moreover, PEO-CYTOP nanosheets enabled to prepare large cranial windows, achieving in vivo imaging of neural structure and Ca2+ elevation in a large field of view. Furthermore, the PEO-CYTOP nanosheets functioned as a sealing material, even after the removal of the dura. These results indicate that this method would be suitable for the investigation of neural functions that are composed of interactions among multiple regions. PEO-CYTOP nanosheet enables in vivo deep brain imaging in a vast field of view The 130 nm thickness and the hydrophilized surface realize the strong adhesiveness Suppressions of bleeding from the surface and inflammation in long-term are achieved The vast and transparent cranial window with natural curvature of the surface
Collapse
Affiliation(s)
- Taiga Takahashi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hong Zhang
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Ryosuke Kawakami
- Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine Ehime University, Shitsukawa 454, Toon, Ehime 791-0295, Japan
| | - Kenji Yarinome
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Yosuke Okamura
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
59
|
Cardin JA, Crair MC, Higley MJ. Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics. Neuron 2020; 108:33-43. [PMID: 33058764 PMCID: PMC7577373 DOI: 10.1016/j.neuron.2020.09.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Optical imaging has revolutionized our ability to monitor brain activity, spanning spatial scales from synapses to cells to circuits. Here, we summarize the rapid development and application of mesoscopic imaging, a widefield fluorescence-based approach that balances high spatiotemporal resolution with extraordinarily large fields of view. By leveraging the continued expansion of fluorescent reporters for neuronal activity and novel strategies for indicator expression, mesoscopic analysis enables measurement and correlation of network dynamics with behavioral state and task performance. Moreover, the combination of widefield imaging with cellular resolution methods such as two-photon microscopy and electrophysiology is bridging boundaries between cellular and network analyses. Overall, mesoscopic imaging provides a powerful option in the optical toolbox for investigation of brain function.
Collapse
Affiliation(s)
- Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
60
|
Liu CJ, Roy A, Simons AA, Farinella DM, Kara P. Three-photon imaging of synthetic dyes in deep layers of the neocortex. Sci Rep 2020; 10:16351. [PMID: 33004996 PMCID: PMC7529898 DOI: 10.1038/s41598-020-73438-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Multiphoton microscopy has emerged as the primary imaging tool for studying the structural and functional dynamics of neural circuits in brain tissue, which is highly scattering to light. Recently, three-photon microscopy has enabled high-resolution fluorescence imaging of neurons in deeper brain areas that lie beyond the reach of conventional two-photon microscopy, which is typically limited to ~ 450 µm. Three-photon imaging of neuronal calcium signals, through the genetically-encoded calcium indicator GCaMP6, has been used to successfully record neuronal activity in deeper neocortical layers and parts of the hippocampus in rodents. Bulk-loading cells in deeper cortical layers with synthetic calcium indicators could provide an alternative strategy for labelling that obviates dependence on viral tropism and promoter penetration, particularly in non-rodent species. Here we report a strategy for visualized injection of a calcium dye, Oregon Green BAPTA-1 AM (OGB-1 AM), at 500-600 µm below the surface of the mouse visual cortex in vivo. We demonstrate successful OGB-1 AM loading of cells in cortical layers 5-6 and subsequent three-photon imaging of orientation- and direction- selective visual responses from these cells.
Collapse
Affiliation(s)
- Chao J Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Arani Roy
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony A Simons
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Deano M Farinella
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
61
|
In vivo two-photon microscopic observation and ablation in deeper brain regions realized by modifications of excitation beam diameter and immersion liquid. PLoS One 2020; 15:e0237230. [PMID: 32764808 PMCID: PMC7413496 DOI: 10.1371/journal.pone.0237230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In vivo two-photon microscopy utilizing a nonlinear optical process enables, in living mouse brains, not only the visualization of morphologies and functions of neural networks in deep regions but also their optical manipulation at targeted sites with high spatial precision. Because the two-photon excitation efficiency is proportional to the square of the photon density of the excitation laser light at the focal position, optical aberrations induced by specimens mainly limit the maximum depth of observations or that of manipulations in the microscopy. To increase the two-photon excitation efficiency, we developed a method for evaluating the focal volume in living mouse brains. With this method, we modified the beam diameter of the excitation laser light and the value of the refractive index in the immersion liquid to maximize the excitation photon density at the focal position. These two modifications allowed the successful visualization of the finer structures of hippocampal CA1 neurons, as well as the intracellular calcium dynamics in cortical layer V astrocytes, even with our conventional two-photon microscopy system. Furthermore, it enabled focal laser ablation dissection of both single apical and single basal dendrites of cortical layer V pyramidal neurons. These simple modifications would enable us to investigate the contributions of single cells or single dendrites to the functions of local cortical networks.
Collapse
|
62
|
Maglie E, Pisanello M, Pisano F, Balena A, Bianco M, Spagnolo B, Sileo L, Sabatini BL, De Vittorio M, Pisanello F. Ray tracing models for estimating light collection properties of microstructured tapered optical fibers for optical neural interfaces. OPTICS LETTERS 2020; 45:3856-3859. [PMID: 32667302 DOI: 10.1364/ol.397022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tapered optical fibers (TFs) were recently employed for depth-resolved monitoring of functional fluorescence in subcortical brain structures, enabling light collection from groups of a few cells through small optical windows located on the taper edge [Pisano et al., Nat. Methods16, 1185 (2019)1548-709110.1038/s41592-019-0581-x]. Here we present a numerical model to estimate light collection properties of microstructured TFs implanted in scattering brain tissue. Ray tracing coupled with the Henyey-Greenstein scattering model enables the estimation of both light collection and fluorescence excitation fields in three dimensions, whose combination is employed to retrieve the volume of tissue probed by the device.
Collapse
|